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Abstract

Following DNA damage or replication stress, budding yeast cells activate the Rad53 checkpoint kinase, promoting genome
stability in these challenging conditions. The DNA damage and replication checkpoint pathways are partially overlapping,
sharing several factors, but are also differentiated at various levels. The upstream kinase Mec1 is required to activate both
signaling cascades together with the 9-1-1 PCNA-like complex and the Dpb11 (hTopBP1) protein. After DNA damage, Dpb11 is
also needed to recruit the adaptor protein Rad9 (h53BP1). Here we analyzed the mechanisms leading to Mec1 activation in vivo
after DNA damage and replication stress. We found that a ddc1Ddpb11-1 double mutant strain displays a synthetic defect in
Rad53 and H2A phosphorylation and is extremely sensitive to hydroxyurea (HU), indicating that Dpb11 and the 9-1-1 complex
independently promote Mec1 activation. A similar phenotype is observed when both the 9-1-1 complex and the Dpb4 non-
essential subunit of DNA polymerase e (Pole) are contemporarily absent, indicating that checkpoint activation in response to
replication stress is achieved through two independent pathways, requiring the 9-1-1 complex and Pole.
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Introduction

The DNA replication machinery can experience various types

of stress during S phase. This can happen when the replisome

encounters DNA lesions that hinder its progression, while

traversing slow replication zones corresponding to genomic

regions difficult to replicate [1] or when encountering replication

fork barriers [2]. Replication stress can also be induced by

inhibiting ribonucleotide reductase (RNR) with hydroxyurea,

which causes a global replication arrest by reducing the dNTPs

pools [3].

Under replication stress conditions, eukaryotic cells trigger a

signaling cascade, known as the replication checkpoint, which, in

budding yeast, culminates with the phosphorylation of Rad53 [4].

This protein kinase is essential for the activation of the molecular

mechanisms required to cope with replication arrest: it promotes

stabilization of stalled replication forks and allows DNA replication

re-start after removal of the blocking agent [5,6,7,8]. Rad53 is also

responsible for inducing the transcription of RNR genes by

inhibiting the transcriptional repressor Crt1 and promoting the

degradation of the RNR inhibitor Sml1 [9,10]. Finally, Rad53

prevents the firing of late replication origins [11] and restrains

spindle elongation thus preventing mitosis [12,13,14].

The DNA damage and replication checkpoints are genetically

distinct pathways; however, they are partially overlapping since

they share several of the factors involved. In fact, replication stress

activates Mec1, the same apical kinase triggered by DNA damage,

which is recruited to RPA-covered ssDNA by its binding partner

Ddc2 [15]. After damage, Mec1 phosphorylates the Rad9 adaptor

protein, which has been loaded onto DNA via chromatin-

dependent and -independent pathways: the former requiring

methylation of H3-K79 and the latter depending on the 9-1-1

complex and Dpb11 [16,17,18,19,20]. Phosphorylated Rad9, in

turn, recruits Rad53, which becomes hyperphosphorylated in a

Mec1-dependent manner. Differently, in the case of HU-induced

checkpoint activation, the Rad9 adaptor protein is dispensable and

its function is performed by Mrc1, a constitutive member of the

replisome complex [21,22].

It is now clear that following genotoxin treatments, primary

lesions are generally recognized by specific repair factors that

process them to generate ssDNA regions, which elicit the DNA

damage response. On the other hand, the actual mechanism

acting in the activation of the replication stress response is poorly

understood. In budding yeast, it has been suggested that

replication proteins may be involved in sensing blocks of the

replication fork. Indeed, in addition to Dpb11, the initiation factor

Sld2/Drc1 and Pole itself are required for efficient checkpoint

activation in response to HU treatment, although the correspond-

ing mutants are only mildly sensitive to the drug [23,24,25].

