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Abstract

Despite rapid advances in genomic technology, our ability to account for phenotypic variation using genetic information
remains limited for many traits. This has unfortunately resulted in limited application of genetic data towards preventive
and personalized medicine, one of the primary impetuses of genome-wide association studies. Recently, a large proportion
of the ‘‘missing heritability’’ for human height was statistically explained by modeling thousands of single nucleotide
polymorphisms concurrently. However, it is currently unclear how gains in explained genetic variance will translate to the
prediction of yet-to-be observed phenotypes. Using data from the Framingham Heart Study, we explore the genomic
prediction of human height in training and validation samples while varying the statistical approach used, the number of
SNPs included in the model, the validation scheme, and the number of subjects used to train the model. In our training
datasets, we are able to explain a large proportion of the variation in height (h2 up to 0.83, R2 up to 0.96). However, the
proportion of variance accounted for in validation samples is much smaller (ranging from 0.15 to 0.36 depending on the
degree of familial information used in the training dataset). While such R2 values vastly exceed what has been previously
reported using a reduced number of pre-selected markers (,0.10), given the heritability of the trait (,0.80), substantial
room for improvement remains.
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Introduction

Few examples exist of findings from Genome Wide Association

Studies (GWAS) being applied to preventive and personalized

medicine. Despite the success of GWAS in the discovery of many

novel disease variants, the variants identified as being statistically

significant typically account for minimal fractions of the genetic

variance, even for highly heritable traits [1]. This so-called

‘‘missing heritability’’ has prompted a wide array of explanations,

ranging from poor modeling (e.g., unaccounted epistatic effects)

[2,3], insufficient sample sizes [4], sparse genetic coverage [5], rare

variants [6], undetected CNV effects [7], and over-estimated

heritability [1,8,9]. While all of these problems (and possibly others

[10]) likely contribute to some extent [11], recent articles by Yang

et al. [12] (hereafter, the Yang Study), and others [13,14] suggest

that the primary culprit may be a mismatch between the actual

genetic architecture and the statistical techniques applied.

Typically, predictive models from GWAS are constructed using

a small number of Single Nucleotide Polymorphisms (SNPs) that

have been pre-selected using extremely low p-values derived from

single-marker regressions. This approach is most sensible under

the assumption that only a few loci affect the trait of interest;

however, it performs poorly for complex traits [14,15], which

could be subtly affected by many loci [16]. Drawing on methods

commonly used in animal breeding [17], the Yang Study built a

model for human height (a model trait that has recently received

much attention because of its high heritability and relatively

reliable phenotyping) with hundreds of thousands of SNPs jointly

considered (see Visscher et al. [18] for an expanded commentary

on the methodology employed).

Using a Whole Genome Prediction (WGP) method, the authors

from the Yang Study estimated that common SNP variation

(through Linkage Disequilibrium (LD) with causal polymorphisms)

explained 45% of the phenotypic variance, thus accounting for

more than 50% of the expected heritability of height, which is

reported to be approximately 80% [19,20]. These results suggest

that the underlying genetic architecture of human height likely

consists of numerous polymorphisms of small effect, resembling

the infinitesimal model of quantitative genetics [21,22]. Recent

studies suggest similar conclusions for other complex traits,

including schizophrenia and bipolar disorder [23], blood lipid

levels [24], and body mass index [25], suggesting a broader utility

for the approach of WGP methods to account for genetic variance

of important complex human traits.

The results of the Yang Study are particularly exciting due to

their implications for eventual application to preventive and

personalized medicine. However, a remaining question is the

extent to which WGP methods improve the prediction of yet-to-be

observed phenotypes, given the distinction between proportion of

variance accounted for (as a measure of goodness of fit) and

predictive accuracy (Figure 1). Heritability estimates can be

regarded as measures of goodness of fit (see Materials and
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Methods for a discussion), yet it is well known that increasing

goodness of fit will not necessarily lead to increased predictive

accuracy in future samples, due to issues such as over-fitting [26].

