
Evolution of Vertebrate Transient Receptor Potential
Vanilloid 3 Channels: Opposite Temperature Sensitivity
between Mammals and Western Clawed Frogs
Shigeru Saito1*, Naomi Fukuta1, Ryuzo Shingai2, Makoto Tominaga1,3*

1 Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Aichi,

Japan, 2 Laboratory of Bioscience, Faculty of Engineering, Iwate University, Morioka, Iwate, Japan, 3 Department of Physiological Sciences, The Graduate University for

Advanced Studies, Okazaki, Aichi, Japan

Abstract

Transient Receptor Potential (TRP) channels serve as temperature receptors in a wide variety of animals and must have
played crucial roles in thermal adaptation. The TRP vanilloid (TRPV) subfamily contains several temperature receptors with
different temperature sensitivities. The TRPV3 channel is known to be highly expressed in skin, where it is activated by warm
temperatures and serves as a sensor to detect ambient temperatures near the body temperature of homeothermic animals
such as mammals. Here we performed comprehensive comparative analyses of the TRPV subfamily in order to understand
the evolutionary process; we identified novel TRPV genes and also characterized the evolutionary flexibility of TRPV3 during
vertebrate evolution. We cloned the TRPV3 channel from the western clawed frog Xenopus tropicalis to understand the
functional evolution of the TRPV3 channel. The amino acid sequences of the N- and C-terminal regions of the TRPV3 channel
were highly diversified from those of other terrestrial vertebrate TRPV3 channels, although central portions were well
conserved. In a heterologous expression system, several mammalian TRPV3 agonists did not activate the TRPV3 channel of
the western clawed frog. Moreover, the frog TRPV3 channel did not respond to heat stimuli, instead it was activated by cold
temperatures. Temperature thresholds for activation were about 16 uC, slightly below the lower temperature limit for the
western clawed frog. Given that the TRPV3 channel is expressed in skin, its likely role is to detect noxious cold temperatures.
Thus, the western clawed frog and mammals acquired opposite temperature sensitivity of the TRPV3 channel in order to
detect environmental temperatures suitable for their respective species, indicating that temperature receptors can
dynamically change properties to adapt to different thermal environments during evolution.
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Introduction

Animals adapt to environmental temperature changes by

sensing both their body and ambient temperatures. Thermal

stimuli are detected by temperature receptors and transmitted by

the peripheral nerves in which they reside [1–4]. Thus,

temperature receptors must have served crucial roles in adaptation

to thermal environments during the course of evolution. In

mammals, temperature receptors are ion channels that are

activated by thermal stimuli [1–4]. In humans and rodents, nine

temperature receptors have currently been identified and all of

them belong to the transient receptor potential (TRP) cation

channel superfamily and are called ‘‘thermoTRPs’’. These nine

thermoTRPs are further classified into three subfamilies: four

belong to the TRP vanilloid subfamily (TRPV1-TRPV4), four to

the TRP melastatin subfamily (TRPM2, TMPM4, TRPM5, and

TRPM8) and one to the TRP ankyrin subfamily (TRPA1) [1,3].

Phylogenetic analysis of vertebrate thermoTRP homologs revealed

that the genes encoding TRPV1-TRPV4, TRPM2, TRPM4,

TRPM5, and TRPM8 are unique to vertebrates [5]. Most of these

genes emerged in the common ancestor of teleost fishes and

terrestrial vertebrates through repeated gene duplications; subse-

quent sequence divergence resulted in a thermoTRP repertoire

with different physiological properties. In humans and rodents,

TRPV1 and TRPV2 are activated by noxious high temperatures,

TRPM8 and TRPA1 by cold temperatures, and TRPV3, TRPV4,

TRPM2, TRPM4, and TRPM5 by warm temperatures [1–4]. In

addition to thermal stimuli, thermoTRPs are also activated by

various physical and chemical stimuli [1–4]. Thus, thermoTRPs

are involved in various sensory transductions and required for the

adaptation to ambient environments.

TRPV3 and TRPV4 perceive warm temperatures in homeo-

thermic animals such as mammals [6–8] and thus must play

important roles in body temperature regulation. Consistent with

this idea, TRPV3 knockout mice showed abnormalities in sensing

ambient temperatures near their body temperature [9]. However,

whether these warm-temperature receptors are also physiologically

important for the ectothermic vertebrates remains unknown. With

respect to the TRPV4 gene, all of the vertebrate species thus far

examined possess TRPV4 orthologs with highly conserved amino
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acid sequences among these different vertebrate species [5].

Regarding the TRPV3 gene, although all terrestrial vertebrate

species thus far examined possess one copy of a TRPV3

orthologous gene, it has been lost in two teleost fish species [5].

Additionally, in the genome sequence database of the western

clawed frog Xenopus tropicalis (belonging to the amphibian class)

[10], the predicted gene for TRPV3 is much shorter than

mammalian orthologs due to the lack of the N- and C-terminal

portions. Sequences homologous to the mammalian terminal

regions were searched, but such regions have not been found in

the genome sequence of the western clawed frog [5]. This implies

that the N- and C-terminal regions of western clawed frog TRPV3

have diverged from those of the mammalian orthologs, thus the

complete coding sequence of the TRPV3 gene could not be

annotated bioinformatically utilizing mammalian TRPV3s. Since

amino acid sequences of the terminal regions of TRPV3s are well

conserved among several mammalian species, divergence of

TRPV3 may reflect a functional shift of the TRPV3 channel

between mammals and the western clawed frog. Thus TRPV3 is a

suitable model for understanding how thermoTRPs have changed

their amino acid sequences as well as function during the course of

evolution. Moreover, comparison of TRPV3 channel properties

between homeothermic and ectothermic vertebrates may supply

new insights into the functional evolution of thermoTRPs related

to body temperature differences among species.

