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Abstract

A significant current challenge in human genetics is the identification of interacting genetic loci mediating complex polygenic
disorders. One of the best characterized polygenic diseases is Down syndrome (DS), which results from an extra copy of part or
all of chromosome 21. A short interval near the distal tip of chromosome 21 contributes to congenital heart defects (CHD), and
a variety of indirect genetic evidence suggests that multiple candidate genes in this region may contribute to this phenotype.
We devised a tiered genetic approach to identify interacting CHD candidate genes. We first used the well vetted Drosophila
heart as an assay to identify interacting CHD candidate genes by expressing them alone and in all possible pairwise
combinations and testing for effects on rhythmicity or heart failure following stress. This comprehensive analysis identified
DSCAM and COL6A2 as the most strongly interacting pair of genes. We then over-expressed these two genes alone or in
combination in the mouse heart. While over-expression of either gene alone did not affect viability and had little or no effect
on heart physiology or morphology, co-expression of the two genes resulted in <50% mortality and severe physiological and
morphological defects, including atrial septal defects and cardiac hypertrophy. Cooperative interactions between DSCAM and
COL6A2 were also observed in the H9C2 cardiac cell line and transcriptional analysis of this interaction points to genes
involved in adhesion and cardiac hypertrophy. Our success in defining a cooperative interaction between DSCAM and COL6A2
suggests that the multi-tiered genetic approach we have taken involving human mapping data, comprehensive combinatorial
screening in Drosophila, and validation in vivo in mice and in mammalian cells lines should be applicable to identifying specific
loci mediating a broad variety of other polygenic disorders.
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Introduction

The Online Inheritance in Man (OMIM) lists over 3500 loci

which when mutated give rise to heritable human disease.

Approximately one third of these disorders are dominant, most

of these cases being due to dosage sensitive requirements for gene

function (i.e., haploinsufficiency or elevated gene activity) and a

minority resulting from the production of an aberrant interfering

protein product as has been extensively studied for peripheral

neuropathies [1,2]. In addition to single locus disorders resulting

from altered gene dose, a large fraction of the genome may be

involved in multi-locus complex disorders resulting from alter-

ations in gene dose due to heterozygosity for macroscopic deletions

or duplications, smaller chromosomal lesions resulting in copy

number variation (CNV) [3,4], or interactions between two or

more genes in separate genomic intervals (e.g., as identified by the

HapMap initiative [5]).

Given the large numbers of potentially interacting loci that

could underlie polygenic disorders, systematic approaches to identify

such loci are urgently needed. In the current study, we present a

multi-tiered genetic approach that could be generalized to a broader

range of disorders, to identify genes that interact to cause congenital

heart defects (CHD). Based on human genetic data delimiting a

short interval on the distal tip of chromosome 21 containing a small

set of candidate genes which may contribute to CHD in human DS

patients [6–10], we first employed Drosophila as a model to

systematically examine the effect of over-expressing these candidate

genes individually or in pairwise combinations in the pumping heart

tube of adult flies as well as in a neurologically relevant tissue (the

eye). Although the fly heart is a much less complex structure than its

vertebrate counterparts, it has several important basic properties

common to all hearts including developmental genes involved in

specifying the heart primordium [11], proteins mediating periodic

contractility, ion channels responsible for rhythmic beating, and

morphological adaptations required for directional fluid pumping

(e.g., valves) [12], as well as manifesting age-dependent deteriora-

tion [13]. In addition to being able to test many genetic

combinations rapidly and to target gene over-expression to specific
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cell types such as the heart or eye, the fly provides a relatively

stringent system for identifying genetic interactions since dominant

phenotypes resulting from altering the dose of single genes are far

less common than in humans.

Our comprehensive screening of CHD candidate genes in

Drosophila identified DSCAM and COL6A2 as the most strongly

interacting pair of genes. The effect of modestly over-expressing

these genes in the mouse heart was then examined and, as in flies,

these two genes interacted synergistically to cause defects in heart

morphology and physiology. Over-expression of DSCAM and

COL6A2 also resulted in a transcriptional response in cardiac

H9C2 cells. Consistent with the known cell biological roles of these

two genes in mediating cell-matrix adhesion, we found clear

transcriptional signals for genes involved in cell adhesion as well as

genes involved in cardiac disease. We discuss the prospects of using

similar multi-tiered genetic approaches to identifying genes

involved in other polygenic disorders.

Results

DSCAM and COL6A2 cooperatively disrupt heart function
in flies

Congenital heart defects are observed in approximately 50% of

DS patients and the genes responsible for this phenotype have

been mapped to a small candidate region near the tip of

chromosome 21 [9,10]. Several of the genes included in this

interval are known to be expressed in the heart and among this

group a subset encode extracellular proteins or proteins interacting

with them: SH3BGR, DSCAM, COL6A1, COL6A2 and COL18.

Homologs of all human DS CHD candidate genes that were

chosen for study are present in Drosophila (Table S1).

We assayed the effect of over-expressing mammalian candidate

CHD genes and their Drosophila orthologs selectively in the fly

heart using the UAS/GAL4 trans-activation system [14]. Several

independent UAS transgenic lines were generated for each of the

mammalian and fly candidate genes, and these genes were

expressed individually and in all pair-wise combinations in the

Drosophila myocardium using the heart-specific GMH5-GAL4

driver [15] (Figure 1a). We assayed the effects of over-expressing

CHD genes by measuring basal heart rate and by testing for heart

failure following stress [15]. For the stress test, adult flies were

subjected to a heart-pacing paradigm in which the heart rate was

doubled (i.e., electrically stimulated to 6 Hz) for a period of 30

seconds. Following pacing, we monitored the proportion of flies

with consequent cardiac dysfunction (termed here ‘heart failure’)

and their recovery after 2 minutes [15] (Figure 1b, 1c and Table

S2). In these performance tests, heart dysfunction was manifested

by uncoordinated fibrillation or protracted periods of non-beating

(asystole).