In this study, we examine the relationship between estimates of

variance accounted for and predictive ability using WGP methods.

Using three different statistical approaches and validation designs,

we examine how these relationships change as a function of the

density of SNPs included, the size of the training sample, and the

degree of familial information included in the training sample.

Results

Using data from the Framingham Heart Study [27,28], we built

models for the age and sex adjusted height of 5,117 adults using

between 2,500 and 400,000 SNPs. Participants included in our

analyses were individuals greater than 18 years old from the

original (N = 1,493) or the offspring (3,624) cohorts; 2,311

individuals were male and 2,806 were female. Height ranged

from 141.6 cm to 198.1 cm with a mean of 167.4 cm

(SD = 9.5 cm). Markers were incorporated into statistical models

in two ways: (i) regression of adjusted height on marker genotypes

via the Bayesian LASSO (BL) [29] ; (ii) Bayesian random effects

models using a marker-based (realized) relationship matrix

between individuals (G). There are multiple ways to map marker

genotypes into G and none is considered generally superior. Here

we considered those used by Hayes and Goddard [30] and the

Yang Study; the two models are denoted as GH and GY,

respectively, producing altogether three separate models. Good-

ness of fit was evaluated by means of the estimated residual

variance and the proportion of variability accounted for by the

fitted model in the training (TRN) dataset, R2
TRN . In addition,

models were compared based on the estimated heritability,

ĥh2~
s2

g

s2
p

(where s2
g is the variance attributed to additive genetic

effects and s2
p is the total phenotypic variance) and the Deviance

Information Criterion (DIC) [31].

Table 1 gives the estimated R2
TRN , ĥh2, and DIC by model and

number of SNPs. Both R2
TRN and ĥh2 increase as more SNPs are

included in the model, indicating an improved model fit. With

400,000 SNPs, the R2
TRN statistic indicates that predicted genetic

values (see Materials and Methods for a detailed description of

terminology) accounted for 95% of the variability in adjusted

height (R2
TRN ), and the estimated heritability (ĥh2,0.83) is close to

what has been previously reported for this trait. Based on the trend

observed, any further increases in common SNPs would likely

produce a minimal increase in the proportion of accounted

variability.

As the number of markers increases, DIC decreases, indicating

that information is continually being added to the model. This

conforms with expectations under an infinitesimal model where

the proportion of variance at Quantitative Trait Loci (QTLs)

accounted for by regression on SNPs should increase with marker

density [32]. Moreover, for any given number of SNPs, differences

in the estimated residual variance, R2
TRN , and heritability estimates

across statistical approaches were small. We do not report ĥh2 based

upon the Bayesian LASSO: while formulae have been proposed to

arrive at estimates of genetic variance from estimated marker

effects and allele frequencies, they are problematic as they rely on

the unrealistic assumption of linkage equilibrium between markers

[33]. However, the similarity in R2
TRN across models suggests that

the proportion of variance accounted for by the Bayesian LASSO

is similar to that of the two other methods.

To evaluate predictive ability, we used three different validation

designs. Approach A- 10-fold cross-validation (CV) with assignment

of individuals to folds at random. Because of the multiple

generations present in the Framingham dataset, it is possible for

children to be used to predict their parents in this design, which

does not correspond to a standard prediction problem. To avoid

this situation, we employed Approach B- using parents to predict

children, we constructed a training dataset (TRN) with 1,493

parents and a testing dataset (TST) comprising offspring

(N = 3,624). Because of the structure of the data, the size of the

training sample used in Approach B is much smaller than that

used in Approach A. Theory and empirical evidence [32] suggest

that the accuracy of estimates of genetic values depends on the size

of the training sample. To explore how much the size of the

training sample affects predictive ability, we devised Approach C-

randomly split the sample 10 times into TRN (N = 1,493) and

TST sets (N = 3,624). Therefore, Approaches B and C differ in the

way individuals were assigned to TRN and TST sets but not on

the size of the TRN set. While approaches A and C allow for

replicate datasets (10 in this study), Approach B is constrained to

one replicate. As an aside, replicate datasets yielded highly similar

R2 values, with an average coefficient of variation of ,0.5%.

