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Abstract

Epigenetic regulation plays critical roles in the regulation of cell proliferation, fate determination, and survival. It has been
shown to control self-renewal and lineage differentiation of embryonic stem cells. However, epigenetic regulation of adult
stem cell function remains poorly defined. Drosophila ovarian germline stem cells (GSCs) are a productive adult stem cell
system for revealing regulatory mechanisms controlling self-renewal and differentiation. In this study, we show that Eggless
(Egg), a H3K9 methyltransferase in Drosophila, is required in GSCs for controlling self-renewal and in escort cells for
regulating germ cell differentiation. egg mutant ovaries primarily exhibit germ cell differentiation defects in young females
and gradually lose GSCs with time, indicating that Egg regulates both germ cell maintenance and differentiation. Marked
mutant egg GSCs lack expression of trimethylated H3K9 (H3k9me3) and are rapidly lost from the niche, but their mutant
progeny can still differentiate into 16-cell cysts, indicating that Egg is required intrinsically to control GSC self-renewal but
not differentiation. Interestingly, BMP-mediated transcriptional repression of differentiation factor bam in marked egg
mutant GSCs remains normal, indicating that Egg is dispensable for BMP signaling in GSCs. Normally, Bam and Bgcn interact
with each other to promote GSC differentiation. Interestingly, marked double mutant egg bgcn GSCs are still lost, but their
progeny are able to differentiate into 16-cell cysts though bgcn mutant GSCs normally do not differentiate, indicating that
Egg intrinsically controls GSC self-renewal through repressing a Bam/Bgcn-independent pathway. Surprisingly, RNAi-
mediated egg knockdown in escort cells leads to their gradual loss and a germ cell differentiation defect. The germ cell
differentiation defect is at least in part attributed to an increase in BMP signaling in the germ cell differentiation niche.
Therefore, this study has revealed the essential roles of histone H3K9 trimethylation in controlling stem cell maintenance
and differentiation through distinct mechanisms.
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Introduction

Histone modification represents one of the most common

epigenetic mechanisms for controlling gene expression, and thus

cell proliferation, fate determination and survival during develop-

ment [1]. Histone modification has recently been subjected to

extensive investigation for its roles in the control of self-renewal

and lineage differentiation of embryonic stem cells (ESCs) by

disrupting functions of the enzymes that are important for

catalyzing the modifications [2–7]. Among different histone

modifications, trimethylation of histone 3 lysine 9 (H3K9me3)

has been widely studied and is often associated with heterochro-

matin formation, gene repression and transcriptional elongation in

different tissue types and organisms [1]. SETDB1, one of the

H3K9 trimethylases in the mouse, was recently shown to be

important for maintaining ESC self-renewal [8]. However, its role

in adult stem cell regulation remains to be determined.

In the Drosophila ovary, two or three GSCs are located at the tip

of the germarium, which is the structure located at the apical end

of an ovariole [9,10]. These GSCs physically interact with cap cells

anteriorly and escort cells laterally. The immediate differentiating

GSC progeny, known as cystoblasts (CBs), can further divide

synchronously without cytokinesis to form 2-cell, 4-cell, 8-cell and

16-cell cysts. CBs, mitotic cysts and newly formed 16-cell cysts are

surrounded by escort cells. Cap cells form a niche for maintaining

GSC self-renewal by producing BMP-like molecules Dpp and Gbb

[11–13]. Dpp and Gbb activate BMP signaling in the GSC to

directly repress expression of differentiation factors such as bam,

and thereby maintain GSC self-renewal [13,14]. Chromatin

remodeling factors, such as ISWI and Stonewall, have been

shown to be important for maintaining GSC self-renewal through

distinct mechanisms. ISWI is required for repressing bam

transcription in GSCs [15], while Stonewall likely represses a

Bam-independent pathway [16]. Lsd1 is a H3K4 demethylase in

the Drosophila ovary, and its mutations cause upregulation of H3K4

trimethylation and gene activation [17]. Recently, Lsd1 has been

shown to be required in escort cells (ECs) to repress dpp expression

and promote germ cell differentiation [18]. These findings indicate

that epigenetic regulation is important for GSC self-renewal.
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In Drosophila, there are three known H3K9 methyltransferases,

Su(var)3-9, G9a and eggless (egg, also known as dSETDB1). Su(var)3-9

was the first identified H3K9 methyltransferase in Drosophila [19], and

it is responsible for H3K9me3 at the core of the chromocenter, which

provides docking sites for HP1 recruitment and thus heterochromatin

formation and maintenance [20,21]. Recently, G9a was also shown to

exhibit H3K9-, H3K27- and H3K4- methyltransferase activity and

localize to the euchromatic region, but it is dispensable for normal

Drosophila development [22,23]. Egg is the histone methyltransferase

responsible for maintaining H3K9me3 on the fourth chromosome,

and it works with Su(var)3-9 to maintain H3K9me3 in the pericentric

heterochromatin of all chromosomes [24–27]. Egg is expressed

throughout Drosophila development, and is an essential gene because

its homozygous deletion causes lethality [25,26]. In addition, the

females carrying homozygous EMS-induced egg mutations do not lay

any eggs, and it is this phenotype upon which its name is based [28].

The egg mutant ovaries exhibit defects in follicle cell proliferation and

the maintenance or survival of somatic cells and germ cells [28].

Consistently, Windei (Wde), the Drosophila homolog of human

MCAF1, is an essential Egg cofactor and is also required for germ

cell maintenance [29]. Interestingly, Egg is located in pericentric

heterochromatin and catalyzes H3K9 trimethylation in GSCs and

their immediate descendants, while SU(VAR)3-9 is primarily in

charge of H3K9 trimethylation in more differentiated germline cysts

in egg chambers [27]. Mutations in egg and Su(var)3-9 abolish

H3K9me3 from germ cells in the germarium and the developing egg

chambers, respectively. Although egg is proposed to maintain the

survival of germ cells in the Drosophila ovary, it remains unclear

whether it is required for GSC maintenance or simply germ cell

survival. In this study, we have revealed the essential role of Egg in

controlling GSC self-renewal and a novel role of Egg in the regulation

of germ cell differentiation.

Results

Egg Is Essential for GSC Maintenance and Germ Cell
Differentiation

To investigate how germ cells are lost in egg mutant ovaries, we

examined the germ cell phenotypes of different egg mutant allelic

combinations. In the Drosophila ovary, somatic cells and different

germ cell types can be distinguished using molecular markers.