When expressed individually in the fly heart, several genes

caused an increase in stress-induced cardiac dysfunction compared

to controls for at least one of the three parameters tested, and three

genes (DSCAM, COL6A2, and SH3BGR) altered two indices of

heart function (Figure 1d and Table S2). Using these effects as a

baseline, we next tested for cooperative interactions among CHD

candidate genes by co-expressing them in all possible pair-wise

combinations. The criterion we used to define a genetic interaction

between two candidate genes was that the effect of co-expressing

single copies of two genes was significantly greater than that

caused by expressing two copies of each gene separately. This

analysis revealed that the strongest interacting gene combinations

were DSCAM+COL6A2 and DSCAM+SH3BGR (Figure 1c, 1d

and Table S2). For these two genetic combinations, all three

indices of heart function, heart rate, failure, and recovery rate,

were altered (p,0.05). As an example of a cooperative effect,

expression of either DSCAM or COL6A2 alone resulted in <35%

heart failure rate (N = 200 for each genotype), but when these two

genes were co-expressed, the failure rate nearly doubled to 60%

(N = 200; p,0.05) (Figure 1c). Similarly, co-expression of

DSCAM+COL6A1 or SH3BGR+dCOL18A1 resulted in signif-

icant perturbation of all 3 parameters tested (Figure 1d). Notably,

three of the interacting genes (DSCAM, COL6A2, and SH3BGR)

also had moderate effects when expressed individually. This

comprehensive combinatorial study of CHD candidate genes in

the fly heart revealed that over-expression of DSCAM caused the

greatest disruption of heart function and that co-expression with

COL6A2 most effectively potentiated this effect on all heart

parameters scored.

In parallel to testing for defects in heart performance, we

examined the effect of expressing CHD candidate genes in the fly

eye, which is another widely used assay system for genetic

interactions and a well established model for defining mechanisms

underlying neurological disorders. As in the case of the heart, we

expressed each CHD candidate gene alone and in all pair wise

combinations using the eye specific GMR-GAL4 driver and

observed varying degrees of roughened eyes (Figure 1e, 1f) ranging

from mild to moderately disorganized eyes. As in the case of the

heart expression experiments, we used these single gene

phenotypes to assess potential cooperative effects of co-expressing

candidate genes in all pairwise combinations. Again, we found

several instances in which DS CHD candidate genes interacted by

producing stronger roughened eye phenotypes when co-expressed

than when expressed individually or in two copies (e.g.,

GMR.COL6A1+SH3BGR have highly disorganized eyes with

discoloration - Figure 1e). When we considered the aggregate data

from over-expressing CHD genes in both the heart and eye,

DSCAM and COL6A2 emerged as the most consistently and

intensely interacting pair of genes (Figure 1f). We therefore

selected this particular combination of genes for further detailed

analysis in the hearts of both flies and mice.

In flies, we next examined the basis for the interaction between

DSCAM and COL6A2 by taking movies of individual semi-intact

fly heart preparations using high speed digital video imaging. We

Author Summary

A large fraction of human genes may contribute to
polygenic disorders, yet few experimental methods for
identifying such genes are currently available. For example,
with regard to congenital heart defects (CHD) caused by
extra copies of genes on chromosome 21 in Down
syndrome patients, it is not known which genes contribute
to this complex phenotype. In this paper, we identify two
genes, DSCAM and COL6A2 that interact strongly to
produce CHD when over-expressed at modest levels in the
mouse heart. These two genes were identified as the most
strongly interacting pair of CHD candidate genes when
over-expressed in the Drosophila heart, where they
disrupted several indices of heart function. We then
over-expressed these genes in the mouse heart alone or
in combination and found that while expression of either
gene alone had little or no effect, co-expression of the
genes, as in flies, lead to severe cooperative defects in
heart physiology and morphology. The strategy we have
followed in this study is broadly applicable to identifying
genes involved in other polygenic disorders, such as
obesity, autism, and schizophrenia, which have been
linked to altered copy number of multiple genes.

DSCAM and COL6A2 Cooperatively Cause Heart Defects
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Figure 1. Survey of heart defects caused by over-expression of CHD candidate genes in the fly. a) Scheme depicting how candidate CHD
genes from the distal region of chromosome 21 were screened by expressing them in the fly heart individually and in all possible pair-wise
combinations. b) Electrical pacing heart performance stress chamber (left). Enlarged view of flies in pacing chamber (right). c) Example of increased
heart failure rate in flies mis-expressing particular combinations of CHD candidate genes in the heart. The heart failure phenotype is presented as the
percentage of flies whose heart fibrillated or stopped immediately following the pacing regimen (N = 200). (*Chi square p,0.05 for DSCAM+ COL6A2
and DSCAM+ SH3BGR). d) Interaction grid summarizing interactions between CHD candidate genes in the fly heart resulting in particular cardiac

DSCAM and COL6A2 Cooperatively Cause Heart Defects
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analyzed autonomous heart function using a semi-automated

heartbeat analysis that provides several quantitative measures of

the dynamic contractile properties of the beating heart [16].

Typically, hearts from young wild-type flies exhibit rhythmic

beating patterns with narrow distributions of both diastolic and

systolic intervals [13]. We examined dynamic indices of the heart

beat in young (one week old) flies expressing both DSCAM and

COL6A2 using the heart specific GMH5 driver (GMH5.

DSCAM+COL6A2) and found that they exhibited slower and

less rhythmic beating than control flies (e.g., non-expressing flies:

GMH5/+, DSCAM/+, and COL6A2/+ or flies expressing

the transgenes individually (GMH5.DSCAM and GMH5.

COL6A2)) (Figure S1a-S1d). In addition, the distribution of the

heart period in flies expressing both DSCAM and COL6A2 was

substantially broadened (Figure S1b). The increase in heart period

in these flies could be attributed to the increase in diastolic interval

(Figure S1b-S1d). The alteration of basal heart rate and rhy-

thmicity and disruption of heart function in response to pacing

when co-over-expressing DSCAM and COL6A2 indicate that

mis-regulation of this particular combination of genes greatly

impairs heart function in the fly motivating an analysis of over-

expressing these two genes in a mammalian system.

