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Abstract

Altered protein homeostasis underlies degenerative diseases triggered by misfolded proteins, including spinal and bulbar
muscular atrophy (SBMA), a neuromuscular disorder caused by a CAG/glutamine expansion in the androgen receptor. Here
we show that the unfolded protein response (UPR), an ER protein quality control pathway, is induced in skeletal muscle
from SBMA patients, AR113Q knock-in male mice, and surgically denervated wild-type mice. To probe the consequence of
UPR induction, we deleted CHOP (C/EBP homologous protein), a transcription factor induced following ER stress. CHOP
deficiency accentuated atrophy in both AR113Q and surgically denervated muscle through activation of macroautophagy, a
lysosomal protein quality control pathway. Conversely, impaired autophagy due to Beclin-1 haploinsufficiency decreased
muscle wasting and extended lifespan of AR113Q males, producing a significant and unexpected amelioration of the
disease phenotype. Our findings highlight critical cross-talk between the UPR and macroautophagy, and they indicate that
autophagy activation accentuates aspects of the SBMA phenotype.
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Introduction

Many adult onset neurodegenerative disorders are character-

ized by the accumulation of abnormally folded proteins that self-

associate into soluble oligomeric species or coalesce into insoluble

protein aggregates. Among these disorders are ones caused by

expansions of CAG/glutamine tracts [1,2]. Spinal and bulbar

muscular atrophy (SBMA), a member of this group, is a

progressive neuromuscular disorder caused by an expanded

glutamine tract near the amino terminus of the androgen receptor

(AR) [3]. This mutation leads to hormone-dependent AR

unfolding, and to the predominant loss of lower motor neurons

in the brainstem and spinal cord of affected males. Clinical onset

occurs in adolescence to adulthood and is characterized initially by

muscle cramps and elevated serum creatine kinase [4,5]. These

myopathic features commonly precede muscle weakness, which

inevitably develops as the disease progresses and is most severe in

the proximal limb and bulbar muscles. Late in the course of

disease, the pathologic features of SBMA include loss of motor

neurons in the brainstem and spinal cord and the occurrence of

myopathic and neurogenic changes in skeletal muscle [6,7].

Studies in mouse models have defined several general principles

that guide our understanding of SBMA pathogenesis. Transgenic

over-expression of the expanded glutamine AR leads to disease,

consistent with the notion that toxicity is predominantly mediated

through a gain-of-function mechanism [8,9]. This toxicity is

androgen-dependent in mice and in SBMA patients, an observa-

tion that led to recent clinical trials with anti-androgens [10–12].

To model SBMA in mice, our laboratory used gene targeting to

exchange 1340 bp of mouse Ar exon 1 with human sequence

containing 21 or 113 CAG repeats [13,14]. Mice expressing the

expanded glutamine AR (AR113Q) develop androgen-dependent

neuromuscular and systemic pathology that models SBMA

[14,15], whereas AR21Q males are similar to wild type littermates

[13,14]. In AR113Q mice, denervation and muscle pathology

occur early in life, prior to detectable motor neuron loss, indicating

that neuronal dysfunction or distal axonal degeneration and

myopathy are early disease manifestations. The notion that

pathology arising in muscle contributes to disease is consistent

with findings in transgenic mice in which over-expression of the

wild type AR in skeletal muscle leads to hormone-dependent

myopathy and motor axon loss [16], and with data showing a

rescue of the disease phenotype in SBMA transgenic mice by over-

expressing IGF-1 in skeletal muscle [17]. Taken together, these

observations focused our attention on the role of skeletal muscle in

disease pathogenesis.

The cellular pathways by which the expanded glutamine AR

mediates toxicity are complex and incompletely understood, with
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evidence in several model systems showing disruption of gene

expression [18–23], alterations in RNA splicing [24], impairments

in axonal transport [25–27] and defects in mitochondrial function

[28]. Toxicity likely results from the cumulative effects of altering a

diverse array of cellular processes, indicating that potential

treatments targeting a single downstream pathway are likely to

be unsuccessful. These findings prompted us to concentrate

instead on understanding the proximal mechanisms that regulate

degradation of the mutant protein. Work in cellular and mouse

models has established that degradation and aggregation of the

polyglutamine AR are regulated by the Hsp90-based chaperone

machinery [29,30], and that manipulating the expression or

function of Hsp70-dependent E3 ubiquitin ligases markedly affects

AR turnover through the ubiquitin-proteasome pathway [31–33].

In addition to the chaperone machinery, other pathways

regulating protein quality control have been implicated in SBMA

pathogenesis. Here we explored the role of the unfolded protein

response (UPR), an integrated signal transduction pathway that

transmits information about protein folding within the ER lumen to

the nucleus and cytosol to regulate protein synthesis and folding and

to influence cell survival [34,35]. Prior studies showed that amino-

terminal fragments of the polyglutamine AR activate the UPR in

vitro [36], but little is known about the role of this pathway in more

complex models of disease. We now show that the UPR is activated

in skeletal muscle from SBMA patients and AR113Q mice.