Table 2 displays the estimated R2 evaluated in validation (TST)

samples (R2
TST ) by model, validation design, and number of SNPs.

Within all validation designs, differences between models were

very small. To better visualize the relationship between R2, ĥh2,

and the number of SNPs, we average the results across modeling

techniques (Figure 2). Predictive accuracy increased with the

number of SNPs, reaching an R2
TST of 25% in the 10-fold CV

design when 400,000 SNPs were used. In the other two validation

designs (approaches B and C), R2
TST is considerably smaller than

in the 10-fold CV, reaching a maximum R2
TST of 13% (15%) in

the 2-generation and random training-testing designs, respectively.

The 10-fold CV uses larger relative training datasets than

approaches B and C, which can affect prediction accuracy in at

least two ways. First, using larger training datasets is expected to

increase accuracy, even with nominally un-related individuals

[32]. Concurrently, when the size of the training dataset is

increased, the likelihood of having multiple close relatives included

in the training data also increases, and, as we discuss below, for a

Author Summary

While previous genome-wide association studies have
implicated numerous loci associated with complex traits,
such loci typically account for a very small proportion of
phenotypic variation. However, a recent study using
height as a model trait has illustrated that common single
nucleotide polymorphisms can explain a large amount of
genetic variance when evaluated through whole-genome
statistical models. However, it is unclear to what extent
higher proportions of explained variance will translate into
improved predictive accuracy in future populations. Here
we evaluate the predictive ability of whole-genome
models for human height while varying the modeling
approach, the size of the training population, the
validation design, and the number of SNPs. Our results
suggest that whole-genome prediction models can yield
higher accuracy than what is commonly attained by
models based on a few selected SNPs; yet, given the
heritability of the trait in question, there exists room for
improving prediction accuracy. While gains in predictive
accuracy are likely to be small based on more expansive
genotyping, our results indicate that more substantial
benefits are likely to be gained through larger training
populations, as well through the inclusion of related
individuals.

Predicting Complex Traits
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fixed sample size, prediction accuracy increases with the number

of close relatives used to train the model. Unfortunately, the CV

designs we evaluate do not allow exact separation of the relative

effect of sample size from that of other contributing factors.

The predictive accuracy of WGP methods is known to depend

on how closely related individuals in the training and validation

samples are to each other [34–36]. The Framingham Heart Study

dataset contains varying degrees of familial relationships (e.g.,

parents, offspring, and siblings) and provides the opportunity to

study how prediction accuracy is affected by including familial

members in the training population. To demonstrate this effect,

for every individual in the 10-fold CV testing datasets, we

calculated the number of close relatives (parents, full sibs, half sibs

and offspring) present in the training dataset used to derive its

prediction. This was calculated as follows: let sij be an index which

takes the values of 1 if individuals i,jð Þ are either full sibs or a

parent-offspring pair, 0.5 if i,jð Þ is a half-sib pair, or 0 otherwise.

Using this system, a score was calculated as si~
PN

j~1 sijd i,jð Þ
where d i,jð Þ equals one if individual i is in the testing population

and individuals j is in the training population, and zero otherwise.

Using this score we classified individuals into four groups (si~0,

0vsiƒ1, 1vsiƒ2, siw2) and calculated the average R2
TST

within each group after pooling the groups across CV folds.

Figure 3 depicts the relationship between the number of close

relatives in the training population, the number of SNPs, and

R2
TST averaged across the three modeling techniques (see Table S1

for exact performance values). As expected, when the number of

close relatives in the training dataset increases, the predictive

ability increases. The relative increase in predictive ability with

increasing SNP density is dependent upon the number of close

relatives included in the model, with more drastic increases in

predictive ability observed when more than two close relatives are

included within the training dataset. When 400,000 SNPs are

included, the average R2
TST is 0.154, 0.267, 0.322, and 0.363 when

si~0, 0vsiƒ1, 1vsiƒ2, and siw2, respectively.

