
Repetitive Elements May Comprise Over Two-Thirds of
the Human Genome
A. P. Jason de Koning1, Wanjun Gu1¤, Todd A. Castoe1, Mark A. Batzer2, David D. Pollock1*

1 Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, United States of America, 2 Department of Biological

Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America

Abstract

Transposable elements (TEs) are conventionally identified in eukaryotic genomes by alignment to consensus element
sequences. Using this approach, about half of the human genome has been previously identified as TEs and low-complexity
repeats. We recently developed a highly sensitive alternative de novo strategy, P-clouds, that instead searches for clusters of
high-abundance oligonucleotides that are related in sequence space (oligo ‘‘clouds’’). We show here that P-clouds predicts
.840 Mbp of additional repetitive sequences in the human genome, thus suggesting that 66%–69% of the human genome
is repetitive or repeat-derived. To investigate this remarkable difference, we conducted detailed analyses of the ability of
both P-clouds and a commonly used conventional approach, RepeatMasker (RM), to detect different sized fragments of the
highly abundant human Alu and MIR SINEs. RM can have surprisingly low sensitivity for even moderately long fragments, in
contrast to P-clouds, which has good sensitivity down to small fragment sizes (,25 bp). Although short fragments have a
high intrinsic probability of being false positives, we performed a probabilistic annotation that reflects this fact. We further
developed ‘‘element-specific’’ P-clouds (ESPs) to identify novel Alu and MIR SINE elements, and using it we identified
,100 Mb of previously unannotated human elements. ESP estimates of new MIR sequences are in good agreement with
RM-based predictions of the amount that RM missed. These results highlight the need for combined, probabilistic genome
annotation approaches and suggest that the human genome consists of substantially more repetitive sequence than
previously believed.

Citation: de Koning APJ, Gu W, Castoe TA, Batzer MA, Pollock DD (2011) Repetitive Elements May Comprise Over Two-Thirds of the Human Genome. PLoS
Genet 7(12): e1002384. doi:10.1371/journal.pgen.1002384

Editor: Gregory P. Copenhaver, The University of North Carolina at Chapel Hill, United States of America

Received August 5, 2011; Accepted October 4, 2011; Published December 1, 2011

Copyright: � 2011 de Koning et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by National Science Foundation EPS-0346411 (MAB and DDP), Louisiana Board of Regents Millennium Trust Health
Excellence Fund HEF (2000-05)-05 (MAB and DDP), State of Louisiana Board of Regents Governor’s Biotechnology Initiative GBI (2002-005) (MAB and DDP),
National Institutes of Health R01 GM59290 (MAB) and R01 GM083127 (DDP), and NIH training grant LM009451 (TAC). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests:

* E-mail: David.Pollock@UCDenver.edu

¤ Current address: Key Laboratory of Child Development and Learning Science, Southeast University, Ministry of Education, Nanjing, China

Introduction

Eukaryotic genomes contain millions of copies of transposable

elements (TE) and other repetitive sequences. Indeed, approxi-

mately half of the sequence content of typical mammalian

genomes tends to be annotated as TEs and simple repeats by

conventional annotation methods. By contrast, only about 5–10%

of mammalian and vertebrate genome sequences comprise genes

and known functional elements [1,2,3]. The remaining 40–45% of

the genome is essentially of unknown function, and is sometimes

referred to as the ‘dark matter’ of the human genome. The origins

of this ‘dark matter’ fraction of the genome have presumably been

obscured, in part, by extensive rearrangement and sequence

divergence over deep evolutionary time. Understanding the

content and origins of this huge uncharacterized component of

the genome represents an important step towards completely

deciphering the organization and function of the human genome

sequence [4,5,6].

The dominant repeat annotation paradigm focuses on the

identification of repeat element sequences via alignment to

consensus TE sequences, as in the widely-used RepeatMasker

(RM) approach [7]. Such approaches rely on well-curated libraries

of known repeat family consensus sequences, which are usually

provided by Repbase [8]. Thus, methods like RM can be

described as not masking repeats, per se, but rather masking

sequences with clear similarity to repeat consensus library

sequences. Ultimately, alignment-based approaches are designed,

and tuned, to conservatively mask regions that are clearly

identifiable as TEs. Such approaches are therefore expected to

be most effective for well-studied genomes with long histories of

repeat library curation [9,10,11,12,13,14,15,16]. Even when TE

databases are well-curated, however, there are plausible circum-

stances where such methods might be expected, a priori, to have

poor sensitivity. Consensus sequences may not align well to old

and highly diverged TE family members, for example, and

alignment-based approaches may have trouble identifying short

segments [17].

If half of the human genome can readily be identified as

belonging to known TE families, it would seem reasonable to

assume that much of the unannotated genomic dark matter may

also be derived from TEs [18], even if the precise origins of such

sequences are difficult to identify. TE elements have long been

active in vertebrate genomes, and different families have

diversified to varying degrees and at different times along the
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lineages leading to present-day species [19]. As a result, we expect

that hundreds of millions of years of vertebrate evolution would

have heavily altered substantial amounts of TE-derived sequence.

Insertion, deletion, and sequence divergence would make many

such elements quite difficult to identify. We postulated, however,

that mutations in these ancient TEs will have produced a great

deal of related but diverged sequences, and that the relations

among these large clusters of sequences may make them

detectable, even when individual sequences are not.

Motivated by these arguments, we developed a novel approach

to identify and demarcate likely repetitive regions in large genomes

[13,20,21]. This approach first identifies short oligos that are

highly repeated (similar to some other de novo repeat-finding

methods; [22]), but then groups closely-related oligos that occur, as

a group, more often than predicted by chance (Figure 1). These ‘P-

clouds’ are then used to demarcate regions of the genome that are

of putatively repetitive origin. Identification of putative repeat-

derived regions using P-clouds is far more rapid than consensus-

based alignment identification of TEs, and analysis of the human

genome can be accomplished on a modest desktop computer in

well under a day [20].