Moreover, genetic disruption of the ER stress response by deletion

of the gene encoding the transcription factor C/EBP homologous

protein (CHOP), a mediator of the UPR [34], accentuates skeletal

muscle atrophy in AR113Q mice. Further, we show that enhanced

muscle wasting in the setting of CHOP deficiency is due to increased

macroautophagy (hereafter referred to as autophagy), a lysosomal

protein quality control pathway implicated in the pathogenesis of

polyglutamine and motor neuron diseases. In contrast, diminished

autophagy due to Beclin-1 haploinsufficiency decreased muscle

wasting and extended the lifespan of AR113Q males, unexpectedly

ameliorating the disease phenotype. Our findings highlight cross-

talk between the UPR and autophagy, and demonstrate that

increased autophagy promotes atrophy of SBMA muscle.

Results

The UPR is activated in SBMA muscle
To determine whether the ER stress response is activated in

SBMA we obtained skeletal muscle from patients and male

controls. Gene expression analysis by qPCR demonstrated that

SBMA muscle contained significantly higher levels of several

mRNAs that are induced in response to ER stress (Figure 1A)

[34,35]. These encoded the ER chaperone immunoglobulin

binding protein (BiP), the transcription factors activating tran-

scription factor-4 (ATF4) and its target CHOP, and the ER folding

enzyme protein disulfide isomerase (PDI). Further, increased

splicing of mRNA encoding X-box binding protein-1 (XBP1) was

detected (Figure 1B), indicating that activation of the proximal

UPR sensor inositol-requiring protein-1 (IRE1) had occurred.

Analysis of proximal hind limb muscle from adult AR113Q

male mice similarly demonstrated the induction of mRNAs

encoding BiP, ATF4, CHOP and PDI (Figure 1C). This was

associated with increased expression of BiP and PDI proteins, as

demonstrated by western blot (Figure 1D). As the neuromuscular

phenotype of these mice is both hormone and glutamine-length

dependent [14], we sought to determine whether the occurrence of

ER stress was similarly regulated. Surgical castration at 5–6 wks

ameliorated the induction of these transcripts in adult AR113Q

males, demonstrating that UPR activation was responsive to levels

of circulating androgens (Figure 1C). Further, direct comparison

with mice generated using the same gene targeting strategy but

with only 21 CAG repeats in the Ar gene [13] confirmed that UPR

activation was dependent upon the presence of an expanded

glutamine tract (Figure 1E). In contrast, we did not detect

induction of ER stress-induced mRNAs such as BiP and CHOP in

spinal cords of AR113Q males (Figure 1F), nor did we detect

increased expression of BiP or PDI proteins in spinal motor

neurons (not shown). We conclude that the UPR is activated in

skeletal muscle from SBMA patients and knock-in mice.

CHOP deletion increases AR113Q muscle atrophy and
activates autophagy

As the UPR plays a central role in protein homeostasis in the ER

and influences survival in a cellular model of SBMA [36], we sought

to determine its role in disease pathogenesis in vivo. To accomplish

this, we generated AR113Q males deficient in CHOP, a regulator

of cell survival during ER stress that we found to be up-regulated in

SBMA muscle. CHOP null mice exhibit impaired programmed cell

death following pharmacological induction of ER stress [37].

Further, CHOP deficiency accentuates the phenotype of Pelizaeus-

Merzbacher Disease mice [38] yet rescues the motor deficits of

Charcot-Marie-Tooth 1B mice [39], demonstrating that deletion of

this transcription factor is an informative approach to probing the

role of the UPR in model systems. Notably, CHOP null mice do not

display neuromuscular pathology, thereby enabling us to assess the

outcome of genetic disruption of the UPR on the SBMA phenotype.

CHOP deficiency markedly affected AR113Q muscle, the site

of UPR activation, by accentuating skeletal muscle atrophy

(Figure 2A, 2B). This unexpected effect on muscle fiber size

yielded a significant shift in the distribution of fibers towards a

smaller cross sectional area, resulting in a mean fiber size that was

,1/3 smaller than that measured in AR113Q males. In contrast,

CHOP null males expressing the wild type AR had muscle fibers

that were similarly sized to age matched wild type males

(Figure 2C). Although CHOP deficiency did not alter AR113Q

total body mass or survival (not shown), our data show that

disruption of the UPR by CHOP deletion increased muscle

wasting in AR113Q male mice.