In contrast to the well characterized TRPV3 channels in

homeothermic animals such as mammals, information on the

TRPV3 channel in ectothermic animals is quite limited. Grandl

et al. (2008) cloned western clawed frog TRPV3 (which lacked the

N- and C-terminal regions) into a mammalian expression vector

[11], but this truncated TRPV3 was nonfunctional. They

subsequently fused the N- and C-terminal regions of mouse

TRPV3 to western clawed frog TRPV3 and found that this

chimeric TRPV3 responded to heat, camphor, and 2-aminoethox-

ydiphenyl borate (2-APB) [11,12], known activators of mammalian

TRPV3 in cultured mammalian cells [6–9,13,14]. However, since

these observations were obtained using chimeric TRPV3, they did

not show the native channel properties of western clawed frog

TRPV3. In order to characterize the amino acid sequence as well

as the channel properties of native TRPV3 from the western

clawed frog, determination of the entire cDNA sequence is

necessary.

The aim of the present study is to understand evolutionary

changes in the TRPV3 channels. In this study, we sequenced

cDNA of western clawed frog TRPV3 including the 59- and 39-

untranslated regions (UTR) and compared the amino acid

sequences among various terrestrial vertebrate species. To

characterize its channel properties, we cloned TRPV3 into an

expression vector and used a heterologous expression system to

compare properties between mammals and amphibians. Addi-

tionally, we conducted comprehensive comparative and phyloge-

netic analyses of the vertebrate TRPV subfamily utilizing various

genome sequence databases to elucidate the evolutionary processes

that occurred within the vertebrate lineages. Here we report the

evolutionary changes of the TRPV3 channels, and highlight the

differences in the temperature sensitivities between mammals and

anurans.

Results

Reconstruction of the vertebrate TRPV subfamily
phylogenetic tree

In order to understand the evolutionary changes within the

TRPV subfamily, a comprehensive phylogenetic tree containing a

broad range of vertebrate species including mammals, chicken,

green anole, western clawed frog, and teleost fishes was

reconstructed (Figure 1) [15–17]. The TRPV5 and TRPV6 genes

that code for non-temperature-sensitive channels first diverged

from the TRPV1-TRPV4 genes. Among the TRPV1-4 genes, each

member was monophyletic to each other with high bootstrap value

(.96%). The TRPV4 cluster was first to diverge, followed by a split

of the TRPV3 cluster from the vertebrate TRPV1/2 cluster.

However, the order of divergence between the TRPV3 and TRPV4

clusters was not clearly resolved since the connection between the

vertebrate TRPV1/2 and TRPV3 clusters was supported only by a

moderate bootstrap value (61%). Within the TRPV1/2 cluster, the

terrestrial vertebrate TRPV2 cluster first split from the clusters

containing the teleost fish TRPV1/2 and terrestrial vertebrate

TRPV1 genes, although this branching order was supported by a

moderate bootstrap value (61%). In dog, cow, and horse, one copy

each of the TRPV1-TRPV6 genes were found. In the green anole,

one copy each of the TRPV1-4 genes, and two copies of the

TRPV6 gene were found. Unfortunately, due to low coverage in

the green anole genome sequence database, only short sequenced

fragments existed for the TRPV1, TRPV2, and TRPV4 genes.

Thus, only the TRPV3 gene and two copies of the TRPV6 genes

were included in the phylogenetic tree (Figure 1). One copy of the

TRPV6 gene (TRPV6a) clustered with the chicken TRPV6 gene; the

other copy of TRPV6 (TRPV6b) clustered with the former two

genes with high bootstrap value (82%). Thus the gene duplication

event which created the two copies of the TRPV6 gene in the green

anole occurred within the reptile/bird lineages independent from

the gene duplication event that produced the mammalian TRPV5

and TRPV6 genes. This latter duplication event likely occurred

within the common ancestor of mammals since opossum also

possesses TRPV5 and TRPV6 genes.

Teleost fish TRPV1/2 genes showed copy number variation

among the different species. Zebrafish and three-spined stickleback

possessed only one copy, while torafugu, spotted green pufferfish,

and medaka possessed two copies (note that the medaka TRPV1/

Author Summary

Evolution of temperature perception is crucial for adapta-
tion to thermal environments; however, this process is
poorly understood. Here we investigated the evolution of
the vertebrate TRPV subfamily which contains several
mammalian temperature receptors. We identified several
novel TRPV genes that have not been found previously and
discovered evolutionary flexibility of the TRPV3 gene
during vertebrate evolution. TRPV3 channels perceive
warm temperature and serve as sensors to detect ambient
temperatures near the body temperature of homeother-
mic animals such as mammals. To examine the functional
evolution of TRPV3 channels in vertebrate evolution, we
cloned the gene from the western clawed frog and found
that its N- and C-terminal regions were highly diversified
from those of other terrestrial vertebrate TRPV3 channels.
Characterization of the channel properties of western
clawed frog TRPV3 revealed that it was not activated by
heat stimuli, but instead was activated by cold stimuli.
Temperature thresholds for activation were about 16 uC,
slightly below the lower temperature limit for the western
clawed frog. Thus, the western clawed frog and mammals
acquired opposite temperature sensitivity of TRPV3
channels to detect environmental temperatures suitable
for their respective species, indicating that temperature
receptors can dynamically change properties to adapt to
thermal environments during evolution.

