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Abstract

The discovery of expression quantitative trait loci (‘‘eQTLs’’) can help to unravel genetic contributions to complex traits. We
identified genetic determinants of human liver gene expression variation using two independent collections of primary
tissue profiled with Agilent (n = 206) and Illumina (n = 60) expression arrays and Illumina SNP genotyping (550K), and we
also incorporated data from a published study (n = 266). We found that ,30% of SNP-expression correlations in one study
failed to replicate in either of the others, even at thresholds yielding high reproducibility in simulations, and we quantified
numerous factors affecting reproducibility. Our data suggest that drug exposure, clinical descriptors, and unknown factors
associated with tissue ascertainment and analysis have substantial effects on gene expression and that controlling for
hidden confounding variables significantly increases replication rate. Furthermore, we found that reproducible eQTL SNPs
were heavily enriched near gene starts and ends, and subsequently resequenced the promoters and 39UTRs for 14 genes
and tested the identified haplotypes using luciferase assays. For three genes, significant haplotype-specific in vitro
functional differences correlated directly with expression levels, suggesting that many bona fide eQTLs result from
functional variants that can be mechanistically isolated in a high-throughput fashion. Finally, given our study design, we
were able to discover and validate hundreds of liver eQTLs. Many of these relate directly to complex traits for which liver-
specific analyses are likely to be relevant, and we identified dozens of potential connections with disease-associated loci.
These included previously characterized eQTL contributors to diabetes, drug response, and lipid levels, and they suggest
novel candidates such as a role for NOD2 expression in leprosy risk and C2orf43 in prostate cancer. In general, the work
presented here will be valuable for future efforts to precisely identify and functionally characterize genetic contributions to
a variety of complex traits.
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Introduction

Genome-wide association studies have uncovered numerous

robust associations between common variants and complex traits,

but only a minority of these can be traced to protein-altering

polymorphisms [1]. It is likely that most of these associations result

from non-coding variants. One hypothesis is that such variants

modify cis-regulatory sequences and thereby change the expres-

sion levels of one or more target genes. Variance in gene

expression plays essential roles in numerous important processes

and is highly heritable in human populations [2].

Considering this, the discovery of genetic variants that have a

functional impact on gene expression is a potentially powerful

means to facilitate more accurate and robust identification of

associations between variants and disease. Such discoveries may

also provide mechanistic insight into otherwise anonymous

genotype-phenotype correlations that often span many correlated

variants across multiple genes. In large part due to this potential

there has been recent substantial interest in the identification of

expression quantitative trait loci (eQTLs) [3–10].

Regulation of gene expression in the liver is of particular interest

given its vital roles in maintaining homeostasis and health,

including synthesis of most essential serum proteins, the produc-

tion of bile and its carriers, and the regulation of nutrients. The

liver is also the predominant organ in xenobiotic metabolism, and

it has been estimated that 75% of the 200 most widely prescribed

drugs are eliminated from the body through liver metabolism [11].

Altered metabolism by genetic factors affects the systemic

availability and residence time of xenobiotics and hence their

toxic and pharmacologic effects [12].

While eQTL studies have made valuable contributions to

genetic research (e.g., [13]), there exist several practical limitations

to consider. First, most eQTL studies are conducted in

immortalized, lymphoblastoid cell lines (LCLs), which clearly

have utility for the interpretation of human disease associations,

particularly with immunity-related phenotypes [14,15]. However,

the use of such cell lines potentially introduces artifacts associated

with immortalization, subsequent passage, and growth conditions

prior to harvest [16]. Second, eQTLs may exhibit spatiotemporal

specificity [17,18], presumably driven by polymorphisms located

within tissue specific regulatory elements, and eQTL studies may

be maximally informative for any given trait when conducted in a

relevant, non-transformed cell type. Third, environmental factors

and other, mostly hidden, confounding variables are known to

significantly affect gene expression levels and measurements [19–

23]. Fourth, most eQTL studies fail to provide replication on an

independent set of samples with independent experimental

assessment (see [24–27,23] for exceptions).

We sought to address these limitations, and conducted two

independent eQTL studies and compared these results to a third,

published study. Genetic analyses were performed using Bayesian

regression [28,29] after controlling for age, sex, ancestry, and

unmeasured confounding variables [20]. Using the UC liver panel

as a ‘discovery’ cohort and the UW and Merck data as replication

panels, we found that ,30% of eQTLs identified at stringent

thresholds failed to replicate in either of the two replication studies.

We show that this is likely due to several factors, including SNPs in

probes, but the effects of unmeasured confounding variables were

particularly pronounced. We also found that reproducible eQTL

associations were enriched near proximal promoters and 39 UTRs.

Through targeted resequencing and luciferase experiments, we

identified 3 significant haplotype-specific in vitro functional effects

that directly support a liver eQTL. These data functionally

validate the enrichment for eQTLs near gene ends and suggest

that many eQTLs can be rapidly fine mapped to a causative

variant or haplotype. Finally, given our study design we identified

hundreds of genes with reproducible SNP-associated expression

levels, a subset of which provide strong mechanistic hypotheses for

published associations between SNPs and disease.

Results

Three independent sample collections
We analyzed two independent sets of primary liver tissues at the

University of Chicago (UC; n = 206) and University of Washing-

ton (UW; n = 60). We genotyped both sets of samples using

Illumina SNP arrays (quad-610 and 550 k for UC and UW,

respectively); to improve mapping power [30,28] and replication

ascertainment, additional genotypes were imputed using HAP-

MAP reference genotype panels (see Methods). Gene expression

levels were analyzed using Agilent (UC) and Illumina (UW)

expression arrays. We considered the UC liver collection as a

‘discovery’ set and used as replication panels the UW collection

and a published set of liver eQTL data (Merck; n = 266) [31].

However, we note that the conclusions drawn below were robust

to the choice of a ‘discovery’ set (Figure S1). All samples analyzed

across all three studies were unique. Microarray expression probes

from both platforms were remapped to RefSeq gene models to aid

in cross platform comparisons. A total of 14,703 RefSeq genes

were surveyed in the UC reference study while 11,245 RefSeq

genes were present on all three platforms. We have made these

data and results publicly available through the GEO and SCAN

databases (http://www.scandb.org/) [32].

Demographic effects
After correcting for technical effects and unmeasured con-

founding variables, we found that thousands of gene expression

traits were significantly associated with demographic variables. At

a 5% false discovery rate (FDR), 769, 336, and 3,110 genes were

significantly associated with ancestry, sex, and age, respectively

Author Summary

Many disease-associated genetic variants do not alter
protein sequences and are difficult to precisely identify.
Discovery of expression quantitative trait loci (eQTL), or
correlations between genetic variants and gene expression
levels, offers one means of addressing this challenge.
However, eQTL studies in primary cells have several
shortcomings. In particular, their reproducibility is largely
unknown, the variables that generate unreliable associa-
tions are uncharacterized, and the resolution of their
findings is constrained by linkage disequilibrium. We
performed a three-way replication study of eQTLs in
primary human livers. We demonstrated that ,67% of cis-
eQTL associations are replicated in an independent study
and that known polymorphisms overlapping expression
probes, SNP-to-gene distance, and unmeasured confound-
ing variables all influence the replication rate. We fine-
mapped 14 eQTLs and identified causative polymorphisms
in the promoter or 39UTR for 3 genes, suggesting that a
considerable fraction of eQTLs are driven by proximal
variants that are amenable to functional isolation. Finally,
we found hundreds of overlaps between SNPs associated
with complex traits and replicated eQTL SNPs. Our data
provide both cautionary (i.e. non-reproducibility of many
strong eQTLs) and optimistic (i.e. precise identification of
functional non-coding variants) forecasts for future eQTL
analyses and the complex traits that they influence.
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within the UC livers. Genes significantly affected by sex or age

(FDR,5%, Figure 1, Figure S2, examples displayed in Figure S3)

have a marked enrichment for small p-values in both replication

samples (Figure 1A, 1D). To lessen the influence of differential

statistical power among the three studies (n = 206, 60, 266), we

defined ‘replication’ as having a nominally significant p-value in

the independent sample (p-value,0.05) and having a concordant

effect direction (i.e., is YFG more highly expressed in males or

females?). 29.9% and 32.1% of genes significantly affected by sex

(UC sex t-test FDR,5%) replicated in the UW and Merck studies,

respectively (Figure 1B). At more stringent thresholds, validation

rates exceeded 80%, albeit with fewer included genes (Figure 1B).