Lamin C can label both TFs and cap cells, which can be easily

distinguished by their distinct cellular morphologies [12]: TF cells

are disc-like cells lining up in a row, while cap cells are round-

shaped cells tightly packing together next to TFs. Vasa can label

all the germ cells including GSCs [30,31], while Hts labels

spectrosomes in GSCs and CBs as well as branched fusomes in

cystocytes [32] (Figure 1A). In this study, three egg mutants, egg2138

and egg1473 and egg235, were used to investigate its function in

female germ cell development. The Egg protein contains two

tudor domains and one bifurcated SET domain, which carry out

the functions of binding to the methylated H3K9 and catalyzing

H3K9 trimethylation, respectively [28]. The mutations in egg1473

and egg235 were previously shown to cause the production of

truncated proteins by deletion of the entire SET domain and all

the functional domains, respectively (Clough et al., 2007). The

egg2138 mutation corresponds to a truncated protein resulting from

deletion of the SET domain and part of the second tudor domain

and thus is a strong mutation (T. Hazelrigg, personal communi-

cations). Heterozygous egg2138 and egg1473 mutant germaria carry

two or three GSCs and one CB as in normal wild-type germaria

(Figure 1A and 1F). In contrast, egg2138/egg1473, egg2138/egg235,

egg1473/egg235 mutant germaria exhibit two defects in germ cell

development in addition to the previously reported follicle cell

defects. The germaria in the newly eclosed two to three-day-old

mutant females contain many spectrosome-containing single germ

cells, which are located away from cap cells (Figure 1B). The

undifferentiated GSC-like or CB-like cells also persist after they

have been packed into egg chambers along with differentiated

germ cell cysts (Figure 1C). For quantification, undifferentiated

GSC-like or CB-like cells located outside the niche in the

germarium are quantified as undifferentiated germ cells (UGCs).

For the heterozygous controls, over 95% of the germaria contain

one, two or three spectrosome-containing UGCs (Figure 1D). By

contrast, 88% of the egg2138/egg1473 mutant germaria harbor more

than 4 UGCs, and 30% of them have ten or more UGCs

(Figure 1D). These results have revealed that egg is required for

germ cell differentiation.

As reported previously, egg is also required for germ cell

maintenance [29]. Indeed, egg mutant germaria gradually lose

their GSCs and eventually become agametic with time (Figure 1E

and 1F). Even at the age of 2 or 3 days, 59% of the egg2138/egg1473

mutant germaria contain no GSCs, and 16% of them completely

lose germ cells, including GSCs, indicating that some GSCs have

already been lost in young mutant females (Figure 1F). At the age

of 8 or 9 days, the GSC loss phenotype becomes more severe. 94%

of those mutant germaria contain no GSCs, and 84% of them

become completely depleted of germ cells (Figure 1F). Regarding

the GSC loss phenotype, other mutant allelic combinations give

the comparable GSC loss phenotype at the age of one week old

(Figure 1G). These results show that egg is required for GSC

maintenance.

Egg Is Required Intrinsically for GSC Self-Renewal and
Proliferation

The genes identified so far for GSC regulation are required for

either GSC maintenance or differentiation but rarely for both. To

further understand how Egg regulates both GSC maintenance and

differentiation, we used FLP-mediated FRT recombination to

remove egg function intrinsically from arm-lacZ-marked GSCs. In

this study, marked GSCs are identified by loss of lacZ (encoding b-

galactosidase or b-gal) expression, presence of spectrosome and

physical contact with cap cells/the niche as in our previous studies

Author Summary

Epigenetic regulation plays critical roles in the regulation
of cell proliferation, fate determination, and survival. It has
been extensively studied in embryonic stem cells for its
roles in the control of self-renewal and lineage differen-
tiation. However, epigenetic regulation of adult stem cell
function remains poorly defined. In this study, we show
that Eggless (Egg), a H3K9 methyltransferase in Drosophila,
is required in germline stem cells (GSCs) for controlling
self-renewal and in escort cells for regulating germ cell
differentiation. egg mutant ovaries exhibit both germ cell
differentiation defects and GSC loss, indicating that Egg
regulates both germ cell maintenance and differentiation.
Intrinsic inactivation of egg function in GSCs leads to loss
of trimethylated H3K9 expression and rapid departure
from the niche, indicating that Egg is required intrinsically
to control GSC self-renewal. Our genetic results reveal that
Egg intrinsically controls GSC self-renewal through re-
pressing a Bam/Bgcn-independent pathway. Furthermore,
RNAi-mediated egg knockdown in escort cells leads to
germ cell differentiation defects due to increased BMP
signaling. Therefore, this study has revealed essential roles
of histone H3K9 trimethylation in controlling stem cell
maintenance and differentiation through distinct mecha-
nisms in the Drosophila ovary.

H3K9me3 Regulates GSC Development
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[11,33]. As shown previously, about 80% of the marked control

GSCs detected at the first week after clonal induction (ACI) are

still maintained three weeks ACI (Figure 2A–2D). The marked

control GSCs still remain in the niche two weeks and three weeks

ACI (Figure 2B and 2C). In contrast, less than 20% of the marked

egg mutant GSCs for egg1473, egg235 and egg2138 detected at the first

week ACI are still maintained three weeks ACI, indicating that

Egg is required intrinsically for maintaining GSCs (Figure 2D–

2G). Two or three weeks ACI, the lost marked mutant egg GSCs

have developed into differentiated 16-cell germline cysts either in

the germaria or egg chambers (Figure 2F and 2G). The

differentiation of marked egg mutant cysts could be due to

perdurance of Egg protein. To rule out this possibility, we

examined H3K9me3 in marked egg mutant germline clones.

Consistent with the role of Egg in catalyzing H3K9 trimethylation,

the marked egg1473, egg235 or egg2138 mutant GSCs and cysts as early

as one week ACI have abolished H3K9 trimethylation in

comparison with their neighboring control GSCs and cysts

(Figure 2H and 2I), but their H3K9 dimethylation remains

unchanged (Figure 2J). These results confirm that Egg is a key

enzyme responsible for H3K9 trimethylation in GSCs and early

germ cell cysts, and that there is not much Egg protein perdurance

in the marked egg mutant germline clones one week ACI.

However, almost all the germaria carrying a marked mutant GSC

do not accumulate marked egg mutant spectrosome-containing

single germ cells, indicating that Egg is intrinsically dispensable for

germ cell differentiation. These results indicate that Egg is

required intrinsically only for controlling GSC maintenance but

not for differentiation.

The loss of the marked egg mutant GSCs could be due to their

competitive disadvantage over their neighboring control GSCs.