Discussion

Our results are concordant with the Yang Study, demonstrating

that much of the variance in human height can be accounted for

using WGP methods based on common SNPs. However, there are a

number of differences between our studies that warrant consider-

ation. First, we focused on prediction accuracy and several factors

that may affect it, while the Yang Study focused on estimating the

proportion of variance in human height that can be explained by

common SNPs. While we report heritability estimates, we stress that

our estimates of ĥh2 are not comparable to the ĥh2~0:45 reported by

the Yang study because, unlike the Yang Study, we did not restrict

our sample to be composed of nominally unrelated individuals.

While removing related individuals may allow estimation of genetic

variance solely attributable to common SNPs through LD with

causative polymorphisms, the use of exclusively un-related individ-

uals may harm a model’s ability to separate genetic signal from non-

genetic components [36] and therefore measures of prediction

Figure 1. A simplified representation of assessment of goodness of fit in a training dataset and of predictive ability across a
population: an example with the Framingham population.
doi:10.1371/journal.pgen.1002051.g001

Predicting Complex Traits
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accuracy derived from such approach may under-estimate the

predictive power of common SNPs. In addition, we focused on adult

height ($18 years old), while the Yang Study included individuals

$16 years of age, which may induce added non-genetic variability

as some teenagers will still be growing at that age. Finally, there

likely are differences between the Framingham population and the

Australian population used in the Yang study.

In all validation designs, we found that predictive ability

increased with the number of SNPs, suggesting that a large

number of SNPs are needed to capture genetic variance at QTLs.

These results are similar to findings in the animal breeding

literature for infinitesimal traits [37,38]. Our results also suggest a

diminishing rate of return, with the difference in predictive ability

between 80,000 and 400,000 SNPs being only ,6% in the 10-fold

CV. However, the number of markers at which this ‘‘plateau’’

occurs is likely to depend on multiple conditions such as the extent

of LD in the population and the number of individuals in the

training data. Indeed, other studies using populations with smaller

effective population sizes (Ne), and therefore larger LD spans, have

reported high accuracy with much sparser coverage [37,38].

A recent study [39] reported a decrease in predictive ability of

human height for models with p-value inclusion thresholds greater

than 561023; suggesting that prediction accuracy may be harmed

by including a large number of markers in a predictive model.

However, an important difference between this study and ours is that

in the former, marker effects were estimated using a fixed effects

model while we use a Bayesian mixed model framework where all

unknowns are modeled as random effects. Unlike the fixed effects

approach, the Bayesian mixed model framework induces a shrinkage

of estimates which, to some extent, controls over-fitting and seems to

prevent a reduction in predictive ability in models with p&n.

Importantly, we found no drastic differences between any of the

statistical methods we considered. This is not surprising given that all

three methods are based on an underlying additive model and that

height likely conforms to an infinitesimal architecture. Moreover,

these results are in agreement with findings reported in the animal

breeding literature [40] which report small differences in predictive

ability between contrasting methods. However, this conclusion may

not apply to traits with simpler architecture, e.g., traits where major

associated variants explain a substantial proportion of genetic

variance. In these cases, models using marker-specific shrinkage of

estimates such as the BL may outperform models such as GH or GY

where all markers are equally weighted.

Theoretical [32,41] and empirical studies [37,38] demonstrate that

prediction accuracy increases monotonically with the size of the

training population. Our results showed the same pattern, with a

,70% increase in predictive ability when the size of the training

dataset was increased from 1,493 to 4,506. A practical question

resulting from this is how many individuals are needed to attain a

certain predictive accuracy. The answer to such question depends on

several factors such as trait heritability, marker density, Ne, the genetic

architecture of the trait, and the degree of propinquity between

individuals whose phenotypic outcomes are to be predicted and those

used to train the model. For nominally unrelated individuals under an

infinitesimal model for a trait with h2 = 0.8, Goddard and Hayes [41]

report that for effective population sizes of 100 or 1,000, achieving a

correlation between predicted and true genetic values of 0.7, or

equivalently, an R2 between predicted and realized height of about

0.39 (calculated as 0. 7260.8 ), requires training samples of

approximately 4,000 and 50,000 individuals, respectively. However,

as our results illustrate, prediction accuracy can be increased

substantially by using information from related individuals.