DSCAM and COL6A2 interact synergistically to cause
CHD in mice

Having demonstrated a cooperative interaction between

DSCAM and COL6A2 in flies, we next asked whether over-

expression of this same pair of genes would similarly result in a

synergistic disruption of heart function and/or morphology in

mice. We over-expressed each of these genes separately and in

combination under the control of the murine heart specific alpha-

MHC promoter, which is active in myocardial cells both during

early development and in the adult [17]. Single transgenic lines

expressing either DSCAM or COL6A2 were fully viable and

fertile. Single transgenic lines expressing comparable levels of

DSCAM and COL6A2 were chosen and crossed to each other to

obtain double transgenic mice co-expressing the two genes in the

developing heart. The levels of DSCAM and COL6A2 proteins in

transgenic adults were only modestly elevated relative to wild-type

(Figure 2a, 2b). In contrast to the full viability of the single

transgenic lines (which pertained even to lines expressing

considerably higher levels of the transgenes than those used to

generate the double transgenic mice), double transgenic adult mice

were recovered at only 58% of the expected frequency (Table S3).

Since we targeted expression of the DSCAM and COL6A2

transgenes specifically to the heart, the reduced proportion of

viable double transgenic mice suggested that some of these

individuals may have succumbed to severe heart defects and that

surviving adults might have observable abnormalities in heart

morphology or function. Consistent with this possibility, dissected

hearts from double transgenic 3-month-old adult mice weighed

more than those from wild type controls (Figure 2c). We searched

for potential morphological defects using (10 mm) Micro-CT

analysis to generate high resolution 3D reconstructions of double

transgenic and wild type hearts as well as by inspection of serial

heart sections (Figure S2b). The most obvious gross defect we

observed in double transgenic hearts was an increased thickness of

the left ventricle (LV) wall and interventricular septum (IVS)

relative to control wild-type hearts (Figure 2d–2f). In the most

extreme double transgenic hearts, digital reconstruction of the

heart chambers revealed that the walls of the LV were enlarged to

the point of nearly occluding the lumen (Figure 2f). These hearts

also had thickened IVS and RV walls. Enlarged left ventricular

walls in the hearts of double transgenic mice resemble left

ventricular hypertrophic cardiomyopathy that occurs frequently as

a result of pressure overload as can result from partial aortic

occlusion [18]. Examination of myocyte morphology at the IVS

and LV (Figure 2g, 2h) confirmed that the increased thickness of

the ventricular walls in the double transgenic animals was a result

of increased cell size, as has been observed in various hypertrophic

cardiomyopathies [19]. None of these gross morphological defects

were observed in wild-type (judged by MicroCT and H&E

staining) or single transgenic (by H&E staining) littermates (data

not shown).

We also examined hearts in greater detail using the full

resolution of Micro-CT reconstructive imaging of fixed whole

mount hearts as well as standard dissection procedures (Figure 3a,

3b). Both types of fine morphological analysis identified the

presence of atrial septal defects (ASDs) in double transgenic mice

(N = 7), but not in control wild-type littermates (N = 7). In order to

determine whether such frank holes had a physiological conse-

quence and whether such defects were penetrant, we comple-

mented the morphological studies with sensitive physiological

measurements monitoring blood flow using two in vivo imaging

methods. The first method, digital subtraction angiography (DSA),

can detect abnormal shunting of blood between the heart

chambers by injecting a radio-opaque dye into the right jugular

vein and following it through the heart cycle in real-time by

radiography [20]. We used DSA analysis to compare the heart

function of wild-type, single and double transgenic animals at 3

months of age. We found that 53% of the double transgenic mice

tested (N = 15) exhibited abnormal shunting of the dye from the

left to the right atrium, indicative of a functional ASD (Figure 3c,

3e). In contrast, none of the wild-type or single transgenic animals

displayed any shunting using this assay (Figure 3e, N = 9 for each

genotype), demonstrating that this leakage phenotype is fully

dependent on both genes being over-expressed.

The second assay we employed, saline contrast echocardiogra-

phy, provides a yet more sensitive test for shunting in which

agitated saline infused with highly reflective micro-bubbles is

injected into the right jugular vein and then followed by 2-

dimensional echocardiography. During the period when the

pressure in the right atrium exceeds that in the left atrium, even

minute amounts of right-to-left blood flow shunts can be detected

[21,22]. In this case, we observed a yet higher frequency of

shunting from the right to left atrium in double transgenic mice

(80%, N = 10) (Figure 3d, 3e, and Videos S1 and S2). We also

observed shunting in one wild-type mouse (14%, N = 8) and in two

single DSCAM transgenic mice, (22%, N = 9), but not any of the

single COL6A2 transgenic mice (N = 7). For several double

phenotypes. H = Heart rate, F = failure rate (% of flies that exhibited heart asystole or fibrillation immediately following the electrical pacing regime)
and R = recovery rate (% of flies that exhibited recovered heart rate 2 minutes after the end of electrical pacing). Colored backgrounds indicate
significant difference in heart function relative to non-expressing UAS controls (Chi square, p,0.05). Blue = heart rate; Red = stress-induced failure
rate; Yellow = recovery rate following heart failure. e) Example of a genetic interaction between the CHD candidate genes SH3BGR and COL6A1 in
the fly eye using the GMR-GAL4 driver. f) Summary of all genetic interactions between CHD candidate genes in the fly heart (lower triangles in each
interaction box) and eye (upper triangles in each interaction box). Blue = no detectable interaction, orange = moderate interaction and red =
strong interaction. The combination exhibiting the strongest interactions in both the heart and eye was DSCAM plus COL6A2.
doi:10.1371/journal.pgen.1002344.g001
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Figure 2. DSCAM and COL6A2 double transgenic mice exhibit cardiac hypertrophy. a) Immunostains of COL6A2 and DSCAM (red) and
nuclei (blue) in wild type (WT) and COL6A2 and DSCAM double transgenic mice (Double Tg) in adjacent consecutive sections of 3 month old adult
hearts (Bar = 11 mm). COL6A2 staining is predominantly extracellular (arrows), while DSCAM staining consists of two components; a general plasma
membrane surface expression, most notable between adjacent cells (arrows), that would overlap with COL6A2 expression, and intracellular
perinuclear staining (arrowhead), which may represent ER-Golgi to plasma membrane transport intermediates of DSCAM. b) Immunoblot analysis of
DSCAM and COL6A2 expression in wild-type versus double transgenic mice. GAPDH served as a loading control. c) Increased heart weight in
dissected hearts of DSCAM and COL6A2 double transgenic mice (N = 7) compared to their wild-type littermates (N = 5) (6 SEM, * t-test (2 tailed,