We also note that the sex-associated gene set was strongly enriched

for genes on the X and Y chromosomes (Figure 1C; X

chromosome, hypergeometric test, p-value = 1.72610214, Y

chromosome, p-value,2610216), as would be expected for genes

with sex-associated expression levels. Effects due to age were less

reproducible: 13.2% and 21.5% of significantly age associated

genes (UC age t-test FDR,5%) replicated in the UW and Merck

studies, respectively (Figure 1E; an example of a replicated age-

associated gene, TMEM22, is displayed in Figure 1F). Effect sizes

for both sex and age were correlated across studies (Figure S4;

Spearman’s rho, UC-UW sex = 0.597, UC-Merck sex = 0.720,

UC-UW age = 0.333, UC-Merck age = 0.159), underscoring the

reproducibility of demographic effect estimates.

It is possible that both age and sex replication rates are

downwardly biased due to differences in age and sex distributions

(Table 1). To quantify the potential effects of heterogeneous

sample sizes and unbalanced study designs, we performed

resampling studies within the UC discovery cohort. Demographic

effect replication rates were recalculated using 60 samples that

were race, sex, and age (+/23years) matched to the UW

distribution (Figure 1B, 1E; see Methods). We found that 34%

of sex effects and 15% of age effects replicated by simulation,

supporting the conclusion that sample size and demographic

heterogeneity do generate significant covariate associations that

our replication studies are unable or underpowered to detect.

cis-eQTL mapping
After adjusting for age, sex, ancestry, and unmeasured con-

founding variables (quantified by surrogate variable analyses, see

Methods and [20]), we found 1,787 gene models with significant cis-

linked genetic effects on expression levels (UC log10 Bayes Factor

(BF).5; SNP to TSS distance ,250 kb; Figure 2A, Figure 3A,

Table S1). The distribution of t-test p-values in the replication sets,

adjusted for the same covariates, for the UC best associated gene-

Figure 1. Age and sex effect replication. (A,D) Replication panel linear regression t-test p-values for genes with significant Sex (A) and Age (D)
effects in the UC panel (,5% FDR) were binned (x-axis) and the number of genes per bin (y-axis) is displayed separately for the UW (red) and Merck
(blue) replication sets. (B,E) The replication rate of sex (B) and age (E) associations is depicted as a function of UC p-value for UW (red), Merck (blue),
either replication study (green), and for the n = 60 resampled data (purple). Note that, at more stringent significance thresholds, the replication rate
increases but fewer genes are included. (C) Genes with significant sex associations are enriched on the X (black) and Y (grey) chromosomes.
Hypergeometric test p-values (y-axis, log10 scaled) are plotted as a function of the discovery set effect significance threshold (x-axis, log10-scaled). (F)
An example of a gene (TMEM22) whose expression level (y-axis) is associated with age (x-axis). Each point represents the expression level (y-axis),
adjusted for surrogate variables, and age (x-axis) of an individual sample.
doi:10.1371/journal.pgen.1002078.g001
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SNP pairs were significantly enriched for small values (Figure 3B),

indicating that a large fraction of cis-eQTLs are reproducible in

independent sample collections. As with demographic effects, we

defined replication as a p-value,0.05 and a concordant allele effect

direction (Figure 3C). While the significance of association in the

discovery cohort has a large effect on replication probability, the

relationship between significance and replication was effectively

binary (Figure 3C). Cis-eQTLs with BFs.5 were much more likely

to replicate than those with BFs,5 (chi square p-value,2610216).

However, among genes with BFs.5, replication probability was

only weakly dependent upon BF (Figure 3C; logistic regression chi-

squared p-value = 0.00319).

We found that 49.1% and 57.6% of significant cis-eQTLs (UC

BF.5) replicated in the UW and Merck studies, respectively (i.e.,

p-value,0.05 and concordant effect directions; Figure 2A–2B,

Figure 3C). The lower observed replication rate for the UW study

is partially attributable to the smaller sample size (60 vs 266), but

may also reflect platform-dependencies. 66.7% of significant cis-

eQTL associations replicated in at least one of the two replication

cohorts, while 47.6% replicated in both cohorts. Cis-eQTLs that

replicated in one replication study were significantly more likely to

replicate in the second replication study than expected by chance

(chi-squared p-value,2610216) and twice-replicated eQTLs had

larger effect sizes than eQTLs that replicate in only one study

(Wilcoxon rank-sum test p-value,2610216; Figure S5, examples

of non-replicated cis-eQTLs displayed in Figure S7).

Sample size, statistical power, and winner’s curse
Given differences in sample sizes among these studies, we

sought to define a baseline replication rate against which to

compare the observed levels of reproducibility. We therefore

conducted a re-sampling experiment in which, for each gene

expression trait, 100 sets of 60 sex and age (+/23 years) matched

samples were selected at random and used to define replication (i.e.

concordant effect direction and p,0.05). We found that simulated

replication rates increase dramatically near a BF of 5 (95.5%

replication at BF.5; Figure 3C) and are effectively 100% at higher

thresholds. These observations suggest that power differential

among the studies cannot alone explain the observed rates of

replication, as there are many genes with effect sizes in one study

that should be readily detected in both (let alone either) replication

panels. This is further supported by the observation that

concordance alone (i.e. no p-value threshold) yielded similar levels

of reproducibility, as did direct comparisons of allelic coefficients

(Spearman’s rho of 0.663 and 0.681 for UC–UW and UC-Merck

comparisons, respectively; Figure S6).

We next sought to evaluate whether ‘winner’s curse’ [33,34] was

deflating replication rates. Therefore, we extracted simulations in

which the estimated coefficients randomly decreased and found

that simulated replication remained .90% at BF.5 and near

100% at higher BF even when the effect size declined substantially

(e.g. 30% drop in regression coefficient; Figure S9). Effect sizes

would need to be over-estimated by 2-fold or greater across the

entire set of eQTLs with UC BF.5 to result in the observed rates

of replication. Furthermore, two lines of reasoning suggest

winner’s curse is not a major contributor to the observed rates

of non-replication. First, we note that bias resulting from winner’s

curse should be progressively less pronounced as the true effect size

increases, which in turn will correlate with significance estimates in

the discovery panel [34]. However, replication rate was essentially

flat even at extremely stringent thresholds (Figure 3C). Addition-

ally, the resampling experiments demonstrated that, in direct

contrast with a winner’s curse prediction, effect sizes would need to

be increasingly more severely over-estimated at higher thresholds

(3-fold or more) to result in the observed rates of replication

(Figure S8). Second, the definition of replication (concordance and

p-value,0.05) is relatively loose when applied to eQTLs with a

BF.5 (typical linear regression p-values,561028) and should

accommodate substantial drops in effect sizes for both replication

Table 1. Sample demographic summaries of all three studies.

Study

Category Subcategory University of Chicago
University of
Washington Merck

Final Sample # 206 60 266

Gender Male 131 32 137

Female 75 28 129

Age 25th percentile 21 28 40

50th percentile 46 45 52

75th percentile 59 55 62

Race European-American 183 55 266

Non-European 23 5 0

Genotyping platform Name Illumina 610 Quad Illumina 550K v3 Affymetrix 500K; Illumina 650Y

GEO accession GPL8887 GPL6981

Expression platform Name Agilent 4644K HumanRef-8 v.2 Agilent Custom

GEO accession GPL4133 GPL5060 GPL4371

Expression replicates Mean 2.25 2 1

Fraction expression probes overlapping
dbSNP130

0.274 0.191 NA

Data availability GEO series GSE26106 GSE26106 GSE9588

Publication this study this study PMID18462017

doi:10.1371/journal.pgen.1002078.t001
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panels but especially for the larger Merck dataset. This is further

supported by the observation that concordance alone yielded

similar rates of replication (Figure S6). We conclude that statistical

power and winner’s curse cannot explain the observed rates of

non-replication for eQTLs with BF.5.