Author Summary

In many age-dependent neurodegenerative diseases, the
accumulation of misfolded or mutant proteins drives
pathogenesis. Several protein quality control pathways
have emerged as central regulators of the turnover of
these toxic proteins and therefore impact phenotypic
severity. In spinal and bulbar muscular atrophy (SBMA), the
mutant androgen receptor with an expanded glutamine
tract undergoes hormone-dependent nuclear transloca-
tion, unfolding, and oligomerization—steps that are critical
to the development of progressive proximal limb and
bulbar muscle weakness in men. Here we show that the
unfolded protein response (UPR), an endoplasmic reticu-
lum stress response, is triggered in skeletal muscle from
SBMA patients and knock-in mice. We find that disruption
of the UPR exacerbates skeletal muscle atrophy through
the induction of macroautophagy, a lysosomal protein
quality pathway. In contrast, impaired autophagy dimin-
ishes muscle wasting and prolongs lifespan of SBMA mice.
Our findings highlight cross-talk between the UPR and
autophagy, and they suggest that limited activation of the
autophagic pathway may be beneficial in certain neuro-
muscular diseases such as SBMA where the nucleus is the
essential site of toxicity.

Autophagy Accentuates the Phenotype of SBMA Mice
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To determine the mechanism by which CHOP deficiency

increased skeletal muscle atrophy, we initially considered the

possibility that motor neuron degeneration was more severe in

AR113Q mice deficient in CHOP, resulting in enhanced

neurogenic atrophy. However, we found no evidence of increased

motor neuron loss in the spinal cords of these double mutants (not

shown). Furthermore, skeletal muscle expression of mRNAs

induced following denervation [40], including those encoding

myogenin and MyoD, was similar in AR113Q and AR113Q,

CHOP null males (Figure S1). These findings suggested that

enhanced muscle atrophy in animals deficient in CHOP was not

mediated by increased motor neuron loss, but rather reflected

augmented activation of a pathway that mediates muscle wasting.

To directly test this notion, we first examined the expression of

muscle RING-finger protein 1 (MuRF1) and Atrogin1/Muscle

Atrophy F-box (MAFbx) (Figure 3A), two E3 ubiquitin ligases that

are induced in atrophying skeletal muscle and mediate enhanced

protein degradation through the proteasome [41]. While modest

induction of MuRF1 mRNA was observed in AR113Q muscle, its

expression was not further increased by CHOP deficiency. No

significant change in MAFbx expression was detected. Addition-

ally, CHOP deficiency did not alter expression of the 20S

proteasome subunit in skeletal muscle (Figure S2). We conclude

that enhanced atrophy of hind limb muscle in AR113Q, CHOP

null mice was not associated with a significant induction of E3

ligases that promote muscle protein degradation through the

ubiquitin-proteasome pathway.

These findings prompted us to consider the possibility that

another protein degradation pathway underlies the increased

atrophy triggered by CHOP deficiency. As recent studies

demonstrate that autophagy contributes to skeletal muscle wasting

[42], we next examined the activity of the autophagic pathway

following disruption of the UPR. Western blot demonstrated a

,3-fold increase in the autophagosome marker LC3-II (microtu-

bule-associated protein 1, light chain 3-II) in skeletal muscle from

AR113Q, CHOP null mice (Figure 3B). No accumulation of p62

Figure 1. The UPR is activated in SBMA muscle. A. Relative mRNA expression in skeletal muscle from SBMA patients (white bars, n = 3) and
controls (black bars, n = 3) (mean +/2 SEM). * p,0.05, ** p,0.01 by Student’s t test. B. Splicing of XBP1 mRNA was assessed by RT-PCR. Products from
unspliced (XBP1u) and spliced (XBP1s) transcripts were resolved on a nondenaturing polyacrylamide gel and stained with SYBR green. C. Relative
mRNA expression in proximal hind limb muscle (mean +/2 SEM). Mice evaluated were littermate WT (n = 6), AR113Q (n = 6), castrated WT (C-WT,
n = 6) and castrated AR113Q males (C-AR113Q, n = 5) on a mixed C57BL/6J-129 genetic background. *p,0.05 by ANOVA. D. Western blot of BiP and
PDI expression in proximal hind limb muscle. Right panels show quantification of signal relative to loading control (mean +/2 SEM). * p,0.05 by
Student’s t test. E. Relative mRNA expression in proximal hind limb muscle of AR21Q (n = 5) and AR113Q (n = 3) males backcrossed to C57BL/6J. **
p,0.01, ***p,0.001 by Student’s t test. F. Relative mRNA expression in spinal cord of AR21Q (n = 5) and AR113Q (n = 3) males (mean +/2 SEM). n.
s. = not significant by Student’s t test.
doi:10.1371/journal.pgen.1002321.g001

Autophagy Accentuates the Phenotype of SBMA Mice
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was detected (Figure 3B) consistent with the notion that flux through

the autophagic pathway was intact following disruption of the UPR.

