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Abstract

Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases
bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in
TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site
through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated
PCNA (PCNA-Ub) in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA) regions caused by
UV, accumulate faster and disappear more slowly in PcnaK164R/K164R cells, which are resistant to PCNA ubiquitination,
compared to Pcna+/+ cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-
specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A
similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells
lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In
contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking
down the expression of the TLS genes Rev3L, PolH, or Rev1 in PcnaK164R/K164R mouse embryo fibroblasts caused each an
increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken
together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to
damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered
mutagenic specificity.
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Introduction

Translesion DNA synthesis is a universal DNA damage

tolerance mechanism, which enables continuous functioning of

replication despite the presence of DNA lesions. While the

replisome might be able to bypass lesions that cause minor

changes in the structure of DNA, lesions which are bulky or cause

significant DNA deformation, block replication. Such lesions are

bypassed by specialized low-fidelity DNA polymerases, which are

capable of replicating across DNA damage due to a flexible

structure and promiscuous active site that allows lesion bypass at

the cost of increased mutagenesis. At least 5 specialized DNA

polymerases are involved in TLS in mammalian cells, namely

DNA polymerases g, k, i, f and REV1, however, the number may

be as high as 10. Each polymerase exhibits a certain range of

specificity towards various types of DNA lesions, with some

overlap [1–4]. TLS typically operates in two-polymerase reactions,

in which the first polymerase inserts a nucleotide opposite the

lesion, and the second polymerase, usually DNA polymerase f
(polf), extends beyond the lesion [5–7]. The biological importance

of TLS is indicated by the essentiality of polf for mouse

development [8], and the high cancer predisposition caused by

germ-line mutations in the POLH gene (encoding DNA polymer-

ase g; polg) in humans [9,10]. TLS must be tightly regulated to

prevent an escalation in mutation rates. Although TLS regulation

is not fully understood, it does appear to be regulated primarily at

the posttranslational level, and involves the ubiquitination of

PCNA, the sliding DNA clamp that tethers DNA polymerases to
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the DNA [11–14]. In addition, TLS is regulated by the p53 tumor

suppressor, which exerts its effect primarily via its target p21

protein [15]. The latter is a cell cycle inhibitor, which exerts its

regulatory effect on TLS via its interactions with PCNA [15], and

cyclin-dependent kinases [16]. Together p53 and p21 restrain the

extent of TLS, but make it more accurate, thereby reducing the

mutagenic load of TLS [15].

A key regulatory element in TLS is the monoubiquitination of

PCNA at lysine 164 in response to treatment with DNA damaging

agents. In S. cerevisiae this reaction is carried out by the Rad6-

Rad18 E2-E3 ubiquitinating enzymes (Figure 1A; [17,18]), and is

critical for the activity of TLS, functioning to recruit TLS

polymerases through their ubiquitin-binding domain, and thereby

switching from replicative to TLS polymerases [11,12]. In higher

organisms the involvement of ubiquitinated PCNA (PCNA-Ub)

in TLS is less clear. Analysis of replication of damaged DNA in

chicken DT40 cells suggested that PCNA ubiquitination is

involved in filling in of post-replication gaps [19]. However when

measured using a plasmid system in DT40 cells carrying the

PcnaK164R/K164R mutation which prevent ubiquitination of PCNA,

TLS was normal across a TT 6-4 photoproduct (TT 6-4 PP), a

common UV DNA lesion [20]. As for mammals, a common model

suggests that similar to S. cerevisiae, PCNA-Ub recruits TLS

polymerases to the site of DNA damage mediated via their

ubiquitin-binding domain [13,14,21–23]. This model was chal-

lenged by studies reporting that mutations in the ubiquitin-binding

domain of polg had no effect on its activities, and it is the direct

binding of polg to PCNA which is critically important for its

activities [24,25]. In response it was argued that these results can

be explained by an effect of artificial overproduction of the mutant

polymerase, which suppressed its lower binding affinity [26].

However, later studies reported that complete deletion of the UBZ

ubiquitin-binding domain from polg had no effect on its activities,

including TLS across a site specific TT cyclobutane pyrimidine

dimer (CPD) in a replicative plasmid assay system [27], leaving the

controversy unsettled.

In an attempt to resolve the controversy and clarify the role of

PCNA-Ub in TLS in mammalian cells we used several assays with

mouse embryonic fibroblasts in which specific TLS genes

associated with PCNA ubiquitination were manipulated. The

experiments reported here show that the main TLS pathway

requires PCNA-Ub. However, there exists a secondary but

significant TLS pathway, which occurs in the absence of PCNA-

Ub, with lower efficiency and altered mutagenic specificity.

Results

UV-induced Rpa foci, indicative of replication gaps,
accumulate faster and disappear more slowly in mouse
embryo fibroblasts carrying the PcnaK164R/K164R mutation

A Pcna mutant in which Lys164 was replaced by an Arg cannot

undergo ubiquitination or sumoylation, and was successfully used

to study the role of PCNA ubiquitination in TLS in yeast [17,18]

and chicken DT40 cells [19,28]. The generation of PcnaK164R/K164R

mice [29] provides a similarly effective tool for studying the role

of PCNA ubiquitination in TLS in mammalian cells. We first

examined the UV sensitivity of PcnaK164R/K164R mouse embryo

fibroblasts (MEF). As can be seen in Figure 1B, the mutant cells

were more sensitive than the Pcna+/+ MEF. This suggests that

ubiquitination of PCNA at Lys164 is involved in conferring UV

resistance in mammalian cells, although it is possible that the effect

was caused not only by the lack of ubiquitin, but also by the

mutant form of the PCNA.

UV irradiation causes stalling of replication forks and the

generation of ssDNA regions in DNA, which may subsequently be

broken, thereby forming double strand breaks (DSB). The latter

Author Summary

DNA damage can block replication and lead to mutations,
genomic instability, and cancer. In cases when the removal
of DNA damage and restoration of the original sequence
prior to replication is impossible, cells utilize DNA damage
tolerance mechanisms, which help replication to bypass
the lesions. A major universal tolerance mechanism is
translesion DNA synthesis (TLS), in which specialized low-
fidelity DNA polymerases elongate the DNA across the
lesion. This is a double-edged sword because the price of
completing replication is an increased risk of point
mutations opposite the lesion. Thus, TLS regulation is
critical for preventing an escalation in mutation rates. A
key element in TLS regulation is the attachment of a small
protein called ubiquitin to the PCNA protein, a sliding DNA
clamp that tethers the DNA polymerases to DNA, which
functions to recruit the TLS DNA polymerase to the
damaged site in DNA. While in yeast this modification of
PCNA is crucial for TLS, there is a debate about its
importance in mammals. Here we show that in mammalian
cells the modification of PCNA by ubiquitin is important,
but there exist secondary yet significant TLS mechanisms
that operate in its absence and have an altered mutational
outcome.