Early P-clouds results on two human chromosomes indicated that

a reasonably large fraction of the human genome is likely to be of

repetitive origin, but not annotated by RM [20]. We thus decided

to examine the entire human genome here, evaluating evidence

that regions uniquely annotated by P-clouds do indeed represent

TE-derived sequences, and addressing how such regions can be

better annotated using related approaches. To enable family-

specific annotation, we introduce an ‘element-specific’ P-clouds

approach (‘ESP’), that builds oligo-based P-clouds from sets of all

known family members for a particular repeat family. These ESP’s

can then be used to sensitively interrogate genomes for novel

fragments belonging to that family, while carefully controlling

expected false positives.

To help explain genome-wide differences in inferred repetitive

content between P-clouds and RM, we analyze the reliability of P-

clouds and RM methods for identifying different sizes of fragments

from two large and well-known families of human SINEs: Alu and

MIR. These TE families were chosen to represent extremes of

expected detection sensitivity. Alu elements have undergone

extensive recent expansion and are generally similar in sequence

[4], whereas MIR elements underwent a more ancient expansion

in mammals and their sequences therefore tend to be more

divergent [23]. By constructing ESPs for both of these SINE

families, we identified large numbers of new, unannotated Alu and

MIR fragments, throughout the human genome. Where possible,

we confirmed that the numbers of these newly identified fragments

closely match predicted false-negative estimates for RM. Our

results therefore eliminate a sizeable fraction of the previously

unannotated dark-matter fraction of the human genome, and

provide strong evidence that a large majority of the human

genome is repetitive or repeat-derived.

Results

How much of the human genome is repetitive or
repeat-derived?

Using conservative settings, de novo P-clouds and RM jointly

identify 78.1% of the human genome as being repetitive or repeat-

Figure 1. Principles of repeat identification using P-clouds. A) True data distribution representing divergence within a TE family from a master
element sequence (center). B) Consensus sequence based search throws away information by collapsing observed data to a single sequence. C)
P-clouds clusters related high-abundance oligos, thus providing better coverage of sequence space.
doi:10.1371/journal.pgen.1002384.g001

Author Summary

Our study is concerned with a fundamental question about
the human genome sequence: what is it made of? At
present, approximately 50% of the genome sequence has
unknown function or origin and is sometimes referred to
as the ‘‘dark matter’’ of the human genome. We
demonstrate here that approximately half of this unchart-
ed territory is in fact comprised of repetitive or repeat-
derived sequences, which are most likely dominated by
transposable elements. These sequences are too diverged
or degraded to be easily detected by alignment to known
transposable element consensus sequences, but can be
detected using novel de novo search methods that we
present and evaluate here. Standard methods for detect-
ing repetitive sequence are therefore probably missing
large numbers of transposable element fragments. In one
case (MIR elements), we predict that half of the sequence
that is likely present in the genome has gone undetected.
Genome-wide, we infer that a large majority of the human
genome sequence (.66%–69%) is comprised of repetitive
and repeat-derived DNA elements, after controlling for
false positives. This estimate stands in stark contrast with
previous estimates and suggests that transposable ele-
ments have played a much larger role in shaping the
history and content of our genome than previously
believed.

Repeat-Derived Dark Matter of the Human Genome
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derived (Figure 2), a remarkable increase of 28–33% of the

genome (801–944 Mbp) over the generally accepted RM-based

estimate of 45–50% [24]. P-clouds identifies 85.3% (1.18 Gbp) of

the nucleotides in the RM annotation as being of repetitive origin,

including at least some nucleotides in 95%–100% of element

copies and including nearly all TE families as defined by RM

(Figure 3). These results therefore suggest that P-clouds has good

sensitivity, and is able to detect, de novo, most transposable

elements that are detectable by RM using the Repbase consensus

library. Not surprisingly, the distribution of novel P-clouds

annotations is heavily biased towards short segments, although

.462.7 Mbp of novel annotations (16.2% of the entire genome)

were in segments of 50 bp or longer (Table S7). The primary de

novo P-clouds annotations for the human genome are available as

data tracks in the UCSC Genome Browser (provisional links are

provided in Text S1); each annotated region is assigned a score

based on its probability of being truly repetitive (see Methods).

Overall, the average false-positive rate for P-clouds analysis from

simulated non-repetitive genomes under the conditions used was

estimated to be 12.6% (Table S1). This suggests that over two-

thirds of the human genome is expected to be truly repetitive or

repeat-derived (65.8% to 69.1%, using the average FP rate across

all fragment sizes, or using the length-dependent FP predictions,

respectively; Table S6).

We next considered whether repeat annotations were strongly

associated with particular sequence categories such as known genes,

segmental duplications, and CpG islands. For each category, we

compared the frequency of the category in the whole genome to the

frequencies in RM, P-clouds, and novel P-clouds annotations (Table 1;

Mbp are provided in Table S10). Although all frequency differences

are highly significant due to the large amounts of data, the

frequencies of each category in the RM and P-clouds annotations are

qualitatively quite similar to their frequencies in the genome as a

whole. This means that the novel P-cloud annotated regions cannot

be explained by a propensity to target non-TE regions.

In particular, the two segmental duplication categories (‘‘Seg-

mental Duplications’’ and ‘‘Duplicated Regions’’) are only

moderately enriched in the novel P-clouds annotations. It is

expected that segmental duplications should not be enriched in

RM annotations because segmental duplications should not affect

transposable element frequencies, and in fact segmental duplica-

tions are at similar frequencies in the genome and RM

annotations. P-clouds, on the other hand, is not limited to detecting

TEs, and may therefore detect recent segmental duplications with

many copies. The two segmental duplication categories are almost

certainly strongly overlapping, as they are intended to measure the

same thing. However, if we conservatively assume that they do not

overlap at all, the excess enrichment of these categories in the

novel P-clouds annotations is only 1.9%. This excess detection of

segmental duplications thus accounts for at most only about

18 Mbp out of 839 Mbp of novel P-clouds annotations, and is not a

major explanation for the novel P-clouds annotations overall.