Functional Evolution of Vertebrate TRPV3 Channel
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2b gene was excluded from the phylogenetic tree in Figure 1 since

it has large deletions in the central region which reduces the

resolution of the phylogenetic tree; Figure 1 and Figure 2A). The

TRPV1/2a and TRPV1/2b genes in medaka and torafugu were

located in different genomic regions in which syntenic relation-

ships were preserved around TRPV1/2s (Figure 2A).

The syntenic relationship also existed in the genomic regions

around the TRPV1-TRPV3 genes among vertebrate species

(Figure 2B). In platypus, western clawed frog, and chicken, the

TRPV1 and TRPV3 genes were located adjacently, and TRPV2

was positioned several genes away from TRPV1 and TRPV3. In

humans, the TRPV1 and TRPV3 genes were also located

adjacently although the TRPV2 gene was distantly located in the

same chromosome [5]. The teleost fish TRPV1/2 gene was located

in a position corresponding to the terrestrial vertebrate TRPV1

gene (Figure 2B). Although a syntenic relationship can be observed

around the TRPV1-TRPV3 genes among vertebrate species, the

genes corresponding to the terrestrial vertebrate TRPV3 and

TRPV2 were not found in the teleost fish genome sequences

(Figure 2B).

In the course of phylogenetic analysis, we found several novel

TRPV genes that have not previously been described. We found

one novel gene from platypus that formed a sister group to a

cluster of vertebrate TRPV1-TRPV4 genes, but was located outside

of them (tentatively named TRPV7) (Figure 1). The TRPV7 gene

was flanked by the TRPV1 and TRPV3 genes in the platypus

genome sequence (Figure 2B). We could not find a corresponding

gene in the other vertebrate species examined, including human,

mouse, dog, cow, opossum, chicken, western clawed frog, medaka,

and zebrafish. The predicted amino acid sequence of platypus

TRPV7 possessed the putative ankyrin repeat and six transmem-

brane domains that are highly conserved among TRP channels.

TRPV7 showed 44.2%, 42.7%, and 44.0% amino acid sequence

similarity to platypus TRPV1, TRPV2, and TRPV3, respectively,

in the central conserved regions (from ankyrin repeat domain 1 to

the TRP domain; Figure 3A). In addition to platypus TRPV7, we

also found three genes that are closely related to the vertebrate

TRPV5 and TRPV6 genes (Figure 1). Two of them, from platypus

and western clawed frog, formed a monophyletic cluster

(tentatively named TRPV8). Platypus possessed one additional

gene that clustered together with the TRPV8 genes (tentatively

named TRPV9). The western clawed frog also possessed a TRPV6

gene that formed a sister group with the African clawed frog

TRPV6, although the western clawed frog TRPV6 gene has a large

portion that has not been sequenced yet, thus it was excluded from

the phylogenetic tree shown in Figure 1.

Determination of the cDNA sequences of the western
clawed frog TRPV3 gene

Detailed comparative analyses from this and previous studies [5]

raised the possibility that TRPV3 of the western clawed frog is

diversified from that of mammals. However, as mentioned above,

the predicted TRPV3 gene lacks the N- and C-terminal portions as

they could not be annotated bioinformatically from the genome

sequence database of the western clawed frog. We performed RT-

PCR, 39- and 59-RACE using total RNA extracted from the toe of

the western clawed frog to sequence the cDNA of western clawed

frog TRPV3 from the 59- to 39-UTRs to obtain the full length

coding sequence. We obtained a 2819-bp cDNA fragment

(AB588024) which had a 2319-bp open reading frame (773 amino

acid residues) starting near the 59 end in the 2nd exon and ending

in the last exon (Figure S1). Comparison of this cDNA sequence

with the genome sequence database of the western clawed frog

revealed that the nucleotide sequence corresponding to the second

Figure 1. Phylogenetic relationship of the TRPV gene subfamily
of vertebrates. Statistical confidence (bootstrap value) is indicated
beside the respective branch [15]. The TRPV5/6 genes were used as
outgroups. WC frog, AC frog, SG pufferfish, and TS stickleback indicate
western clawed frog, African clawed frog, spotted green pufferfish, and
three-spined stickleback, respectively.
doi:10.1371/journal.pgen.1002041.g001

Functional Evolution of Vertebrate TRPV3 Channel
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exon (114 bp) did not exist in the database. To confirm the result

obtained by 59-RACE, the cDNA fragment spanning exons 1 to 6

was amplified by RT-PCR. We obtained an approximately 650-bp

DNA fragment that contained the second exon (Text S1). We

further amplified and sequenced the genomic regions containing

the second exon of the TRPV3 gene (AB588025) and confirmed

that the second exon was located within the genomic portions that

had yet to be sequenced by the genome sequence project (Text S1

and Figure S2). Therefore, the existence of the second exon was

not an artifact.

Comparison of the amino acid sequences of western clawed frog

TRPV3 with those of other terrestrial vertebrate orthologs

revealed that it possesses conserved motifs such as four ankyrin

repeat domains and six transmembrane domains (Figure S3). The

amino acid sequences in the central portion of TRPV3 were

relatively conserved among the tetrapod species examined. In

contrast, amino acid sequences in the N- and C-terminal regions

of western clawed frog TRPV3 were highly divergent from those

of amniote TRPV3s although the corresponding regions of

TRPV3 among amniotes were relatively well conserved

(Figure 3B, 3C and Figure S3). In both terminal regions, a large

number of amino acid substitutions as well as many gaps existed

between western clawed frog and amniotes TRPV3s. The exon-

intron structure of the TRPV3 gene of the western clawed frog was

highly similar to those of other vertebrate TRPV3 genes

(Figure 3D). Highly divergent regions in western clawed frog

TRPV3 spanned across several exons although exon boundaries

were conserved among the vertebrate species compared (Figure 3).