Simulation [34] and empirical studies [35,36] in animal

breeding have suggested that the prediction accuracy of WGP

methods depends on familial relationships between individuals in

the training and validation samples. This was confirmed by our

analysis: in the 10-fold CV with 400K SNPs, the R2
TST of

individuals whose prediction was derived without using informa-

tion from close relatives in the training dataset (R2
TST~ 0.15) is

much smaller than that obtained when direct relatives were

included in the training dataset (R2
TST~ 0.27, 0.32, and 0.36, for

individuals with0vsiƒ1, 1vsiƒ2, and siw2 respectively). This

occurs because WGP methods exploit genetic similarity across

individuals and because recent family history plays a central role in

determining genetic similarity. In light of this observation, one

may wonder: does the use of genetic markers simply recapitulate

pedigree-relationships? Several studies in animal and plant

breeding have demonstrated the superiority of WGP over pedigree

methods [40,42–44] suggesting that markers convey more

information than that provided by pedigrees. In particular,

molecular markers can account for similarity/differences due to

common ancestry not traced by the pedigree, and, more

Table 1. R-squared statistic measured in the data used to train the model (R2
TRN ), estimated posterior mean of heritability (ĥh2), and

Deviance Information Criterion (DIC) by model and number of SNPs (where K = 1,000).

Number
of SNPs Bayesian Lasso1

Genomic
Relationship GY

Genomic
Relationship GH

R2
TRN DIC R2

TRN ĥh2 DIC R2
TRN ĥh2 DIC

2.5K 0.33 32,920 0.36 0.21 32,883 0.34 0.26 32,912

5.0K 0.47 32,666 0.49 0.31 32,605 0.48 0.37 32,642

10K 0.65 32,106 0.69 0.47 31,950 0.66 0.52 32,081

20K 0.79 31,359 0.82 0.60 31,124 0.79 0.65 31,365

40K 0.87 30,564 0.89 0.70 30,201 0.87 0.74 30,564

80K 0.92 29,629 0.93 0.77 29,220 0.92 0.80 29,685

160K - - 0.95 0.79 28,925 0.93 0.81 29,416

400K - - 0.96 0.81 28,444 0.94 0.83 29,017

Estimates were obtained by fitting models to height adjusted by sex and age and using all available data (N = 5,117).
1For the Bayesian LASSO, due to high memory requirements, only models including up to 80K markers were considered. This model does not include a genetic variance
parameter, therefore it does not yield a direct estimate of heritability. For this reason heritability is not reported for this model.

doi:10.1371/journal.pgen.1002051.t001
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importantly, markers can account for differences due to Mende-

lian segregation. Relative to plant or animal breeding populations,

the level of inbreeding in humans is smaller, with the quality of

pedigree information typically being poorer, if it is even available.

Therefore, the benefits of using markers relative to pedigree

information for prediction could be even larger in humans.

Clearly, there exists a redundancy between the information

conveyed by the pedigree and that provided by markers. However,

this redundancy is not complete and there may be benefits to

incorporating pedigree and marker information in the model. For

example, Vazquez et al. (2010) used data from US Holsteins to

quantify the prediction accuracy using pedigree-based predictions,

marker based WGP, and predictions combining pedigree and

markers. The study confirmed the superiority of marker-based

models (with a correlation of 0.42 for pedigree-based predictions

and 0.649 for the marker-based predictions in CV) and found that,

when more than 10,000 markers were available (for a Holstein

sample), combining pedigree and molecular marker data was no

better than using marker data only. This suggests that dense

markers are able to capture genetic similarity due to recent family

history as well as other sources of genetic similarity not described

by pedigrees. Therefore, we speculate that the largely incomplete

pedigrees of most humans will provide little to no additional

information for the prediction of complex traits, especially given

the high density of markers typically available.