Figure 2. P-clouds and RepeatMasker annotation of the repeat structure of the human genome. Results are displayed as a percentage of
the ungapped genome assembly length. A) Consensus results prior to this study indicate that ,50% of the genome is repetitive (RepeatMasker). B)
Analysis using P-clouds suggests more than two-thirds of the genome is repetitive or repeat-derived.
doi:10.1371/journal.pgen.1002384.g002

Repeat-Derived Dark Matter of the Human Genome
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Likewise, P-clouds might be expected to frequently annotate

exons, CpG islands, and pseudogenes if gene families are highly

repetitive and/or recently expanded or pseudogenized. Only a

small proportion of RM annotations overlap with exons and CpG

islands, probably due to rare incorporation of TEs or TE

fragments in functional regions (e.g., [25]). CpG islands are less

represented in novel P-clouds annotations than in the overall

genome, and the relatively higher proportions of exons and

pseudogenes in novel P-clouds annotations add up to an excess of

only 0.26% (2.2 Mbp). Thus, as with the segmental duplications,

excess detection of genic regions is not a major explanation for the

novel P-clouds annotations overall.

Simple repeats (e.g., microsatellites) are moderate length

sequences that are highly repetitive. Such repeats are generally

present in the Repbase library, but the full spectrum of possible

repeats is not represented, and only 76% of them (41.6 out of

54.4 Mbp; see Table S1) are detected by RM. Long and perfect

simple repeats are excluded before P-clouds construction (see [20]),

but nevertheless P-clouds annotations detect an additional 8.9 Mbp

of simple repeats that RM did not detect, yielding a joint detection

rate of 93%.

Details of P-cloud annotation across TE families
P-cloud annotation often failed to extend to the full length of a

repeat element, depending on how oligo composition changed

along the length of an element, but it still generally detected the

presence of an element (Figure 3A). As might be expected, P-clouds

tended to annotate nearly the full extent of element nucleotides for

recently diverged (young) TE families (e.g., Alu and L1 elements),

and tended to miss a larger number of nucleotides in more

anciently active repeat families (e.g., MIR, CR1, and L2 elements;

Figure 3B). The effect of age on detectability extends to subfamilies

Figure 3. Percentage of previously-identified transposable elements annotated by P-clouds. A) The percentage of nucleotides and
repeats for each family or repeat classification group. B) The number of nucleotides annotated or missed.
doi:10.1371/journal.pgen.1002384.g003

Repeat-Derived Dark Matter of the Human Genome
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as well. For example, although P-clouds annotated at least part of

99.7% of all human Alu elements from each subfamily, the

proportion of elements missed increased with the relative age of

the Alu subfamilies, being lowest for the young AluY subfamily

and highest for AluS, and AluJ/Alu Monomer subfamilies

(Figure 4). Although the total number of elements in a family

should make some difference in detectability, age was more

important, and small families were still well-detected (Figure 3B).

The P-cloud approach, like all repeat annotation approaches

available, therefore shows decreased sensitivity to detect more

ancient repeat elements. An important difference, however, is that

this drop in sensitivity is far less severe for P-clouds than it is for

conventional detection methods (examined below). Nevertheless,

the increased difficulty of detecting old, highly-diverged repeat

sequences by all methods is a reason to expect that we are likely

underestimating the true proportion of repeat-derived regions,

even when taking the union of P-clouds and RM results.

Conservativeness of P-cloud construction
Parameter settings for P-cloud analyses were adjusted to avoid

excessive false positives, which resulted in only 43% (194 million

out of 451 million) of oligos that were observed more than once

being included in P-clouds. Most oligos with fewer than ten copies

in the genome were also not included in P-clouds, even though the

observed frequency of these low copy oligos was far above chance

expectations (Figure S2). This result implies that the P-cloud

parameter settings used may have excluded a substantial fraction

of repeat-derived oligos. Thus, although P-clouds is capable of

discovering a large set of novel repeat-derived sequences in the

human genome, estimates from P-clouds under the settings used are

nevertheless likely to still be an underestimate of the true

proportion of repeat-derived sequences.

Ability to detect fragments of human Alu and MIR
elements

If the novel P-cloud annotated regions are in fact repeat-

derived, it is likely that many of them arose from TEs, since the

largest fraction of previously-annotated repeat regions are TEs.

This implies both that RM must miss a large number of TEs, and

that the de novo P-cloud method is capable of finding them. To test

both of these implications, we examined the performance of both

methods for detecting human Alu and MIR elements – two SINE

element families with different age distributions and therefore

different intrinsic detectabilities. Detection performance was

measured by the ability of each method to detect segments of

1,000 known elements interspersed among simulated non-

repetitive genomic sequence.

Given that Alus are so abundant and well-studied, RM has

surprisingly low sensitivity to detect Alu fragments, particularly for

short (30 or 40 bp) fragments (Figure 5A). On average, RM failed

to detect 77.9% of 30 bp fragments and 18% of 40 bp fragments.

Detection success varied depending on what region of the full-

length Alu element the fragment represented; this is presumably

because some regions of Alu elements have diverged more than

other regions from the consensus ‘‘master element’’ sequence.

Even for 50 bp segments, 5.1% were missed by RM. In contrast,

using standard settings (16-mers and a demarcation criterion of

80% coverage in 10 consecutive oligos), the de novo P-cloud

algorithm can reliably detect TE segments as short as 24 bp, and

detected over 99.8% of these small Alu fragments across different

Alu regions (Figure 5A; discussed below).