Sld2 is an essential CDK1 target required for initiation of DNA

replication. Its phosphorylation and subsequent interaction with

Dpb11 is essential for the loading of Pole and the firing of
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replication origins [26,27]. Pole consists of four subunits: Pol2 and

Dpb2 are essential for cell viability while Dpb3 and Dpb4 appear

to be non-essential. These last two factors contains a histone-like

fold motif and are also implicated in transcriptional regulation

[28,29]. The Pole holoenzyme is composed of two structurally

distinct domains: a globular domain, made of the N-terminus of

the catalytic Pol2 subunit and a tail-like domain containing the

other three factors, bound to the Pol2 C-terminus [30,31]. The

catalytic subunit contains an N-terminal polymerase domain

followed by a C-terminal region, where the checkpoint-defective

mutations of POL2 map [24]. Surprisingly, deletion of the

polymerase domain does not cause cell lethality, whereas the

checkpoint domain is essential for cell viability [32].

It has been established that in response to DNA damage, the 9-

1-1 clamp is loaded onto the 59 primer-template junction adjacent

to RPA-coated ssDNA [33,34]. In higher eukaryotes, 9-1-1 then

recruits TopBP1 which, through an interaction with ATRIP,

stimulates the ATR kinase activity [35,36,37,38]. Recent work in

yeast demonstrated that Mec1 activation can proceed also through

a 9-1-1-dependent, but Dpb11-independent pathway, mediated by

an activation domain present in the Ddc1 subunit of the 9-1-1

complex [39]. Indeed, it has been reported that S. cerevisiae 9-1-1

can directly activate the Mec1-Ddc2 kinase in vitro [40]. The in vivo

balancing between these two pathways has been recently studied,

following Rad53 phosphorylation [39], which is influenced not

only by Mec1 activation, but also by the Rad9 mediator [39].To

determine directly the relative contributions of Ddc1 and Dpb11

to Mec1 activation in different cell cycle phases, and particularly in

response to replication stress, we analyzed a direct target of Mec1

kinase, histone H2A, whose phosphorylation is not dependent

upon Rad9.

In this study we found that, in G1 yeast cells, Mec1 activation

induced by UV irradiation completely depends on the 9-1-1

dependent pathway, whereas Dpb11 only plays a minor role.

Conversely, in response to replication stress, Mec1 activation is

achieved through two independent pathways which rely on the 9-

1-1 complex and Dpb11, respectively. At least one of these two

pathways is necessary to efficiently activate Mec1 and to allow cell

growth in the presence of HU. Finally, we provide evidence that

the DNA polymerase e complex and Sld2 are required to establish

the 9-1-1 independent branch of Mec1 activation and we suggest

that this could reflect strand-specificity in detecting replication

stress.

Results

UV-induced Mec1 activation requires 9-1-1 and the
C-terminal tail of Dpb11

We have previously shown that, in M phase, Dpb11 is required

to recruit the Rad9 adaptor protein to UV-damaged DNA in a

pathway that is parallel to that controlled by histone modifications

[16,20]. Dpb11 was also found to stimulate Mec1 kinase activity in

vitro and this function appears to be modulated by its interaction

with the 9-1-1 complex [41,42]. To dissect the Mec1-activation

role of Dpb11 in vivo and to determine the relative contribution of

Dpb11 and 9-1-1 to this mechanism in different cell cycle phases,

we analyzed histone H2A phosphorylation as an assay for Mec1

activity. After UV damage H2A is phosphorylated directly on

serine 129 (cH2A) by Mec1 kinase; indeed mec1-1 mutant cells fail

to phosphorylate H2A after DNA damage and a strain deleted in

TEL1, coding for a second sensor-kinase, does not show any

significant reduction in cH2A levels (Figure S1A and S1B).

We used a yeast strain carrying a C-terminal deletion of Dpb11

(D583_764) encoded by the dpb11-1 allele, which removes almost

entirely the ATR Activation Domain (AAD) and a strain carrying

the deletion of DDC1, the gene encoding the 9-1-1 subunit

involved in Mec1 activation [40]. WT, dpb11-1, ddc1D and

ddc1Ddpb11-1 cells were arrested in G1 with a-factor and in M

phase with nocodazole and UV irradiated. As it is shown in

Figure 1A, histone H2A is extensively phosphorylated after UV

treatment in G1 and this damage-dependent modification requires

the presence of a functional 9-1-1 complex, while the contribution

of the AAD domain of Dpb11 is only minor. The quantification of

the signal (shown in the lower panel of Figure 1A), indicates that

the level of phosphorylated histone H2A (cH2A) in dpb11-1 is

,50% of that found in WT cells.