We used an RNAi-mediated knockdown approach to inactivate egg

function in all the GSCs in the niche using nanos-gal4-driven UAS-

RNAi expression. Two independent RNAi lines [eggRNAi-1

(HMS00443) and -2 (HMS00112)], which can be expressed in

female germ cells including GSCs using nanos-gal4VP16 [34], were

used to knockdown egg function in GSCs. Consistent with egg

mutant clonal analysis results, germline expression of eggRNAi-1

leads to almost complete elimination of germ cells including GSCs

in one-week old females (Figure S1A–S1C). However, germline

expression of eggRNAi-2 results in formation of swollen germaria

due to the accumulation of a few more spectrosome-containing

single germ cells and differentiated cysts, but only rare GSC loss

(Figure S1C–S1E), suggesting that eggRNAi-2 may be less effective

in knocking down egg expression. Interestingly, the accumulated

single germ cells and germ cell cysts in the germarium are positive

for the commonly used DNA damage marker H2AX in

comparison with the control that only meiotic germ cells are

positive for this marker, indicating that egg is involved in DNA

damage control. The accumulated DNA damage could also

explain the accumulation of some spectrosome-containing single

germ cells due to mitotic arrest. These results support the idea that

Figure 1. egg is required for GSC maintenance and germ cell differentiation. Control and egg mutant germaria are labeled for Lamin C (red,
terminal filament and cap cells), Hts (red, spectrosomes and fusomes), Vasa (green, germline cells) and DAPI (blue, nuclei). (A) A week-old egg
heterozygous control germarium showing two GSCs (broken circles) and one CB (arrowhead). (B) 3-day-old mutant egg germarium shows the
accumulation of spectrosome-containing undifferentiated germ cells (UGCs) (arrowheads), indicative of differentiation defects. (C) The egg mutant
chambers following the germarium (indicated by g) contain both differentiated germ cells and a cluster of undifferentiated spectrosome-containing
single germ cells (circled). (D) 3-day-old egg mutant germaria contain more UGCs than the heterozygous controls. Germaria are categorized based on
the UGC number. ‘‘n’’ indicates the number of germaria examined for each genotype. (E) Week-old egg mutant germaria showing only remaining TFs
(arrowheads) and complete absence of germ cells including GSCs, which is indicated by absence of Vasa expression. (F) GSCs are gradually lost in egg
mutant germaria. Germaria are categorized by the number of GSCs per germarium. (G) Germless ovarioles in 3–5 day-old ovaries of different egg
mutant combinations are consistently observed. Scale bars represent 10 mm.
doi:10.1371/journal.pgen.1002426.g001

H3K9me3 Regulates GSC Development
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Egg is required intrinsically for maintaining GSCs, and also

suggest that it controls GSC maintenance possibly via maintaining

the genome integrity.

Loss of the marked mutant egg GSCs could be due to either

defective self-renewal or apoptosis. To rule out the possibility that

the mutant egg GSCs are lost due to apoptosis, we performed

TUNEL-based ApopTag labeling of the marked mutant egg GSCs

and cysts. Interestingly, no marked mutant egg GSCs are apoptotic

(total 38 marked egg mutant GSC clones examined), suggesting

that DNA damage caused by loss of egg function leads to defective

GSC self-renewal but not apoptosis (Figure 2K). Interestingly, egg

mutant mitotic cysts and 16-cell cysts in the regions 1 and 2a are

not apoptotic. However, among the 38 ovarioles, 9 of them carry

at least one apoptotic egg mutant 16-cell cyst in the regions 2b or 3

of the germaria, indicating that DNA damage caused by loss of egg

function leads to apoptosis of differentiated 16-cell cysts (Figure 2G

and 2K). Because DNA damage often results in cell cycle arrest,

we would expect that loss of egg function slows down proliferation

of GSCs, CBs and mitotic cysts. To test this idea, we then

determined the relative division rates for marked control and egg

mutant GSCs as we previously reported [11]. As expected, the

relative division rate for marked wild-type control GSCs is close to

1 (Figure 2L). In contrast, the relative division rates for marked egg

mutant GSCs are much lower than that for the control, indicating

Figure 2. egg is required intrinsically for GSC maintenance and the survival of late differentiated germ cells. Germaria in A–G are
labeled for LacZ (red), Hts (green) and DAPI (blue), while unmarked and marked GSCs are indicated by broken and solid circles, respectively. (A–C)
Marked wild-type GSCs are maintained one week (A), two weeks (B) and three weeks (C) after clonal induction (ACI). (D) Percentages of the germaria
carrying a marked wild-type or egg mutant GSC clone change with time (one week, two weeks and three weeks ACI). (E) A marked egg mutant GSC
still remains in the niche one week ACI. (F, G) The marked mutant GSC is lost from the niche two weeks (F) or three weeks (G) ACI, , which is evidenced
by presence of a marked mutant cyst (arrowheads in F and G). (H, H9) A marked egg mutant GSC (broken circle) has lost H3K9me3 staining in
comparison with its neighboring unmarked control GSC (circle) one week ACI. (I, I9) A marked egg mutant GSC (broken circle) and mutant 16-cell cysts
(solid lines) have no H3K9me3 staining in comparison with its neighboring unmarked control GSC (circle) and cysts twelve days ACI. (J, J9) Marked egg
mutant GSC (broken circle) and unmarked control GSC (solid circle) have comparable H3K9me2 staining one week ACI. (K) A marked egg mutant 16-
cell cyst (arrowhead), but not the marked egg mutant GSC (broken circle), is apoptotic twelve days ACI. (L) Relative GSC division rates for marked
control and egg mutant GSCs. Scale bar: 10 mm.
doi:10.1371/journal.pgen.1002426.g002
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that egg mutant GSCs divide much slower than wild-type controls

(Figure 2L). Consistently, only 24.3% of the marked mutant egg1473

GSCs (n = 33) are positive for BrdU in contrast with 32.8% for the

unmarked control GSCs (n = 134) in the same population of the

germaria. These results could also explain the accumulation of

CBs and mitotic cysts in the germarium following the inactivation

of egg function in the germline (Figure S1E). These results indicate

that Egg is required intrinsically for promoting GSC self-renewal

and proliferation.

Egg Controls GSC Self-Renewal by Repressing a
Bam-Independent Differentiation Pathway

Niche-activated BMP signaling is known to be necessary and

sufficient for GSC self-renewal [11,12]. In Drosophila ovarian

GSCs, active BMP signaling represses bam expression and activates

Dad expression, which can be monitored by reporter lines bam-GFP

and Dad-lacZ, respectively [13,14,35,36]. In the marked mutant

egg1473 GSCs, bam-GFP is still repressed as in the neighboring

unmarked control GSCs of the same germaria, indicating that egg

is dispensable for BMP signaling-mediated bam repression in GSCs

(Figure 3A–3A9). Interestingly, in the marked mutant egg1473

GSCs, Dad-lacZ fails to be activated to similarly high expression

levels as those in their neighboring unmarked control GSCs of the

same germaria, indicating that egg intrinsically regulates Dad

transcription in GSCs (Figure 3B–3B9). Because Egg only regulates

transcriptional activation of Dad but not repression of bam in

GSCs, we speculate that Egg is dispensable for BMP signaling but

indirectly regulates Dad expression.