In contrast to the younger and highly-abundant Alu SINEs,

MIR elements are more difficult for both methods to identify, but

are far more difficult for RM than P-clouds. RM could barely detect

30 and 50 bp fragments (only 6% of 50 bp fragments, on average),

and detected 30–50% of 100 bp fragments, depending on the

region of the element (Figure 5B). Even for 200 bp fragments,

which is nearly full length for MIR elements, only 76% were

detected. The P-cloud method in contrast detected an average of

Figure 4. Percentage of Alu elements in different Alu
subfamilies not annotated by P-clouds analysis. Displayed are
elements for which no portion was annotated. The relative age of Alu
subfamilies increases from left to right.
doi:10.1371/journal.pgen.1002384.g004

Table 1. Overlap between genome features and repetitive regions.

Genome Feature Fraction of Genome
Fraction of RepeatMasker
annotations

Fraction of P-clouds
annotations

Fraction of Novel
P-clouds annotations

Known Genes (transcribed unit) 37.48% 32.47% 36.02% 41.42%

Segmental Duplications 5.22% 5.33% 5.75% 6.02%

Duplicated Regions (WSSD) 3.53% 3.16% 3.87% 4.63%

Known Genes (exons) 1.12% 0.05% 0.56% 1.29%

Simple Repeats 1.91% 3.00% 2.36% 1.06%

CpG Islands 0.74% 0.07% 0.26% 0.56%

Pseudogenes 0.19% 0.07% 0.16% 0.28%

Total Size: 2.85 Gbp 1.39 Gbp 2.02 Gbp 0.84 Gbp

Total repetitive sequence detected by either RepeatMasker or P-clouds was 2.23 Gbp (out of a total 2.85 Gbp sequence in the ungapped assembly).
doi:10.1371/journal.pgen.1002384.t001

Repeat-Derived Dark Matter of the Human Genome

PLoS Genetics | www.plosgenetics.org 5 December 2011 | Volume 7 | Issue 12 | e1002384



about 64% of 24 bp fragments across different regions of MIR

elements. Detection was better for fragments in the middle of MIR

elements, and worse near the beginning, a pattern also seen with

RM, but not as pronounced.

These results demonstrate that RM greatly underestimates the

amount of TE-derived sequences present, and therefore strongly

suggest that much of the newly-annotated P-cloud regions may

have arisen from TEs undetected by RM. RM missed a large

proportion of fragmented TEs that it was able to positively identify

when they were part of full-length segments. The problems with

the consensus approach (as exemplified by RM) are much worse

for the older MIR elements of all sizes, and surprisingly

consequential for short Alu elements. In contrast, P-clouds was

able to find many of the elements that RM missed, and was

insensitive to TE fragmentation for fragments over 24 bp.

Performance of element specific P-clouds (ESPs) for
detecting Alu and MIR elements

To specifically identify members of TE sub-families of interest,

we introduce here the concept of ‘element specific P-clouds’ (or

ESPs), which build an oligo cloud from a set of known elements, and

then annotate the genome for regions containing a high density of

element-specific P-cloud oligos. To evaluate the effectiveness of

this approach, we used Alu- and MIR-specific P-clouds to search

for previously unannotated Alu and MIR sequences in the human

genome. Specifically, we searched the portion of the human

genome that is not masked by RM, the putatively ‘‘non-repetitive’’

portion of the genome.

This approach detected 749,395 putative Alu regions totaling

20,919,291 bp, and 7,518,362 putative MIR regions, totaling

227,472,397 bp. The overall false positive rates were high, based

on predictions from dinucleotide simulations: it is expected that,

on average, 22.17% and 65.42% of these nucleotides represented

false positives, respectively. Given that short segments are most

difficult for RM to identify, it is unsurprising that most of the novel

TE regions detected in the RepeatMasked genome were short

(Tables S8 and S9). The shortest of these fragments accounted for

most of the expected false positives, while the slightly longer

segments were both abundant and reliably detected. For example,

for Alu, there were 4,837 new elements $50 bp (totaling

274,219 bp), while for MIR there were 388,264 such elements

(totaling 23,202,343 bp). For these slightly longer elements, the

expected false positive rates were only 0.16% for Alu, and 2.3%

for MIR (summarized in Tables S4 and S5). To fully account for

Figure 5. Percent detection success for fragments of known full-length SINE elements. A) Alu regions. B) MIR regions. Identification success
is displayed as a running average of 10 bp starting positions.
doi:10.1371/journal.pgen.1002384.g005

Repeat-Derived Dark Matter of the Human Genome
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this great range in expected false positive rates, we performed all

annotations probabilistically by assigning each predicted element a

probability of being a true or false positive result based on its

length (see Methods). After accounting for false positive results in

this way, we estimate that there are 571,229 putative Alu elements

(20,333,327 bp) and 2,249,431 putative MIR elements

(78,654,070 bp) present in the RepeatMasked portion of the human

genome (Tables S8 and S9). This corresponds to an increase in

total family-specific nucleotides of 6.6% for Alu and 94.8% for

MIR.

The distributions of these elements are consistent with the

hypothesis that there is a drop-off in element detection sensitivity

for RM at smaller sizes, which P-clouds is far less susceptible to. To

test this idea, we used the detection sensitivity of RM for different

average fragment lengths (Figure 5B) to estimate how many MIR

elements were probably missed by RM across the entire genome

(Figure 6A). This analysis predicted that 80.8 Mbp of MIR

elements were likely missed by RM, which corresponds quite well

with the amount of novel MIR sequence predicted using ESPs after

accounting for false positives (78.7 Mbp; Figure 6B). This close

correspondence supports the hypothesis that P-clouds identified

many of the short fragments that RM had difficulty detecting, and

suggests that the difference in sensitivity between methods

probably explains a great deal of the overall differences in repeat

annotations (Figure 2).