Figure 1. UV sensitivity of mouse embryo fibroblasts carrying
the PcnaK164R/K164R mutation. (A) Outline of ubiquitination and
deubiquitination reactions of PCNA. Treatment with DNA-damaging
agents, such as UV light, induces monoubiquitination of PCNA at
Lys164 by the Rad18 E3 ligase. A common model suggests that the
monoubiquitinated PCNA (PCNA-mUb) directly recruits TLS polymeras-
es enabling translesion DNA synthesis. The deubiquitinating enzyme
Usp1 removes the ubiquitin from PCNA-mUb, thereby negatively
regulating the level of PCNA-Ub. The Rad5 homologs Shprh and Hltf,
and an unidentified additional E3 ligase (marked x?) can extend the
ubiquitin chain of PCNA-mUb, and the polyubiquitinated PCNA (PCNA-
polyUb) thus formed promotes homology-dependent (template switch)
error-free damage tolerance. (B) Pcna+/+ and PcnaK164R/K164R MEFs were
irradiated at the indicated UV doses, and assayed for viability after
48 hours by measuring the level of cellular ATP. Each point represents
the average of 3 independent experiments.
doi:10.1371/journal.pgen.1002262.g001
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can facilitate a variety of chromosomal rearrangements, causing

genomic instability, cancer and cell death. To minimize the

formation of DSB, cells employ two major types of DNA damage

tolerance mechanisms, namely TLS and HDR (homology-

dependent repair, also termed HRR, homologous recombination

repair; reviewed in [4,30]). Of the two, TLS was reported to be the

major mechanism for overcoming UV lesions in MEF [31]. Thus,

analysis of UV-induced ssDNA regions during replication can be

used as a measure for DNA damage tolerance in general, and TLS

in particular. To examine the effect of PCNA ubiquitination on

DNA damage tolerance we analyzed the formation and clearance

of UV-induced ssDNA regions in PcnaK164R/K164R MEFs com-

pared to Pcna+/+ MEFs. This was done using immunofluorescence

staining of endogenous Rpa2, a subunit of the Rpa ssDNA-

binding protein, which is a key protein in DNA replication and

repair [32], using a protocol previously used in our lab [33]. To

focus on gaps formed during replication we isolated by centrifugal

elutriation MEFs at the G1/S boundary, UV irradiated them, and

let them grow in culture. At various time points after irradiation

the cells were harvested, washed to remove unbound Rpa, and

then fixed and stained for chromatin-bound Rpa using immuno-

fluorescence (Figure 2A). In unirradiated cells a low background

level of Rpa foci was observed (less than 10%; Figure 2B).

Presumably the transient nature and short patch of Rpa-bound

ssDNA at normal replication forks does not allow detection under

our assay conditions. Upon UV irradiation Rpa foci were induced

in the two cell types, but at different rates. Thus, by 6 hours post-

irradiation nearly 40% of the PcnaK164R/K164R cells contained Rpa

foci, whereas Pcna+/+ cells contained only the background level of

10% Rpa foci (Figure 2B). The observed fraction of cells with Rpa

foci at any given time represents the sum of the rates of their

formation and disappearance. Therefore, the higher percentage of

Rpa foci at early times in PcnaK164R/K164R cells represents, most

likely the sum of a similar rate of formation but a slower rate of

disappearance compared to Pcna+/+ cells. The extent of cells with

Rpa foci increased for both cell types, reaching its maximum at

18 hours post-irradiation, after which the number of foci dec-

lined, indicating a net conversion of the ssDNA regions to double

stranded DNA (dsDNA). The disappearance of Rpa foci was

significantly slower in the PcnaK164R/K164R compared to Pcna+/+

MEFs (Figure 2B). Thus, Rpa foci accumulate faster in PcnaK164R/K164R

compared to Pcna+/+ MEFs following UV irradiation, and disappear

slower, consistent with a defect in DNA damage tolerance by TLS.

TLS is reduced in cells carrying the PcnaK164R/K164R mutant
that is resistant to ubiquitination, and it exhibits altered
mutagenic specificity

To directly examine the effect of PCNA-Ub on TLS we used a

model assay system based on plasmids carrying a gap opposite a

defined site-specific DNA lesion. Briefly, cultured cells were

transfected with a mixture containing a gapped plasmid with a

site-specific lesion in the ssDNA region, a normalizing control

plasmid with a gap, but no lesion, and a carrier plasmid (Figure S1).

After allowing time for TLS in the mammalian cells, the plasmid

content was extracted under alkaline conditions, and after

renaturation it was used to transform an indicator E. coli recA

(TLS-defective) strain. Under these conditions only plasmids that

had been fully filled in and ligated in the mammalian cells were able

to efficiently transform the bacterial strain. E. coli transformants were

selected on LB plates containing kanamycin, to select for descendents

of the gap-lesion plasmid (kanR), and LB containing chloramphen-

icol, to select for descendents of the normalizing gapped plasmid

(cmR). The ratio of kanR/cmR colonies provided a measure of the

efficiency of gap filling by TLS. Colonies were then picked, their

plasmid content extracted, and subjected to DNA sequence analysis

at the region of the lesion, to determine any sequence changes that

had arisen during TLS. This model assay system proved to be very

effective in monitoring TLS events, and shares many of the features

of chromosomal TLS, including dependence on specific DNA

polymerases and regulatory elements of TLS [6,15,34–36].

Using a gapped plasmid carrying a site-specific TT CPD in the

ssDNA region we assayed TLS in PcnaK164R/K164R MEFs. As can be

seen in Figure 3A and Table S1, TLS was reduced 4.4-fold in the

Figure 2. Time course of accumulation and clearance of UV-
induced Rpa foci. Pcna+/+ and PcnaK164R/K164R MEFs were collected at
the G1/S boundary by centrifugal elutriation, and allowed to attach to
microscope slides. Two hours later they were UV irradiated at a dose of
8 J/m2. At the indicated time points cells were pre-extracted and then
fixed, immuno-stained with anti-Rpa antibody and DAPI-stained. (A)
Representative images of cells stained with DAPI or antibodies against
Rpa, either with or without UV irradiation. The timeline of the
experiment is shown at the top. (B) Quantification of the percentage
of cells with Rpa foci. For each cell line at each time point at least 100
cells were counted and the percentage of cells with Rpa foci was
determined. The results are the average of two independent
experiments. Error bars represent standard deviation. Full symbols,
PcnaK164R/K164R MEFs; Empty symbols, wild-type MEFs; Squares, UV
irradiated cells; Triangles, unirradiated cells.
doi:10.1371/journal.pgen.1002262.g002
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mutant PcnaK164R/K164R cells compared to Pcna-proficient MEFs.