In M phase cells the basal level of phosphorylated H2A-S129 is

much higher (Figure S1C), and this likely influences the magnitude

of the increase measured after UV-irradiation. In these conditions,

Dpb11 plays a minimal role, if any, in H2A phosphorylation and

also DDC1 deletion reduces cH2A only partially (,50%)

(Figure 1B). However, the residual H2A phosphorylation observed

in a ddc1D mutant strain is lost when TEL1 is deleted, (Figure 1C).

On the other hand, deletion of TEL1in the dpb11-1 background

does not significantly influence H2A phosphorylation (Figure S1D)

9-1-1 and Dpb11 act independently in signaling
replication stress to the Mec1 kinase

To further elucidate the balancing between 9-1-1-dependent

and Dpb11-dependent Mec1 activation in S phase, we decided to

analyze this process after replication stress induced by HU. This

allowed us also to minimize the side effects due to the involvement

of Dpb11 in Rad9 recruitment because, during HU treatment,

Rad9 does not become hyperphosphorylated and is not expected

to play any role in checkpoint activation [22]. WT, dpb11-1, ddc1D
and ddc1Ddpb11-1 cells were synchronized in G1, released into

fresh medium supplemented with 200 mM HU, and checkpoint

activity was monitored by measuring Rad53 phosphorylation

(Figure 2A). Differently from what found in G1 and G2 cells,

strains lacking either a functional 9-1-1 complex or the Dpb11 C-

terminal region were fully able to phosphorylate Rad53. In these

Author Summary

The maintenance of genome stability is an essential
process which needs a careful control. Indeed, the
checkpoints are surveillance mechanisms sensing alter-
ations in the integrity of the genome and preventing the
replication and segregation of defective DNA molecules.
The DNA integrity checkpoint is a signal transduction
cascade conserved from yeast to man, and the apical
factors in the pathway are protein kinases, called Mec1/
Tel1 in Saccharomyces cerevisiae and ATR/ATM in mam-
mals. DNA integrity can be challenged by lesions caused
by a variety of chemical/physical agents, or by replication
stress caused by special DNA structures, or by a limited
supply of deoxyribonucleotides (dNTPs). The mechanisms
leading to checkpoint activation in response to DNA
damage are better understood compared to the processes
leading to activation as a consequence of replication
stress. We investigated the mechanisms required for Mec1
activation in response to dNTPs depletion caused by
hydroxyurea treatment. We found that Mec1 activation
occurs through two independent pathways: one acting
through the PCNA-like 9-1-1 complex and the second
through Dpb11 and DNA polymerase e. The existence of
these two pathways suggest a model possibly reflecting a
DNA strand specificity in the detection of replication stress.
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experimental conditions, ddc1D dpb11-1 double mutant cells

showed a very severe defect in Rad53 phosphorylation, similar

to that found in a Mec1-defective strain. These results suggest that

a dpb11-1 ddc1D double mutation virtually abolishes UV-induced

Mec1 activation differently from what previously reported [39], In

addition, the double mutant strain showed synthetic lethality on

HU plates (Figure 2B and [43]). To confirm that the dpb11-1 and

ddc1D mutations directly affect Mec1 activity, we monitored cH2A

levels in the same conditions. As shown in Figure 2C, the ddc1D
and dpb11-1 mutations showed a synthetic defect in the ability to

phosphorylate H2A-S129 (Figure 2D).

Although displaying a severe defect in Rad53 phosphorylation,

ddc1Ddpb11-1 still displays a residual low level of phosphorylated

Rad53, which may be dependent upon a residual Mec1 activity.

However, Figure 2E and Figure S2A show that the residual Rad53

phosphorylation in the double mutant is instead due to Tel1.