This suggests that the divergence of the terminal regions of

TRPV3 was not the result of modification of gene structure;

Figure 2. Conserved gene arrangements in the genomic regions encompassing vertebrate TRPV1-TRPV3 genes. The gene orders
around TRPV1/2 of medaka and torafugu (A) and TRPV1-TRPV3 of vertebrates (B) are shown. The genes are shown as boxes with their directions
indicated. Filled, hatched, gray, and striped boxes represent TRPV1, TRPV2, TRPV3, and TRPV7 (only found in platypus genome), respectively. The open
boxes indicate non-TRP genes. The orthologous genes among different species are connected by lines. The physical distances of the genomic regions
are indicated. Chr., chromosome.
doi:10.1371/journal.pgen.1002041.g002

Functional Evolution of Vertebrate TRPV3 Channel
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Figure 3. Comparison of TRPV3 among representative terrestrial vertebrate species. The schematic structure of the TRPV3 channel (A) is
shown and the N- (B) and C- (C) terminal regions of amino acid alignments are indicated. The open circles, gray boxes, striped boxes, and black box
represent the putative ankyrin repeat, transmembrane, pore loop, and TRP domains, respectively. The amino acids identical to, similar to, and
different from the consensus residues are indicated in red, blue, and black letters, respectively. Exon boundaries for human, mouse, platypus, and
chicken are indicated by open triangles and those for western clawed frog by filled triangles. (B) The first ankyrin repeat domain is underlined. Gene
structures of TRPV3s in several vertebrate species (D). Exons are indicated by open boxes according to their scale. Introns are indicated by solid lines
with their lengths (bp). The open reading frame is indicated by a shaded area with its initiation (Met) and termination (Ter) codons. Gene structures of
chicken and platypus were predicted in the genome sequence databases (Ensembl) but not supported by cDNA data thus exons for the 59- and 39-
UTR regions are not known. Gene structures of human and rat TRPV3s are based on full length cDNA nucleotide sequences and that of the western
clawed frog TRPV3 is base on the cDNA nucleotide sequence determined in the present study.
doi:10.1371/journal.pgen.1002041.g003

Functional Evolution of Vertebrate TRPV3 Channel
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rather, the divergence can be attributed to the accumulation of

considerable amino acid substitutions.

Characterization of ion channel properties of TRPV3 in
the western clawed frog

We next examined the ion channel properties of TRPV3 in the

western clawed frog by expressing it in oocytes of the African

clawed frog (Xenopus laevis) from which we recorded ionic currents

using a two-electrode voltage-clamp method. As the mammalian

TRPV3 channel is activated by temperatures .31-39uC [6-8], we

first asked whether the TRPV3 channel of the western clawed frog

is also activated by heat. Heat stimuli, however, did not induce any

response in the oocytes injected with western clawed frog

complementary RNA (cRNA; Figure 4A). Instead, surprisingly,

cold stimulations induced large currents in the oocytes injected

with western clawed frog TRPV3 cRNA (Figure 4A and 4B), but

not in water-injected oocytes (Figure 4C). The currents induced by

cold temperatures were also observed without prior heat

stimulation (Figure 4B). The cold-induced currents were desensi-

tized rapidly during the first cold stimulation and were

considerably smaller during the second cold stimulation

(Figure 4A). This property is different from that of mammalian

TRPV3 which becomes sensitized with repeated heat stimulations

[6,8]. The average temperature threshold for activation was

16.3560.51uC (n = 14) when analyzed with Arrhenius plots

(Figure 4D).

We next examined the pharmacological properties of western

clawed frog TRPV3 currents. The oocytes expressing western

clawed frog TRPV3 also responded to 2-APB, a known agonist of

mammalian TRPV3 [13,14], in a dose-dependent manner

(Figure 4A, Figure 5A and 5B). In human, dog, and chicken,

histidine residues at position 426 in TRPV3 are reported to be

involved in 2-APB sensitivity [12]. The corresponding residue of

western clawed frog TRPV3 was also histidine as reported

previously [12] (Figure S3). We also confirmed that western

clawed frog TRPV3 responded to 2-APB (Figure 5A and 5B). The

2-APB current tended to be sensitized when short-period

stimulations (20 seconds) were repeatedly applied to the oocytes

expressing western clawed frog TRPV3 (Figure S4A). This

observation is similar to that of mammalian TRPV3, which

showed sensitization upon heat, camphor, and 2-APB [6,8,9,13].

In mouse TRPV3, a synergistic effect has been reported for

temperature and 2-APB stimuli [13,14]. Thus, temperature effects

on 2-APB stimulation in TRPV3 of the western clawed frog were

examined. Unexpectedly, cold stimulations suppressed 2-APB

currents (Figure S4B), while heat stimulations showed potentiation

effects (Figure S4C), implying that the activation mechanisms may

be different between the cold and 2-APB responses for western

clawed frog TRPV3.

Ruthenium red, a broad TRP channel antagonist [4,6–8],

inhibited cold-induced currents in a reversible manner (Figure 5C)

and also inhibited 2-APB-induced currents (Figure 5D) in oocytes

expressing western clawed frog TRPV3. Moreover, the currents

induced by both 2-APB and cold temperatures showed an

outwardly-rectifying current-voltage relationship with slightly

negative reversal potentials (–12.3563.24 mV, n = 4; and –9.