DNA sequence analysis revealed that 98% of the TLS events in both

the mutant and wild-type MEFs were accurate, leading to the

insertion of AA opposite the TT CPD, and consistent with the

activity of polg (Figure 3B and Table S2). We used the same assay

for two additional lesions: a TT 6-4 PP, representing the second

most abundant UV lesion, and an intra-strand GG adduct formed

by the drug cisplatin (GG-cisPt). TLS across cisPt-GG occurs

primarily via a two-polymerase reaction with polg performing

insertion opposite the lesion, and polf performing the extension past

the lesion, whereas efficient bypass of TT 6-4 PP does not require

polg, but does requires polf [6]. As can be seen in Figure 3A and

Table S1, TLS across a TT 6-4 PP was reduced 3.3-fold in PCNA-

Ub deficient MEFs compared to wild-type Pcna+/+ MEFs. DNA

sequence analysis revealed that TLS across the TT 6-4 PP in

PcnaK164R/K164R cells was more accurate than in Pcna+/+ cells (64%

vs. 35% errors, P = 0.0001, x2 test; Figure 3C, Table S2). Analysis of

TLS across cisPt-GG revealed that TLS was reduced 2.6-fold in

PCNA-Ub deficient MEF compared to wild-type Pcna+/+ MEFs

(Figure 3A and Table S1). TLS was largely accurate in both cell

types, however, error frequency was twofold higher in the

PcnaK164R/K164R mutant compared to Pcna+/+ MEFs (25% vs 12%

errors; P = 0.02, x2 test; Figure 3D, Table S2).

TLS is reduced in MEFs lacking Rad18, but not in MEFs
lacking the Rad5 homologs Shprh and Hltf

The PcnaK164R/K164R mutation renders PCNA resistant not only to

monoubiquitination, but also to polyubiquitination (Figure 1A) and

sumoylation (although PCNA sumoylation was not yet found in

mammals). To further analyze the involvement of PCNA modifi-

cation in TLS we analyzed two additional mutant MEFs: A Rad18

knockout strain, which lacks the Rad18 E3 ubiquitin ligase that

monoubiquitinates PCNA at K164 [37], and an Shprh2/2 Hltf2/2

double knockout MEF [38], lacking the two Rad5-homologs, which

polyubiquitinate PCNA at K164. As can be seen in Figure 4A and

Table S3, TLS in Rad182/2 MEFs was significantly reduced

compared to Rad18+/+ MEFs for each of the three lesions. DNA

sequence analysis revealed that mutagenicity of TLS in MEF lacking

Rad18 was similar or lower compared to MEF with Rad18

(Figure 4B–4D and Table S4). In contrast, in cells lacking Shprh

Figure 3. TLS in PcnaK164R/K164R mouse embryo fibroblasts. (A) MEFs were assayed for TLS as described under Materials and Methods, using the
indicated site-specific lesions. TLS extents were given as percentage relative to TLS assayed with isogenic wild type MEFs. Average results of at least
three independent experiments are presented. Error bars represent standard deviations. The detailed data are presented in Table S1. (B) Percentage
of accurate and mutagenic TLS across a TT CPD in Pcna+/+ and PcnaK164R/K164R MEFs. (C) Percentage of accurate and mutagenic TLS across TT 6-4 PP.
The mutation types shown are: targeted (opposite the lesion), semi-targeted (at the nucleotides flanking the lesion), and mixed (both targeted and
semi-targeted). (D) Percentage of accurate and mutagenic TLS across a cisPt-GG adduct. The percentage of events is calculated out of all TLS events.
The detailed mutational spectra are presented in Table S2.
doi:10.1371/journal.pgen.1002262.g003
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and Hltf, the extent of TLS across each of the three lesions was

normal (Figure 5A and Table S5), and the mutagenic spectra were

similar (Figure 5B–5D; Table S6). These results suggest that

maximal TLS indeed requires ubiquitination of PCNA.

TLS is increased in cells deficient in the Usp1
deubiquitinating enzyme

The Usp1 deubiquitinating enzyme was shown to deubiquiti-

nate monoubiquitinated PCNA (PCNA-mUb; Figure 1) [39]. To

examine the effect of Usp1 on TLS we assayed TLS in Usp12/2

MEFs. As can be seen in Figure 6A and Table S7, TLS across a

TT CPD was 2.3-fold higher in Usp12/2 MEFs compared to wild-

type MEF. Similarly, TLS across a cisPt-GG adduct was 3.8-fold

higher in Usp12/2 MEFs compared to wild-type MEFs.

Interestingly, there was no effect on TLS across the TT 6-4 PP.

Complementing the Usp12/2 MEFs with stably expressed wild-

type Usp1 suppressed TLS across cisPt-GG back to wild-type

levels, whereas expressing a Usp1 C90S mutant [40] failed to

suppress TLS, indicating that the observed effects are indeed due

to Usp1 (Figure 6A and Table S7). DNA sequence analysis

revealed somewhat different mutagenicity, however with no

statistical significance (Figure 6B–6F; Table S8). Thus, the absence

or inactivation of the enzyme that deubiquitinates PCNA-mUb

caused an increase in TLS in 2 out of the 3 lesions studied, in

contrast to the decrease in TLS caused by the inability to

ubiquitinate PCNA. These results are consistent with previous

reports that mutations in a UV-irradiated plasmid transfected into

mammalian cells were increased when Usp1 was reduced or

absent [39,41].