Effect of consensus library use on RepeatMasker
performance

To explain, at least in part, why RM detected so much less

repetitive sequence than P-clouds, we performed a detailed

comparison using various element libraries for the putative MIR

element fragments detected by ESPs (which tend to be longer than

the putative Alu fragments, and therefore were more practical to

work with). RM was run with standard settings against the putative

MIR regions using three libraries: a) the consensus MIR sequence

in Repbase; b) all known full-length human MIRs; and c) all known

human MIR elements. Using the Repbase consensus sequence,

only 37 putative MIR regions (3,402 bp) with a mean length of

91 bp were confirmed. In contrast, using full-length MIRs, 14,636

MIR elements (743,685 bp) were confirmed, and 40,602 novel

elements (2,039,475 bp) were confirmed by RM using all known

MIR elements as the reference library. Thus, when we expanded

the library from the Repbase consensus sequences to all known

MIR elements, we were able to many detect more elements, and

most of them were around 50 bp (not shown). These results

demonstrate that without changing any parameter settings, and

only expanding the repeat reference library in a reasonable way,

RM is capable of confirming a substantial fraction of the elements

around 50 bp or longer that standard RM analyses missed but that

ESPs identified. This finding thus supports the reasonableness of

the P-clouds and ESP-based estimates, while again suggesting that

RM underestimates genome repeat-content. It is notable that while

these results suggest that using all known TEs (rather than

consensus sequences) would increase RM sensitivity, this is not

computationally feasible; the MIR-specific analyses done this way

on only the P-clouds predicted segments were extremely time

consuming.

Validation of novel ESP-identified MIR elements using
BLAST

Continuing with our focus on MIR elements, each novel MIR

element prediction was searched against all previously-known

MIR sequences using BLAST to further validate the ESP-

identified MIRs. Almost all (98.4%) of the putative MIR-derived

regions matched at least one known MIR element with an E-

value,1.0 (i.e., with a score expected to be observed fewer than

one times in a random dataset). Most (81.5%), however, had

moderately high BLAST P-values (.0.01; calculated using

standard BLAST score statistics [26]), which is presumably one

reason why RM was unable to detect many of them. The

remaining putative MIR elements (18.4% or 1,337,390 regions)

had highly significant matches (P#0.01) and were enriched for

longer fragments compared to the rest of the hits. For example,

while there were 2,067 putative MIR elements that matched at

least 50 bp of known MIR sequences with P.0.01, there 5,437

such alignments with P#0.01. The BLAST-matched regions

Figure 6. MIR element-specific P-clouds detect the short fragments that RepeatMasker cannot. A) Predicted true distribution of MIR
fragments in the human genome, using observed RepeatMasker results and RepeatMasker’s sensitivity estimates from Figure 5B. B) Novel P-clouds
annotations on the RepeatMasked portion of the human genome, minus predicted false positives from dinucleotide simulations (see text).
doi:10.1371/journal.pgen.1002384.g006

Repeat-Derived Dark Matter of the Human Genome
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tended to be shorter than the full P-cloud annotated regions,

possibly because the BLAST approach was capable of identifying

only more conserved core regions of the putative MIR elements

(Figure 5B). The total aligned region for the most significant

matches (P#0.01) for each novel fragment was 32,818,501 base

pairs, or 14.4% of the total for newly-annotated regions. In

summary, these results further support the conclusion that the

MIR-specific P-clouds approach likely identified a substantial

amount of genuinely MIR-derived sequences that were previously

undetected by RM.

Relationship to other de novo estimates
A variety of de novo repeat finding methods have been proposed

(e.g., [20,22,27,28,29,30,31,32]), and are based on a diverse set of

approaches (see [33,34] for reviews). To assess how many of our

findings on overall repeat content could be attributed to unique

aspects of our approach, we chose two other representative

methods for a limited comparison: RepSeek [27] and RepeatScout

[22], both of which make use of oligo frequencies. RepSeek shares

an emphasis with P-clouds on direct de novo detection of individual

repeated sequences in genomes, although it differs in many details

from our method. In contrast, RepeatScout is a widely used method

designed for detecting families of repeated sequences, and must be

used in conjunction with a program such as RM to secondarily

annotate individual elements in a genome.

We found that when used as a de novo detection method on large

highly repetitive chromosomes such as found in humans, the

RepSeek program exceeds reasonable memory requirements (also

see supporting documentation for [27]). RepSeek, for example, was

unable to complete its seed extension phase for human

chromosome 1 without running out of memory (on a machine

with 500 GB of RAM). Indeed, the computational challenges of

performing de novo approximate repeat analyses on repeat-rich

vertebrate genomes are substantial. This is one reason why we

chose not to pursue some of the more elegant but computationally

demanding aspects of the RepSeek approach when we implemented

P-clouds [20]. Nevertheless, we were able to make a comparison of

the methods by analyzing chromosome 22. RM (using Repbase

consensus sequences; RM-Repbase hereafter in this section) detected

16.66 Mbp of repeated sequences out of 34.76 Mbp (i.e., 47.9%

repeat content) in the ungapped assembly of chromosome 22.

RepeatScout in conjunction with RM (RM-RepeatScout hereafter in

this section) detected less repeated sequence than RM-Repbase,

identifying 12.82 Mbp. When combined with RM-Repbase anno-

tations RM-RepeatScout yielded 18.24 Mbp of repeats (52.5% of the

chromosome). This modest increase in detection is consistent with

the 2% increase in repeat content annotations found by Price et al.

[22] using RM-RepeatScout on human Chromosome X.