Indeed, an additional mutation eliminating Tel1 function

completely abolishes Rad53 phosphorylation in a dpb11-1 ddc1D
strain and strongly sensitizes cells to HU treatment, as shown in

Figure S2B. These findings further support the hypothesis that

Mec1 cannot become activated in response to replication stress in

the absence of both Ddc1 and Dpb11-AAD.

To verify the possibility that in dpb11-1 mutant cells an

unscheduled, Ddc1-dependent, DNA damage response is triggered

as a consequence of the inability to properly activate the

replication stress response, similarly to what happens in an mrc1D
strain [22], we monitored DNA damage checkpoint activation

looking at Rad9 hyperphosphorylation. As shown in Figure 2F,

differently from what found in the mrc1D control strain, no Rad9

hyperphosphorylation was detectable in ddc1D, dpb11-1 single or

double mutant strains. Consistently, rad9Ddpb11-1 double mutant

cells are far less sensitive than the ddc1Ddpb11-1 strain to HU

treatment (Figure 2B and [43]).

Low levels of Rad53 activity are sufficient to prevent
replication fork breakdown and premature entry into
mitosis

Rad53 kinase activity is required to stabilize stalled replication

forks [7]. To verify whether the increased HU sensitivity of

ddc1Ddpb11-1 double mutant cells was due to their inability to fully

activate Rad53 and thus to stabilize the replisomes, we performed

a recovery assay. Briefly, WT, dpb11-1, ddc1D, ddc1Ddpb11-1 and

mec1-1sml1 mutant strains were blocked in G1, released and

exposed to HU for 90 minutes; cells were then washed and shifted

into fresh medium lacking HU and allowed to recover. As shown

in the control strain mec1-1 sml1, when Rad53 activity is impaired,

cells transiently exposed to HU loose the ability to resume DNA

synthesis and complete DNA replication once the drug has been

removed ([6] and Figure 3A). Unexpectedly, we found that not

only dpb11-1 and ddc1D single mutant cells, but also the double

mutant strain, which has a severe Rad53 hyperphosphorylation

defect, were able to recover from the HU treatment with a WT

kinetics (Figure 3A). Moreover, with lower HU concentrations,

ddc1D dpb11-1 cells were capable of completing a round of DNA

replication, as demonstrated by the re-entering of the replicated

chromosomes in a pulsed-field gel system (Figure 3B).

Another marker of checkpoint activation by HU is the arrest of

cell cycle, preventing mitosis. When exposed to HU, checkpoint

mutants fail to delay the onset of mitosis and display elongated

spindles [14]. To address the hypothesis that ddc1D dpb11-1 cells

may die as a consequence of a premature mitosis, we measured

spindle length 90 minutes after HU addition. ddc1D dpb11-1

double mutant cells prevent spindle elongation in the presence of

HU, a process which is clearly defective in a mec1-1 mutant strain

(Figure S3A), suggesting that the replication checkpoint can delay

mitotic entry in the double mutant [10].

In agreement with all these data, the HU sensitivity of ddc1D
dpb11-1 double mutant cells can be observed only to chronic

Figure 1. UV-induced Mec1 activation requires the 9-1-1
complex and the Dpb11 C-terminus. (A) K699 (WT), YFP20
(dpb11-1), YAN21/8d (ddc1D), YFP62/1d (ddc1Ddpb11-1) and YMIC5A3
(mec1-1) strains were grown to mid-log phase, arrested in G1 with a-
factor and subjected to UV irradiation. At the indicated time-points,
protein extracts were prepared and separated by SDS-PAGE. Mec1
activation was assayed by western blotting monitoring cH2A and a-
actin was used as loading control. A quantification of H2A phosphor-
ylation is shown in the lower panel. The values indicate the fold
increase respect to the WT untreated sample. The mec1-1 mutation is
functionally equivalent to a null mutation (B) The strains in panel A
were arrested in M phase with nocodazole and subjected to the same
treatment. Analysis and quantification of H2A phosphorylation was
carried out as described above. (C) Strains K699 (WT) and YFP223
(ddc1D tel1D) were arrested in M phase with nocodazole and UV
irradiated. At the indicated time-points Mec1 activation was assayed by
western blotting monitoring cH2A. A quantification of the signal
corresponding to H2A-S129 is shown in the lower panel. The values
indicate the fold increase respect to the WT untreated samples.
doi:10.1371/journal.pgen.1002022.g001
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exposure to the drug, while it is virtually undetectable if cells are

transiently exposed to HU (Figure 3C).