Consistent with the notion that CHOP deficiency induced autophagy

in AR113Q muscle, we detected increased expression of mRNAs

encoding the autophagy regulators Atg5, Atg9B, LC3B and UVRAG

(Figure 3C). Notably, induction of autophagy was not associated with

altered levels of AR protein (Figure 3D) or the appearance of AR

immunoreactive intranuclear inclusions in skeletal muscle nuclei

(Figure 3E). These observations are consistent with a prior report

demonstrating that the androgen receptor largely escapes autophagic

degradation following its translocation into the nucleus [43], and

indicate that enhanced muscle atrophy in CHOP null mice is

independent of changes in AR protein levels. CHOP deficiency did

not alter phosphorylation of eukaryotic translation initiation factor 2

alpha (eIF2 alpha) or splicing of XBP1 mRNA (Figure 3F), signals

generated by the proximal UPR sensors protein kinase RNA-like ER

kinase (PERK) and IRE1 that have been linked to the regulation of

autophagy [44,45]. In contrast, we observed a modest, but significant

increase in the phosphorylation of c-Jun N-terminal kinases (JNK)

(Figure 3F), suggesting that signaling through JNK may contribute to

enhanced activation of autophagy in AR113Q, CHOP null muscle,

as observed in other systems [46].

CHOP deficiency increases autophagy-induced atrophy
of denervated muscle

Our observation of robust UPR activation in AR113Q skeletal

muscle raised the possibility that muscle denervation induces ER

stress, and that disruption of the UPR by CHOP deficiency

enhances wasting by altering the cellular response to ER stress. To

first test whether denervation is sufficient to activate the UPR in

skeletal muscle, wild type male mice underwent unilateral sciatic

nerve transection, and denervated and intact gastrocnemius

muscles were harvested at 3 or 7 days post surgery. Denervation

significantly increased phosphorylation of eIF2 alpha and splicing

of XBP1 mRNA (Figure 4A) indicating that activation of the

proximal UPR sensors PERK and IRE1 had occurred. Further,

gene expression analysis by qPCR demonstrated a significant

induction of BiP and CHOP mRNAs in denervated muscle, while

ATF4 mRNA levels exhibited a similar trend that failed to reach

statistical significance (Figure 4B). We conclude that denervation

activated the UPR in skeletal muscle.

These results encouraged us to use this system to further explore

the relationship between the UPR and autophagy, and to test the

notion that CHOP deficiency enhances muscle wasting through

the induction of autophagy. Surgical denervation of male mice

expressing the wild type AR demonstrated that CHOP deficiency

significantly increased activity of the autophagic pathway, similar

to our findings in AR113Q muscle. Denervated CHOP null

muscle harvested 7 days post surgery contained ,2.5 fold more

LC3-II than did wild type muscle (Figure 4C). p62 did not

accumulate in CHOP deficient muscle, indicating that flux

through the autophagic pathway was intact. CHOP deficiency

also accentuated skeletal muscle atrophy following denervation,

producing a significant decrease in mean fiber size (Figure 4D).

Our findings demonstrate that CHOP deficiency enhances

autophagy and increases muscle wasting following denervation.

To confirm that autophagy contributes to muscle atrophy

following surgical denervation, we transected the sciatic nerve of

Figure 2. CHOP deletion accentuates muscle atrophy in AR113Q mice. A. Muscle fiber size (100 fibers/mouse) was quantified from proximal
hind limb muscle of AR113Q (black) or AR113Q, CHOP 2/2 mice (white) at 12 wks. Left panel shows fiber size distribution, middle panel shows
cumulative percent of fibers as a function of fiber area, and right panel shows relative fiber cross sectional area (mean +/2 SEM). Left, middle panels,
p,0.0001 by Mann-Whitney test. Right panel, p,0.001 by Student’s t test. B. Representative image of muscle fibers following NADH stain.
Bar = 20 mM. C. Distribution of proximal hind limb muscle fiber size from wt (black) and CHOP 2/2 (white) mice at 12 wks. Difference not significant
by Mann-Whitney test.
doi:10.1371/journal.pgen.1002321.g002

Autophagy Accentuates the Phenotype of SBMA Mice
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Beclin-1 haploinsufficient male mice [47]. Beclin-1 (encoded by

Becn1) is a critical regulator of autophagy that binds class III

phosphoinositide 3-kinase and is both required for the initiation of

autophagosome formation and contributes to autophagosome

maturation [48]. Mice haploinsufficient for Beclin-1 form fewer

autophagosomes in skeletal muscle [49] and therefore allowed us

to probe the role of autophagy in the response of muscle to sciatic

nerve transection. Muscle haploinsufficient for Beclin-1 exhibited

Figure 3. Autophagy is increased in AR113Q, CHOP 2/2 muscle. A. Relative expression of MurRF1 and MAFbx mRNAs in proximal hind limb
muscle of 12 wk mice (n = 5–6/genotype). *p,0.05 by ANOVA, n. s. = not significant. B. LC3 and p62 expression in proximal hind limb muscle of 12 wk
mice was assessed by western blot. Right panels show quantification of signal relative to GAPDH. **p,0.01 by Student’s t test. C. Relative expression
of mRNAs encoding autophagy regulators in proximal hind limb muscle. *p,0.05 by Student’s t test. C. Androgen receptor protein expression in
skeletal muscle of 12 wk mice. Hsp90 serves as a loading control. Right panel shows quantification of relative signal intensity (n = 3/genotype). D.
Proximal hind limb muscles stained for the androgen receptor (in red) exhibit intranuclear inclusions. Nuclei are stained by DAPI (in blue). E. P-JNK
and P-eIF2 alpha expression (top, middle) and XBP1 mRNA splicing (bottom) in proximal hind limb muscle of 12 wk mice. Right panels show
quantification of signal relative to loading control. **p,0.01 by Student’s t test. n. s. = not significant.
doi:10.1371/journal.pgen.1002321.g003

Autophagy Accentuates the Phenotype of SBMA Mice
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significantly increased mean fiber size compared to either wild

type or CHOP null muscle following surgical denervation

(Figure 4D) supporting a role for autophagy in muscle wasting.