3362.03 mV, n = 4 for cold- and 2-APB-induced currents,

respectively; Figure 5E). These results indicate that TRPV3 of

the western clawed frog is a nonselective cation channel with a

property similar to that of mammalian TRPV3 [6–8,14]. On the

other hand, western clawed frog TRPV3 did not respond to

camphor (8 mM), eucalyptol (10 mM; Figure 5F and 5G, Left),

menthol (2 mM), vanillin (10 mM), and eugenol (2 mM) (Figure

S4D–S4F), well known activators of mammalian TRPV3

(Figure 5F and 5G, Right) [9,18,19]. These observations suggest

that while western clawed frog TRPV3 shares some electrophys-

iological properties with mammalian TRPV3, it also possesses

distinct properties, which may be related to its opposite

temperature sensitivity from mammalian TRPV3.

Expression profile of TRPV3 mRNA in the western clawed
frog

To compare the expression profiles of TRPV3 between

mammals and western clawed frog, the tissue distribution of

TRPV3 mRNAs in the western clawed frog was examined by

Figure 4. Cold temperature activation of the TRPV3 channel of
the western clawed frog. (A and B) Representative current traces
(Upper) from oocytes injected with TRPV3 cRNA of the western clawed
frog and corresponding temperatures (Lower). The bar indicates the
application of 2-ABP (0.2 mM). (C) A representative trace of an oocyte
injected with water alone. (D) An Arrhenius plot of the current in panel
B. Average temperature threshold for activation was 16.3560.51uC
(n = 14).
doi:10.1371/journal.pgen.1002041.g004

Functional Evolution of Vertebrate TRPV3 Channel
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semi-quantitative RT-PCR. TRPV3 mRNAs of the western

clawed frog were expressed in skin from various parts of its body,

toes of both fore and hind limbs, as well as testis (Figure 6).

TRPV3 mRNAs were not detected in the gastrointestinal tract,

peripheral nerve or brain where expression has been reported in

mammals [6–8].

Discussion

Evolution of TRPV gene subfamily in vertebrates
In the present study, we performed comprehensive phylogenetic

analysis on genes belonging to the TRPV subfamily from various

kinds of vertebrate species (Figure 1). As previously reported [5],

the TRPV3 and TRPV4 genes diverged earlier than the timing of

the gene duplication between the TRPV1 and TRPV2 genes. Given

that the teleost fish genes were included in the TRPV1/2 cluster,

TRPV3 and TRPV4 genes emerged, at the latest, in the common

ancestor of teleost fishes and terrestrial vertebrates. Whether the

gene duplication of TRPV1 and TRPV2 occurred before or after

the divergence of teleost fishes and terrestrial vertebrates is unclear

since statistical support for the branch connecting the terrestrial

vertebrate TRPV1 and teleost fish TRPV1/2 genes had a moderate

value. In the teleost fishes, the TRPV1/2 genes showed copy

number variation. Only one copy of the TRPV1/2 genes was

found for stickleback and zebrafish, while two copies were found

for medaka, torafugu, and spotted green pufferfish (Figure 1 and

Figure 2A). Since teleost fish TRPV1/2 genes were clustered

together with 99% bootstrap value, the gene duplication events

producing teleost fish TRPV1/2s and vertebrate TRPV1 and

TRPV2 must have independently occurred in each lineage.

Around the genomic region encompassing the two paralogous

TRPV1/2 genes, syntenic relationships are preserved (Figure 2A),

suggesting that the two copies of the TRPV1/2 genes were

produced by the whole genome duplication that occurred in the

common ancestor of teleost fishes [20]. One copy has subsequently

been lost in the stickleback and zebrafish lineages. In contrast,

Figure 5. The activation and inhibition properties of the TRPV3 channel of the western clawed frog. The data in panels A-E were
obtained from oocytes injected with TRPV3 cRNA of the western clawed frog. (A and B) Oocytes responded to 2-APB in a dose-dependent manner. A
representative current trace evoked by 2-APB (A) and its dose-response curve (B). Currents were normalized to the values at 1 mM. The EC50 was
0.5460.24 mM, and the Hill coefficient was 1.160.3. Error bar indicate SEMs. (C) Inhibition of cold-induced currents in the oocytes. Ruthenium red
(20 mM) was applied prior to and during the first cold stimulation. The second and third cold stimuli were applied four minutes after washing out the
ruthenium red. (D) A 2-APB (0.5 mM)-induced current in the oocyte was inhibited by ruthenium red (10 mM) even in the presence of 2-APB. (E)
Current-voltage relationships of cold- and 2-APB-evoked responses in the oocyte. (F and G) Representative current traces in response to initial
applications of camphor (8 mM) (F) or eucalyptol (10 mM) (G) with secondary applications of 2-APB (0.5 mM) in oocytes injected with TRPV3 cRNA of
the western clawed frog (Left) or mouse (Right).
doi:10.1371/journal.pgen.1002041.g005

Functional Evolution of Vertebrate TRPV3 Channel
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given that the TRPV1-TRPV3 genes are closely located in the

terrestrial vertebrate genome, they were produced by tandem gene

duplications.

In the course of phylogenetic analysis, we found four novel

TRPV genes that had yet to be reported (Figure 1). Three of these

novel genes clustered with the TRPV5 and TRPV6 genes - two

genes were from platypus (TRPV8 and TRPV9) and one from the

western clawed frog (TRPV8). That these three genes split from the

TRPV5/6 cluster suggests that they emerged in the common

ancestor of teleost fish and terrestrial vertebrates. We also found

another novel TRPV gene (TRPV7) in platypus that formed a

monophyletic cluster with the TRPV1-TRPV4 clusters (Figure 1).