On reproducibility failures due to hybridization artifacts
One possible explanation for non-replication is that SNPs

within sequences targeted by expression probes may change

hybridization efficiency in an allele-specific manner; if that SNP is

also correlated with a genotyped variant, false positive eQTLs may

result [35]. While 45.3% and 37.2% of Agilent and Illumina

probes overlap with a polymorphism found in dbSNP131 or the

one thousand genomes project (2010.08.04 release), the frequency

distribution of polymorphisms in and around probe sequences

differs markedly between the Agilent (UC) and Illumina (UW)

platforms (Figure S9); Illumina expression probes have clearly

been designed to avoid common polymorphisms.

Figure 2. eQTL characteristics. (A,B) Manhattan plots depicting best associated cis-eQTLs for all gene expression traits in the UC (A) and UW (B)
studies. Autosomes are ordered and alternately colored along the x-axis. BF of the SNP-gene pair is plotted on the y-axis. Probes overlapping
common polymorphisms are plotted as triangles, probes without known SNPs are plotted as open circles. For display purposes, genes with UC
BF.23 that replicate in the UW study are labeled with gene names. (C) Distribution of distances from each gene’s best associated SNP to its TSS.
Negative and positive values denote SNPs 59 and 39 of TSS, respectively. Data are plotted for all significant UC eQTLs (BF.5, black), eQTLs replicated
in the UW (red), Merck (blue), and eQTLs replicated in either UW or Merck (green).
doi:10.1371/journal.pgen.1002078.g002
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The presence of SNPs in expression probes had a larger effect

on reproducibility at extremely high thresholds (Figure 3C). For

example, the replication rate for cis-eQTLs with BF.5 is not

significantly affected by the presence of SNPs in probes (p-

value = 0.189); however, replication rate for cis-eQTLs thre-

sholded at BF.10 is significantly affected by probe SNPs (p-

value = 0.0354; 65.6% with, 74.9% without SNP) and replication

rate is significantly associated with an interaction between probe

SNPs and eQTL significance (logistic regression BF-SNP interac-

tion p-value = 0.0224). These results suggest the proportion of

non-reproducible cis-eQTLs increases with eQTL significance

such that, for eQTLs with BF.10, ,27% of the non-replication

rate can be explained by the presence of hybridization artifacts

caused by known polymorphisms. To investigate the potential

confounding role of unannotated polymorphisms in eQTL

ascertainment, we re-sequenced 15 expression probes for genes

that had large discrepancies in correlation measurements between

the UW and UC studies that did not overlap a known SNP (9

probes with strong UW correlation but low UC correlation, 6 of

the converse; Table S2). We found that none of these 15 probes

harbored SNPs in the 60 UW liver samples or a panel of 35 CEU

HapMap samples. Collectively, our data suggest future array

designs/eQTL studies would benefit from more aggressive

avoidance of known SNPs, but current SNP annotations are

sufficiently comprehensive that unknown variants are of little

concern to eQTL analyses.

Surrogate variable analysis dramatically improves eQTL
reliability

We next quantified the role of several additional factors that

may generate spurious associations. Most strikingly, failure to

control for unknown or unmeasured confounding variables by

surrogate variable analysis (SVA) produced a large decrease in the

number of significant (BF.5) cis-eQTL signals (1,787 vs. 873;

Figure 4A; McNemar’s chi-squared test p-value,2610216),

similar to a recent study of gene expression within twins [23].

Not only did SVA produce a larger number of significant cis-

eQTL associations, but these associations were also significantly

more likely to replicate (McNemar’s Chi-squared test p-val-

ue%2610216; Figure 4B). While it has been shown that unknown

Figure 3. eQTL replication. (A) Number of gene expression traits (y-axis, log10 scaled) with best associated cis-eQTLs (black) and trans-eQTLs
(blue) as a function of BF (x-axis). Counts at each threshold are plotted separately for all probes (solid) and for probes without known polymorphisms
(dashed). (B) cis-eQTL associations were tested in two replication sample sets, UW and Merck. Replication sample linear regression t-test p-values
were binned (x-axis) and the number of genes per bin (y-axis) is displayed separately for the UW (red) and Merck (blue) replication sets. Data are
plotted for all eQTLs (thin lines) and for significant eQTLs (heavy lines). (C) cis-eQTL replication rate (y-axis) is depicted as a function of UC BF (x-axis)
for UW (red), Merck (blue), either replication study (green), and for the n = 60 resampled data (purple). Replication rates are plotted separately for
probes overlapping known polymorphisms (solid lines) and for probes not overlapping an annotated polymorphism (dashed). (D) Cis-eQTL
replication rate (y-axis) plotted as a function of quantile binned SNP to TSS distance. Per bin mean (points) and standard errors (lines) are plotted
separately for associations with UC BF.0 (grey) with UC BF.5 (black), and with UC BF.10 (blue). (E) Trans-eQTL replication p-values were binned (x-
axis) and the number of genes per bin (y-axis) is displayed separately for the UW (red) and Merck (blue) replication sets. Data are plotted for all eQTLs
(thin lines) and for significant eQTLs (heavy lines). (F) trans-eQTL replication rate (y-axis) is depicted as a function of UC BF (x-axis) for UW (red), Merck
(blue), either replication study (green), and for the resampled data (purple).
doi:10.1371/journal.pgen.1002078.g003
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or unquantified confounders can lead to unreliable genetic

predictions [19,36,2], our data show that such factors, if

unaccounted for, dramatically decrease the number of eQTL

signals and their reproducibility across multiple independent

collections of primary human tissues.

Other factors influencing reproducibility
Several additional aspects of the gene expression measurements

correlated with cis-eQTL replication rate. Cis-eQTL replication

rate was significantly associated with mean gene expression level

and, independently, inter-individual expression coefficient of

variation (Figure S10; multivariate logistic regression chi-squared

p-value = 3.4461023 and 1.4161024, respectively); more highly

expressed and highly variable genes were more likely to replicate.

Further, we found that expression variance unexplained by age,

sex, race, and surrogate variables was negatively correlated with

expression level (Spearman’s rho = 20.302, p-value,2610216).

These data suggest greater measurement accuracy at higher

expression levels that leads to more robust eQTL identification.

We also found that the best associated SNP for each gene

expression trait was frequently immediately upstream or down-

stream from the transcription start site (TSS) (Figure 2C, [37]).

Replication rate of significant cis-eQTLs was associated with

absolute SNP to TSS distance (logistic regression chi-squared p-

value = 5.3561023). 74.5% of cis-eQTLs within 5 kb of the TSS

replicated, compared with only 60.6% located more than 100 kb

from the TSS. Thus while distal regulatory elements are clearly

important for human gene expression regulation, robustly

quantifiable, segregating expression polymorphism was more

likely to be found in SNPs very close to the TSS of genes.

Interestingly, significant cis-eQTLs were no more likely to

replicate when analyses were restricted to probes targeting the

same exon (chi-squared p-value = 0.759), demonstrating that most

non-replicating eQTLs (in our study design) can not be accounted

for by differential splicing or isoform usage. Similarly, replication

was not improved when analyses were restricted to gene

expression measurements derived from more than one expression

probe (chi-squared p-value = 0.919). Additionally, the minor allele

frequency of the associated SNP did not have a significant effect on

replication rate (logistic regression chi-squared p-value = 0.600;

Figure S10), and eQTLs at imputed SNPs replicated at similar

rates to directly genotyped SNPs (logistic regression chi-squared p-

value = 0.574; Figure S10). Uncertainty at imputed SNPs does not

appear to have a significant effect on cis-eQTL replication rate, as

the ratio of observed to expected genotype variance was not

associated with replication rate in any of the three sample sets

(logistic regression chi-squared p-values all .0.152; Figure S12).

Examination of the interplay of the factors influencing eQTL

replication revealed several interesting trends. As mentioned

above, replication probability was significantly associated with

SNP to TSS distance, but this association decreases with

increasing cis-eQTL significance (distance6BF interaction logistic

regression p-value = 3.9861025). Thus, location information can

help to differentiate real from false positive correlations of modest

effect, but is less important for very strong correlations. We

constructed stepwise multivariate logistic regression models,

restricted to associations with BF.5, and confirmed that BF

(logistic regression chi-squared p-value = 7.3261023), SNP to TSS

distance (p-value = 2.3361023), gene expression (p-val-

ue = 0.0230), gene expression CV (p-value = 1.3361024), and

probe SNP6BF interaction (p-value = 0.0207) all have significant

effects on the cis-eQTL replication rate. In contrast, SNP minor

allele frequency, SNP type (imputed or direct), and genotype

variance do not substantially influence replication rate (p-

values.0.5).