To further investigate if Egg controls GSC self-renewal by

repressing a Bam-independent pathway, we generated lacZ-

marked egg bgcn double mutant GSCs and examined their

maintenance and differentiation. Mutations in either bam or bgcn

can completely block GSC differentiation, and bam overexpression

fails to induce GSC differentiation in the absence of bgcn function,

indicating that bam and bgcn function in the same genetic pathway

to control GSC differentiation [37–39]. Bgcn20915 is a strong or null

mutation [40]. Interestingly, those egg bgcn double mutant GSCs

are lost much faster than the marked control GSCs, but slower

than the marked egg mutant GSCs, indicating that Egg maintains

GSC self-renewal at least in part by repressing a Bam/Bgcn-

independent pathway (Figure 3C). The partial rescue of the

mutant egg GSC loss phenotype by the bgcn mutation further

supports the idea that egg is required intrinsically for GSC self-

renewal. In contrast with the knowledge that marked bgcn mutant

GSCs continuously produce spectrosome-containing single germ

cells (Figure 3D and 3E), the marked egg bgcn mutant GSC progeny

can differentiate into cysts in the germarium based on the

morphology of their branched fusome three weeks ACI (Figure 3F

and 3G). These differentiated double mutant cells with a branched

fusome can also be found to be packed together in egg chambers,

indicating that these double mutant germ cells do not undergo

proper terminal differentiation (Figure 3G). These results suggest

that egg maintains GSC self-renewal at least partly by repressing a

Bam/Bgcn-independent pathway.

Egg Does Not Intrinsically Regulate E-Cadherin
Accumulation in the Stem Cell-Niche Junction

E-cadherin is required for anchoring GSCs in the niche for

long-term self-renewal by accumulating in the stem cell-niche

junction [33]. To investigate if Egg is required for regulating E-

cadherin accumulation in GSCs, we examined E-cadherin

accumulation in the stem cell-niche junction between a marked

GSC and its neighboring control GSC. After carefully examining

10 such egg mutant and control GSC pairs, we did not observe any

difference in E-cadherin accumulation in the stem cell-niche

junction between them (Figure 4A). In addition, egg mutant and

wild-type follicle cells in the egg chamber do not have any obvious

difference in E-cadherin accumulation on their apical side

(Figure 4B). To further rule out the possibility that E-cadherin is

required for Egg-mediated GSC maintenance, we tested if nanos-

gal4-driven germ cell-specific UASp-shg (shg encodes E-cadherin in

Drosophila) expression could rescue or slow down the loss

phenotype of the marked egg mutant GSCs. UASp-shg has been

used previously to express E-cadherin in GSCs [40,41]. Consistent

with the idea that Egg does not regulate E-cadherin in GSCs,

forced E-cadherin expression shows little rescue effect on the loss

phenotype of the mutant egg GSCs (Figure 4C). Taken together,

we conclude that Egg does not maintain GSCs via regulation of E-

cadherin accumulation in the GSC-niche junction.

Egg Is Required in Escort Cells (ECs) for Controlling the
Differentiation of GSC Progeny

ECs have recently been shown to control germ cell differenti-

ation by repressing Dally expression through EGFR signaling and

thus preventing Dpp diffusion outside the GSC niche [42–45].

Thus, we then tested if egg function is required in ECs for

controlling germ cell differentiation using EC-specific RNAi-

mediated knockdown. C587-gal4 is specifically expressed in ECs

and early somatic follicle progenitor cells [13]. To avoid the

potential off-target effect of RNAi-mediated knockdown, three

more independent RNAi constructs targeting different regions of

the egg transcript, [eggRNAi-3(VDRC#101677), -4(VDRC#33730)

and -5(VDRC#22172)], were used in this study in addition to

eggRNAi-1 and -2. In contrast with the ovaries carrying c587-gal4 or

UAS-RNAi alone, which contain a germarium followed by a string

of egg chambers (Figure 5A), the ovaries carrying both c587-gal4

and one of the five UAS-RNAi constructs for egg often have their

germaria containing a mixture of spectrosome-containing single

germ cells and differentiated germ cell cysts, indicative of germ cell

differentiation defects (Figure 5B and 5C; Figure S2). Although the

germaria and egg chambers contain differentiated cysts evidenced

by the presence of a branched fusome, most of the germ cells are

spectrosome-containing single germ cells (Figure 5B–5D). The

single germ cells in the germaria fail to differentiate further even

after they are packed into individual egg chambers (Figure 5B and

5C; Figure S2). The budding defects observed in egg knockdown

ovaries are likely caused by disruption of follicle progenitor cell

proliferation and differentiation (Figure 5B and 5C; Figure S2).

These results demonstrate that egg is required in ECs for

controlling CB differentiation and in follicle progenitor cells for

their proper differentiation or proliferation.

To further determine if single germ cells accumulated in the

germaria are GSC-like or CB-like, we examined the expression of

bam-GFP and Dad-lacZ. As mentioned earlier, Dad-lacZ is

expressed primarily in the GSCs of the control germaria carrying

only c587-gal4 or UAS-RNAi (Figure 5E), and bam-GFP is normally

expressed in differentiated germ cells but is repressed in GSCs

(Figure 5G). In contrast, in the germaria in which egg function is

knocked down in ECs, most of spectrosome-containing single

germ cells further away from cap cells still retain Dad-lacZ

expression and repress bam-GFP expression similar to endogenous

GSCs, (Figure 5F and 5H). These results indicate that the

accumulated single germ cells in the germaria behave like GSCs,

and also further suggest that in the absence of egg function in ECs,

CBs fail to differentiate likely due to upregulation of BMP

signaling in germ cells.