To directly test the notion that CHOP deficiency enhanced muscle

wasting by activating autophagy, we generated CHOP null mice

haploinsufficient for Beclin-1 (Figure 4E). Following denervation,

these mice exhibited significantly less atrophy than CHOP null

males, demonstrating that the effects of CHOP deficiency on

muscle wasting were mediated through autophagy.

Beclin-1 haploinsufficiency attenuates the phenotype of
AR113Q males

Our finding that enhanced autophagy triggered by CHOP

deficiency promoted muscle wasting in AR113Q mice prompted

us to determine the consequences of limiting autophagy on the

SBMA phenotype. To accomplish this, we generated AR113Q

males haploinsufficient for Beclin-1. Similar to effects following

surgical denervation, Beclin-1 haploinsufficiency significantly

increased AR113Q muscle fiber size, although in this case the

effect was less robust (Figure 5A). Limiting activity of the

autophagic pathway did not alter levels of either the wild type

or polyglutamine AR protein (Figure 5B), consistent with the

notion that other protein quality control pathways, such as the

proteasome, degrade the receptor once localized to the nucleus.

Despite the limited changes in AR113Q muscle, Beclin-1

haploinsufficiency had a striking effect on survival. The lifespan of

AR113Q males haploinsufficient for Beclin-1 was extended on

average by ,10 wks compared to AR113Q, Beclin-1 wild type

littermates (Figure 6A). AR113Q males exhibited a mean survival

of 21.6 wks; Beclin-1 haploinsufficiency extended mean lifespan by

,44% to 31.1 wks. Lifespan extension was not associated with

rescue to wild type levels of body mass or motor performance as

Figure 4. CHOP deficiency increases denervation-induced atrophy through autophagy. Denervated gastrocnemius muscles or
contralateral intact controls were harvested at the indicated times following unilateral sciatic nerve transection in 6 wk male mice. A. Western blot
shows enhanced eIF2 alpha phosphorylation (top) and RT-PCR demonstrates increased XBP1 mRNA splicing (bottom) in denervated muscle. Right
panels show relative quantification of signal intensity. *p,0.05 by Student’s t test. B. Relative expression of BiP, ATF4 and CHOP mRNA (n = 3).
*p,0.05 by Student’s t test. C. Following surgical denervation of wild type or CHOP2/2 mice, LC3 and p62 expression was assessed by western blot.
Right panels show quantification of signal relative to GAPDH. ***p,0.001 by ANOVA, n. s. = not significant. D. Muscle fiber size (100 fibers/mouse)
was quantified from wild type (black, n = 5), CHOP 2/2 (white, n = 3) and Beclin-1 +/2 (grey, n = 3) mice 7 days post sciatic nerve transection. Shown
is relative fiber cross sectional area (mean +/2 SEM). ***p,0.001 by ANOVA. E. Muscle fiber size (100 fibers/mouse) was quantified from CHOP 2/2
(black, n = 6) or CHOP 2/2, Beclin-1 +/2 mice (white, n = 6) 7 days post sciatic nerve transection. Left panel shows fiber size distribution, middle
panel shows cumulative percent of fibers as a function of fiber area, and right panel shows relative fiber cross sectional area (mean +/2 SEM). Left,
middle panels, p,0.0001 by Mann-Whitney test. Right panel, p,0.001 by Student’s t test.
doi:10.1371/journal.pgen.1002321.g004

Autophagy Accentuates the Phenotype of SBMA Mice
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measured by grip strength (Figure 6B, 6C). However, AR113Q

males haploinsufficient for Beclin-1 aged over 20 weeks maintained

motor function while AR113Q, Beclin-1 wild type littermates

exhibited a marked drop-off (Figure 6C). Consistent with the notion

that the effects of Beclin-1 haploinsufficiency on motor function

were most manifest in older mice, we found no change in the age of

disease onset (defined as the point at which grip strength was 5% less

than controls) due to Beclin-1 haploinsufficiency (Figure 6D). Our

data indicate that Beclin-1 haploinsufficiency significantly extended

the duration of disease by prolonging survival and maintaining

motor function of SBMA mice.