PCNA-Ub–independent TLS contributes to UV survival
The data presented above indicate that although PCNA-Ub is

required for maximal TLS in mammalian cells, a significant level

of TLS was observed in the absence of PCNA-Ub, suggesting the

existence of a PCNA-Ub-independent pathway. We further

probed this possibility by assaying UV sensitivity of PcnaK164R/K164R

MEFs in which the expression of specific TLS proteins was knocked-

down, using as an assay the ability to form colonies following UV

irradiation (Figure 7). As can be seen in Figure 7A–7C, PcnaK164R/K164R

MEFs were more UV sensitive than wild-type MEFs when treated with

Figure 4. TLS in Rad82/2 mouse embryo fibroblasts. (A) MEFs were assayed for TLS as described in the legend to Figure 3. The detailed data are
presented in Table S3. (B) Percentage of accurate and mutagenic TLS across a TT CPD in Rad18+/+ and Rad182/2 MEFs. (C) Percentage of accurate and
mutagenic TLS across TT 6-4 PP. The mutation types shown are: targeted (opposite the lesion), semi-targeted (at the nucleotides flanking the lesion),
and mixed (both targeted and semi-targeted). (D) Percentage of accurate and mutagenic TLS across a cisPt-GG adduct. The percentage of events is
calculated out of all TLS events. The detailed mutational spectra are presented in Table S4.
doi:10.1371/journal.pgen.1002262.g004
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the control siRNA, consistent with the role of PCNA-Ub in TLS across

UV lesions, and with the results presented in Figure 1B. Knocking

down the expression of Rev3L, encoding the catalytic subunit of polf, in

wild-type MEF caused an increased UV sensitivity (Figure 7A),

consistent with previous results [36], and reaching a sensitivity level

similar to PcnaK164R/K164R MEFs treated with a control siRNA. When

PcnaK164R/K164R MEFs were treated with a Rev3L-specific siRNA, UV

sensitivity further increased (Figure 7A), suggesting the existence of a

PCNA-Ub-independent polf-dependent pathway of TLS. Similar

results were obtained when the expression of polg (Figure 7B), or of

Rev1, an important regulatory protein and a dCMP transferase

(Figure 7C), were each knocked down in PcnaK164R/K164R MEFs. Taken

together these results suggest the existence of PCNA-Ub-independent

pathways of TLS, which are Polg, Rev1 and/or Polf dependent.

Discussion

The debate about the role of PCNA-Ub in polg-promoted TLS

in mammalian cells prompted us to address this issue using several

mutant mouse cell lines, and several assays. The latter included (1)

a TLS assay based on gapped plasmids carrying defined and site-

specific lesions; (2) immuno-staining of Rpa foci following UV

irradiation of cells at the G1/S boundary of the cell cycle, which

assays ssDNA gaps caused by UV lesions; and (3) UV sensitivity as

manifested by the ability of irradiated cells to form colonies.

Overall we studied three types of lesions, two of which are formed

by UV radiation and one by the drug cisplatin, representing three

different TLS sub-pathways [6,7].

The effects of the knockout mutations in each of the mutants

analyzed, PcnaK164R/K164R, Rad182/2, Shprh2/2Hltf2/2, and

Usp12/2, can be attributed to more than one pathway. Thus, the

PcnaK164R/K164R mutant is deficient not only in monoubiquitination,

but also in polyubiquitination and sumoylation [42]; The Rad182/2,

which is deficient in monoubiquitination of PCNA, is known to

be deficient in the ubiquitination of other proteins as well (e.g.,

[43]), and similarly the other mutants may affect several activities.

However, the similar effects on TLS of the PcnaK164R/K164R and

Rad182/2 cells, suggest that ubiquitination rather than sumoyla-

tion is involved. Noteworthy, no alternative PCNA ubiquitination

site was observed in mouse PCNA [29]. What about the

discrimination between monoubiquitination and polyubiquitina-

tion of PCNA? The Hltf and Shprh proteins are E3 ligases which

polyubiquitinate PCNA. They were also reported to be involved

in the regulation of monoubiquitination of TLS under very high

Figure 5. TLS in Shprh2/2Hltf2/2 mouse embryo fibroblasts. (A) MEFs were assayed for TLS as described in the legend to Figure 3. The detailed
data are presented in Table S5. (B) Percentage of accurate and mutagenic TLS across a TT CPD in Shprh+/+Hltf+/+ and Shprh2/2Hltf2/2 MEFs. (C)
Percentage of accurate and mutagenic TLS across TT 6-4 PP. The mutation types shown are: targeted (opposite the lesion), semi-targeted (at the
nucleotides flanking the lesion), and mixed (both targeted and semi-targeted). (D) Frequency of accurate and mutagenic TLS across a cisPt-GG
adduct. The percentage of events is calculated out of all TLS events. The detailed mutational spectra are presented in Table S6.
doi:10.1371/journal.pgen.1002262.g005
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UV doses [44]. The normal TLS observed in the Shprh2/2Hltf2/2

cells suggests that PCNA-mUb rather than PCNA-polyUb is

involved. However, it was recently reported that PCNA poly-

ubiquitination is reduced, but not completely eliminated in

Shprh2/2Hltf2/2 MEFs, suggesting that an additional E3 ligase

acts on PCNA [38]. Thus, an involvement of PCNA-polyUb in TLS

cannot be ruled out based on these experiments alone. However,

given the normal TLS in Shprh2/2Hltf2/2 MEFs, and the

biochemical data on the binding of TLS polymerases to PCNA-

mUb [13,22,23,45], it does seem that the dependence on

ubiquitination is primarily due to the activity of PCNA-mUb.

The chromosomal significance of these finding is indicated by

the faster accumulation of Rpa foci in PcnaK164R/K164R cells UV

irradiated at the G1/S boundary of the cell cycle, and their slower

clearance compared to Pcna+/+ cells. Rpa strongly binds sites of

ssDNA, providing a convenient tool for assaying ssDNA gaps

caused by UV lesions during replication. Recent data suggest that

at least in MEFs, TLS is the major pathway for repair of

replication gaps caused by UV lesions [31]. Moreover, we have

recently found that the disappearance of UV-induced Rpa foci is

strongly reduced in cells in which the expression of polf was

knocked down, indicating involvement of TLS [33]. Thus, the

inhibition of the clearance of post-UV Rpa foci in PcnaK164R/K164R

cells is consistent with the decreased TLS across the TT CPD and

TT 6-4 PP lesions observed in the gapped plasmid system,

providing further support to the importance of PCNA-Ub for

maximal TLS.