DSCAM and COL6A2 Cooperatively Cause Heart Defects
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transgenic mice that displayed atrial shunting by echocardiogra-

phy (N = 6), we performed additional morphological analysis by

serial sectioning of the hearts. These individuals all displayed

multiple defects in the atrial septum as well as septal dysmorphol-

ogies (e.g., Figure S2). We conclude both by functional and

morphological criteria that double, but not single, transgenic mice

have a high frequency of functional atrial septal defects.

DSCAM and COL6A2 cooperatively promote substrate
adhesion

DSCAM is a cell adhesion molecule and its genetic interaction

with COL6A2, an extracellular matrix component, suggested a

possible direct or indirect interaction involving cell-substrate

adhesion. We investigated this possibility by transfecting the rat

cardiac myoblast cell line H9C2 with DSCAM to generate a stable

cell line constitutively expressing DSCAM (H9C2-DSCAM).

These cells moderately over-express DSCAM and exhibit a

subcellular distribution that is similar to the endogenous protein

(Figure S3). We plated these DSCAM-expressing cells or non-

transfected H9C2 control cells on microtiter wells coated with

COL6 or BSA to assay substrate adhesion. We observed that

H9C2-DSCAM cells adhered more firmly to the COL6 substrate

than non-transfected cells in a time dependent fashion (Figure 4a).

Since H9C2-DSCAM cells exhibited elevated adhesion in a

COL6-dependent fashion and because adhesive interactions are

known to induce transcriptional responses, we asked whether

expression of DSCAM in H9C2 cells might alter the transcrip-

tional profile of these cells. We purified RNA from H9C2-

DSCAM and control H9C2 cells plated on COL6 and performed

RNA deep sequencing (RNA-Seq) and compared the transcrip-

tomes of the DSCAM-expressing and parental cell lines. Our

analysis identified 1251 genes that were differentially expressed in

the two cell lines (Dataset S1). Gene ontology (GO) analysis of

genes that were changed more than 2-fold in DSCAM-expressing

versus parental cells (p,0.0005) identified genes involved in

cellular adhesion (GO terms: ECM-Receptor interaction and focal

adhesion - Figure 4b) and cardiomyopathies (GO: hypertrophic

cardiomyopathy, cardiac hypertrophy, fibrosis - Figure 4c and

Table S5), which is consistent with the prominent cardiac hyper-

trophy we observed in double transgenic animals expressing

DSCAM and COL6A2 (Figure 4b and Table S4). In line with the

bulk analysis of GO terms, we found that a number of genes that

promote adhesion were up-regulated including collagens, cadherins

and integrins (e.g. COL6A1, COL4A1, COL18A1, CDH3), whereas

genes associated with migration or metastatic tumor invasion were

down-regulated (e.g. TWIST1, TIAM1, SLIT3, STAT1/STAT5A,

BMP2). In summary, the whole genome transcriptional analysis

supports the notion that co-expression of the DSCAM and COL6A2

genes results in a transcriptional misregulation of genes involved in

cell-cell adhesion and ECM-cell interaction, which may contribute to

the observed increased adhesion of H9C2-DSCAM cells to collagen

substrate, as well as genes that respond transcriptionally in patients

with cardiomyopathies.

The altered expression levels of genes mediating cell-substrate

interactions or genes misregulated in cardiac myopathy and

hypertrophy in H9C2-DSCAM/COL6 cardiomyocyte cells sug-

gested that these genes might also be misregulated in vivo in double

transgenic DSCAM+COL6A2 mice. We therefore examined the

relative expression levels of a select set of genes in hearts dissected

from wild-type and double transgenic embryos. mRNA was

isolated from individual hearts and tested for quantitative changes

in gene expression by qRT-PCR. This analysis confirmed that

several gene transcripts altered in the cellular cardiomyocyte

model were also affected in the hearts of the double transgenic

mice by qRT-PCR (Figure 4d), including those encoding focal

adhesion protein tenascin N (Tnn), hypertrophy associated cardiac

troponin gene (Tnnt2), calcium binding protein S100A4, which is

involved in fibrosis and tissue remodeling in several diseases [23],

Cxcr7, which is associated with various cardiac defects including

septal defects [24,25], and the transcription factor Gata2, which is

associated with familial early-onset coronary artery disease [26].

Taken together, the expression results from the cardiomyocyte and

transgenic mice hearts suggest that increased DSCAM and

COL6A2 expression induce a transcriptional response that could

amplify excessive adhesion and contribute to heart malfunction.

Discussion

DSCAM and COL6A2 cooperatively disrupt heart function
in flies and mice

In this study, we began with information provided by decades of

mapping in human DS patients that delimited a small region of

chromosome 21 responsible for causing CHD [6-10]. Expression

data indicating which genes in this interval were expressed in the

heart further restricted the set of potential candidate genes that

might contribute to CHD. A contributory role of DSCAM has also

been proposed [9], but given the large numbers of subjects needed

for fine genetic mapping it would have been very difficult to go

much beyond this level of analysis using human genetic data alone.

We therefore turned to the fly as a model system with a beating

heart tube that shares many basic cell biological features of the

mammalian heart to identify stringent forms of genetic interaction

associated with over-expression of CHD candidate genes in all

possible pairwise combinations. This comprehensive first-order

analysis of basic heart function indices pointed to two genes,

DSCAM and COL6A2, as causing the most severe synergistic

disruption of heart function in flies. Further in depth analysis using

quantitative real-time imaging of fly hearts over-expressing

DSCAM and/or COL6A2 revealed additional cooperative defects

such as arrhythmicity. While the interaction between these two

genes was the strongest, we note that there were also fairly strong

interactions between DSCAM and two other genes, COL6A1 and

SH3BGR. The interaction of DSCAM with COL6A1 is not too

surprising given that its gene product and that of COL6A2 are

subunits of a common tripartite helical collagen fiber. The

interaction with SH3BGR warrants further scrutiny in future

studies, however, as it may provide a link between the extracellular

compartment and signal transmission into cardiac cells.