A pertinent question is whether a WGP model fitted to one

population can be used to predict phenotypes in a distantly related

population; this remains, so far, an un-answered question [14]. The

prediction accuracy of WGP methods depends on the patterns of

LD between markers and QTLs; these are likely to change across

populations and therefore it is reasonable to expect relatively poor

prediction accuracy across populations. This does not represent a

failure of the methodology per se, but instead a feature that needs to

be considered when applying these methods for prediction.

Population structure, admixture, or other population features can

lead to spurious associations and affect prediction accuracy;

therefore accounting for these features has been an important focus

for GWAS analyses [45]. A pertinent question is the extent to which

structure and other forms of genetic diversity are accounted for by

WGP methods. An important difference between WGP methods

and standard single-marker regressions is that, when all markers are

jointly modeled, population structure, admixture, familial relation-

ships, genetic differences between full-sibs within a family, and

genetic relationships between nominally un-related individuals are

all implicitly accounted for to the extent that whole-genome markers

describe them. Indeed, regressing a phenotype simultaneously on a

set of whole-genome markers is equivalent to regressing the

phenotype on all marker-derived principal components, with a

degree of shrinkage in the estimated effect for each component that

is proportional to its associated squared-singular value [46]. The

Framingham population consists of individuals from various

European ethnic backgrounds and height is typically correlated

with northern European ancestry; therefore, population stratifica-

tion is likely contributing to prediction accuracy [47]. Conversely,

the patterns of LD between markers and QTL may be different

across sub-populations and this may hinder predictive ability,

especially when the sub-populations were separated for many

generations [48]. The exact nature of this tradeoff is difficult to

establish and constitutes an important area of future exploration.

In conclusion, WGP methods provide a promising approach for

the prediction of complex traits. The results of the Yang Study and

those reported in this study both support this conclusion: they

account for a larger proportion of the expected genetic variance

and, as our study indicates, are able to predict yet-to-be observed

phenotypes with greater success. Yet, it is apparent that predictive

ability depends to a large part upon how many close relatives are

included while training the model, and there is an apparent need for

improving the accuracy of predictions of nominally unrelated

individuals. Therefore, while whole-genome prediction of complex

human traits can yield more accurate predictions than those based

on models using a reduced number of markers, prediction of such

traits remains difficult and significant room for improvement exists.

Materials and Methods

Genotyping and Quality Control
Subjects were genotyped using the Affymetrix GeneChip Human

Mapping 500K Array Set. For details on genotyping, see http://

www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id =

phs000007.v3.p2. SNPs with call rates less than 90% and with a

minor allele frequency (MAF) less than 3% were excluded. The

remaining missing genotypes were imputed by sampling from a

Table 2. R-squared between predicted and observed values (R2
TST ) estimated using different number of SNPs (where K = 1,000),

models, and validation designs.

Number of SNPs 10-Fold CV1 2-Generations design2 Training-Testing Random3

BL GY GH BL GY GH BL GY GH

2.5K .097 .102 .098 .054 .035 .035 .064 .035 .033

5.0K .126 .130 .129 .066 .058 .061 .080 .059 .057

10K .166 .174 .168 .087 .088 .093 .099 .094 .088

20K .200 .204 .199 .106 .111 .115 .119 .119 .114

40K .217 .221 .216 .117 .118 .123 .128 .131 .126

80K .236 .237 .236 .124 .126 .129 .138 .139 .137

160K - .240 .240 - .130 .132 - .142 .141

400K - .247 .249 - .133 .133 - .146 .145

BL = Bayesian LASSO, GH = Goddard-Hayes, and GY = Yang study (see Materials and Methods for elucidation).
110-fold cross validation, where the training set comprised 4,605–4,606 individuals.
2Models were trained using the original cohort (N = 1,493) and predictive ability was assessed in the Offspring cohort (N = 3,624).
3Data was assigned at random to a training set (N = 1,493) and predictive ability was evaluated in the remaining individuals (N = 3,624). This was repeated 10 times; each
time individuals were randomly assigned into training/testing sets. Results are averaged across the ten replicates.

doi:10.1371/journal.pgen.1002051.t002

Predicting Complex Traits
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Binomial distribution using the empirical MAF estimate under the

assumption of Hardy-Weinberg Equilibrium.