The debate on the role of PCNA-Ub in mammalian TLS

involved primarily the activity of polg in bypassing UV lesions,

where a series of papers presented conflicting results [13,22–

24,27]. Those studies were based on mutating, or even entirely

deleting, the polg ubiquitin-binding domain. Our study directly

addressed ubiquitinated PCNA, and using functional TLS assays

showed that TLS across TT CPD was impaired in the absence of

PCNA ubiquitination, indicating that PCNA-Ub is required for

the maximal bypass activity of polg. Two studies reported that

PCNA-mUb was not required for polg-promoted TLS across TT

CPD in a cell-free TLS assay [46,47] (but was required to bypass

Figure 6. TLS in Usp12/2 mouse embryo fibroblasts. (A) MEFs were assayed for TLS as described in the legend to Figure 3. The detailed data are
presented in Table S7. (B) Percentage of accurate and mutagenic TLS across a TT CPD in Usp1+/+ and Usp12/2 MEFs. (C) Percentage of accurate and
mutagenic TLS across TT 6-4 PP. The mutation types shown are: targeted (opposite the lesion), semi-targeted (at the nucleotides flanking the lesion),
and mixed (both targeted and semi-targeted). (D) Frequency of accurate and mutagenic TLS across a cisPt-GG adduct. The percentage of events is
calculated out of all TLS events. The detailed mutational spectra are presented in Table S8.
doi:10.1371/journal.pgen.1002262.g006
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an N-2-acetylaminofluorene-guanine adduct; [47]). These cell-free

systems may not have faithfully mimicked the in vivo requirements

for polg-promoted TLS across TT CPD due to the inherent

ability of purified polg to bypass a TT CPD unassisted by any

other protein [9,10]. Adding our new data to the previously

published data, we conclude that in a sense both sides of the

controversy on the role of PCNA-Ub in TLS were right: On one

hand we clearly show that TLS across three different DNA lesions,

TT CPD, TT 6-4 PP and cisPt-GG, requires PCNA-Ub for

maximal activity, but on the other hand TLS across each of the

three lesions occurs also in the absence of PCNA-Ub, albeit at

reduced extent and altered mutagenic specificity.

A key issue in TLS is the mechanism that ensures the recruitment

of TLS polymerases to their cognate lesions, such that the entire

TLS system operates without causing excessive mutations. This

mechanism is regulated by the tumor suppressor p53, exerting its

effect, at least in part, via the PCNA-binding function of the p21

protein, whose expression it regulates [2,15]. Is PCNA-Ub an

important regulator of this process of TLS fidelity control? TLS in

this study was analyzed with lesions that span a broad range of

bypass fidelity; From highly accurate TLS (TT CPD, ,1% errors),

via mostly accurate TLS (cisPt-GG, about 10% errors), up to mostly

mutagenic TLS (TT 6-4 PP, about 65% errors). Some variations in

mutagenic spectra among the wild-type MEFs were likely caused by

differences in the genetic background of the MEFs, and by changes

that might have occurred during immortalization. The absence of

PCNA-Ub changed the fidelity of TLS across both the ‘accurate’

cisPt-GG lesion, as well as the mutagenic TT 6-4 PP lesion, but in

different directions. Thus, while TLS across cisPt-GG became more

mutagenic in the absence of PCNA-Ub (Figure 3D and Table S2), it

became more accurate for the bypass of TT 6-4 PP (Figure 3C and

Table S2). It is easy to envisage that conditions that decrease the

efficiency of TLS will also cause lower fidelity, like in the case of

cisPt-GG, because the TLS machine operates under sub-optimal

conditions. However, the observation that the absence of PCNA-Ub

the lower TLS across TT 6-4 PP was associated with a higher

accuracy is somewhat surprising. It suggests that maximal TLS for

some lesions cannot be achieved without compromising fidelity.

Figure 7. Epistasis analysis of the contributions of ubiquitinated PCNA and TLS DNA polymerases to UV sensitivity. Pcna+/+ and
PcnaK164R/K164R MEFs were transfected with siRNA against the TLS genes Rev3L (the catalytic subunit of polf; A) PolH (encoding polg; B) or Rev1 (C),
and after 48 h they were UV irradiated at the indicated doses. Sensitivity was determined 10 days after UV irradiation by measuring colony forming
ability. Each point represents the mean of three independent experiments.
doi:10.1371/journal.pgen.1002262.g007
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Thus, higher TLS does not necessarily mean higher fidelity, and for

some lesions the advantage of more efficient TLS outweighs the cost

of decreased fidelity. In the case of TT CPD TLS was very accurate

in both cells types, arguing that the lack of PCNA-Ub did not cause

a major change in the fidelity of TLS across this type of lesion. In

summary, PCNA-Ub affects not only the efficiency of TLS, but also

its mutagenicity.

Our data show that a significant fraction of TLS in mammalian

cells occurs in the absence of PCNA ubiquitination. This situation

is different from the TLS in S. cerevisiae, where PCNA ubiquitina-

tion is essential for TLS [12,48]. The situation in chicken DT40

cells is more complex. It was proposed that Rev1 and PCNA-Ub

function in distinct mechanisms that control TLS, and that

PCNA-Ub is essential for filling postreplication gaps but not for

fork progression, whereas Rev1-dependent TLS is important at

stalled forks, but does not play a central role in gap filling [19].

Analysis of TLS across a site-specific TT 6-4 PP adduct in a

plasmid showed normal activity in PcnaK164R mutant DT40 cells

[20]. Thus, in DT40 cells, there is evidence for PCNA-Ub

independent TLS. The situation in mammalian cells appears to be

different, with a less distinct division of function between PCNA-

Ub and Rev1 at postreplication gaps and stalled forks, respectively.

Thus, unlike in DT40 cells, in mammalian cells both Rev1-

dependent TLS [31], and PCNA-Ub (as described above) are

important for filling in of postreplication gaps. The fact that each

of polg, polf, and Rev1 contribute to UV survival of cells carrying

the PcnaK164R mutation, as shown above, provides strong

evidence for the participation of these polymerases in PCNA-Ub

independent TLS reactions. This is in contrast to a previous study

with XPV human cells, in which the expression of PCNA was

reduced using siRNA, and supplementing the PCNAK164R

mutant from a plasmid did not increase UV sensitivity [49]. The

lack of effect in that study might have been caused by background

levels of endogenous PCNA.