Discussion

The accumulation of misfolded, mutant proteins is a common

basis for adult onset neurodegenerative diseases including those

caused by CAG/glutamine tract expansions [1,2], and pathways

controlling protein homeostasis are central to the cellular response

to these stressors. Here we investigated the role of the UPR, a

regulator of ER protein quality control [34,35], in the pathogen-

esis of SBMA, a neuromuscular disease caused by a glutamine

tract expansion in the AR. Our findings demonstrate the

occurrence of ER stress in skeletal muscle from SBMA patients,

AR113Q mice and wild type mice following surgical denervation.

To identify the functional consequence of this response, we

generated AR113Q mice deficient in the UPR-mediator CHOP, a

transcription factor induced downstream of ATF4 following ER

stress. We show that CHOP deletion accentuates muscle atrophy

in both AR113Q mice and in surgically denervated wild type

males. Notably, in both cases, enhanced muscle wasting due to

CHOP deficiency is mediated by increased autophagy, a lysosomal

protein quality control pathway that has emerged as a central

regulator of proteostasis in several protein aggregation neurode-

generative diseases. While CHOP deficiency activates autophagy

and enhances muscle wasting in SBMA mice, limiting autophagy

by Beclin-1 haploinsufficiency diminishes muscle atrophy, main-

tains motor function in aged animals and markedly extends

lifespan. Our data highlight the central role of the UPR in

remodeling the activity of the protein quality control machinery,

and indicate that robust activation of autophagy accentuates the

muscle atrophy of SBMA.

Activation of the UPR has been reported previously in yeast and

mammalian cell culture models of polyglutamine disease

[36,50,51], and the induction of ER stress responsive transcripts

has been noted in Huntington disease mice [52]. The findings

reported here extend these observations, demonstrating that the

ER stress response is triggered in skeletal muscle from both SBMA

patients and knock-in mice. Further, we define new aspects of the

functional link between the UPR and autophagy. Several

mechanisms by which the UPR regulates autophagy have been

proposed based on studies in mammalian models, but a role for

CHOP has not been identified previously. Data from a cellular

model of polyglutamine disease indicate that phosphorylation of

eIF2 alpha by PERK mediates the induction of LC3-II [45], while

a recent study in cellular and mouse models of superoxide

dismutase 1 (SOD1)-linked ALS show that XBP1 deletion

activates autophagy [44]. As CHOP deficiency altered neither

phosphorylation of eIF2 alpha nor splicing of XBP1 in AR113Q

mice, we suggest that the effects identified here occur through a

distinct mechanism. JNK, a downstream target of IRE1 [53], can

Figure 5. Effects of Beclin-1 haploinsufficiency on AR113Q muscle. A. Muscle fiber size (100 fibers/mouse) was quantified from proximal hind
limb muscle of AR113Q (red, n = 6) or AR113Q, Beclin-1 +/2 (blue, n = 6) mice at 16 wks. Left panel shows fiber size distribution, and right panel
shows relative fiber cross sectional area (mean +/2 SEM). Left panel, p,0.0001 by Mann-Whitney test. Right panel, p,0.0001 by Student’s t test. B.
AR expression in skeletal muscle of 16 wk mice was assessed by western blot. GAPDH controls for loading. Right panel shows quantification of signal
relative to GAPDH (mean +/2 SEM). Differences not significant (n. s.).
doi:10.1371/journal.pgen.1002321.g005

Autophagy Accentuates the Phenotype of SBMA Mice
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also stimulate LC3-II formation [46], and the occurrence of

increased JNK phosphorylation in AR113Q, CHOP null muscle

raises the possibility that this signaling pathway contributes to

autophagy activation.

The functional consequences of altered autophagy in SBMA

mice were unexpected and suggest that limiting activity of this

pathway is beneficial for certain aspects of the disease phenotype.

As the polyglutamine AR resides in the nucleus in the presence of

ligand and largely escapes degradation through this pathway [43],

we found that soluble and aggregated species of the mutant AR do

not change when mice are deficient in CHOP or haploinsufficient

for Beclin-1. We suggest that this reflects predominant degradation

of the AR by the proteasome, a protein quality control pathway

active in the nucleus. The extension of AR113Q lifespan by

Beclin-1 haploinsufficiency contrasts with findings in Drosophila

showing that disruption of autophagy exacerbates degeneration

when the polyglutamine AR is expressed in the eye [54]. This

difference may reflect variations in the extent to which autophagy

is disrupted, as Beclin-1 haploinsufficiency decreases autophago-

some number but does not completely block this pathway.

Additionally, small molecule activators of autophagy reportedly

promote survival of cultured motor neurons expressing the

polyglutamine AR [43], raising the possibility that the findings

described here in AR113Q mice reflect predominant effects

outside the CNS, such as in skeletal muscle. While activation of

autophagy following UPR disruption exacerbates atrophy of

SBMA muscle in mice, recent studies in SOD1 models of ALS

show that autophagy induction following XBP1 deletion amelio-

rates the disease phenotype [44]. Mutant SOD1, a cytosolic

protein, is a target for autophagic degradation and stimulating this

pathway clears aggregates of the mutant protein.