Trans-eQTLs
We also conducted genome-wide scans for associations between

gene expression traits and unlinked SNPs. Such trans-eQTLs may

represent regulatory interactions between transcription factors,

signaling molecules, or chromatin regulators and their target

genes. After adjusting for demographic variables as above, we

found 353 gene expression traits with significant (BF.5) trans-

linked genetic effects. The replication behavior of trans-eQTLs

was markedly different from cis-eQTLs (compare Figure 3B, 3C

with Figure 3E, 3F). First, the distribution of t-test p-values derived

from the UW replication set, for each best associated gene-SNP

pair identified in the UC set, was effectively uniform (Figure 3E).

Second, in contrast to cis-effects, which rapidly approach an

asymptotic replication rate at BF 5, trans-eQTLs almost

completely failed to replicate (6.14%; Figure 3F) at a BF threshold

of 5. At greater significance thresholds, trans effects did replicate

more frequently (e.g., at BF. = 9.5, 50.0% replicate), however,

these rates never approached those observed for cis-eQTLs. It is

Figure 4. SVA improves eQTL reproducibility. (A) Surrogate variable regression produces more significant associations. Each point represents
the BF for each UC gene expression trait and its best associated SNP. Data are plotted for associations tested after surrogate variable regression (y-
axis) and unadjusted for surrogate variables (x-axis). Note that most points fall above the diagonal, indicating increased eQTL significance after
surrogate variable correction. (B) Cis-eQTL replication rate (y-axis; UC vs UW or Merck) as a function of UC BF threshold. SVA adjusted associations
depicted in black, unadjusted in grey.
doi:10.1371/journal.pgen.1002078.g004
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plausible that surrogate variable correction may mask true ‘master’

regulator effects, but as for cis-effects we identified more trans-

eQTLs with surrogate variable correction than without and these

associations were more likely to replicate (data not shown). While

it is perhaps surprising that even extremely significant trans effects

frequently fail to replicate, we note that this behavior is, to a

certain extent, to be expected [27].

Fine-mapping and functional characterization
As the eQTLs we identified are associations between effectively

anonymous SNPs and expression of a nearby gene, we were also

interested in fine-mapping the associations, ideally to a causal

variant (expression quantitative-trait-nucleotide or eQTN) or

haplotype. We therefore re-sequenced the promoter and 39UTR

sequences for 18 genes with strong cis-eQTLs within the 60 UW

livers (Table S3). Thirteen of these genes harbored a common

SNP or indel within the proximal promoter or 39UTR that

correlated strongly (p-value,161028) with the expression level of

that gene, while 17 of 18 harbored a variant with at least a modest

correlation (p-value,0.001). Of these 17 genes, the most strongly

correlated SNP was within the 39UTR for 11 genes and within the

promoter region for 6 genes. Moreover, 10 of the 17 best SNPs

were not within HapMap, indicating that a majority of the most

strongly associated promoter/39UTR variants were neither

genotyped directly nor imputed and therefore not detectable in

the original eQTL analysis.

We subsequently sought experimental support for the functional

nature of the most strongly associated SNPs. Therefore, for 14

genes, we cloned (and sequence-verified) common haplotypes

existing in the UW liver samples into a customized luciferase

reporter vector, and tested the function of each haplotype using

high-throughput, transient transfection reporter assays (Table S3;

9 of 14 underlying cis-eQTLs replicated in the UC or Merck

samples). For each haplotype, multiple independent vector (mode

of 3) preparations were made, and for each plasmid preparation 4

transfection replicates were performed (mode of 12 measurements

per haplotype). We analyzed the resulting data using a random-

effects model that accounted for both variation in transfection

replicates and variation in vector preparations. Our results

underscore the need to perform multiple independent DNA

preparations to reliably infer sequence-specific functional effects

with this system (Figure 5 and data not shown).

We identified three regions where the haplotype sequence had a

significant (p-value,0.001) effect on reporter activity (luminescence)

in the same allelic direction as the expression measurements,

including two promoters and one 39UTR region (Figure 5 and

Figure S12). No significant but discordant effects were observed.

Variants near PRMT6, which encodes a protein-arginine methyl-

transferase and has been associated with HIV infection progression

[38], scored highly in both the UW and UC eQTL analysis

(Figure 5A). Resequencing of the PRMT6 promoter yielded two

common haplotypes defined by two perfectly correlated SNPs located

406 and 150 bp upstream from the TSS. The minor haplotype (40%

frequency) correlated with a strong additive decrease in PRMT6 liver

expression (t-test p-value = 6.4610214 for UW), and relative to the

major haplotype, we found a concomitant decrease in luminescence

for reporter constructs harboring the minor haplotype (p-val-

ue = 0.0002). A similar result was obtained for promoter haplotypes

of the LDHC (lactate dehydrogenase C) gene in which six common

variants defined 7 common haplotypes, five of which were

successfully cloned and tested. The strongest expression correlation

was observed for a SNP located 392 bp upstream of the TSS (15%

MAF), and the luciferase data strongly support the functional effect of

this variant (p-value = 8.761029; Figure 5B).

Finally, we identified a significant haplotype-specific effect

within the 39UTR for IPO8 (importin 8), a protein that interacts

with Argonaute proteins to direct miRNA mediated gene

expression regulation [39]. There were nine common 39UTR

haplotypes defined by 13 variants for IPO8. The two haplotype

groups defined by the most strongly expression-associated SNPs

(two perfectly correlated variants at positions 1147 and 1195

relative to the 39UTR start) have significantly different (p-

value = 9.561024) functional effects. However, unlike LDHC,

there remained a substantial amount of variance within the

haplotypes defined by alleles at these two SNPs, suggesting other

variants may also have a functional role. Alternatively, the data

gathered from 39UTRs were generally noisier than that for

promoters (Figure 5 and data not shown), and may not be as

sensitive for identifying sequence-specific 39UTR effects. Due to

the increased noise, we repeated the analysis and performed new

clone preparations and transfections for a subset of the IPO8

haplotypes. The replicate data also show a significant (p-

value = 0.007) difference, in the same direction, between haplo-

types defined by their 1147 (or 1195) allele (Figure S12).

Discussion

Genetic analyses of gene expression have great potential to

facilitate insights into the genetic basis of complex traits. However,

the utility of these data are limited by the extent to which the

discovered associations correspond to legitimate, reproducible

associations. Our estimates of 49% (UC vs. UW), 57% (UC vs.

Merck), and 67% (UC vs. either) cis-eQTL reproducibility are

substantially lower than two recent reports between two mouse

crosses (76%, [27]), two independent sets of lymphoblastoid cell

lines (83%, [25]), and two sets of primary human skin (.99%,

[26]). Several non-exclusive possibilities likely contribute to these

discrepancies. First, different discovery methodologies and repli-

cation criteria were employed in each study. Second, our studies

were performed on different expression platforms (Agilent and

Illumina), which reduces the influence of reproducible platform-

specific errors but may result in missing splice-variant-specific

eQTLs [40,41,10] as array manufacturers often target different

exons in a given gene. However, this is likely to have a limited

effect, as we found that the replication rate was not significantly

different for genes assessed by probes within the same exon (Figure

S10). Third, we compared three independent collections of

primary human tissues (see Methods), not transformed cell lines

or mouse tissues, and, despite the interpretive advantages

associated with the former, our replication rate estimate is possibly

downwardly biased by cell type heterogeneity. Finally, other

systematic differences between studies, including protocols for

sample collection and storage, clinical interventions taken by

patients prior to death and autopsy, causes of death, life histories,

etc., may contribute to non-reproducibility. This hypothesis is

supported by the observation that drug exposures and other

clinical covariates, for which data limitations prevent comprehen-

sive analysis, have substantial effects on gene expression; for

example, we found that drug metabolism genes were significantly

up-regulated in barbiturate-exposed vs non-exposed livers (data

not shown). The striking difference in reproducibility between the

results reported here and a recent report quantifying the overlap of

human skin eQTLs [26], suggests that the degree of functional

tissue heterogeneity may vary substantially across tissues.