Using a minimum oligo seed length of 35 on the entire

Chromosome 22, RepSeek detected 2.89 Mbp more than RM-

Repbase, with no expected false positives. At these settings,

however, it missed many sequences detected by RM-Repbase, and

thus had an extremely high false negative rate of 43% (i.e., poor

sensitivity). It is expected that the false negative rate for repeats in

the unmasked region will be higher because they are by definition

harder to detect; they are probably both lower in copy number

than the masked repeats, and likely more diverged and

fragmented. Nevertheless, since the false positive rate is near zero,

the observed false negative rate on easily detectable sequences can

be used to provide a corrected joint (RM-Repbase plus RepSeek)

minimum estimate of 21.74 Mbp of repeats in Chromosome 22,

or 62.54%. Given the higher numerical estimates of the repeat

fraction determined by RM-Repbase plus RepSeek and RM-Repbase

plus RM-RepeatScout, and the expectation that RepSeek and RM-

RepeatScout are highly conservative annotations as evaluated by

RM-Repbase (which is itself highly conservative), these results are

consistent with the probabilistic P-clouds result of 22.98 Mbp when

combined with RM-Repbase (70.6% of chromosome 22). The P-

clouds result had far fewer false negatives, as evaluated using RM-

Repbase, and included repeat fragments as short as 25 bp if they

appear significant, while RepSeek could not detect element

fragments shorter than 35 bp with the most sensitive settings that

could be used. We also ran RepSeek on Chromosome 22 after it had

been repeat masked with RM-Repbase (as suggested by the authors).

Using minimum oligo seeds of 17 bp, we found that it detected

even fewer repeats in the unmasked region (2.31 Mbp) than the

2.89 Mbp in the previous analysis. The program thus appears to

be even less sensitive using shorter oligos and and when the easily-

detected repeats are excluded. Overall, although both RepSeek and

RepeatScout (with RM) are therefore less accurate estimators of

genomic repeat content due to the degree to which they sacrifice

sensitivity for the sake of specificity, we view the compatibility of

results on chromosome 22 as supportive of the concept that the

human genome is significantly more repetitive than widely

believed.

Discussion

This study provides evidence for a compelling shift in our view

of the content of the human genome. Multiple lines of presented

evidence indicate that current estimates of overall repeat content

are substantial underestimates of the full extent of the human

genome’s repeat landscape. Combined P-clouds and RM analysis

of the human genome indicate that it consists of at least 66–69%

repetitive sequence (after false-positive control), mostly from

copies of transposable elements. The compatibility of results

between P-Clouds and RepSeek on chromosome 22, despite the

dissimilarity of these two methods, supports the reasonableness of

our P-Clouds estimates and the general argument that the human

genome contains substantially more repeats than previously

estimated. This estimate challenges the widely accepted view that

the human genome consists of 45–50% repetitive sequence. In

light of this study, the 45–50% number is more reasonably

interpreted as simply the easily-identifiable repeat fraction. Thus,

an additional 16% of the entire human genome sequence that

was previously of unknown origin can now be said to be repetitive

or repeat-derived, and is most likely derived from transposable

elements.

The human genome has the most exhaustively curated repeat

library of any species, and thus should represent the best case for

performance of currently popular library-dependent repeat

identification approaches. Nonetheless, the P-cloud settings used

here were fairly conservative, and excluded substantial numbers of

repeated oligos. Furthermore, our probabilistic approach recog-

nizes that it is inherently more difficult to detect shorter fragments.

Thus, it annotates putative repeats throughout the genome with

less certainty if they are short by quantifying the increased

likelihood that such sequences may exist by chance.

We can explain a great deal of the difference between our P-

clouds-based estimates of genome-wide repeat content and

conventional estimates by recognizing that RM has lower

sensitivity for detecting short sequences and sequences from

older and more diverse TE families. Our analyses suggest that

MIR element fragments, for example, which are only a

maximum of ,250 bp in length, have a 95% chance of being

missed by RM if they are 50 bp in length, and .50% chance of

being missed if 100 bp. Even for the most common elements in

the human genome, the Alu family, RM appears to be likely to
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detect fewer than 50% of 30 bp fragments. On the other hand, P-

clouds has good sensitivity even down to ,25 bp fragments and

detects numerous verifiable TE fragments that RM is not

sensitive enough to find. Given a library of known TEs,

element-specific P-clouds, or ESPs, can rapidly and accurately

detect and annotate previously unidentified specific element

copies, including short fragments.

Despite this, it appears likely that neither P-clouds nor RM is

capable of exhaustively identifying all known repeat elements,

even when combined. Any repeat detection approach will at some

point find it difficult to detect TEs from families that expanded

long ago, simply because the historical signal of homology

following duplication is erased by mutations that have accumu-

lated over time. The P-clouds and RM approaches are not immune

to this problem, and even jointly they still probably provide

underestimates of the true genomic TE content.

However, there are reasons to be optimistic that the true origins

of eukaryotic genome sequences will continue to become better

resolved. One reason is that as more of the genome is assigned to

specific TE origins, the number of false positives in the remainder

is reduced. Another reason is that as more genomes are sequenced,

it is likely that many regions will be identifiable in at least one

species even if they are not identifiable in other species, and this

information may be translatable across genomes. Furthermore, as

more genomes are compared, recent TE insertions and expansions

can be removed, enhancing the detection of anciently inserted and

subsequently fragmented TE sequences. Finally, we expect that

the methodology for false positive prediction in P-clouds may be

improved with further theoretical development, leading to more

accurate prediction of novel elements.

Further research to more thoroughly identify and annotate

eukaryotic genome repeat structure is highly motivated by the

benefit that genes may be more easily predicted if the amount of

genomic ‘dark matter’ is reduced by more thorough annotation.

Although numerous cases of genes having co-opted regions of

transposable elements are known, repetitive regions are not in

general likely to extensively overlap with coding regions. As a

result, our more thorough annotation of the human genome’s

repeat landscape eliminates almost half a gigabase of sequence

from consideration when searching for novel or unannotated

genes.