Of the clinical symptoms experienced by SBMA patients,

muscle wasting is a substantial contributor to morbidity. Here we

show that activation of autophagy significantly enhances atrophy

of surgically denervated and AR113Q muscle. In contrast, limiting

autophagy prolongs lifespan and maintains motor function in

SBMA mice. While the effects of Beclin-1 haploinsufficiency are

relatively mild in AR113Q muscle, lifespan extension is striking,

and likely reflects benefits of limited autophagy in cell types other

than muscle fibers, perhaps including effects on metabolism.

Defining the targets affected by Beclin-1 haploinsufficiency that

mediate lifespan extension remains an important goal for future

work. Notably, strategies to modulate the activity of the

autophagic pathway have attracted considerable attention as

studies in several polyglutamine disease models have documented

degradation of cytoplasmic protein aggregates through autophagy

[55]. Efforts are now underway to identify small molecules that

activate the autophagic pathway in hopes of ameliorating the

phenotypes of these diseases [56,57]. Our data suggest that

autophagy activators are unlikely to be effective therapeutics for

the subset of protein aggregation disorders where nuclear

localization of the mutant protein is required for toxicity.

Furthermore, in SBMA, the effects of disease on muscle may be

accentuated by activation of autophagy. We suggest that

alternative approaches to stimulate other components of the

protein quality control machinery, such as the Hsp90-based

chaperone machinery, are more likely to yield clinical benefits in

SBMA and related protein aggregation disorders.

Materials and Methods

Mice
Derivation of mice with targeted Ar alleles containing 21 or 113

CAG repeats in exon 1 was described previously [14,15]. Briefly,

mice were generated by recombining a portion of human exon 1

encompassing amino acids 31–484 with the mouse Ar gene in CJ7

Figure 6. Beclin-1 haploinsufficiency extends lifespan in AR113Q males. A. Left panel, Kaplan-Meyer survival curve of AR113Q males (red
line, n = 12) and AR113Q, Beclin-1 +/2 males (blue line, n = 15). *p,0.05 by log-rank analysis. Right panel, mean survival +/2 SEM. *p,0.05 by
Student’s t-test. B, C. Body weight (panel B) and grip strength (panel C) at different ages for wild type (wt, green line, n = 7), Beclin-1 +/2 (yellow line
n = 9), AR113Q (red line, n = 12), and AR113Q, Beclin-1 +/2 (blue line, n = 15) male mice. D. Age of disease onset as measured by a decrease of 5% or
more in forelimb grip strength (not significant by log rank analysis).
doi:10.1371/journal.pgen.1002321.g006
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embryonic stem cells. Male chimeras were mated with C57BL/6J

females, and females heterozygous for the targeted Ar allele were

backcrossed to C57BL/6J to generate mice used in this study.

Surgical castration of 5–6 wk old males was as previously

described [14]. Unless otherwise specified, skeletal muscles were

harvested from adult AR113Q male mice at 3–5 months, except

from castrated AR113Q males, in which case animals were 18

months of age. CHOP deficient mice (B6.129S-Ddit3tm1Dron/J)

[37] were purchased from the Jackson Laboratory and back-

crossed to C57BL/6J ten or more generations. Mice with a Becn1

null allele were previously reported [47] and backcrossed to

C57BL/6J ten or more generations. All procedures involving mice

were approved by the University of Michigan Committee on Use

and Care of Animals, in accord with the NIH Guidelines for the

Care and Use of Experimental Animals.

Sciatic nerve transection
7 wk old C57BL/6J, CHOP deficient or Becn1 haploinsufficient

male mice congenic to C57BL6/J were used for studies of

denervated muscle. Under deep inhaled anesthesia with 2%

isoflurane, the right sciatic nerve was exposed at the thigh just

below the sciatic notch. Both the proximal and distal sides were

ligated with monocryl 4-0 suture, and about 2 mm of sciatic nerve

was cut between the ligations to prevent axonal regeneration. At 3

and 7 days after surgery, the right gastrocnemius and tibialis

anterior muscle were dissected and frozen for histology or RNA

and protein analysis. The contralateral side was used as control.

Human skeletal muscle samples
Anonymized SBMA muscle and control biopsy samples were

obtained from the University of Michigan Medical School in

accordance with IRB procedures and in a manner that assured

patient privacy. Additionally, anonymized skeletal muscle was

harvested from SBMA patients at autopsy, as approved by the

ethics committee of the Nagoya University Graduate School of

Medicine and in accordance with the Declaration of Helsinki

(Hong Kong Amendment).

Muscle fiber size quantification
Muscle was frozen in isopentane chilled by liquid nitrogen, cut

in cross section at a thickness of 5 mm and stained by H&E. Digital

images were captured using a Zeiss Axioplan 2 imaging system.

The area of each muscle fiber was defined using Adobe Photoshop

CS4 or ImageJ, and the pixel number was converted to mm2

according to scale. 100 adjacent fibers from each section were

measured.