How does TLS operate in the absence of PCNA-Ub? A

possible explanation can be proposed by considering the

interactions that stabilize the TLS machinery acting on a

damaged template. The composition of the TLS machinery is

not fully understood, and neither is the composition of TLS

complexes. However, based on the current knowledge we

propose a model that includes a TLS complex with a minimal

number of 3 proteins, namely the TLS DNA polymerase, PCNA

and the Rev1 protein, acting as a scaffold (Figure 8). Depending

on the type of DNA damage, other proteins are likely to be

involved. Such a complex involves 7 known stabilizing interac-

tions (reviewed in [50]), which include the interactions of: (1) The

TLS polymerase with the DNA. (2) The TLS polymerase (via the

PIP domain) with PCNA. (3) The TLS polymerase with the

ubiquitin at position K164 in PCNA. (4) The TLS polymerase

with Rev1. (5) Rev1 with ssDNA. (6) Rev1 with PCNA. (7) Rev1

with the ubiquitin at position K164 in another monomer of

PCNA (Figure 8). In cells with the PcnaK164R mutation, two of

these interactions are lost – of the ubiquitin with the TLS

polymerase and with Rev1 (Figure 8 lower panel). However, 5

stabilizing interactions are left, of which 3 directly involve the

TLS polymerase: with PCNA, with the DNA, and with Rev1.

Figure 8. Model describing interactions that stabilize a TLS DNA polymerase during lesion bypass. The binding of a TLS DNA
polymerase to a primer-template-lesion involves at least 7 known stabilizing interactions, 4 of which involve PCNA (top drawing). Two of these
interactions, which involve the ubiquitin moiety, are lost in cells carrying the PcnaK164R mutation (lower drawing). The remaining 5 interactions
(lower drawing) are sufficient to promote TLS, albeit with lower efficiency and altered mutagenic specificity. See text for details.
doi:10.1371/journal.pgen.1002262.g008
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Thus, TLS DNA polymerases are recruited to damaged sites in

DNA also in the absence of PCNA ubiquitination, and the TLS

machinery is stable enough to perform lesion bypass, although at

reduced efficiency.

In conclusion, ubiquitinated PCNA is required for maximal

TLS across a variety of lesions, supporting the model of

recruitment of TLS polymerases to the damaged DNA via

interaction of their ubiquitin-binding domain to PCNA-mUb

[22]. Yet, TLS polymerases can be recruited to damaged DNA in

the absence of PCNA-Ub and perform TLS, and although

secondary in efficiency under normal conditions, they do

contribute to the protection of cells against DNA damage.

Materials and Methods

Cell cultures
The immortalized MEFs used in this study were prepared from

mice with the following genotypes: Pcna+/+ and PcnaK164R/K164R

[29]; Rad18+/+ and Rad182/2 [37]; Hltf+/+Shprh+/+ and Hltf2/2

Shprh2/2 [38]; Usp1+/+, Usp12/2, Usp12/2 complemented with

wild-type Usp1, and Usp12/2 complemented with the inactive

Usp1C90S mutant [40]. The immortalized MEFs were cultured in

DMEM supplemented with 2 mM L-glutamine, 100 units/ml of

penicillin, 100 mg/ml of streptomycin, and 10% FBS. The primary

MEFs were cultured in DMEM supplemented with 2 mM L-

glutamine, 100 units/ml of penicillin, 100 mg/ml of streptomycin,

non-essential amino acids (Biological industries), 2-Mercaptoethanol

50 mM, and 15% FBS. The immortalized MEFs were incubated at

37uC in a 5% CO2 atmosphere. The primary MEFs were incubated

at 37uC in a 5% CO2 and 4% O2 atmosphere.

Centrifugal elutriation
Separation of cells at G1/S phase of the cell cycle was

performed by the elutriation method with the following modifi-

cations. The elutriation system consisted of a J6 Beckman

elutriation centrifuge with a JE-5.0 rotor equipped with a single

standard 5 ml elutriation chamber (Beckman Coulter, Inc.,

Fullerton, CA, USA), and a masterflex microprocessor pump

drive, model 7524-05 (Cole Parmer). The elutriation medium was

DMEM supplemented with 1% FBS, maintained at room

temperature. The speed and temperature of the rotor were set

constant at 3000 rpm and 25uC. Approximately 36108 Pcna+/+ or

PcnaK164R/K164R MEFs were harvested from cultures at ,80%

confluence, centrifuged, and suspended in 10 ml of DMEM (room

temprature) supplemented with 1% FBS. Cell suspensions were

introduced to the elutriation chamber at a flow rate of 50 ml/min.

After 15 minutes the flow rate was increased by 10 ml/min and

three 50 ml fractions were collected at this flow rate. The flow rate

was then gradually increased to 160 ml/min in 10 ml/min

increments. Three 50 ml fractions were collected after each

subsequent increase of the flow rate. The G1/S fraction (analyzed

by FACS) was taken for the UV-induced Rpa foci assay.

Rpa foci assay
For Rpa immunostaining [33], Pcna+/+ and PcnaK164R/K164R

MEFs were fractionated by centrifugal elutriation, and cells in the

G1/S boundary were seeded on 13 mm glass cover slips coated

with 0.01% poly-L-lysine. After 2 h when the cells attached to the

slides, the medium was removed and the cells were UV-C

irradiated at 254 nm using a low-pressure mercury lamp (TUV

15w G15T8, Philips) at doses of 8 J/m2. The dose rate was

measured using an UVX Radiometer (UVP) equipped with a 254-

nm detector. At various time points after irradiation the cells were

washed three times with PBS, pre-extracted with 25 mM HEPES

pH 7.4, 50 mM NaCl, 3 mM MgCl2, 300 mM sucrose, 1%

Triton X-100 for 5 minutes on ice with gentle shaking, and

washed for three more times with PBS. The slides were then fixed

in 4% paraformaldehyde for 15 minutes at room temperature and

washed three times in PBS. Blocking was done in PBS

supplemented with 5% normal goat serum for 30 minutes on

ice. The cells were incubated for 4 hours on ice with anti-Rpa32

antibodies (AbCam, cat. No. ab2175) that were diluted 1:200 in

blocking solution. After incubation the slides were washed three

times in PBS and incubated with a secondary antibody –goat anti

mouse Alexa Fluor 488 (green) diluted 1:1000, and with DAPI

diluted 1:1000 (both in blocking solution) for 45 minutes on ice.

The slides were then washed three times in PBS and mounted on

microscope slides using Aqua poly/Mount. Images were captured

with a DeltaVision system (Applied Precision) equipped with an

Olympus IX71 microscope. Optical images were acquired using

CCD camera (Photometrics, Coolsnap HQ) and a 606/1.42

objective (Olympus). For each cell line at each time point at least

100 cells were counted and the percentage of cells exhibiting Rpa

foci was determined.