Because DSCAM and COL6A2 cooperatively altered heart

function in flies when expressed in myocardial cells, we selected

unequal variance) P,0.05). d) Hypertrophy detected by micro-CT in DSCAM and COL6A2 double transgenic hearts. e) Measurements of heart wall
thickness (in mm 6 SEM) of right ventricle (RV) left Ventricle (LV) and interventricular septum (IVS) derived from Micro-CT virtual sections of double
transgenic (N = 8) and wild type (N = 2) hearts (* t-test (2 tailed, unequal variance) P,0.05). Bars in panel d indicate sites of measurement. f) 3-D
reconstructions of WT versus double transgenic mouse hearts obtained from micro-CT analysis showing extensive hypertrophy in a frontal section of
an adult double transgenic mouse heart. Left ventricle (LV) and right ventricle (RV) are indicated. g) Double transgenic heart myocytes exhibit
increased cell size (dotted outlines indicate the borders of individual cells). IVS cardiomyocytes from heart sections stained with fluorescent wheat
germ agglutinin. h) Quantification of cell size in IVS from stained heart sections (N = 20, * t-test - 2 tailed, unequal variance, P,0.0001).
doi:10.1371/journal.pgen.1002344.g002
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Figure 3. Atrial septal defects in DSCAM and COL6A2 double transgenic mice. a) Atrial Septal Defects (ASD) in a digitally reconstructed
double transgenic heart based on Micro-CT imaging. High magnification insets show atrial septal region indicated by dotted lines in the lower
magnification full views. Red arrows indicate a hole between left and right atria that also appear on adjacent reconstructed sections indicating that
an open passage exists between the two atrial chambers. Atrial septum (AS), right atrium (RA), interventricular septum (IVS), Foramen ovale (FO). b)
An ASD in an experimentally dissected double transgenic mouse. A frank hole between the left and right atria allowed the unobstructed passage of a
course bristle. c) Digital Subtraction Angiography (DSA) analysis shows shunting of the radio opaque dye from the left atrium to the right atrium. DSA
images from double transgenic mouse before (left) and during the detected shunting (right). Top panel-video capture, bottom-binary image after
digital subtraction. Red arrows indicate the site of abnormal shunting of the dye from the left atrium into the right atrium. d) Saline contrast
echocardiography. Abnormal shunting is detected in double transgenic mice as bubbles in the LV within 1 beat. Panels depict echocardiograms of
the cardiac chambers in the axial plane of the heart, both before and after injection of saline. Blue arrows indicate time of injection, red arrows
indicate the time bubbles are detected in LV, and yellow arrows indicate bubbles. Each panel consists of 10 frames merged for visualization purposes.
e) Percent of wild-type and double transgenic animals exhibiting shunting in digital subtraction angiography and saline contrast echocardiography.
doi:10.1371/journal.pgen.1002344.g003
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this combination of genes to over-express at modest levels in the

murine heart. We chose the myosin-alpha chain gene promoter to

drive over-expression of these genes in the myocardium since it is

heart specific and drives modest levels of expression both during

heart development and in adult hearts. While this mode of

expression obviously does not precisely recapitulate the endoge-

nous pattern of DSCAM and COL6A2 expression, it does restrict

expression of these genes to the heart throughout a protracted

period. Since we were using this driver to express molecules

targeted to the extracellular space, we reasoned that these proteins

might similarly accumulate extracellularly whether they were

expressed by cardiomyocytes or other cardiac cells such as

fibroblasts that are known to produce these proteins as well (note

that since both DSCAM and COL6A2 are expressed in

developing fetal myocytes, we recapitulated at least a subset of

the endogenous expression pattern). Additional studies with

endogenous promoters or promoters driving expression of these

genes in other cell populations in the heart (fibroblasts or neural

crest derivatives) are clearly warranted. The choice of gene

expression vehicle notwithstanding, we observed a very strong

synergistic interaction between DSCAM and COL6A2 when

over-expressed in the mouse heart including, highly penetrant and

prominent cardiac hypertrophy, atrial septal defects associated

with physiological shunting, and a mortality rate of 50%. Most

importantly, these dramatic phenotypes were not observed in

transgenic mice expressing either transgene alone, but only in mice

co-expressing both transgenes.

DSCAM and COL6A2 cooperatively promote cell-
substrate adhesion

An obvious possible mechanism by which DSCAM and

COL6A2 might disrupt heart development and/or function is

by altering cell-substrate adhesion given that DSCAM is a

transmembrane adhesion molecule and COL6A2 is constituent

Figure 4. DSCAM and COL6A2 enhance cell adhesion and induce transcriptional changes. a) Cell adhesion assay in a cardiomyocyte cell
line. A stable line of H9C2 cardiomyocyte cells expressing DSCAM (H9C2-DSCAM) or parental H9C2 cells were grown on BSA or COL6 coated plates. At
the indicated time points, plates were gently washed and the number of cells retained on the plates was determined shown as percent of cells
adhering to plates. b) The top gene ontology KEGG pathway terms of differentially expressed genes identified by RNA-seq of H9C2 and H9C2-DSCAM
cell lines grown on COL6 coated plates. Threshold shown p,0.05. c) Enriched heart related gene ontology terms in H9C2 vs. H9C2-DSCAM
differentially expressed mRNAs using Ingenuity knowledge pathway database. Threshold shown p,0.05. d) qRT-PCR of select genes in wild type and
double transgenic e14.5 hearts. Results shown as average +/2 SEM (N = 3). Unpaired two-tailed t-test analysis p,0.05 (*).
doi:10.1371/journal.pgen.1002344.g004