Genome-Wide Models for Human Height
In all models, age and sex-adjusted height of individual i, yi, was

expressed as yi~mzgizei where: m is an effect common to all

individuals, gi is a genetic value (i.e., a component of phenotypes

that can be attributed to genetic factors), and ei is a model residual

which captures all factors affecting the response not captured by

gi. The conditional distribution of the data is:

p(yjm,g,s2
e )~ P

n

i~1
N(yijmzgi,s

2
e ) ð1Þ

where, y~ yif g, m is an effect common to all individuals, g = {gi} is

a vector of genetic values, and N yijmzgi,s
2
e

� �
is a normal density

for the random variable, yi, centered at mzgi, with variance s2
e .

All models were implemented in a Bayesian framework with

inferences based on the posterior distribution of the unknowns

given the data. Models differed in the number of markers used and

the way they were incorporated into gi. In the first group of

models, genetic values were assumed to be multivariate normal:

p(gjG,s2
g)~N(gj0,G,s2

g) ð2Þ

where g~ gif g, G~ Gij

� �
is a relationship matrix between

individuals i,j computed from marker genotypes and s2
g is an

additive variance parameter. This approach has been used in

many applications for modeling infinitesimal additive effects using

molecular markers [12,30,49–51]. We focus on those used by

Hayes and Goddard [30] (GH) and the Yang Study (GY) to

generate G from the marker data. In method GY, relationships are

standardized so that the average diagonal value equals one. In

order to make the genetic variance parameters comparable, this

Figure 2. We averaged the estimates of R2
TRN (measured in the training data), ĥh2, R2

TST CV (measured in a 10 fold cross validation),
R2

TST 2gen (measured in a 2 generation validation), and R2
TST TT (measured in a replicated Training-Testing validation) over the three

modeling techniques (BL, GH, GY) and showed their relationship to the number of SNPs included in the model.
doi:10.1371/journal.pgen.1002051.g002
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standardization was also applied to GH by dividing the entries of G
by the average diagonal value.

To estimate the remaining model parameters, we utilized a

Bayesian approach by assigning prior distributions to

H~ m,s2
e ,s2

g

n o
. We assigned a flat uniform prior to m, with

conjugate scaled inverse chi-square priors used for s2
e and s2

g,

implying a joint posterior density proportional to:

p(m,g,s2
e ,s2

gjy)! P
n

i~1
N(yijmzgi,s

2
e )

� �

N(gj0,As2
g)x{2(s2

e jdfe,Se)x
{2(s2

gjdfg,Sg)

ð3Þ

Samples from the posterior distribution of the above model were

obtained using a Gibbs sampler implemented in the R-language

(http://www.R-project.org). We specified the hyper-parameters in

[3] as dfe~5,Se~60,dfg~5,Sg~60
� �

. These values give a prior

expectation of the variance of genetic values and of model

residuals that are equal to approximately one half of the sample

variance of adjusted height. With 5 degrees of freedom, priors

have finite mean and variance, and a relatively small influence on

inference.