TLS assay in cultured mammalian cells
(Figure S1) The assay was performed as previously described [34],

and the gapped plasmids with site-specific lesions used in this assay

were prepared as previously described as follows: TT CPD and TT 6-

4 PP [35]; cisPt-GG [6]. Briefly, cells were co-transfected with a DNA

mixture containing 100 ng of a gapped-lesion plasmid (GP-TT-CPD,

or GP-TT-6-4 PP, or GP-cisPt-GG; kanR), 100 ng of a control

gapped plasmid without a lesion (GP20; cmR), and 5 mg of the carrier

plasmid pUC18, using jetPEI/DNA complexes for the immortalized

MEFs or the Lipofectamine 2000 for the primary MEFs. After

allowing time for gap filling and lesion bypass, the plasmids were

extracted from the cells using alkaline lysis conditions, and used to

transform an E. coli RecA reporter strain. The percentage of plasmid

repair, of which most occurs by TLS, was calculated by dividing the

number of transformants obtained from the gap-lesion plasmid (kanR

colonies) by the number of transformants obtained from the control

gapped-plasmid (cmR colonies). A small fraction of gap-lesion

plasmids can be repaired by non-TLS events, which involve

formation of a DSB followed by DSB repair. These are observed

as plasmid isolates with large deletions or insertions. To obtain precise

TLS extents, the plasmid repair extents were multiplied by the

fraction of TLS events out of all plasmid repair events, based on the

DNA sequence analysis of the plasmids. To determine the DNA

sequence changes that have occurred during plasmid repair,

sequence analysis was carried using the TempliPhi DNA Sequencing

Template Amplification Kit and the BigDye Terminator v1.1 Cycle

Sequencing Kit. Reactions were analyzed by capillary electrophoresis

on an ABI 3130XL Genetic Analyzer from Applied Biosystems.

UV sensitivity assay
Two methods were used: depletion of ATP as a measure for

viability, and colony forming ability after UV irradiation. For the

viability ATP assay Pcna+/+ and PcnaK164R/K164R MEFs were

seeded in 96-well plates. At 24 h after the seeding, cells were

washed twice with Hanks’ buffer, and irradiated in Hanks’ buffer

with UV-C at 254 nm using a low-pressure mercury lamp (TUV

15w G15T8, Philips). UV dose rate was measured using an UVX

Radiometer (UVP) equipped with a 254-nm detector. After

irradiation, Hanks’ buffer was removed and the cells were

incubated in a fresh growing medium for additional 48 h.

Viability was determined using the CellTiter-Glo Luminescent

Cell Viability Assay (Promega). Luminescence was measured using
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an InfiniteH M200 Luminometer (Tecan). Throughout the entire

experiment, none of the samples reached cell confluency.

For the colony forming ability assay Pcna+/+and PcnaK164R/K164R

immortalized MEFs were transfected with siRNA against TLS

polymerases as described below, and incubated for 48 h. Cells

were then trypsinized, counted, and plated in 10-cm Petri dishes.

After incubation of 12 h, cells were UV irradiated as described

above, and incubated in fresh medium for 10–12 days. Colonies

were fixed and stained with 1% methylene blue (Sigma). Colony

forming ability was calculated by dividing the number of colonies

in UV-irradiated plates by the number of colonies in unirradiated

plates with pre-transfected with the same siRNA.

Knocking down the expression of TLS DNA polymerase
genes

The expression of specific DNA polymerase genes was knocked-

down in Pcna+/+ and PcnaK164R/K164R MEFs by transfection with

50 nM of siRNA pools specific for PolH, Rev3L or Rev1. The siRNAs

used were from Dharmacon as follows: mRev3L SMARTpool (M-

04219), mPolH ON-TARGETplus SMARTpool (LU-063800), mRev1

SMARTpool (M-041898), siGENOME non-targeting siRNA #5 (D-

001210), ON-TARGETplus nontargeting Pool (D-001810). Transfec-

tion was carried out using HiPerFect (Qiagen), according to the

manufacturer recommendations. The effectiveness of knocking down

the expression of TLS polymerases was measured by RT-PCR using

total RNA that was extracted from the cells 48 h after transfection with

siRNA, using the Perfect-Pure RNA cultured cells kit (5 PRIME). A

hundred ng of total RNA was used for cDNA synthesis and RT-PCR

by Maxime RT-PCR PreMix kit (iNtRON BIOTECHNOLOGY)

according to the manufacturer recommendations. The following

primers were used for the RT-PCRs: 59-GTGGTACGAGTCTTCG-

G-39 and 59-TCTTGTGACTCGGGCTG-39 for mREV3L, 59-G-

AAGCCCGAGCATTTGGTG-39 and 59-GCCTCTCCTCAAG-

TTCCAG-39 for mPOLH, 59-AGAACGGAGAATGATGGC-39 and

59-GGCCCAGGATCCTCAGGTTTGCACACAGG-39 for mRev1,

59-ACCACAGTCCATGCCATCAC-39 and 59-TCCACCACCCT-

GTTGCTGTA-39 for mGAPDH. The results of knocking-down the

expression of PolH, Rev3L and Rev1 are shown in Figure S2.

Supporting Information

Figure S1 Outline of the quantitative assay for TLS in cultured

mammalian cells. Mammalian cells are transfected with a gap-lesion

plasmid (kanR) containing a site specific lesion (indicated by a star),

along with a gapped plasmid (cmR) without a lesion, and a carrier

plasmid (ampR; pUC18). Following an incubation period the plasmids

are extracted, and used to transform E. coli cells, which are then plated

in parallel on kan-LB and cm-LB plates. The ratio of kanR/cmR

transformants represents the extent of plasmid repair. Individual

colonies are picked, and their plasmid contents analyzed for mutations

in the DNA region corresponding to the original site of the gap.

(TIFF)

Figure S2 Knockdown of the expression of TLS polymerases.

RT-PCR of mRNA from wild type and PcnaK164R/K164R MEFs

pretreated with siRNA against mouse Rev3L, PolH, and Rev1. Non-

targeting siRNA was used as control. For each analysis, the effects

of that siRNA were examined on mouse Gapdh mRNA expression.

(TIFF)

Table S1 TLS across TT CPD, TT 6-4 PP, and cisPt-GG adduct

in Pcna+/+ and PcnaK164R/K164R MEFs. Pcna+/+ and PcnaK164R/K164R

MEFs were each transfected with a mixture containing the

indicated gap-lesion plasmid (kanR) along with the control plasmid

GP20 (cmR). Following incubation to allow TLS, the DNA was

extracted and used to transform an E. coli indicator strain. Plasmid

survival levels were calculated by the ratio of kanR/cmR colonies.