DSCAM and COL6A2 Cooperatively Cause Heart Defects

PLoS Genetics | www.plosgenetics.org 8 November 2011 | Volume 7 | Issue 11 | e1002344



of the ECM. In line with this possibility, a rat cardiomyocyte cell

line expressing DSCAM exhibits a time-dependent increased

adhesion to COL6 coated plates. Although it is known that

adhesion of cells has transcriptional effects, we were surprised that

much of this transcriptional response seems to be focused on

regulation of genes involved in the adhesion network, suggesting

that positive feedback mechanisms further stabilizing adhesive

interactions may be a prominent element of this interaction. These

pervasive changes in gene expression could be mediated either by

DSCAM itself, which is known to transduce a variety of signaling

events during axonal pathfinding and axon branching including

self-adhesive signaling and a response to Netrins, or by other

adhesion dependent effectors such as the focal adhesion pathway

components of which are regulated in the transcriptional response

of H9C2-DSCAM grown on COL6. The reciprocal regulation of

several components promoting adhesion versus cell migration may

also contribute to the CHD phenotypes that are observed in

DSCAM+COL6A2 double transgenic mice, particularly since a

number of the responsive genes identified in the cell culture

experiments were also misregulated in hearts of double transgenic

mice. While further studies will be needed to assess the importance

of altered cell-substrate adhesion and cell migratory processes in

mediating the morphological and physiological effects of

DSCAM+COL6A2 over-expression, we speculate that such

defects could lead to a developmental delay in closing the atrial

septum and may also contribute, either developmentally or as part

of a physiological feedback loop, to hypertrophic phenotypes that

we observed in affected mice.

Potential relevance of CHD in double transgenic mice to
human cardiac disease

Since we set out to identify genes contributing to DS CHD, a

natural question is whether the phenotypes we observe recapitu-

late those associated with DS in humans. It is certainly noteworthy

that we observed ASDs with high penetrance in double transgenic

mice, since this is one of several salient features of DS CHD.

However, other typical DS CHD phenotypes were not observed

such as atrial ventricular septal defects, perimembranous and

muscular ventricular septal defects, Tetralogy of Fallot, or

persistent ductus arteriosus. Also, since atrial septal defects can

have many etiologies, in order to determine whether this

phenotype is similar to that in human DS patients, it will be

important to examine in greater detail the origin of these defects in

mice (e.g., premium or secundum ASD) and compare them to the

occurrence of these defects in DS patients [27].

There are several possible reasons for DSCAM+COL6A2

double transgenic mice exhibit only a subset of DS CHD

phenotypes. Perhaps most obviously, as noted above, endogenous

promoters may drive expression of these genes at different levels or

in distinct spatial and temporal patterns than we achieved using a

heterologous promoter. With regard to expression level, however,

we note that DSCAM+COL6A2 double transgenic mice express

only modestly elevated levels of the transgenes. Whether these

match precisely with the altered dose in DS patients is unknown. It

is noteworthy in this context that the level of altered gene

expression in DS patients is not always elevated by precisely 50%,

and in some cases can be as much as 2-3 times the normal level

[28,29], as is the case for COL6A2 in human DS brains [29].

Another factor to consider is that in our studies we focused on

phenotypes caused by over-expressing DSCAM and COL6A2 in

myocardial cells. However, some of the AV septal complex

formation relies on endocardium and the endocardial derived

mesenchyme, which undergoes complex remodeling processes in

the AV cushion region [30], and thus would not be targeted by the

transgenic promoter we utilized. Moreover, migratory neural crest

derivatives of the heart as well as cardiac fibroblasts, which have

been implicated in cardiac hypertrophy [31], may also play

important roles in DS CHD. In addition, there may be species

specific differences in response to altered gene expression levels. For

example, mice carrying a complete copy of human chromosome 21

(Tc1 mice) do not reproduce the full spectrum of DS CHD defects

observed in humans [32,33]. Similarly, trisomy of mouse chromo-

some 16, which includes most but not all murine orthologues of

genes carried on human chromosome 21, results in abnormal

atrioventricular junction defects that are not present in human DS

CHD [34]. Finally, DS CHD may involve the over-expression of

other genes in addition to DSCAM and COL6A2. Since DSCAM

also interacted strongly with SH3BGR in flies, it would be of

particular interest to examine the consequence of over-expressing

this pair of genes in mice.

The most prominent phenotype we observed in DSCAM+-
COL6A2 double transgenic mice was pronounced left ventricular

hypertrophic cardiomyopathy, which is not typical of DS CHD

[35,36]. The basis for this non-DS phenotype may be the same as

those responsible for only a partial recapitulation of the DS

phenotype such as level, timing, or pattern of transgene expression.

The exact basis for this hypertrophic phenotype notwithstanding, it

is highly penetrant in double transgenic mice. Since this phenotype,

like ASD, is only observed in double transgenic mice and not in the

single transgenic strains, this genetic interaction may be highly

relevant to the etiology of various forms of cardiac hypertrophy such

as those resulting from increased load [18,19], since coordinate up-

regulation of these genes that may occur spontaneously as a result of

somatic mutation or epigenetic responses, may generate similar

phenotypes in humans. Further analysis will be required to

determine whether DSCAM and COL6A2 contribute to ASD

typical of DS and whether levels of these two genes are jointly

increased in patients with inherited or spontaneous forms of cardiac

hypertrophy.

The strength of a multi-tiered genetic analysis
Success in identifying DSCAM and COL6A2 as mediators of

CHD phenotypes in these studies resulted from the combined use

of three systems: comprehensive candidate testing in flies,

validation of synergistic genetics interactions in mice and cell

culture, and high resolution genetic mapping in humans. In

addition to these genetic studies, we then employed cell based

assays to investigate the underlying molecular mechanisms

regulated by these gene products. For this initial study, we

restricted our screen to genes that we suspected had a high chance

of causing heart defects based on a priori assumptions including

genetic analysis in human DS patients, expression in the

developing heart, and the potential to physically interact in the

extracellular environment. While these criteria naturally limit our

analysis to a subset of possible contributing genes, they nonetheless

lay the groundwork for future studies to analyze contributions of

additional genes from the CHD candidate region.