An important caveat is that these estimates of reproducibility

are less meaningful for sequence-based studies of gene expression,

which offer advantages in dynamic range and measurement

accuracy [9,10]; sequencing is also largely immune to the SNP-in-
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probe effect that significantly inflates false positives in our data

(Figure 3C). However, the observation that age, sex, race, drug

exposures, clinical covariates, and other global factors have such

strong influences on expression (e.g., this study and [36,2]) coupled

with observations in other studies and different tissues that factors

like cause of death are relevant [42], suggests that much of the

non-reproducibility is in fact driven by systematic differences in

tissue source. Such differences will likely be important to all studies

of primary tissue samples, whether assayed by arrays or by

sequencing. The reproducibility of future results would benefit

from analysis of samples from multiple centers with as much

clinical information as possible. Furthermore, our results confirm

previous observations that the effects of unknown, unmeasured, or

unquantified covariates can confound genetic effects with

structured error sources [19,36,2], and that controlling for these

hidden confounders substantially boosts the rate of eQTL

discovery [23]. Importantly, we demonstrated that not only are

more eQTLs detected but that their reproducibility in indepen-

dent collections of primary human tissue was also significantly

higher.

Figure 5. Fine-mapping functional results. Functional fine-mapping results for three genes, presented in columns: PRMT6 (A, D, G), LDHC (B, E,
H), and IPO8 (C, F, I). (A–C) Cis-eQTL scan results are plotted across each gene region with chromosomal coordinates on the x-axis BF on the y-axis.
Genotyped SNPs are plotted in black, imputed SNPs in grey, promoter SNPs in green, and 39UTR SNPs in orange. The extent of each gene is plotted in
a red rectangle near the X-axis. Association data from the UC study plotted as triangles and from the UW study as circles. (D–F) Putative eQTNs
identified by promoter and 39UTR resequencing. Microarray expression measurements (residuals after regression against covariates, y-axis) for each
sample, plotted by genotype at the best-associated (ranked by p-value) SNP within the resequenced regions. Colors of the points correspond to the
luciferase data. (G–I) Luciferase reporter results. Normalized luciferase measurements (y-axis) are plotted for each tested clone corresponding to a
given haplotype (indicated by color). Blue and red coloring corresponds to the identity of each haplotype at the most strongly correlated individual
SNP (same as in the middle row), while varying shades of red and blue differentiate haplotypes that differ at other SNPs. Vectors for each haplotype
were prepared multiple independent times (data for each mini-prep are organized into a single column) and each mini-prep was transfected and
measured four times (each open circle indicates one of these 4 measurements). The mean luminescence for each mini-prep is shown as a solid circle.
doi:10.1371/journal.pgen.1002078.g005
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Finally, through resequencing and a widely used in vitro assay

system [43], we found that of 14 tested genes, two genes

harbored functional eQTNs in the proximal promoter and one

gene harbored functional eQTNs in the 39UTR. The success

rate of 3 in 14 suggests that a substantial number of eQTLs, and

by extension any complex traits that they may influence, can be

functionally isolated using the scalable assay system that we

employed or potentially higher-throughput assays [44]. We note

that some truly functional variants will not be detectable in these

assays, either from being tested out of their genomic context or

having effect sizes below the limit of detection afforded by the

number of replicates used (e.g. [45]), and that the actual fraction

of eQTLs with promoter or 39UTR functional variation may be

substantially higher. Considering that replication was signifi-

cantly greater for eQTLs near the ends of genes relative to those

further away (Figure 3D), our functional analysis also strongly

supports the use of SNP to gene distance as an important

contributor to the prior probability that any given SNP is a cis-

eQTN [37]. While some eQTNs clearly reside outside these

regions (e.g., [46]), the heavy enrichment for reproducible and

experimentally tractable eQTNs, coupled with historical

evidence supporting disease relevance [47,48], suggests that

the relatively small ‘promoter’- or ‘39UTR’-ome target spaces

may be valuable additions to exome-based disease resequencing

efforts [49].

Given the ubiquitous importance of gene expression variance

to phenotype, the known heritability of gene expression

variance, and the great preponderance of non-coding functional

elements in the genome [50], complex disease studies can

benefit from eQTL analyses. Towards that end, we searched for

correlations between replicated eQTL SNPs identified here and

complex trait associated SNPs (R2.80%; Table 2, Table S4) in

the NHGRI GWAS catalog (http://www.genome.gov/gwastu-

dies/). These included several previously characterized mech-

anistic links to complex traits, such as VKORC1 expression and

warfarin drug response [51] and SORT1 expression correlations

with lipid levels and heart disease [13], both of which were

originally identified using the UW liver panel described here.

Additionally, these data support a relationship, which had

previously been speculated but not shown to exist, between

NOD2 expression levels and leprosy risk [48], and novel

hypotheses such as a link between expression of the unchar-

acterized C2orf43 gene and prostate cancer risk [52].

In summation, our data facilitate insights into the factors and

experimental design criteria that affect eQTL reproducibility and

may improve future eQTL studies, replicate many published but

nonreplicated eQTLs (e.g. from [31]), support and extend eQTLs

identified in other tissues like brain (e.g. FAM119B [53]), identify

many novel reproducible liver eQTLs, show that promoters and

39UTRs are enriched for experimentally accessible functional

variation, and support or suggest numerous mechanistic links to

biomedically important phenotypes. We believe that this study and

others like it will be valuable to the robust discovery and fine-

mapping of the genetic basis for complex human diseases.

Methods

Ethics statement
Research conducted in this study was performed on deceased,

anonymous individuals and is therefore not considered to involve

‘human subjects.’ Samples were collected with approval of

institutional review boards (IRBs) and the University of Chicago

and University of Washington IRBs approved their use for the

purpose of this study.

Tissue procurement—UC
Livers were processed through Dr. Mary Relling’s laboratory at St.

Jude Children’s Research Hospital, part of the Pharmacogenetics of

Anticancer Agents Research (PAAR) Group, and were provided by

the Liver Tissue Cell Distribution System funded by NIH Contract

#N01-DK-7-0004/HHSN267200700004C and by the Cooperative

Human Tissue Network. Samples were collected with approval of

institutional review boards (IRBs) and the University of Chicago IRB

has approved their use for the purpose of this study.

Analysis began with 240 normal (non-diseased) livers that were

collected from unrelated donors of self-reported European and

African descent. Most of the liver tissue samples come from donor

livers that were not used for whole organ transplants, the remainder

being from liver tissue which remains following a partial graft into a

smaller recipient, usually a pediatric patient. As such, each liver is

procured with the intent to transplant under the best possible

conditions to maintain cell viability. Standardized procedures have

been in place for handling, freezing and storage of the livers and

their subcellular fractionation and enzyme characterization.

Demographic information is summarized in Table 1.

Tissue procurement—UW
The University of Washington IRB approved the collection of

the liver tissues and their subsequent use for the purposes of this

study. Samples of human liver were obtained from organ donors

through the University of Washington Transplant Program and

the Northwest Organ Procurement Agency. Consent for research

was obtained in all cases. Standard procedures were employed for

the handling, freezing and storage of the livers.

Gene expression analysis—UC
Gene expression microarray experiments were conducted with

biological replication in all samples. Sample processing order was

randomized. For each sample, total RNA was extracted at least

twice independently, from tissue homogenized in TRIzol reagent,

followed by Qiagen RNAeasy cleanup (Qiagen). RNA quality was

assessed by Bioanalyzer (minimum RIN = 7). cRNA was produced

using the Agilent Low-Input Linear amplification and labeling kit.

Array hybridizations (Agilent-014850 4644 k arrays, GPL4133)

were performed at The University of Chicago, Argonne National

Labs high throughput genome analysis core facility, according the

manufacturers instructions. The Agilent FE software was used to

extract feature intensities and to flag saturated, non-uniform, and

outlier features. Probe intensity was adjusted by subtracting

background intensity using the minimum method [54,55] and

quantile normalized between arrays [56]. Dixon’s outlier test was

used to remove 13 arrays (out of a total of 517) based on total

number of flagged probes, intra-array variance, inter-array

variance, biological replicate variance, and spike-in linearity [57].

Probes were grouped into probe sets by aligning first to RefSeq

gene annotations and then aligning unmapped probes to the human

reference genome (build 36). All probes with non-unique best

alignments were excluded from further analysis. Multiprobe

probesets were hierarchically clustered using one minus the pearson

correlation coefficients as a distance matrix. Clusters were divided

into groups by cutting clusters at a dendrogram height of 0.5

(roughly producing clusters with internal correlation coefficients

.0.5). All downstream analyses were performed independently on

each resulting cluster and all single probe probesets.