Since TRPV7 was located outside of the vertebrate TRPV1-TRPV4

genes in the phylogenetic tree, we expected that other vertebrate

species also possess orthologous genes. Our search for the

orthologs to platypus TRPV7 in several vertebrate genome

sequences, however, failed to find any orthologous genes. One of

the explanations for this observation is that the TRPV7 gene may

have emerged in the common ancestor of teleost fish and

terrestrial vertebrates, and has been lost in most of the lineages.

However, this scenario is unlikely because we have to assume

independent gene loss events in the lineages leading to the different

vertebrate classes. Another explanation is that TRPV7 was

specifically produced in the lineage leading to platypus and a

large amount of amino acid substitutions have subsequently been

accumulated. The fact that TRPV7 was located between the

TRPV1 and TRPV3 genes in the genome sequence of platypus

suggests that TRPV7 was produced from either TRPV1 or TRPV3,

or from both genes (Figure 2B). At present, it is unclear if platypus

TRPV7 is a functional gene; further characterization of TRPV7 will

prove interesting for future study since phylogenetically it is closely

related to the TRPV1-TRPV4 genes that code for temperature

sensitive channels.

In dog, cow, and horse, we found one copy each of the TRPV1-

TRPV6 genes, as has been found for human and rodents (Figure 1).

Chicken and green anole possessed one copy each of the TRPV1-4

genes. Western clawed frog possessed one copy each of the

TRPV1-3 genes and possessed six copies of TRPV4 genes as

reported previously [5]. Copy numbers also varied for TRPV1/2

genes among teleost fishes and for TRPV5-9 genes among

vertebrate species. In addition, TRPV3 has been lost in the teleost

fishes (Figure 1 and Figure 2B). In conclusion, the repertoires of

the TRPV gene subfamily in vertebrates are essentially conserved,

but gene duplication and loss events that occurred in specific

lineages resulted in copy number variation; which potentially

contributed to adaptation in the respective species.

Functional evolution of the TRPV3 channel in vertebrates
In the present study, we attempted to identify thermoTRPs that

have changed their functional properties within specific evolu-

tionary lineages as these thermoTRPs must have been involved in

adaptation to thermal environments. In some cases, the functional

shift of thermoTRPs was accompanied by diversifications of amino

acid sequences. To identify these changes, we performed detailed

comparative analyses of mammalian thermoTRP homologs

utilizing the genome sequence database of various vertebrate

species. In the first phase of our study, we comprehensively

collected thermoTRP homologs from various vertebrate species

and conducted comparative analyses (Figure 1 and Figure 2) [5].

These analyses showed that the N- and C-terminal regions of the

western clawed frog were missing from the predicted gene in the

genome sequence database. A search for the homologous

sequences to mammalian TRPV3 terminal regions in the genome

sequence database of the western clawed frog failed to detect such

regions. Thus we predicted that both terminal regions of western

clawed frog TRPV3 are different those of from mammalian

orthologs. To elucidate the amino acid sequences of western

clawed frog TRPV3, the cDNA sequence was determined and the

deduced amino acid sequence was compared to those of other

vertebrate TRPV3s. As expected, the N- and C-terminal regions

of TRPV3 in the western clawed frog were highly diversified from

those regions of TRPV3 in other terrestrial vertebrate species,

although the central portions were relatively conserved among all

terrestrial vertebrates examined (Figure 3B, 3C, and Figure S3).

Characterization of western clawed frog TRPV3 channel

properties revealed striking differences from those of mammalian

TRPV3 channels. The TRPV3 channel of the western clawed frog

was not activated by chemical compounds that are known to

activate the mammalian TRPV3 channel (Figure 5F and 5G)

[9,18,19]. Furthermore, the TRPV3 channel of the western

clawed frog was activated by cold temperatures whereas the

mammalian TRPV3 channels has been reported to be activated

by warm temperatures (Figure 4) [6–8]. Thus through a

combination of interdisciplinary approaches including bioinfor-

matics, molecular evolution, molecular biology, and electrophys-

iology, we were able to successfully identify a thermoTRP that has

undergone a functional shift during the course of vertebrate

evolution.

Opposite temperature sensitivities among orthologs have been

reported in other thermoTRPs. For instance, the TRPA1 channels

are activated by warm temperatures in several snake and insect

species [21,22], while it is activated by cold temperatures in

mouse, although cold activation of mouse TRPA1 is the subject of

some debate [23–27]. In the present study, we clearly demonstrate

that the TRPV3 gene of the western clawed frog and mammals are

orthologous genes by showing a monophyletic relationship among

them (Figure 1) as well as conserved syntenic relationships of the

genes flanking the TRPV3 genes among terrestrial vertebrate

species (Figure 2B). These results indicate that TRPV3 channels

have acquired opposite temperature sensitivities during the course

of terrestrial vertebrate evolution. This, in turn, indicates that the

temperature sensitivity of thermoTRPs is not always stable but can

dynamically change, even reveres in some cases, during the course

of evolution.