In a third model, genetic values were described as a linear

regression on marker covariates: gi~
PL
l~1

Xilbl . Here, bl is the

additive effect of the lth marker. Marker effects were inferred using

the Bayesian LASSO (BL) of Park and Casella [29]. This model

has been used successfully to model complex traits in genetic

applications [37,43,52]. This leads to the joint posterior distribu-

tion density:

p(m,b,s2
e ,t2,cjy)! P

n

i~1
N(yijmz

XL

l~1

Xilbl ,s
2
e )

( )

P
L

l~1
N(bl j0,s2

e t2
l )Exp(t2

l jl2)

� �
|x{2(s2

e jdfe,Se)G(l2jd,c)

ð4Þ

where N bl j0,s2
e t2

l

� �
denotes a normal prior assigned to bl

centered at zero and with prior variance equal to s2
e t2

j ,

Exp t2
l

��l2
� �

is an exponential prior assigned to the t2
l ’s , and

G l2
��d,c

� �
is a Gamma prior assigned to the regularization

parameter l2. This model was fitted using the BLR package [53]

in R. The use of SNP-specific conditional prior variances,

Var bj

��t2
j ,s2

e

	 

~t2

j s2
e , allows for SNP-specific shrinkage of the

estimates of effects. This contrasts with models GH and GY in

which all markers are equally weighted. The joint posterior

distribution given by [4] is indexed by several hyper-parameters.

In our application, those hyper-parameters were:

dfe~5,Se~60,c~0:55,d~1|10{6
� �

. These values give a prior

expectation of the residual variance that is about one half of the

sample variance of adjusted age and a relatively flat prior density

over a wide range of the regularization parameter l. We applied

the above-mentioned models using subsets of evenly-spaced

SNPs, ranging from 2,500 to 400,000. Due to limitations in

Figure 3. Averaged (across the three different models) estimates of R2
TST CV (measured in a 10 fold cross validation) while varying

the number of close relatives (si) in the training dataset with 2.5K to 400K SNPs.
doi:10.1371/journal.pgen.1002051.g003
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RAM-memory, the maximum number of SNPs considered for the

BL (method 3) was 80,000.

Heritability and R-Squared

Heritability, ĥh2~
s2

g

s2
p

~
s2

g

s2
gzs2

e

, is defined as the ratio of the

variance due to additive genetic factors, s2
g, relative to the

phenotypic variance, s2
gzs2

e , in the base population (in a

pedigree-model, this is the population from where the founders

were sampled, which is assumed to be comprised of un-related

individuals). This is also the squared correlation between genetic

values and phenotypes, and the proportion of variance accounted

for by genetic factors, both in the base population [54].

Heritability estimates (ĥh2) are commonly obtained by replacing

population parameters with estimates derived using Restricted

Maximum Likelihood or Bayesian procedures.

The R2 statistic is the ratio between the variance accounted for

by a model relative to the sample variance of the response. That is:

R2~1{
Var êeið Þ
Var yið Þ

where Var êeið Þ is the sample variance of

predictive residuals derived from a model and Var yið Þ is the

sample variance of phenotypes. The R2 statistic is related to ĥh2.

However, R2 measures the proportion of variance accounted for

by predicted genetic values in the sample, while ĥh2 estimates the

proportion of phenotypic variance accounted by true genetic

values in the base population. Fundamentally, R2 ignores

inbreeding, relationships between individuals in the sample and

estimation errors; therefore, it is not a consistent estimate of

heritability [54,55].

The R2 statistic is sometimes evaluated in the same dataset that

was used to derive predictions, which tend to over-estimate

predictive ability. A better assessment of the ability of a model

to predict future data can be obtained using validation methods

[26]. We therefore distinguish two R-squared measures:

R2
TRN~1{

Var êeið Þ
Var yið Þ

and R2
TST~1{

Var ~eeið Þ
Var yið Þ

where: êei denotes a

prediction error derived when all available data, including the ith

observation, was used to fit the model, and ~eei denotes a prediction

error derived when the validation set containing the ith observation

was not used to fit the model, respectively. Therefore, R2
TRN

measures goodness of fit between the training data and the model

while R2
TST measures the ability of the model to predict future

observations.

Supporting Information

Table S1 R-squared between predicted and observed values

(R2
TST ) estimated using different number of SNPs with different

numbers of relatives in the training populations averaged across

validation designs.
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