Gene expression analysis—UW
Total RNA was extracted from 60 human liver tissue samples

from the University of Washington School of Pharmacy Human
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Liver Bank as previously described [51,13]. Genome wide

expression analysis was performed using 750 ng of total RNA on

the Illumina HumanRef-8 v.2 platform (GPL5060). All liver

samples were analyzed with technical replicates that were

randomized between processed batches of 24 arrays performed

on different days. Raw signal intensity measurements from each

sample were processed using the Illumina BeadStudio software v.

2.3.41 using the ‘average’ normalization function. Replicate data

from each liver was averaged prior to statistical analysis. All

samples and replicates passed quality-control measures.

Gene expression analysis—Merck
Processed gene expression data from the published Merck liver

eQTL study [31] were downloaded from GEO (GSE9588,

GPL4371). Based on available sample metadata, 266 samples

had (a) unambiguous sample ID, age and sex assignments (b)

expression data, (c) genotype data, and (d) did not overlap with the

UC study. Probes were grouped into RefSeq gene annotation

probe sets based on the array manifest. Probesets were further

clustered and split following the methodology used for the UC

array set.

Genotyping—UC
From the same liver samples received from the Liver Tissue

Resource, DNA was obtained from 240 samples for genotyping.

Genotyping was performed on the Illumina human 610 quad

beadchip platform (GPL8887) at the Northwestern University

Center for Genetic Medicine Genomics Core Facility according to

the manufacturer’s instructions. One sample was removed because

it had a no call rate .10%. The initial marker set comprised

620,901 markers. 8,300 markers were removed because they

showed significant deviation from Hardy-Weinberg equilibrium

Table 2. Selected overlap between liver eQTLs and GWAS SNPs.

Traits GWAS SNPs eQTL SNP Chr eQTL Gene UC BF Replication?

LDL cholesterol, Blood lipid traits, Coronary heart
disease

rs12740374; rs660240; rs629301;
rs646776; rs599839

rs12740374 1 SORT1 30.553 UW, Me

Body mass index rs10838738 rs3817335 11 MTCH2 28.316 Me

Systemic lupus erythematosus rs9271100 rs9271100 6 HLA-DRB5 23.186 UW

Height rs10935120 rs11919350 3 ANAPC13 20.007 UW, Me

Activated partial thromboplastin time rs2731672 rs2731672 5 F12 18.961 UW, Me

LDL cholesterol, Blood lipid traits, Coronary heart
disease

rs12740374; rs660240; rs629301;
rs646776; rs599839

rs12740374 1 CELSR2 18.657 UW, Me

Meningococcal disease rs426736 rs1065489 1 CFHR4 17.785 Me

Warfarin maintenance dose rs10871454; rs9923231 rs2303222 16 VKORC1 15.939 UW, Me

Cholesterol, total rs10903129 rs1053438 1 TMEM50A 14.231 UW

Other erythrocyte phenotypes rs2075671 rs11520986 7 GIGYF1 13.964 UW

Prostate cancer rs13385191 rs13385191 2 C2orf43 13.87 UW, Me

Multiple sclerosis rs703842 rs8181644 12 TSFM 12.711 UW, Me

QT interval rs37062; rs7188697 rs4784051 16 SETD6 12.174 Me

Height rs9487094 rs9487100 6 SMPD2 11.478 Me

Leprosy rs9302752 rs9302752 16 NOD2 10.603 UW, Me

Chronic kidney disease rs1933182 rs4970767 1 ATXN7L2 10.004 UW, Me

Hematological parameters rs210135 rs210142 6 BAK1 9.517 UW, Me

Primary tooth development (number of teeth) rs6504340 rs7207109 17 HOXB2 9.07 UW, Me

Multiple sclerosis; Height rs1790100; rs11830103 rs1060105 12 CDK2AP1 8.968 UW, Me

Vertical cup-disc ratio; Esophageal cancer and
gastric cancer

rs1547014; rs738722 rs1547014 22 CHEK2 8.827 Me

Height rs10935120 rs9968172 3 CEP63 7.354 UW, Me

Type 1 diabetes rs3825932 rs11638844 15 CTSH 7.25 UW, Me

Pulmonary function rs10516526 rs10516525 4 INTS12 6.887 UW

Height rs6060369; rs6060373; rs6088813 rs6141548 20 UQCC 6.824 UW, Me

Height rs4886707 rs10220738 15 MAN2C1 6.441 Me

Cholesterol, total rs10903129 rs12027135 1 RHCE 6.334 Me

Plasma coagulation factors rs867186 rs867186 20 PROCR 6.077 Me

Bipolar disorder rs11622475 rs11625697 14 TDRD9 5.742 UW, Me

Bone mineral density (spine) rs2016266; rs10876432 rs6580942 12 ESPL1 5.689 Me

Mean corpuscular hemoglobin rs11085824 rs11085825 19 GCDH 5.569 UW, Me

Conduct disorder (interaction) rs2282301 rs12037177 1 RIT1 5.521 UW, Me

Factor VII rs561241 rs7981123 13 F7 5.477 UW, Me

doi:10.1371/journal.pgen.1002078.t002
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(HWE, Fischer’s exact test, p,0.001). 29,705 SNPs were removed

from the analysis because they had a no call rate in more than

.10% of the samples. Hence, our final marker set is comprised of

583,073 SNPs. Identity by descent analysis, performed in Plink,

revealed 14 pairs of duplicated samples. Erroneous, redundant

sample collection was later confirmed by the tissue bank.

Genotype and expression data for these samples were merged

for all downstream analyses. The final sample set therefore

consisted of 225 unique samples.

Genotyping—UW
Genotyping was performed on each liver sample using the

Illumina HumanHap550 (GPL6981) Beadchip platform. Geno-

typing calls were made using GenomeStudio. After raw genotyp-

ing data were loaded into the software, pre-defined cluster

definitions were applied and genotype calls were determined.

Clusters were checked for separation, deviation from HWE, and

lack of variation (i.e., monomorphic). Poorly assigned clusters were

modified manually and sites were re-called with corrected cluster

definitions. All samples had call rates greater than 98%.

Genotyping—Merck
Genotype data were generated as described [31].

Sex confirmation
The sex of each sample was imputed by K-means clustering of

Y-linked gene expression levels and X- and Y-linked genotypes. 3

UC samples, 0 UW samples, and 0 Merck samples had

mismatched imputed and annotated sexes, and were therefore

excluded from all analyses.

Genotype imputation
For all three studies, care was taken to translate all genotypes to

reference genome (b36) forward strand alleles, as subtle errors in

genotype strand inference will downwardly bias replication rate

estimates. Additional genotypes were imputed with Bimbam (v

0.99) [58], using HAPMAP release 27, build 36 unphased

genotypes as reference panels. European American genotypes

were imputed with a CEPH reference panel, while African

American genotypes were imputed with a combined CEPH and

YRI panel. Imputation was run with default Bimbam parameters,

and mean imputed genotypes were recorded and used for all

downstream analyses.

Quantification of ancestry—UC
We performed a principal component analysis (PCA) based

quantification of race using the African and European populations

from the Human Genome Diversity panel as reference popula-

tions. The SNP set was trimmed using linkage disequilibrium

(LD)-based SNP pruning, removing all SNPs for with high

pairwise LD (R2.0.8), as in [59]. PCA was performed using

smartpca, as implemented in EIGENSOFT [60]. Four samples

were flagged as outliers and removed from all further analyses. As

expected, the first principal component separated African from

non-African individuals. We therefore used this loading vector as

an estimated quantification of African ancestry for further

analyses.

Quantification of ancestry—UW
PCA was performed using the multi-dimensional scaling

procedure implemented in PLINK v1.06 (http://pngu.mgh.

harvard.edu/purcell/plink/) [61]. The vast majority of samples

resided in a single cluster including all the individuals of self-

reported European ancestry, with several moderately outlying

samples corresponding to self-reported Hispanic and African

ancestry. No samples were excluded from further analyses; the

vectors determined for the first two principal components were

used as ancestry control for all statistical analyses.