The molecular determinants for the difference in temperature

sensitivities are not clear at present, but several lines of evidence

Figure 6. Expression of TRPV3 in the skin of the western
clawed frog. Transcription profiles of TRPV3 in the western clawed
frogs were examined by semi-quantitative RT-PCR. The gene for
elongation factor 1a (EF-1a) was used as an internal control. For
negative control experiments, RNA samples from toes of both fore- and
hind-limbs as well as kidney were used. The upper and lower bands of
the size markers were 200-bp and 100-bp, respectively for TRPV3, and
300-bp and 200-bp, respectively for EF-1a.
doi:10.1371/journal.pgen.1002041.g006
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suggest the N- and C-terminal regions as candidate domains. First,

amino acid sequences of TRPV3 channels in these regions are

highly divergent between mammals and the western clawed frog

(Figure 3B, 3C, and Figure S3). Second, the C-terminal regions of

thermoTRP channels have been reported to be involved in the

modulations of temperature sensitivities. It has been shown that

the swapping of the C-terminal regions between TRPV1 and

TRPM8 channels of rat results in an exchange of temperature

sensitivities [28]. Furthermore, it has also been reported that

gradual truncations of the C-terminal regions of rat TRPV1

channels gradually shift temperature thresholds for activation [29].

Additionally, in the case of TRPV2, the N- and C-terminal regions

are reported to play crucial roles in heat sensitivity in rodents [30].

Lastly, a chimeric mutant of the TRPV3 channel (in which the N-

and C-terminal regions of mouse TRPV3 were fused to the central

portion of TRPV3 from the western clawed frog) exhibited warm

temperature activation when expressed in cultured mammalian

cells (HEK293T) [11]. This chimeric mutant was also reported to

be activated by camphor, thus the N- and C-terminal regions are

likely to be involved in both chemical and temperature sensitivity

of the TRPV3 channel. Future detailed study using chimeric

mutants of the TRPV3 channel will be necessary to understand

the molecular basis for the differences in temperature as well as

chemical sensitivities of TRPV3 channels between mammals and

the western clawed frog.

What is the physiological role of TRPV3 in the western clawed

frog? TRPV3 was mainly expressed in the skin in the western

clawed frog similar to the expression pattern of mammalian

TRPV3 (Figure 6). In mammals, it has been proposed that thermal

stimuli perceived by the skin are transmitted to peripheral nerves

[3,4,31,32]. Therefore, TRPV3 of the western clawed frog is likely

to be involved in sensing temperatures at the body surface. The

western clawed frog is a fully aquatic anuran that inhabits tropical

areas, and its optimal ambient temperature range is 22–28uC
[33,34]. Temperatures below 18–20uC have detrimental effects

[35,36], and here we show that the temperature threshold for

activation of the TRPV3 channel is slightly below its temperature

limit (about 16uC) (Figure 4D). Thus, the physiological role of the

TRPV3 channel is likely to detect noxious cold temperatures in

the western clawed frog.

It is expected that the physiological importance of warm

temperature perception is higher in homeothermic vertebrates

than for ectothermic vertebrates. TRPV3 channels serve crucial

roles in homeothermic mammals by detecting innocuous temper-

atures near the body temperatures such as in mouse [9], while it

serves as a sensor to detect noxious cold temperatures in

ectothermic vertebrates such as the western clawed frog

(Figure 4). Similar observations have been reported for TRPM8

channels that act as cold temperature receptors. Activation

temperatures of TRPM8 channels of the western and African

clawed frog are much lower than those of rat and chicken TRPM8

channels [37]. Since body temperatures of frogs are lower than

mammals and birds, it has been interpreted that the shift in

temperature sensitivity of TRPM8 channels reflects the differences

in the physiological requirements of body temperatures between

homeothermic and ectothermic vertebrates. Characterization of

TRPV3 channels from more diverse amniote species including

both homeothermic and ectothermic animals will provide new

insights into the functional evolution of temperature receptors

related to homeothermy in vertebrates.

In conclusion, detailed comparative analyses on the TRPV

subfamily performed in the present study identified novel TRPV

genes that have not been reported previously (Figure 1) and also

elucidated the flexible nature of TRPV3 in vertebrate evolution

(Figure 7). The TRPV3 gene emerged in the common ancestor of

teleost fishes and terrestrial vertebrates but has subsequently been

lost in teleost fish lineages. Terrestrial vertebrates retained the

TRPV3 channel, however, the western clawed frog and mammals

acquired opposite temperature sensitivity to detect environmental

temperatures suitable for their respective species. Thus the results

of the present study reveal that thermoTRPs can dynamically

change channel properties to adapt to different thermal environ-

ments during the course of evolution.

Materials and Methods

Retrieving nucleotide sequences of the TRPV genes
The TRPV1-5 genes from human, mouse, rat, chicken, western

clawed frog, zebrafish, and torafugu were previously collected [5].

For the present study we collected TRPV homologous genes from

several mammalian species, green anole, western clawed frog, and

teleost fishes utilizing the orthologue prediction based on the draft

genome sequence database published by Ensembl (http://www.

ensembl.org/index.html).

Molecular phylogenetic analysis
Multiple sequence alignments were performed using the

CLUSTAL W algorithm [38], with minor manual adjustments.

Evolutionary distances between the amino acid sequences were

calculated using the central conserved portions containing the

ankyrin repeat and transmembrane domains (381 residues) by

applying the JTT model [16] after all alignment gap sites were

eliminated. The phylogenetic tree was then reconstructed using the

minimum-evolution method [17]. The statistical confidence of each

branch in the phylogenetic tree was estimated by the bootstrap

method with 1,000 replications [15]. All of the above analyses were

performed using MEGA4 software [39]. The TRPV genes and

species used for phylogenetic reconstruction are listed in Table S1.

Western clawed frog
All procedures involving the care and use of animals were

approved by the National Institute for Physiological Sciences.