H3K9me3 Regulates GSC Development
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Figure 3. egg is required intrinsically for maintaining GSCs by repressing a Bam/Bgcn-independent differentiation pathway. (A and
A9) Both lacZ-negative marked egg mutant GSC (broken circle) and lacZ-positive unmarked control GSC repress bam-GFP expression (A9). (B and B9) A
GFP-negative marked egg mutant GSC (broken circle) loses its Dad-lacZ expression (B9) in comparison with the neighboring GFP-positive unmarked
control GSC (solid circle). (C) Percentages of marked egg mutant GSCs and egg bgcn double mutant GSCs change with time. (D) The marked lacZ-
negative bgcn mutant GSC continuously generates spectrosome-containing single germ cells (arrowhead). (E) The marked LacZ-negative bgcn
mutant single germ cells in the two egg chambers contain a spectrosome (arrowhead). (F) The marked lacZ-negative egg bgcn mutant GSC is lost
from the niche evidenced by the presence of two lacZ-positive GSCs in the niche, but its marked mutant progeny remaining in the germarium
contain a branched fusome (arrowhead). (G) The marked lacZ-negative egg bgcn mutant germ cells in the two egg chambers have a branched
fusome (arrowhead). Scale bar: 10 mm.
doi:10.1371/journal.pgen.1002426.g003

H3K9me3 Regulates GSC Development
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Egg Controls BMP Signaling Activity in Differentiated
Germ Cells via ECs

To investigate if increased BMP signaling activity is responsible

for the germ cell differentiation defect caused by egg knockdown in

ECs, we tested if removal of one copy of dpp gene could suppress

the germ cell differentiation defect. Interestingly, a copy of dpphr4

or dpphr56 can partially suppress the GSC-like tumorous phenotype

caused by egg knockdown in ECs, and consequently more normal-

looking germaria can be observed in comparison with egg

knockdown alone (Figure 6A–6E). These results indicate that

increased BMP signaling is at least in part responsible for the germ

cell differentiation defect caused by egg knockdown in ECs.

Recently, Lsd1 has been suggested to repress dpp transcription in

ECs, thus promoting germ cell differentiation [18]. One of the

possibilities is that egg may be involved in repressing dpp

transcription in ECs. To test the possibility, we used two

independent RNAi strains against different regions of dpp to

knock down dpp mRNA expression in the ECs in which eggRNAi is

also expressed. dpp knockdown in ECs cannot rescue the germ cell

differentiation defect caused by egg knockdown (Figure 6F–6H). In

addition, our quantitative RT-PCR results also show that there is

no increase in dpp mRNAs in the EC-specific egg knockdown

ovaries (Figure S3A). These results indicate that egg is dispensable

for dpp repression in ECs.

One recent study has clearly established that MAPK signaling

functions downstream of EGFR in ECs to repress the expression of

dally, whose gene product facilitates Dpp diffusion [42]. The egg

mutant phenotype raises a possibility that egg is involved in the

repression of dally expression in ECs. Interestingly, dally knock-

down in ECs can partially suppress the germ cell differentiation

defect caused by egg knockdown, indicating that dally upregulation

in ECs contributes to the germ cell differentiation defect

(Figure 6I–6K). To further test if egg is involved in regulation of

EGFR signaling in ECs, we examined the expression of pERK,

which has been used to monitor EGFR signal transduction in ECs

[42,45]. pERK is preferentially expressed in wild-type ECs as

reported [45] (Figure 6L). In the egg knockdown ECs, pERK

expression remains normal or close to normal (Figure 6M). These

results suggest that egg functions either downstream of or in parallel

with EGFR signaling to repress dally expression in escort cells.

Egg Functions in ECs to Control Their Survival
During the characterization of the EC-specific egg knockdown

mutant phenotype, we noticed that most of the egg knockdown

germaria have smaller regions 1 and 2a than in the control

germaria, while others appear to completely lose ECs, suggesting

that egg knockdown in ECs leads to gradual EC loss (Figure 7A–

7C). In the absence of ECs, germ cells are also depleted from the

germaria (Figure 7C; Figure S4), suggesting that ECs are also

required for maintaining GSCs. To further investigate if egg

knockdown affects EC maintenance, we used the lacZ enhancer

trap line PZ1444 to quantify the number of ECs in wild-type and

egg knockdown germaria. PZ1444 is known to label both cap cells

and ECs in the germarium [12,46]. In the control germaria,

PZ1444 labels 20 to 35 ECs (Figure 7A and 7D). In the egg

knockdown germaria, the number of ECs has already decreased at

the age of 1–2 days (Figure 7D). At the age of 8 or 9 days, all

PZ1444-positive ECs in 63% of the egg knockdown germaria are

Figure 4. egg is dispensable intrinsically for maintaining E-cadherin accumulation in the GSC-niche junction. (A) A GFP-negative
marked egg mutant GSC (filled arrowhead) has similar E-cadherin accumulation in the GSC-niche junction to its neighboring GFP-positive unmarked
control GSC (open arrowhead). The solid line highlights the boundary between the two GSCs. (B) GFP-negative marked egg follicle cells (filled
arrowhead) have similar apical E-cadherin accumulation to their neighboring GFP-positive unmarked control follicle cells (open arrowhead). The solid
line highlights the boundary between the mutant and control follicle cells. (C) nos-gal4 driven germ cell-specific expression of E-cadherin fails to
rescue the stem cell loss phenotype of marked mutant egg GSCs. Scale bars: 10 mm.
doi:10.1371/journal.pgen.1002426.g004
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completely lost, and consequently no germ cells including GSCs

exist in the germaria (Figure 7C and 7D). However, the egg

chambers associated with those germaria are still full of spectro-

some-containing single germ cells (Figure S4), indicating that germ

cell differentiation is absolutely dependent on the presence of

functional ECs. To further determine if EC loss is caused by

apoptosis, we forced expression of p35, an apoptosis inhibitor, in

the egg knockdown ECs. Indeed, p35 expression can prevent EC

loss and formation of germless germaria, indicating that Egg is

required for maintaining EC survival and thus GSCs (Figure 7E

and 7F). Interestingly, the germ cell differentiation defect remains,

indicating that Egg also functions in ECs to promote germ cell

differentiation through modulating BMP or other signaling

pathways. These results suggest that egg is required for maintaining

EC survival and regulating EC function for promoting germ cell

differentiation.

Figure 5. egg is required in ECs to control germ cell differentiation. (A) A wild-type germarium showing two GSCs (arrows) tethered to cap
cells and one CB containing round spectrosome. (B, C) C587-gal4 driven egg knockdown leads to accumulation of spectrosome-containing cells
(arrows) and differentiated cysts containing a branched fusome (arrowhead). (D) Quantification of spectrosome-containing UGCs in week-old egg
knockdown ovaries. (E) Dad-lacZ expression is restricted to GSCs (ovals) in a wild-type germarium. (F) In a c587-gal4-driven egg knockdown
germarium, some spectrosome-containing UGCs (solid circle) express high Dad-lacZ, while the others (broken circles) express low Dad-lacZ. (G) bam-
GFP expression is repressed in GSCs (circles) but upregulated in differentiating cysts in a wild-type germarium. (H) In a c587-gal4-driven egg
knockdown germarium, bam-GFP expression is absent from spectrosome-containing UGCs (circles). Scale bars: 20 mm.
doi:10.1371/journal.pgen.1002426.g005
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HP1 Is Required in ECs to Regulate Germ Cell
Differentiation and Control EC Survival

To further determine if any other chromatin regulators are also

required in ECs to regulate germ cell differentiation, we sought to

use the same RNAi approach to knock down expression of sin3A,

su(z)12 and su(var)205 genes, which encode general factors

regulating heterochromatin formation or repressing gene tran-

scription [29,47,48]. Interestingly, knockdown of sin3A and su(z)12

in ECs fails to yield any discernible phenotype on germ cell

differentiation. In contrast, knockdown of su(var)205 in ECs leads

to the germ cell differentiation defect and the EC loss phenotype,

which is identical to those in egg knockdown (Figure 7G and 7H).