Quantification of ancestry—Merck
All 266 samples included from the published Merck study were

self-reported Caucasians. The SNP set was trimmed using linkage

disequilibrium (LD)-based SNP pruning, removing all SNPs for with

high pairwise LD (R2.0.8), as in [59]. PCA was performed using

the multi-dimensoinal scaling procedure implemented in PLINK

v1.07 (http://pngu.mgh.harvard.edu/purcell/plink/) [61]. No

outliers were detected; the vectors determined for the first four

principal components were used as ancestry control for all statistical

analyses.

Covariate modeling—UC
For each probeset, surrogate variable analysis (SVA) [20] was

performed on the matrix of expression measurements, after

controlling for the effects of hybridization protocol, age, sex, and

a principal component analysis based quantification of genetic

ancestry. For each probeset, we then constructed a linear mixed

effects model y , m + P + A + C + R + I + W + SVi..n + e, where y is

the log2 transformed probe intensity, m is the expected probe

intensity, P is a factor controlling for the effect of subtle variations

in hybridization protocol (e.g., the identity of the technician who

performed the experiment), A is the effect of individual age, and C

is the effect of individual sex, and R is the effect of genetic ancestry.

I is the random effect of each individual, W is the random effect of

the oligonucleotide probe, SVi..n represents the effects of a matrix

of 55 surrogate variables, and e is the residual error. The model

was fitted to each gene by residual maximum likelihood using the

lmer function in the R package lme4 (v 0.999375-32) [62,63].

Fixed effect p-values were estimated using the pvals.fnc function in

the languageR package (v 1.0) [64]. The significance of covariate

effects was assessed by estimating false discovery rates, using

Storey’s q-value method [65]. To further control for the effects of

outliers and population stratification, prior to eQTL mapping, the

distribution of estimated individual effects, for each gene

expression trait, was normal quantile transformed, within

populations.

Covariate modeling—UW
SVA [20] was performed on the matrix of expression

measurements, after controlling for the effects of age, sex, and a

multidimensional scaling based quantification of genetic ancestry.

For each probe, we constructed a linear model y , m + A + C + R

+ SVi..n + e, where y is the log2 transformed probe intensity, m is the

expected probe intensity, A is the effect of individual age, and C is

the effect of individual sex, and R is the effect of genetic ancestry,

SVi..n represents the effects of a matrix of surrogate variables, and e

is the residual error. Models were implemented with the lm

function in R. The residuals from this regression were used as the

phenotype values for all subsequent analyses.

Covariate modeling—Merck
SVA [20] was performed on the matrix of expression

measurements, after controlling for the effects of age, sex, and a

principal component analysis based quantification of genetic

ancestry; 54 significant surrogate variables were identified. For

each probeset, we then constructed a linear model y , m + A + C +
R + W + SVi..n + e, where y is the log2 transformed probe intensity,
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m is the expected probe intensity, A is the effect of individual age,

and C is the effect of individual sex, and R is the effect of genetic

ancestry, W is the effect of the oligonucleotide probe, SVi..n

represents the effects of a matrix of surrogate variables, and e is the

residual expression. Models were implemented with the lm

function in R. The residuals from this regression were used as

the phenotype values for all subsequent analyses.

eQTL mapping
For each gene expression trait, residual expression variance was

treated as a quantitative trait and tested for association with all

markers genome-wide. Association testing was performed by

Bayesian regression, as implemented in Bimbam (v 0.99), using

mean imputed genotypes and default priors [28,29]. Genotypes

with minor allele frequencies less than 1% were excluded.

Probe resequencing
For 15 probes that showed discrepant eQTL scores between the

UC and UW analyses (i.e. BF.4 in one study and BF,4 in the

other), we designed primers to capture the relevant expression

array probe and amplified and Sanger-sequenced the resulting

PCR products in each of the 60 UW liver samples and 35 CEU

HapMap samples. SNPs were identified as previously described

(http://pga.gs.washington.edu/) including both automated pre-

diction and manual curation.

Fine-mapping
We resequenced the promoter and 39UTR regions within the

60 UW liver samples and 35 CEU HapMap samples for 18 genes

that showed strong expression-SNP correlations within the UW

data (selected before replication information was available). We

used PCR amplification and Sanger-sequencing, identifying SNPs

using both automated prediction and manual curation as

previously described (http://pga.gs.washington.edu/). 39UTRs

were defined using the appropriate gene models, while promoters

were defined as the 1 kb segment upstream of the annotated

transcriptional start site. We subsequently defined haplotypes

within each promoter and 39UTR as previously described using

Phase [58], and designated as common all haplotypes present in at

least two samples.

Common haplotypes for each of 14 promoter and UTR regions

were PCR-amplified and cloned into luciferase-reporter vectors.

Promoter haplotypes were cloned immediately upstream of the

luciferase reporter gene, while 39UTRs were placed at the 39 end

of a luciferase gene whose expression is driven by the RPL10

promoter that has strong constitutive activity (vector maps

available from SwitchGear Genomics, http://switchgeargenomics.

com/resources/vector-maps/). We then transfected each of these

constructs into HEPG2 cells, a liver-derived cell line, and

measured luminescence. Each haplotype was tested using multiple

(mode = 3) vector preparations and 4 technical transfection

replicates measurements were obtained for each vector prepara-

tion (12 or more measurements for most haplotypes).

Transient transfection reporter assays were all performed in 96-

well format. Transfection complexes were formed by incubating

100 ng of each individual promoter construct with 0.3 mL of

Fugene 6 transfection reagent and Opti-MEM media in a total

volume of 5 mL and incubated for 30 min. Transfection complexes

(5 uL) were added to 10,000 HepG2 cells in 96-well format that

had been seeded 24 h prior to transfection in a white tissue-culture

treated plate.

After seeding and transfection, cells were incubated for 48 h

before freezing at 280 degrees overnight. To read luminescent

activity, plates were thawed for 45 min at room temperature.

Then 100 mL of Steady-Glo reagent (Promega #E2520) was

added and incubated for 30 min at room temperature. Then

luminescence was read for 2 s per well on a 384-well compatible

plate luminometer (Molecular Devices LMax384).

To identify significant in vitro effects of haplotype on luminescence,

we employed a mixed-effects model using the lmer package [63]

within R [62], grouping the replicate luminescence measurements by

mini-prep identifier (treating the mini-prep as a random effect). The

haplotype identifier has a significant effect on luminescence at p-

value,0.001 for each of the three reported associations between

haplotype sequence and luminescence measurement. No additional

correlations were significant at this threshold.

Supporting Information

Figure S1 UW best SNP analyses. (A) Number of gene traits (y-

axis) with best associated cis-eQTLs in bins of increasing

association significance (x-axis). (B) Distribution of distances from

each gene’s best associated SNP to its transcription start site (TSS).

Negative and positive values denote SNPs 59 and 39 of TSS,

respectively. (C) Distribution of linear regression SNP-expression

association t-test p-values from the UC (red) and Merck (blue)

sample sets for all genes and their most associated cis-SNP in the

UW study. Gene counts (y-axis) are plotted per p-value bin (x-

axis). Data are plotted for all eQTLs (thin lines) and for significant

eQTLs (heavy lines). (D) Between study cis-eQTL effect

replication rate (y-axis) plotted as a function of UW cis-eQTL

significance threshold (x-axis). UW vs. UC (red), UW vs. Merck

(blue), and UW vs. either (green) replication rates are plotted

separately . (E) cis-eQTL replication rate (y-axis) as a function of

distance from the best associated SNP to the gene TSS (x-axis).

Data are plotted separately for eQTLs with BFs.0 (grey) and

BFs.5 (black). eQTLs were binned in 2.5% quantiles; mean

(circle) and standard error of the mean (bar) are plotted for each

bin. (F) cis-eQTL replication rate (y-axis) as a function of the linear

model minor allele count fixed effect coefficient (x-axis). Data are

plotted as in E. (G) Between study cis-eQTL effect correlation

coefficient (y-axis) plotted as a function of UW cis-eQTL

significance threshold (x-axis). UW vs. UC (red), UW vs. Merck

(blue).

(EPS)

Figure S2 Mean square (MS) distributions for each factor across

all three studies. For the UC (red), Merck (blue), and UW (green)

datasets, the average MS value for all genes is plotted (open circles,

y-axis) for each indicated covariate (x-axis) in a model that includes

all covariates, Error bars are drawn from one standard error

(s.e.m) above to one standard error below the mean.