We suggest that application of this multi-tiered genetic strategy

should be broadly applicable to other multigenic genetic diseases

in which sorting though many genetic combinations is necessary to

identify promising candidate loci underlying disease phenotypes.

Examples of such multigenic disorders include the identification of

interacting genes within loci defined by the HapMap initiative [5],

contiguous gene disorders associated with macroscopic duplication

or deletion syndromes such as those underlying autism [37], and

potentially a large number of spontaneous as well as heritable

conditions resulting from alterations in gene dose due to CNVs,

which have been identified throughout the human genome [4].
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These data also imply that extracellular proteins can exert potent

effects on gene transcription programs as a component of their

phenotypic effects, raising intriguing mechanistic questions for

future investigation.

Methods

Fly stocks and DNA clones
All fly stocks were raised at 25 uC. Full-length cDNAs were mis

expressed in the heart or developing eye using the GAL4-UAS

transactivation system [14]. Full-length mammalian cDNAs of

SH3BGR (NM_007341), DSCAM (NM_031174), COL6A1

(NM_001848) and COL6A2 (NM_001849) have been described

previously [10]. Drosophila full-length cDNA of SH3b (CG8582)

and COL18A1 (CG33171) were obtained from Open Biosystems.

The mammalian and Drosophila cDNAs were cloned into pUAS

vector and injected to w1118 embryos. Several independent trans-

genic lines were generated by P-element-mediated germ line

transformation technique for each pUAS construct. GMR-GAL4

Stock was obtained from Bloomington, Indiana. The GMH5-

GAL4 line [15] was used to drive the expression of DS CHD

candidate genes specifically to the myocardial cells in the heart.

Fly heart physiology
Heart rate, electrical pacing, semi intact heart preparation and

movie analysis were conducted as described previously [15,16].

Digital subtraction angiography
250 mL of nonionic contrast was injected into the jugular vein

over a period of 1 to 2 seconds and video images were acquired on

half-inch super-VHS videotape at 30 frames per second under

constant fluoroscopy with the XiScan 1000 C-arm x-ray system

(XiTec, Inc; 3-inch field of view, anterior-posterior, lateral and left

anterior oblique projections). Later, the interlaced video images were

edited and digitally processed off-line (Silicon Graphics R10000

system, Motif 6.5 operating system) with a resolution matrix of

512x512 pixels, 256 shades of gray, 60 fields per second [20].

Saline contrast echocardiograms
Mice were sedated with isoflurane. The jugular vein was

dissected and cannulated for the intravenous saline administration.

Imaging of the heart was performed using an Echo ultrasound

system. Image acquisition in the axial four-chamber views was

begun just before injection of contrast and continued until contrast

effect in the myocardium had dissipated [21,22]. Detection of

contrast in the LA and LV within 1-2 heart beats following

injection of contrast saline was an indication of an abnormal

shunting. Occasionally contrast was detected in the LV after 6 or

more heart beats due to residual contrast recirculation through the

lungs, and was not considered an indication of shunting.

MicroCT analysis
High-resolution volumetric Computed Tomography (CT) of

hearts was performed by Numira Biosciences (Irvine, CA) at 10-

mm3 isometric voxel resolution using an eXplore Locus SP

MicroCT specimen scanner (GE Healthcare, London, Ontario,

Canada). Visualization of sections was performed with MicroView

Software (GE healthcare) and volume rendering was performed

with OsiriX Medical Image software.

Immunohistochemistry
Hearts were cut at the horizontal short-axis plane, fixed in 4%

paraformaldehyde, embedded in OCT and sectioned. Frozen

cryosections wild-type and double transgenic mice were stained

with anti DSCAM (N-16) (Santa Cruz biotechnology) or anti

COL6A2 (D20) (Santa Cruz biotechnology), and anti Rabbit

Alexa594 secondary (Jackson immunochemicals), counter stained

with Hoechst 33342 (Invitrogen) imaged with a Perkin Elmer

UltraView Vox spinning disk confocal microscope. For myocytes

size determination, 14 micron frozen cryosections were stained

with Alexa 594 –conjugated wheat germ agglutinin (Invitrogen),

and the myocyte cross-sectional area was measured for assessment

of cell size using NIH image J software. For staining of H9C2 and

H9C2-DSCAM cells, cells were grown on 35 mm plates, fixed in

4% paraformaldehyde, permeabilized in PBS/Triton X100 0.1%,

and stained with rabbit anti DSCAM (a kind gift from Dr. Elke

Stein, Yale University, CT), or mouse anti Myc (9E10, Santa Cruz

biotechnology) primary antibodies, Alexa594 secondary antibodies

(Jackson immunochemicals), counter stained with Hoechst 33342

(Invitrogen) and imaged with a Zeiss Axioplan 2 fluorescence

microscope.

Generation of the H9C2-DSCAM cell line
DSCAM was cloned in to an expression vector expressing a C-

terminal myc tag and a puromycin resistance gene. The promoter

used was a modified chicken beta actin promoter which can be

expressed in a wide variety of tissues and cell types (pCAGGS

promoter). H9C2 cells were transfected and selection resistant

clones were isolated. We chose a cell line that over-expressed

DSCAM at the lowest level that we could still detect tagged

DSCAM by western blotting.

Cell adhesion assay
Cell adhesion was performed as described [38]. Briefly, 96 well

plates were coated with 10 mg/ml COL6 (Meridian life sciences,

ME) in PBS (-Ca++, -Mg++) overnight, washed twice with PBS

(-Ca++, -Mg++), and then incubated for 2 hours with 1% BSA/PBS

(-Ca++, -Mg++) to block non-specific binding. In control (BSA)

plates addition of collagen was omitted and plates were processed

in parallel. 2.56105 cells/ml H9C2 or H9C2-DSCAM cells were

plated in serum free media on blocked 96 well plates in triplicate.