Finally, it is worth commenting on the applicability of

approaches such as those used here to non-human genomic

sequences. Because de novo repeat finding tools, including P-clouds,

can annotate repeated sequences in the absence a priori knowledge

of repeat family structure or content, they are extremely useful for

analysis of novel and uncharacterized genomes. For example, the

original de novo P-clouds method [20] was used in the analysis of

genome structure in both the opossum [13] and the zebra finch

[21] genome reports, and also for characterizing the repeat

landscape from samples of two snake genomes [35]. We suggest

that the most effective current approach is to combine a variety of

existing programs. In our experience [35], the main difficulty after

application of de novo methods is the classification, annotation, and

organization of the repeated sequences (but see [36] for attempts

at automated approaches). This requires the application of a

variety of programs as well as expert intervention, although the

‘element-specific P-clouds’ approach introduced here can be

utilized as part of this process to more thoroughly (and

probabilistically) annotate elements belonging to particular TE

families. Based on our analyses of the human genome, we expect

that the uncharacterized ‘dark matter’ fraction of other vertebrate

genomes is likely to be similarly reduced by analysis with sensitive

repeat finding approaches such as those considered here.

Methods

The P-clouds method
The P-clouds method is described in detail elsewhere [20], but

in brief, it uses oligo counts to create clusters of similar high-copy

oligos (the ‘‘P-clouds’’), followed by annotation of regions in a

genome with a high-density of P-cloud oligos. The basic concept

behind this approach is that there should be greater statistical

power to detect clusters of related oligos arising from duplicated

and diverged sequences than there is to detect excess copies of

each oligo individually (Figure 1).

Parameters that control P-cloud construction affect the number

of repeats required to initiate or ‘‘seed’’ a cloud (the core cutoff),

and the number of repeats required to include an adjacent oligo in

sequence-space in the growing P-clouds (the lower cutoff). There

are also three ‘‘extension distance cutoffs’’, which control (based

on the most frequent oligo in the growing cloud) whether the

search for adjacent oligos will extend to oligos that are one, two, or

three nucleotides different. These parameters are set by a

simulation procedure that aims to empirically minimize false

positives while maximizing sensitivity [20]. After construction, P-

clouds are mapped back onto the genome, and regions of high P-

clouds density are annotated as potential repeat regions. The

element annotation criterion requires that 80% of every ten

consecutive oligos belongs to a P-cloud. A reasonable oligo length

is l~log4Nz1, where l is the oligo word length and N is the

genome or genome segment size [22]; random oligos of this length

(16 for most mammals) are expected to occur in the genome less

than once assuming equal nucleotide frequencies. In this study, we

add a step to the original P-clouds protocol that assigns annotated

regions a posterior probability of being repetitive that is based on

the length of the putative repeat and its length-dependent false

positive probability (determined by simulation as described below).

The probability of being truly repetitive was calculated as 1.0

minus the probability of being a false positive; expected numbers

of truly repetitive basepairs were then calculated by summing

posterior probabilities across regions.

Repeat annotation of the human genome with P-clouds
and false positive assessment

Repetitive regions of the complete human genome assembly

(UCSC genome server, 2004 May release; [24]) were annotated

with P-clouds constructed from oligos of length 16. To perform the

P-clouds analysis, parameter setting C10 was used, which has the

following lower, core, and three extension distance cutoffs: 2, 10,

20, 200, and 2000. These settings were previously determined to

represent a reasonably conservative balance between accuracy and

sensitivity for complete mammalian genomes [20] (see also Table

S1). The probability of false positive identification of repetitive

regions was estimated by simulating a random non-repetitive

genome sequence constrained to have the same dinucleotide

frequencies in 1 Mbp windows as the original human genome (as

described in [20]). This sequence was then analysed using the

same parameter settings as for the real human genome sequence,

and observed false positive rates were recorded for every repeat

length that was detected in the annotation phase. These length-

dependent false positive probabilities were then used to annotate

the posterior probability of repetitiveness for identified regions.

Assessment of P-clouds annotation overlaps and
genomic distribution

Genomic regions annotated by P-clouds as being putatively

repetitive were output to BED files and intersected with

annotation tracks from the UCSC Browser [24] using BEDTools
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[37]. The genomic features examined for enrichment with P-clouds

annotations were: known genes (transcribed regions and exons),

pseudogenes (‘‘pseudoYale’’), simple repeats detected by Tandem

Repeats Finder [38] (‘‘simpleRepeats’’, which includes microsat-

ellites), CpG island annotations (‘‘cpgIslandExt’’), segmental

duplications (both .1000 bp in non-RepeatMasked sequence,

‘‘genomicSuperDups’’, and from the whole genome shotgun

sequence annotations, WSSD, ‘‘celeraDupPositive’’), and RM

annotations (‘‘rmsk’’). The fraction of the genome occupied by

each sequence or annotation feature was determined by merging

any overlapping features on the assembly coordinates, and then

dividing the total merged feature length by the length of the

ungapped human genome assembly or ungapped annotation

feature. The ungapped length of the human genome was used

throughout this study.

P-clouds and RepeatMasker detection capability for
fragments of known elements

To assess and compare the sensitivity of the P-clouds and RM

methods for known repeat elements, we evaluated performance

using human SINE element families Alu and MIR as case studies.

For each family, 1,000 full-length human elements ($286 bp for

Alu, and $260 bp for MIR) were randomly chosen from the

UCSC genome browser’s RM annotation track and were aligned;

the genomic location and classification of these elements are listed

in Tables S2 and S3. For a range of fragment sizes, every possible

fragment was extracted to test the ability of RM and P-clouds to

detect it. Based on preliminary analyses of what sizes were difficult

to detect, Alu fragment sizes of 30, 40 and 50 bp were used, while

fragment sizes of 30, 50, 80, 100, 150, and 200 bp were used for

MIR.

To analyze detection sensitivity, repeat element fragments were

concatenated with randomly chosen nucleotide sequences from

the non-repetitive simulated genome (above), to create an artificial

genome having 10% repeat elements that were separated by equal

amounts of simulated sequence. For RM analyses, the default

settings and Repbase consensus sequences (version 12.05) [8] were

used. As in the other de novo P-clouds analyses, P-cloud settings

used the C10 parameter combination and the standard 80%

annotation criterion [20]. The detection sensitivity of each method

was measured as the number of repeat element fragments that

were identified (expressed as a percentage of elements correctly

identified).