This is consistent with the biochemical function of Su(var)205, a

HP1 protein binding to H3K9me3 [19,49,50,51]. These results

suggest that HP1 and Egg, but not other general transcriptional

repressors, function specifically in ECs to control EC survival and

regulate germ cell differentiation.

Discussion

Although the mouse H3K9 trimethylase SETDB1 was recently

shown to be important for maintaining ESC self-renewal by

repressing the expression of developmentally regulated genes [8],

its role in regulation of adult stem cells has not yet been

Figure 6. egg knockdown in ECs causes EC gradual loss and increases BMP signaling in differentiated germ cells. (A–E) RNAi-mediated
knockdown of egg causes accumulation of single germ cells containing a spectrosome (arrowhead, A and C) in addition to endogenous GSCs (arrows,
A and C), while removal of a copy dpp gene using dpphr4 or dpphr56 mutation can suppress the germ differentiation defect and thus increase normal
germaria with two or three GSCs (arrows) and differentiated germ cells (B and D). The quantitative results are summarized in E. (F–H) RNAi-mediated
dpp knockdown in ECs fails to suppress the germ cell differentiation defect caused by egg knockdown in ECs. Double knockdown germaria still
accumulate excess spectrosome-containing single germ cells (arrowheads, F and G) in addition to endogenous GSCs (arrows, G). The quantitative
results are summarized in H. (I–K) dally knockdown in ECs suppresses the germ cell differentiation defect evidenced by a decrease in spectrosome-
containing single germ cells (arrowheads in I; endogenous GSCs indicated by arrows in J). K shows quantitative results. (L, M) egg knockdown in ECs
(arrowheads, M) does not affect pERK expression in in comparison with control ECs (arrowheads, L). Ovals in L and M indicate cap cells. Scale bars:
10 mm.
doi:10.1371/journal.pgen.1002426.g006
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established. In this study, we show that the Drosophila SETDB1

homolog, Egg, is required intrinsically for controlling GSC self-

renewal and extrinsically for controlling GSC differentiation in the

Drosophila ovary. The egg mutant ovaries exhibit both GSC loss and

germ cell differentiation defects. We further demonstrate that Egg

controls GSC self-renewal by repressing a Bam/Bgcn-independent

pathway. In addition, EC-specific RNAi-mediated knockdown of

egg function leads to gradual EC loss and germ cell differentiation

defects, indicating that Egg is required for EC maintenance and

germ cell differentiation. Recently, we have proposed that ECs

function as a niche for promoting germ cell differentiation [52].

Furthermore, Egg functions in ECs to control germ cell

differentiation at least in part by preventing BMP signaling from

spreading to the differentiation niche and regulating EC survival.

Therefore, we propose that Egg is a key H3K9 trimethylase in the

Drosophila ovary, which is required intrinsically for controlling GSC

self-renewal via repressing a Bam/Bgcn-independent differentia-

tion pathway and in ECs for controlling germ cell differentiation

by preventing BMP signaling spreading to the differentiation niche

(Figure 7I). The findings from this study have further supported

the idea that ECs function as a germ cell differentiation niche. It

will be of great interest to test if SETDB1 is also important for

controlling adult stem cell self-renewal and differentiation in

mammalian systems.

Figure 7. Egg is required for EC survival. (A) A control PZ1444/+ germarium shows lacZ expression in all the ECs (two by arrowheads) in addition
to cap cells (oval). (B–D) c587-gal4-driven egg knockdown in ECs results in reduced ECs (two by arrowheads, B) or the complete absence of ECs (C),
which are located posterior to cap cells (oval, B and C). D shows quantitative changes in EC numbers of control and egg knockdown germaria with
age. (E, F) Overexpression of p35 suppresses the EC loss caused by RNAi-mediated egg knockdown in ECs (arrows). Quantitative results (F) show that
p35 overexpression in ECs suppresses the germless phenotype but not germ cell differentiation defects. (G, H) RNAi-mediated su(var)205 knockdown
in ECs causes the accumulation of spectrosome-containing single germ cells (arrow, G) and the complete loss of germ cells (H). (I) A working model
for explaining functions of Egg in GSCs and ECs for controlling GSC maintenance and differentiation. In the GSC, Egg may repress the expression of a
gene that is important for GSC differentiation or activate expression of a gene that is important for repressing GSC differentiation. In addition, it also
directly or indirectly regulates Dad expression along with BMP signaling. In the EC, Egg is required for controlling the survival of the EC, which is
important for proper germ cell differentiation and GSC maintenance. Egg may control expression of dally and other BMP regulators in the EC to
prevent BMP signaling from spreading to differentiated germ cells.
doi:10.1371/journal.pgen.1002426.g007

H3K9me3 Regulates GSC Development

PLoS Genetics | www.plosgenetics.org 10 December 2011 | Volume 7 | Issue 12 | e1002426



Egg Is Required Intrinsically for Controlling GSC Self-
Renewal by Repressing a Bam/Bgcn-Independent
Differentiation Pathway

In the previous study [28], Egg was shown to be a primary

H3K9 trimethylase in follicle progenitor cells for maintaining

H3K9me3 and regulating their proliferation and survival [28].

Egg and its co-factor Wde were also shown to be required for

maintaining H3K9me3 in early germ cells and regulating their

survival [29]. This study has further demonstrated that Egg is

required intrinsically for controlling GSC self-renewal and

proliferation. Consistent with the previous finding [28], we have

shown that H3K9me3 but not H3K9me2 is eliminated in marked

egg mutant GSCs. In addition, marked egg mutant GSCs are lost

rapidly from the niche in comparison with the marked control

GSCs, further supporting the idea that Egg is required for GSC

maintenance. Moreover, the marked egg mutant GSCs and mitotic

cysts are negative for TUNEL-based ApopTag labeling, but the

marked 16-cell cysts in the regions 2b and 3 of the germarium are

observed to be positive, indicating that Egg is dispensable for the

survival of GSCs and early mitotic cysts but is required for the

survival of 16-cell cysts. Finally, marked egg mutant GSCs appear

to proliferate slower than the control GSCs based on cyst

production and BrdU labeling. We used RNAi-mediated knock-

down to show that loss of Egg function from GSCs and their

progeny leads to the accumulation of DNA damage, suggesting

that Egg is required for maintaining genome integrity. The

accumulated DNA damage could also explain retarded GSC

proliferation and increased 16-cell cyst apoptosis. These results

demonstrate that Egg is required intrinsically for GSC self-renewal

and proliferation and for the survival of 16-cell cysts.