Western clawed frogs (Xenopus tropicalis) were kindly provided by

the National Bio-resource Project (NBRP) of the Ministry of

Education, Science, Sports and Culture of Japan. The western

clawed frog strain used was the Yasuda line [34].

Sequencing and cloning of the TRPV3 gene of the
western clawed frog

Using total RNA extracted from the toe of a fore-limb of an

adult female western clawed frog as the template, a cDNA

fragment spanning the 59- to 39-UTR of the TRPV3 gene was

amplified by RT-PCR and 59- to 39-RACE. A DNA fragment

containing the western clawed frog TRPV3 gene was amplified by

RT-PCR and cloned into the pGEMHE vector. The PCR primers

used are listed in Table S2. The mouse TRPV3 gene that was

cloned into the pcDNA3 vector (Invitrogen) was the kind gift of

Mike Caterina (Johns Hopkins, Baltimore, USA) and was

subcloned into pOX+ vector.

Oocyte electrophysiology
The TRPV3 channel of the western clawed frog was

heterologously expressed in oocytes of the African clawed frog

Xenopus laevis, and ionic currents were recorded using the two-

electrode voltage-clamp method. Western clawed frog TRPV3

cRNA was injected into defolliculated oocytes and ionic currents

were recorded 1–4 days post-injection. The oocytes were voltage-
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clamped at 260 mV. All chemical compounds were diluted into

ND96 bath solution and applied to the oocytes by perfusion. For

thermal stimulations, heated or cold ND96 bath solutions were

applied by perfusion. The current-voltage relationship was

obtained using 200 ms voltage-ramp pluses from 2100 to

+100 mV applied every 1.5 seconds. The data values are

expressed as mean 6 SEM.

Semi-quantitative RT-PCR
Total RNA was extracted from skin from various parts of the

body, toes of the fore- and hind-limbs, thigh skeletal muscle, fat

body, gastrointestinal tract, lung, liver, kidney, heart, testis, ovary,

peripheral nerve, and brain of male and female adult western

clawed frogs. A 149-bp and a 206-bp cDNA fragment containing

the TRPV3 and EF-1a (as internal control) genes, respectively,

were amplified by RT-PCR.

Details of the Materials and Methods are described in Text S1.

Supporting Information

Figure S1 The nucleotide sequence of TRPV3 cDNA of the

western clawed frog. The boundaries of the exons are shown with

the lengths of the introns (bp) that are located between the exons.

Note that intron length between exons 2 and 3 is not clearly

determined since the nucleotide sequence information is partially

lacking in this intron. The locations of the primers used in the

present study for the forward and reverse directions are delineated

by blue and orange boxes, respectively. The deduced amino acid

sequence is shown below the cDNA nucleotide sequence.

(TIF)

Figure S2 The nucleotide sequence of the genomic region

containing exon 2 in the TRPV3 gene of the western clawed frog.

The nucleotide sequence of exon 2 is shadowed. The locations

of the primers are indicated by lines with arrows to indicate

direction.

(TIF)

Figure S3 The amino acid alignment of the TRPV3 channels of

terrestrial vertebrates. The amino acid identical to, similar to, and

different from consensus residues are indicated by red, blue, and

black letters, respectively. Bold and thin lines delineate putative

ankyrin (ANK) repeat and transmembrane domains (TM),

respectively. Histidine residue involved in 2-APB sensitivity is

marked with a dot. The locations of the transmembrane domains

of the human TRPV3 channel are from Smith et al. [7]. The

locations of the transmembrane domains of the western clawed

frog were predicted by TMpred (http://www.ch.embnet.org/

software/TMPRED_form.html). Note that the amino acid

residues of the green anole TRPV3 channel are partially missing

(indicated by ‘X’) due to incompleteness of the genome sequence

database.

(TIF)

Figure S4 The activation properties of the TRPV3 channel of

the western clawed frog. All the data were obtained from oocytes

injected with TRPV3 cRNA of the western clawed frog. (A) The

responses of the oocytes upon repeated 2-APB stimulations. 2-APB

(0.5 mM) was applied repeatedly in a short period (20 seconds).

Cold (B) or warm (C) temperature effects on 2-APB currents. Cold

or warm stimulations were applied to the oocytes during the 2-

APB (0.2 mM) administration. (D-F) Representative current traces

in responses to initial applications of menthol (2 mM) (D), vanillin

(10 mM) (E), or eugenol (2 mM) (F) with secondary applications of

2-APB (0.5 mM) in the oocytes.

(TIF)

Figure 7. The evolutionary changes of TRPV3 channels in the vertebrate lineages. The major evolutionary events are indicated on the
respective branches. The amino acid sequences of the N- and C-terminal regions of the TRPV3 channels were conserved among amniote species,
while the N- and C-terminal regions of TRPV3 in the western clawed frog were highly diversified from those regions of TRPV3 in other terrestrial
vertebrate species. The ancestral states of the terminal regions are ambiguous since teleost fishes have lost the TRPV3 gene. Western clawed frog and
mammals acquired opposite temperature sensitivities of TRPV3 channels; however, the timing of the shift is not clearly determined since the
temperature sensitivities of TRPV3 channels of birds and reptiles have not been reported.
doi:10.1371/journal.pgen.1002041.g007
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Table S1 Summary table listing information for the genes used

in the present study. The names of the species and genes are listed

with their gene identifiers from the databases.

(TIF)

Table S2 List of the primers used in the present study.

Sequence, Tm, and Location for each of the primers are listed.

(TIF)

Text S1 Materials and Methods are described in detail.

(DOC)
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