RNA analysis
Total RNA isolated from tissues with Trizol (Invitrogen, Carlsbad,

CA) served as a template for cDNA synthesis using the high capacity

cDNA archive kit from Applied Biosystems (Foster City, CA). Gene-

specific primers and FAM labeled probes (Human: BiP, Hs

99999174_m1; CHOP, Hs99999172_m1; ATF4, Hs00909568_g1;

PDI, Hs00168586_m1; Mouse: BiP, Mm00517691_m1; CHOP,

Mm00492097_m1; ATF4, Mm00515324_m1; PDI: Mm01243184_

m1; MAFbx, Mm00499518_m1; MuRF1, Mm01185221_m1; a-

acetylcholine receptor, Mm00431627_m1; Myod1, Mm00440387_

m1; Myog, Mm00446194_m1; Atg5, Mm00504340_m1; Atg9b,

Mm01157883_g1; Maplc3b, Mm00782868_sH; Uvrag, Mm0072

4370_m1) were purchased from Applied Biosystems. TaqMan assays

were performed in duplicate using 5 ng aliquots of cDNA on an ABI

7500 Real Time PCR system. Relative expression levels were

calculated comparing with the expression of 18S rRNA. Semi-

quantitative RT-PCR analysis of Xbp1 RNA splicing was performed

using primers (mouse: 59-GAACCAGGAGTTAAGAAC-39 and 59-

AGGCAACAGTGTCAGAGT-39; human: 59-GAATGAGTGAG-

CTGGAACAG-39 and 59-GAGTCAATACCGCCAGAATC-39) to

amplify 10 ng of cDNA through 22 cycles. One tenth of the total PCR

products were resolved on 15% nondenaturing polyacrylamide gels

and stained with SYBR Green 1 (Invitrogen, Eugene, OR) after

electrophoresis. Bands were visualized on a Typhoon Trio+ scanner

(Amersham Biosciences, Pistcataway, NJ) and analyzed with AlphaI-

mager 2200 software (Alpha Innotech Corporation, San Leandro,

CA).

Protein expression analysis
Muscle tissue was homogenized in RIPA buffer containing

complete protease inhibitor cocktail (Roche, Indianapolis, IN) and

phosphatase inhibitor (Thermo scientific, Rockford, IL) using a

motor homogenizer (TH115, OMNI International, Marietta, GA).

Sample lysates were incubated on a rotator at 4uC for 1 hour and

the pre-cleared by centrifugation at 15,000 g for 15 minutes at

4uC. Samples were resolved by 7 or 10% SDS-PAGE and

transferred to nitrocellulose membranes (Bio-Rad, Hercules, CA).

Blots were probed with primary antibodies and proteins were

visualized by chemiluminescence (Thermo Scientific, Rockford,

IL). The AR (N-20), HSP90 and eIF2a antibodies were from

Santa Cruz Biotechnology (Santa Cruz, CA), phospho-eIF2a
(Ser51) and phospho-JNK antibodies were from Cell Signaling

Technology (Danvers, MA), LC3B antibody was from Novus

Biologicals (Littleton, CO), GAPDH, BiP and PDI antibodies were

from AbCam (Cambridge, MA), 20S proteasome antibody was

from Calbiochem (Gibbstown, NJ) and p62 antibody was from

American Research Products (Belmont, MA). Western blot

quantification was performed using ImageJ.

Muscle histochemistry and immunofluorescence
Frozen muscle tissue was sectioned at 5 mm with a cryostat and

stained with H&E or NADH. For immunofluorescence, 5 mM

frozen sections were stained with an antibody against AR and an

Alexa Fluor 594 conjugated secondary antibody (Invitrogen).

Confocal images were captured with a Zeiss LSM 510 microscope

and a water immersion lens (663).

Grip strength analysis
The grip strength meter (Columbus Instruments) was positioned

horizontally and mice were lowered toward the apparatus. Mice

were allowed to grasp the smooth metal triangular pull bar with

their fore limbs only, and then were pulled backward in the

horizontal plane. The force applied to the bar at the moment the

grasp was released was recorded as the peak tension (kg). The test

was repeated 5 consecutive times within the same session, and the

highest value from the 5 trials was recorded as the grip strength for

that animal.

Statistics
Statistical significance was assessed by two-tailed Student’s t-test

or by ANOVA with the Newman-Keuls multiple comparison test.

The distribution of muscle fiber size was analyzed by Mann-

Whitney test. All statistics was performed by the Prism 5

(GraphPad Software, San Diego, CA). P values less than 0.05

were considered significant.

Supporting Information

Figure S1 MyoD and myogenin mRNA expression. Relative

expression of MyoD and myogenin mRNAs was determined in
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proximal hind limb muscle of 12 wk mice (n = 5–6/genotype) by

qPCR. ***p,0.001 by ANOVA, n. s. = not significant.

(TIF)

Figure S2 20S proteasome expression. Western blot shows

expression of 20S proteasome subunit in proximal hind limb

muscle. Lower panel shows relative quantification of signal

intensity. n. s. = not significant.

(TIF)
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