At the indicated time points, wells were washed twice gently in

serum free media, and attached cells were fixed in 10% neutral

buffered formalin for 5 minutes. Cell number was determined by

crystal violet staining, read at OD540. The percent of cells bound

was calculated relative to cells plated in non-blocked wells which

displayed 100% adherence at the end point of the experiment.

mRNA sequencing and analysis
Library preparation for Illumina sequencing. Poly-T

capture beads were used to isolate mRNA from 5 mg of total

RNA from either H9C2 or H9C2-DSCAM cells grown on COL6

coated plates. First-strand cDNA was generated using random

hexamer-primed reverse transcription, and subsequently used to

generate second-strand cDNA using RNase H and DNA

polymerase. Sequencing adaptors were ligated using the Illumina

Genomic DNA sample prep kit. Fragments ,200 bp long were

isolated by gel electrophoresis, amplified by 16 cycles of PCR, and

sequenced on the Illumina Genome Analyzer II.

Computational analyses of mRNA-Seq read data. Se-

quence reads were filtered for quality, failing tags with more than

8Ns or 8 bases with quality values lower than 3 standard deviations

from the mean. Tags were then aligned using the top hat splice read

mapper [39]. Cufflinks [40] was then used to calculate the ‘‘FPKM’’

transcript expression levels using the refSeq annotations from the

rn4 freeze available through the UCSD genome browser. Homologous

mouse mm8 genes were taken from the rn4 xenoRefGene table to
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fill in areas not covered by the rn4 refSeq track. The resulting

transcripts were filtered under the criteria: p-value,0.00005,

FPKM.min$2, fold change $2. The list of significantly changed

genes was then analyzed for Gene Ontology term enrichment by

implementing the Database for Annotation, Visualization, and

Integrated Discovery (DAVID) Gene Ontology (GO) search engine

(http://david.abcc.ncifcrf.gov/) [41,42]. Functional Analysis of

RNA-seq data set using Ingenuity Pathways Knowledgebase: The

Functional Analysis identified the biological functions and/or

diseases that were most significant to the data set. Molecules from

the dataset that were associated with biological functions and/or

diseases in Ingenuity’s Knowledge Base were considered for the

analysis. Right-tailed Fisher’s exact test was used to calculate a p-

value determining the probability that each biological function and/

or disease assigned to that data set is due to chance alone.

Supporting Information

Dataset S1 H9C2-DSCAM mRNA-seq data.

(XLS)

Figure S1 DSCAM and COL6A2 over-expression cause con-

tractility defects in the fly heart. a) Representative 10 second M

mode traces extracted from high speed movies of semi intact 1 week

old flies. The genotypes tested were the heart specific GAL4 driver

GMH5 alone (GMH5/+), flies carrying one or both the DSCAM

and COL6A2 transgenes without GAL4 driver (DSCAM/+,

COL6A2/+ and both), or flies carrying both the GMH5-GAL4

driver and one or both transgenes (GMH5.DSCAM, GMH5.

COL6A2 and GMH5.DSCAM+COL6A2). b-d) Histograms of

Heart beat parameters distribution at 1 week old flies (N = 20), of

heart period (b), diastolic interval (c) and systolic interval (d).

(TIF)

Figure S2 Documenting atrial shunting and atrial septal defects

in the same heart of a DSCAM/COL6A2 double transgenic mouse.

a) Saline contrast echocardiography showing abnormal shunting

detected as bubbles that appear within 1 beat in the LV. Panels

depict echocardiograms of the cardiac chambers in the axial plane

of the heart, both before and after injection of saline. Blue arrows

indicate time of injection, red arrows indicate the time bubbles are

detected in LV, and yellow arrows indicate bubbles. Each panel

consists of 10 frames merged for visualization purposes. b)

Unstained serial cryosections of the same DSCAM/COL6A2

double transgenic heart that exhibited abnormal shunting as shown

in (a) sectioned at 14 mm. The sections reveal frank holes in the

atrial septum within the foramen ovale (red arrows) as well as

dysmorphology of the atrial septum (green arrows), which may

contribute to a fenestrated septum. Consecutive sections are shown

at the atrial septum level, from the apex towards the base of the

heart (panels- left to right, top to bottom). Atrial septum (AS), right

atrium (RA), left atrium (LA) right ventricle (RV), left ventricle (LV),

tricuspid valve (TV), mitral valve (MV).

(TIF)

Figure S3 Expression of DSCAM in H9C2-DSCAM cells. a)

Western blot of H9C2 and H9C2-DSCAM cells showing the

relative expression level of DSCAM using a rabbit anti-DSCAM

antibody, showing moderate increased level of expression in the

H9C2-DSCAM cells relative to control H9C2 cells. b) Immuno-

staining using rabbit anti-DSCAM antibody showing increased

expression in H9C2-DSCAM cells, mainly in perinuclear (Golgi/

ER) (arrow) and membrane regions (arrowhead) (DSCAM – red,

nuclei – blue). c) Immunostaining against the Myc tagged

DSCAM identifies both perinuclear (arrow) as well as membrane

staining, especially in areas between adjacent cells (arrowhead)

(Myc – Green, nuclei – blue).

(TIF)

Table S1 Human DS CHD candidate genes and their Drosophila

homologs. Asterisk (*) indicates DS CHD fly and mammalian

genes used to generate transgenic lines).

(DOC)

Table S2 Summary of heart performance parameter changes in

flies expressing all candidate CHD genes in single and pairwise

combinations. The three asterisks (***) indicate statistically

significant differences from the corresponding control (Chi square,

P,0.05) and a minus (-) indicates no significant difference from

the control.

(DOC)

Table S3 Transmission frequencies of DSCAM and COL6A2

transgenes in mice. For double transgenic mice, the frequency of

transmission is reduced to 58% of the expected rate (Chi square,

P = 1.0904E-07).

(DOC)

Table S4 List of Gene Ontology KEGG pathway genes.

(DOC)

Table S5 Genes associated with cardiomyopathy.

(DOC)

Video S1 Saline contrast echocardiography movie of 3 month

old wild-type mouse.

(AVI)

Video S2 Saline contrast echocardiography movie of 3 month

old DSCAM and COL6A2 double transgenic mouse.

(AVI)
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