TLS levels were calculated by subtracting the fraction of non-TLS

events (large insertions and deletions) from the corresponding

plasmid repair values. Relative TLS extents were given as

percentage relative to TLS assayed with isogenic wild type MEFs.

Actual colony counts are presented for a typical experiment. Each

point represents the average TLS level of 3–6 experiments.

(DOC)

Table S2 DNA sequence analysis of bypass events across TT CPD,

TT 6-4 PP, and cisPt-GG adduct in Pcna+/+ and PcnaK164R/K164R

MEFs. Plasmids were extracted from kanR colonies obtained in the

experiments described in Table S1, and subjected to DNA sequence

analysis. The sequences opposite the site of the lesions are shown in the

59 to 39 direction. Accurate TLS is represented by the sequence 59-

CAAC-39 opposite TT CPD and TT 6-4 PP or 59-GCCT-39 opposite

cisPt-GG adduct. The underlined nucleotides are those located

opposite the original lesions. Mutations are presented by bold type.

D represents a single-nucleotide deletion. Mutagenic TLS was

calculated as the percentage of non-AA sequences inserted opposite

the TT CPD and TT 6-4 PP or non-CC sequences inserted opposite

the cisPt-GG adduct or mutations at the nucleotides flanking the

lesions out of all TLS events (which do not include large insertions or

deletions). Non-TLS events include big deletions and insertion.

(DOC)

Table S3 TLS across TT CPD, TT 6-4 PP, and cisPt-GG adduct in

Rad18+/+ and Rad182/2 MEFs. Rad18+/+ and Rad182/2 MEFs were

each transfected with a mixture containing the indicated gap-lesion

plasmid (kanR) along with the control plasmid GP20 (cmR). Following

incubation to allow TLS, the DNA was extracted and used to

transform an E. coli indicator strain. TLS extents were determined as

described in the legend to Table S1.

(DOC)

Table S4 DNA sequence analysis of the bypass events across TT

CPD, TT 6-4 PP, and cisPt-GG adduct in Rad18+/+ and Rad182/2

MEFs. Plasmids were extracted from kanR colonies obtained in the

experiments described in Table S3, and subjected to DNA sequence

analysis. The sequences opposite the site of the lesions are shown in the

59 to 39 direction. Accurate TLS is represented by the sequence 59-

CAAC-39 opposite TT CPD and TT 6-4 PP or 59-GCCT-39 opposite

cisPt-GG adduct. The underlined nucleotides are those located

opposite the original lesions. Mutations are presented by bold type.

D represents a single-nucleotide deletion. Mutagenic TLS was

calculated as the percentage of non-AA sequences inserted opposite

the TT CPD and TT 6-4 PP or non-CC sequences inserted opposite

the cisPt-GG adduct or mutations at the nucleotides flanking the

lesions out of all TLS events (which do not include large insertions or

deletions). Non-TLS events include big deletions and insertion.

(DOC)

Table S5 TLS across TT CPD, TT 6-4 PP, and cisPt-GG adduct in

Shprh+/+Hltf+/+ and Shprh2/2Hltf2/2 MEFs. Shprh+/+Hltf+/+ and

Shprh2/2Hltf2/2 MEFs were each transfected with a mixture

containing the indicated gap-lesion plasmid (kanR) along with the

control plasmid GP20 (cmR). Following incubation to allow TLS, the

DNA was extracted and used to transform an E. coli indicator strain.

TLS extents were determined as described in the legend to Table S1.

(DOC)

Table S6 DNA sequence analysis of bypass events across TT

CPD, TT 6-4 PP, and cisPt-GG adduct in Shprh+/+Hltf+/+ and

Shprh2/2Hltf2/2 MEFs. Plasmids were extracted from kanR

colonies obtained in the experiments described in Table S5, and

subjected to DNA sequence analysis. The sequences opposite the
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site of the lesions are shown in the 59 to 39 direction. Accurate TLS

is represented by the sequence 59-CAAC-39 opposite TT CPD and

TT 6-4 PP or 59-GCCT-39 opposite cisPt-GG adduct. The

underlined nucleotides are those located opposite the original

lesions. Mutations are presented by bold type. D represents a

single-nucleotide deletion. Mutagenic TLS was calculated as the

percentage of non-AA sequences inserted opposite the TT CPD

and TT 6-4 PP or non-CC sequences inserted opposite the cisPt-

GG adduct or mutations at the nucleotides flanking the lesions out

of all TLS events (which do not include large insertions or

deletions). Non-TLS events include big deletions and insertion.

(DOC)

Table S7 TLS across TT CPD, TT 6-4 PP, and cisPt-GG

adduct in Usp1+/+, Usp12/2, Usp12/2 + WT Usp1 and Usp12/2 +
Usp1 C90S MEFs. Usp1+/+, Usp12/2, Usp12/2 + WT Usp1, and

Usp12/2 + Usp1 C90S MEFs were each transfected with a

mixture containing the indicated gap-lesion plasmid (kanR) along

with the control plasmid GP20 (cmR). Following incubation to

allow TLS, the DNA was extracted and used to transform an E.

coli indicator strain. TLS extents were determined as described in

the legend to Table S1.

(DOC)

Table S8 DNA sequence analysis of bypass events across TT

CPD, TT 6-4 PP, and cisPt-GG adduct in Usp1+/+, Usp12/2,

Usp12/2 + WT Usp1 and Usp12/2 + Usp1 C90S MEFs. Plasmids

were extracted from kanR colonies obtained in the experiments

described in Table S7, and subjected to DNA sequence analysis.

The sequences opposite the site of the lesions are shown in the 59

to 39 direction. Accurate TLS is represented by the sequence 59-

CAAC-39 opposite TT CPD and TT 6-4 PP or 59-GCCT-39

opposite cisPt-GG adduct. The underlined nucleotides are those

located opposite the original lesions. Mutations are presented by

bold type. D represents a single-nucleotide deletion. Mutagenic

TLS was calculated as the percentage of non-AA sequences

inserted opposite the TT CPD and TT 6-4 PP or non-CC

sequences inserted opposite the cisPt-GG adduct or mutations at

the nucleotides flanking the lesions out of all TLS events (which do

not include large insertions or deletions). Non-TLS events include

big deletions and insertion.

(DOC)
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