BMP signaling and E-cadherin-mediated cell adhesion are

essential for maintaining GSCs in the Drosophila ovary

[11,13,14,33]. BMP signaling represses bam-GFP expression and

activates Dad-lacZ expression in GSCs [13,14,35,36]. H3K9me3 is

thought to be a histone marker for heterochromatin formation and

transcriptional repression [1]. Surprisingly, in marked egg mutant

GSCs, bam-GFP remains repressed as in wild-type GSCs, but Dad-

lacZ expression fails to be activated, indicating that Egg, and

presumably H3K9me3, is dispensable for BMP signaling-mediated

transcriptional repression of bam. The requirement of Egg for

transcriptional activation of Dad could be indirect, but the detailed

mechanism awaits further investigation. We have further demon-

strated functionally that Egg controls GSC self-renewal by

repressing a Bam/Bgcn-independent pathway by showing that

marked bgcn egg double mutant GSCs are still lost at a much faster

rate than marked control GSCs. Previously, Pumilio and Pelota

were proposed to control GSC self-renewal by repressing a Bam/

Bgcn-independent differentiation pathway as mutations for either

factor can drive differentiation of bam mutant germ cells [53–55].

Interestingly, mutations in egg can also cause differentiation of bgcn

mutant germ cells, further supporting the idea that Egg represses a

Bam/Bgcn-independent differentiation pathway to maintain GSC

self-renewal. There are two possible strategies for Egg to repress

differentiation and thus maintain GSC self-renewal: Egg represses

the expression of a gene(s) important for GSC differentiation or

activates the expression of a gene(s) critical for repressing GSC

differentiation (Figure 7I). Unfortunately, it remains unclear how

Egg represses GSC differentiation to maintain self-renewal.

Therefore, the identification of Egg target genes in GSCs will

help define the unknown GSC differentiation pathway along with

the identification of target genes of Pumilio and Pelota in order to

gain a deeper understanding of GSC self-renewing mechanisms.

During the revision of this manuscript, a study was published to

propose that Egg is required for H3K9me3 and heterochromatin

formation in CBs and differentiated cysts, and is required for

expression of piRNA genes and thus repression of transposable

elements (TEs) [56]. Loss of piRNAs in germ cells is known to

cause the activation of transposable elements (TEs) and conse-

quently an increase in DNA damage [57]. Consistently, our study

shows that loss of egg function in germ cells leads to the

accumulation of DNA damage. The regulation of piRNA by

Egg offers mechanistic insight into why Egg is required for GSC

maintenance and proliferation [56]. However, our study has two

different findings. One is that H3K9me3 establishment begins

from GSCs, but not from CBs as the published study proposed

[56]. The other is that Egg is also required intrinsically for GSC

maintenance and proliferation, but not for CB differentiation. The

published study showed that spectrosome-containing single germ

cells accumulate following germline-specific egg knockdown [56].

In our study, germline-specific expression of eggRNAi-1 leads to

GSC loss, which is consistent with our mutant clonal analysis

results, whereas the expression of eggRNAi-2 results in swollen

germaria containing a few more spectrosome-containing CBs and

cysts than control. The accumulation of the few more single germ

cells is likely due to DNA damage-caused slowdown of mitotic

progression. The difference between the published study and our

study could be simply caused by different egg knockdown

efficiencies.

Egg Controls Germ Cell Differentiation by Regulating EC
Survival and BMP Signaling

egg homozygous ovaries accumulate more undifferentiated germ

cells and gradually lose their GSCs, which appear to be

paradoxical. The egg mutant GSC loss phenotype can be attributed

to the intrinsic requirement for GSC self-renewal. Our further

genetic analysis has revealed the requirement of Egg in ECs for

controlling GSC differentiation by EC-specific RNAi-mediated egg

knockdown. In the absence of Egg function from ECs, GSC

progeny fail to differentiate and continuously proliferate as single

germ cells, indicative of differentiation defects. In addition, loss of

Egg function in ECs also causes EC loss, and in the complete

absence of ECs, the progeny that have been generated before GSC

loss also accumulate as single germ cells, further supporting that

ECs are required for CB differentiation. Some of the accumulated

single germ cells appear to upregulate Dad-lacZ expression and

repress bam-GFP expression, suggesting that BMP signaling

spreads to the germ cell differentiation niche, thereby interfering

with germ cell differentiation. These findings suggest that Egg is

required in ECs to promote germ cell differentiation at least in

part by preventing self-renewal-promoting BMP signaling from

spreading to the germ cell differentiation niche.

EFGR signaling has been suggested to act in ECs to control

germ cell differentiation by repressing expression of Dally, a

protein important for facilitating BMP diffusion [42]. Interestingly,

in the egg knockdown ECs, the expression of pERK, an EGFR

signaling indicator, still remains normal, indicating that Egg is not

essential for EGFR signaling in ECs. However, dally knockdown in

ECs can partially suppress the egg knockdown mutant germ cell

tumor phenotype, indicating that upregulation of dally in egg

knockdown ECs contributes to BMP upregulation in the

differentiation niche and to germ cell differentiation defects. The

regulation of dally in ECs by Egg could be direct or indirect. The

newly published study on Egg has shown that loss of Egg function

in ECs leads to defective piRNA production and germ cell

differentiation defects [56]. Consistently, we also confirmed that

egg knockdown in ECs results in dramatically increased expression

of TEs (Figure S3B and S3C). The germ cell differentiation defect

can be rescued by a mutation in one of the DNA damage
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checkpoint genes, suggesting that DNA damage in ECs affects

their ability to regulate germ cell differentiation [56]. It will be of

great interest to investigate if the mutation in the checkpoint gene

also rescues defective BMP signaling in differentiated cells. Based

on our findings from this study, we propose that Egg functions

downstream of or in parallel with EGFR signaling to repress dally

expression in ECs, thereby preventing BMP signaling from

spreading to the differentiation niche (Figure 7I). Because the

signal(s) from ECs to control germ cell differentiation has not been

identified yet, it remains unclear whether Egg also regulates

additional factors independent of BMP signaling in ECs to control

germ cell differentiation.