To predict how many repeat-element fragments might have

been missed by RM (expressed in basepairs), the number of

detected fragments of each size was divided by the fragment’s size-

specific RM detection sensitivity determined above, thus approx-

imating the actual number of repetitive basepairs likely to be

present in the genome. For fragments sizes not evaluated in the

fragment detection analysis, the size-specific detection sensitivity

was estimated by spline-based interpolation (Figure S1). The

predicted number of total repetitive basepairs minus the observed

number was then used as an estimator of the total number of

family-specific nucleotides that were likely missed by RM.

Element-specific P-clouds (ESPs) for specific annotation of
novel Alu and MIR elements

Standard P-clouds analysis begins by computing oligo clouds

from the entire genome of interest [20], which facilitates a

comprehensive but non-specific annotation of all classes of

repeated sequences along with their diverged copies. To enable

specific annotation of particular transposable element families, we

introduce here an alternative approach called ‘element specific

P-clouds’ or ESP. In ESP analysis, the initial P-cloud construction

phase is performed using all known sequences from a particular

TE family, rather than from the entire genome of interest.

Expected false positives assessments and probabilistic genomic

annotation are then performed identically for ESP analysis as for

standard P-clouds, yielding a comprehensive annotation of TE

family members including diverged copies. As with standard P-

clouds analysis, it is important to adjust P-cloud construction

parameters to empirically control false positives.

Two element-specific P-clouds were built – one for Alu and

another for MIR elements. To allow cross-validation of the

sensitivity measurements, element-specific P-clouds did not include

the 1,000 randomly-chosen elements in the test set described

above. Sensitivity of detection using ESPs was assessed by

estimating attained true positives in the 1,000 aligned Alu and

MIR elements from above, while false positive rates were estimated

based on annotation of the simulated non-repetitive genome (as

described in the previous section).

Due to the different evolutionary histories of these two families,

different parameter settings were used to maintain reasonable false

positive rates, keeping the average false positive rate below 24.1%

for Alus (2, 10, 20, 200 and 2000) and 65.4% for MIRs

(1,2,4,40,40). Although these overall FP rates appear high, they

drop off rapidly as a function of increasing element length

(summarized in Tables S4 and S5). Furthermore, due to our

probabilistic approach, short annotations with a high intrinsic

likelihood of representing FPs are annotated with a posterior

probability that reflects this likelihood (as determined empirically,

above). This approach therefore is expected to have high power to

detect shorter repeat-derived sequences, while reasonably reflect-

ing the high probability of FPs associated with detecting short

genomic features that is intrinsic to any method.

Validation of ESP predictions
To verify the identity of as many P-cloud-annotated MIR and

Alu elements as possible, RM was run on the putative elements

under standard settings except that rather than using the repeat

library, all previously identified human elements in each TE family

(Alu or MIR) were treated as the consensus library for identifying

further repeat elements. This approach was used to search for

matches to the library of putative, newly identified segments from

the ESP analyses. The motivation here is that diverged copies of

known TEs might align well to the putative TE fragments in cases

where the consensus sequence does not. We also repeated the

same comparisons using BLAST [39] because RM enforces fairly

stringent cutoff values on its sequence similarity search strategy

that may be overly strict. For each P-cloud-annotated TE, the

BLAST score and alignment were recorded for the best hit against

RM-annotated TEs.

Running RepSeek
When run on the complete human Chromosome 22 sequence,

RepSeek was run with a minimum seed size of 35 bp (Lmin = 35), as

shorter lengths led to memory usage being exceeded, even on a

machine with 500 GB RAM. At these settings, RepSeek’s seed-level

score statistics suggest that all annotated repeats will be highly

significant (P,0.001 with Lmin = 27). In their documentation, the

authors suggest running RepSeek after first removing the known

repeats, so we also ran RepSeek on the repeat-masked human

Chromosome 22 (using RM and Repbase), which we were able to do

with a minimum seed size of 17, as suggested by the ‘‘repeat level

score statistic’’ from RepSeek. For this oligo length, the results also

have to be filtered by the repeat score statistics to make sure that

they are significant.
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Figure S1 Interpolation of percent MIR fragments successfully

identified using spline regression.

(PDF)

Figure S2 The relation between copy number and number of

oligos. The number of 16-mer oligos not included in P-clouds

(circles, solid line) and the number expected based on Poisson

expectation (squares, dashed line) are shown. The data shown is

for a P-clouds analysis with parameter setting C10.

(PDF)

Table S1 P-clouds parameter settings and estimated false

positive rates for complete mammalian genomes [20].

(XLSX)

Table S2 The genomic location and classification of the

randomly selected 1,000 human Alu elements.

(XLSX)

Table S3 The genomic location and classification of the

randomly selected 1,000 human MIR elements.
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Table S4 Summary of false positive estimates for Alu ESPs.
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Table S5 Summary of false positive estimates for MIR ESPs.
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Table S6 Summary of de novo P-clouds analysis of the entire

human genome, with length-dependent false positive estimates and

expected true positives.
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Table S7 Summary of the novel de novo P-clouds repeat

predictions for the human genome (any overlapping RepeatMasker

results subtracted), with length-dependent false positive estimates

and expected true positives.
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Table S8 Details of Alu ESP analysis on the RepeatMasked portion

of the human genome (with false positive predictions and expected

true positives).
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Table S9 Details of MIR ESP analysis on the RepeatMasked

portion of the human genome (with false positive predictions and

expected true positives).
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Table S10 Overlap between genome features and repetitive

regions. This is the same data as in Table 1, but in Mbp rather

than percent of the category. These numbers are not adjusted for

estimates of false positives in the P-clouds annotations.
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containing the de novo and element specific (for Alu and MIR) P-
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