(EPS)

Figure S3 Examples of age- and sex-associated genes. Surrogate

variable adjusted per-probe, per-sample residual expression data

are depicted for six genes. Three genes (top row: CD40, FGF2,

HDAC1) are significantly associated with sex and three genes

(bottom row: PPARA, HRAS, TMEM22) are significantly associat-

ed with age. Each point represents the expression level of a single

individual, as measured by a single gene expression probe. Data

from males are plotted in black, females in red. Linear regression

coefficient t-test p-values are provided.

(EPS)

Figure S4 Correlation of covariate effects. (A,B) Correlation

coefficient (y-axis) for sex (A) and age (B) regression coefficients as

a function of discovery sample association p-value (x-axis), plotted

separately for UC-UW (red) and UC-Merck (blue) comparisons.

(EPS)
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Figure S5 Comparison of singly and doubly replicating cis-

eQTLs. (A) Effect size and (B) Bayes Factor distributions for singly

and doubly replicated eQTLs.

(EPS)

Figure S6 Alternate replication metrics for eQTLs. (A)

Correlation coefficient between linear model minor allele count

fixed effect regression coefficients (y-axis) as a function of

discovery sample cis-eQTL significance (x-axis). Correlations

were calculated separately between UC and UW (red) and

between UC and Merck (blue). Imputed cis-eQTL SNPs are

plotted in dashed lines and directly genotyped SNPs are plotted

in blue. (B) Concordance rates between linear model minor

allele count fixed effect regression coefficients (y-axis) as a

function of discovery sample cis-eQTL significance (x-axis).

Concordance was calculated separately between UC and UW

(red), between UC and Merck (blue), and between UC and

either Merck or UW (green). Note that we adjusted the raw

concordance rates to account for the fact that 50% of all false

positives would replicate using this definition for a single

replication panel and 75% would replicate in the ‘either’

category (50% of false positives using one replication panel,

50% of the remainder using the second). So, for example, a

concordance rate of 80% between UC and a given replication

panel results in a replication estimate of ,60%, since we assume

that the 20% of eQTLs that are discordant represent only half

of all false positives. Similarly, a concordance rate of 90% using

an ‘either’ standard also results in a replication estimate of 60%,

since we assume that the 10% of effects that are discordant

represent only a quarter of all false positives.

(EPS)

Figure S7 Examples of replicating and non-replicating cis-

eQTLs. Residual gene expression (left y-axis) or raw gene

expression measurements (right y-axis) plotted as a function of

minor allele count (x-axis). Left column depicts UC data, center

column Merck data, and right column UW data. Three UC cis-

eQTLs that (A) replicate in UW but not Merck, (B) replicate in

Merck but not UW, (C) that replicate in neither study, and (d) that

replicate in both.

(TIF)

Figure S8 Simulation based estimates the relationship between

effect size bias (winner’s curse) and replication rate. (A) Age (+23

years), sex, and race matched sets of 60 individuals were sampled

from the UC data set and used to calculate a baseline replication

rate. Replication rate (y-axis) is plotted as function of the ratio of

full-dataset to resampled minor allele fixed effect coefficients (x-

axis). Data are plotted separately for cis-eQTL sets that were

thresholded at varying BF values. (B) The distribution of observed

to resampled minor allele fixed effect coefficients were binned (x-

axis) and the density of simulations per bin is plotted on the y-axis.

As in (A), data are plotted separately for cis-eQTL sets that were

thresholded at varying BF values.

(EPS)

Figure S9 Distribution of SNPs within and flanking Agilent,

Illumina expression probes. Distribution of SNP counts (y-axis) at

varying distances from the start coordinate of each expression

probe (x-axis), depicted for both the Agilent (A) and Illumina (B)

expression arrays. Black bar delineates the extent of the probe

sequence. Note that Agilent and Illumina probes are 60 and 50

nucleotides long, respectively.

(EPS)

Figure S10 Expanded analysis of determinants of replication

probability. (A) Between study cis-eQTL effect replication rate

(y-axis) plotted as a function of UC cis-eQTL significance

threshold (x-axis). Data are plotted separately for probes sets for

which both the UC and UW expression array probes target the

same exon (grey) and those for which they target different exons

(black). Differences are not significant. (B–H) Replication rate

between the UC and UW or Merck studies (y-axis) for all cis-

eQTLs with BF.0 (grey), BF.5 (black), and BF.10 (blue)

whose probes overlap a known polymorphism. (B) Cis-eQTLs

are binned by the distance of the SNP from the 59 end of the

microarray expression probe (x-axis). Mean replication rate

(points) and standard error of the mean (lines) are plotted per

bin. (C) Cis-eQTLs are binned by the number of known

polymorphisms overlapping the expression probe (x-axis).(D) Cis-

eQTLs are binned by mean log2 gene expression level (x-axis).

(E) Cis-eQTLs are binned by the coefficient of variation of log2

gene expression levels (x-axis). (F) Cis-eQTLs are binned by the

linear model minor allele count fixed effect regression coefficient

(x-axis), as estimated from the discovery samples. (G) Cis-eQTLs

are binned by the mean residual linear model variance (x-axis),

after adjusting for demographic and technical covariates. (H)

Cis-eQTLs are binned by minor allele frequency (x-axis). (I)

Between study cis-eQTL effect replication rate (y-axis) plotted as

a function of UC cis-eQTL significance threshold (x-axis). UC

vs. UW (red), UC vs. Merck (blue), and UC vs. either (green)

replication rates are plotted separately . Replication rates are

plotted separately for SNPs that were directly genotyped (dashed

lines) and those that were imputed (solid lines). (J) UC-UW cis-

eQTL effect replication rate (y-axis) plotted as a function of UC

cis-eQTL significance threshold (x-axis). Replication rates are

plotted separately for SNP pairs for which both SNPs were

directly genotyped (red), both SNPs were imputed (green), and

for which one SNP was imputed and one was directly genotyped

(blue). (K) UC-Merck cis-eQTL effect replication rate (y-axis)

plotted as a function of UC cis-eQTL significance threshold (x-

axis). Replication rates are plotted separately for SNP pairs for

which both SNPs were directly genotyped (red), both SNPs were

imputed (green), and for which one SNP was imputed and one

was directly genotyped (blue). (L) Replication rate between the

UC and UW or Merck studies (y-axis) for all cis-eQTLs with

BF.5. Cis-eQTLs are binned by minor allele frequency (x-axis)

and plotted separately for imputed (orange) and directly

genotyped (black) SNPs.

(EPS)

Figure S11 Imputation quality and replication. (A–C) Histo-

grams depicting the number of imputed (red) and directly

genotyped (blue) SNPs (y-axis) binned by the ratio of observed

over expected genotype variance (x-axis). Expected genotyped

variance calculated based on observed HAPMAP genotype

frequencies. Data are plotted separately for UC (A), UW (B),

and Merck (C) genotypes. (D) Replication rate between the UC

and UW or Merck studies (y-axis) for cis-eQTLs with BF.0 (grey),

BF.5 (black). Cis-eQTLs are binned by the UC ratio of observed

to expected (based on CEU minor allele frequencies) genotype

variance (x-axis). (E) Replication rate between the UC and UW (y-

axis) for cis-eQTLs with BF.0 (grey), BF.5 (black). Cis-eQTLs

are binned by the UW ratio of observed to expected genotype

variance (x-axis). (F) Replication rate between the UC and Merck

(y-axis) for cis-eQTLs with BF.0 (grey), BF.5 (black). Cis-eQTLs

are binned by the Merck ratio of observed to expected genotype

variance (x-axis).

(EPS)

Figure S12 Replication of IPO8 39 UTR expression effect.

Reporter construct clones from each 39 UTR haplotype were
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prepared and transfected independently of the data presented in

Figure 5. Data depicted as in Figure 5, bottom panel.

(TIF)

Table S1 All gene eQTLs. Each gene and all three studies,

covariate effects, eQTL effects, linear model coefficients, Bayes

Factors, SVA effects, and UC best-associated SNP annotation.

(BZ2)

Table S2 Expression probe re-sequencing.

(XLSX)

Table S3 Luciferase results table.

(XLSX)

Table S4 Extended overlap of GWAS associations and liver

eQTLs, including all UC best-associated gene-SNP pairs regard-

less of BF or replication status.

(XLSX)
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