GSC-Contacting ECs Function as an Integral Part of the
GSC Niche

In this study, we have also shown that the egg knockdown ECs

are gradually lost, and that GSCs cannot be maintained in the

complete absence of ECs. This is consistent with our recently

published finding that disruption of Rho function in ECs also

cause EC loss and thus GSC loss [58]. Because 5 to 6 most

anteriorly localized ECs directly contact cap cells and GSCs, we

propose that these ECs function as a part of the GSC niche to

promote self-renewal by directly providing signals or indirectly by

regulating cap cells function (Figure 7I). One previous study

suggests that JAK-STAT signaling functions in ECs to control

GSC maintenance indirectly [59]. How these GSC-contacting

ECs contribute to GSC regulation remains to be further

investigated.

Materials and Methods

Drosophila Stocks
Flies were maintained at 25uC on molasses-based media

supplied with live yeast unless otherwise specified. The strains

used in this study include: egg235, egg2138 and egg1473 [28](kindly

provided by T. Hazelrigg); Dad-lacZ [60], bam-GFP [61], PZ1444

[46], nos-gal4 [62], c587-gal4 [63], dpphr56 [11], dpphr4 [11], UAS-p35

[64] and w1118 (control).

RNAi-Mediated egg Knockdown in ECs
For egg knockdown in ECs, the c587-gal4; UAS-dcr2 line was used

to drive the expression of five independent eggless RNAi constructs,

HMS00443 and HMS00112 from Harvard Medical School

(kindly provided by Dr. N. Perrimon), and three other lines

(#21172, #33730 and #101677) from the Vienna Drosophila

RNAi Center (VDRC). UAS-RNAi lines for dpp (dppRNAi-1:

JF01090; dppRNAi-2: JF01371)and dally [52] were kindly provided

by Dr. N. Perrimon and Dr. X. Lin (Cincinnati Children’s

Hospital Medical Center), respectively. After eclosion, their

progeny were collected and reared at 29uC for several days as

described in the text for each experiment.

Generation of Marked egg Mutant GSC Clones
The marked control and egg mutant GSC clones were generated

using the FLP-mediated FRT recombination technique as

described previously [11,33]. H3K9me3, H3K9me2 and TUNEL

staining were performed 7 or 12 days after clone induction (ACI).

The genotypes used for clonal analysis were: (1) hs-flp/+; FRT42D/

FRT42D ubiGFP; (2) hs-flp/+; FRT42D egg235/FRT42D ubiGFP; (3) hs-

flp/+; FRT42D egg1473/FRT42D ubiGFP, (4) hs-flp/+; FRT42D egg2138/

FRT42D ubiGFP, (5) hs-flp/+;FRT42D/FRT42D arm-lacZ; (6) hs-flp/+;

FRT42D egg235/FRT42D arm-lacZ;(7) hs-flp/+; FRT42D egg1473/

FRT42D arm-lacZ and (8) hs-flp/+; FRT42D egg2138/FRT42D arm-lacZ.

For generating bgcn egg double mutant clones, the following

genotypes were used: (1) hs-flp/+; FRT42D bgcn20915 egg235/FRT42D

arm-lacZ; (2) hs-flp/+; FRT42D bgcn20915 egg1473/FRT42D arm-lacZ.

Immunohistochemistry and Fluorescent Microscopy
Ovaries were dissected, fixed and stained according to the

method described previously [33]. The following primary

antibodies were used: monoclonal mouse anti-Hts (1B1, 1:4,

DSHB), mouse anti-Lamin C (LC28.26, 1:4, DSHB), mouse anti-

Orb (4H8, 1:4, DSHB), mouse anti-Fas3 (7G10, 1:3, DSHB), rat

anti-Vasa (1:10, DSHB), rat anti-E-cadherin DCAD2 (1:3,

DSHB), polyclonal rabbit anti-GFP (1:100, Molecular Probes),

chicken anti-GFP antibody (1:200, Invitrogen), rabbit anti-b-

galactosidase (1:100, Molecular Probes), rabbit anti-H3K9me3

(1:200, Abcam ab8898) and rabbit anti-phosphorylated ERK1/2

(1:200, a gift from Dr. Y. Cai). Secondary antibodies used were:

goat anti-rabbit, goat anti-rat and goat anti-mouse antibodies

conjugated to Alexa 488, Alexa 568 or Cy5 (1:100, Molecular

Probes) and Dylight 488 donkey anti-chicken antibody (1:200,

Jackson ImmunoResearch Laboratories). TUNEL staining was

performed using the ApopTag Red In Situ Apoptosis Detection Kit

(Chemicon, S7165) according to the manufacturer’s protocol. All

micrographs were taken using an inverted Leica TCS SP5

confocal microscope. For the experiments involving comparison

between mutants and wild type, the same parameters were used

for confocal imaging.

Supporting Information

Figure S1 Germline-specific egg knockdown leads to GSC loss

and DNA damage accumulation. (A) A week-old control

germarium contains three GSCs (arrows) and differentiated germ

cells. (B) nos-gal4-driven expression of eggRNAi-1 leads to complete

depletion of germ cells including GSCs in the majority of the

week-old germaria. (C) Quantitative results of germless germaria

following expression of eggRNAi in week-old females. (D) A week-

old control germarium contains branched fusome-containing

differentiated germ cells (arrow) and H2AX-positive meiotic germ

cells. (E) nos-gal4-driven expression of eggRNAi-2 leads to the

accumulation of extra spectrosome-containing single germ cells

(arrowheads) and branched fusome-containing differentiated germ

cells, which are positive for H2AX.

(TIF)

Figure S2 egg knockdown in ECs leads to accumulation of

spectrosome-containing single germ cells. Four independent egg

RNAi lines, which are targeted to different regions of the egg

transcript, generate similar germ cell differentiation defects

following their expression in ECs using the c587 gal4 driver.

(TIF)

Figure S3 EC-specific egg knockdown leads to upregulation of

transposable elements gypsy and tart but not dpp. These quantitative

RT-PCRs are normalized to multiple internal gene controls

including actin42A, rp49 and gapdh, while the value for the c587

driver control is designated to 1. All these results are based on two

independent experiments. (A) dpp mRNA expression shows little

change following c587-driven expression of either eggRNAi-1 or

eggRNAi-2. (B, C) gyspy (B) and tart (C) mRNA expression shows

dramatic changes following c587-driven expression of either

eggRNAi-1 or eggRNAi-2.

(TIF)

Figure S4 ECs are required for GSC maintenance and germ cell

differentiation. In a germarium in which egg function is knocked

down through RNAi, GSCs are already lost from the niche (circle),

H3K9me3 Regulates GSC Development
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while most of the progeny of the lost GSCs remain as single germ

cells indicated by spectrosomes (arrows).

(TIF)
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