The inability to fully activate Rad53 causes defects in the
control of RNR induction

ddc1D dpb11-1 mutant cells exhibit extremely low levels of Mec1

and Rad53 activation and, despite being sensitive to exposure to

even low concentrations of HU (Figure 2B), they do not show

some of the most common phenotypes observed in replication

checkpoint defective cells. To better characterize the sensitivity to

the drug, we monitored cell growth in the presence of 100 mM

HU. The single and double mutant ddc1D dpb11-1 yeast strains

were synchronized in G1, released into fresh medium supple-

mented with HU and cell cycle progression followed by FACS

analysis. The double mutant ddc1D dpb11-1 showed a small delay

in progressing through S-phase in the presence of HU, compared

to WT and single mutant cells. Significantly, at late times

(20 hours) after the release, a large fraction of double mutant

cells appeared to be arrested at different stages of S-phase, while

WT and single mutant cells had regained a FACS profile with 1C

and 2C peaks (Figure 4A). Consistently, PFGE analysis of genomic

DNA prepared from the various strains 20 hours after release from

HU showed that in ddc1D dpb11-1 double mutant cells most of the

DNA fails to enter the gel, suggesting the presence of branched

intermediates (Figure 4B, 4C). It is important to note that,

differently from what found in a mec1-1 strain, the ddc1D dpb11-1

strain did not accumulate cells with a,1C DNA content, or low

molecular weight DNA fragments (Figure 4A–4C) indicating a

Figure 2. Dpb11 and 9-1-1 independently activate Mec1 after replication stress. (A) K699 (WT), YFP20 (dpb11-1), YAN21/8d (ddc1D), YFP62/
1d (ddc1Ddpb11-1), YFP125/6d (mrc1D) and YMIC5A3 (mec1-1) strains were grown to mid-log phase, synchronized in G1 with a-factor and released
into fresh medium supplemented with 200 mM HU. At the indicated time-points, protein extracts were prepared and separated by SDS-PAGE. Rad53
activation was assayed as the phosphorylation-dependent shift of the protein. (B) 103–104 cells from overnight cultures of the strains analyzed in
panel A and YFP74 (rad9D) and YFP161/5C (rad9Ddpb11-1) were spotted on YPD plates supplemented with HU at the indicated concentrations. Cell
survival was assayed after 2–7 days. (C) The same filter in panel A was probed for Mec1 activation by analyzing the level of histone H2A
phosphorylation. (D) Quantification of cH2A in the experiment shown in panel C, using a-Rad53 cross-reacting band as loading control. The values
indicate the fold increase respect to the WT G1 sample. (E) Strains K699 (WT), YMIC6C3 (tel1D), YFP62/1d (ddc1Ddpb11-1) and YFP230 (ddc1Ddpb11-
1tel1D) were synchronized in G1 and released into fresh medium supplemented with 200 mM HU. At the indicated time-points Rad53 and H2A
phosphorylation were assayed by western blotting. A quantification of the signal is shown in the lower panel, using a-Rad53 cross-reacting band as
loading control. The numbers indicate the fold increase respect to the WT G1 sample. (F) The same extracts of panel A were probed with a-Rad9
antibodies to determine the extent of Rad9 hyperphosphorylation. In all the relevant panels the loading control is indicated by an asterisk.
doi:10.1371/journal.pgen.1002022.g002
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correct segregation of chromosomes. Altogether, these findings

may suggest that ddc1D dpb11-1 cells are unable to counteract the

effect of HU by upregulating ribonucleotide reductase (RNR).

Indeed, Rad53 regulates both the timely degradation of the RNR

inhibitor Sml1 and the inactivation of Crt1, which represses the

transcription of RNR genes [9,10]. Consistently with this

interpretation, ddc1D dpb11-1 cells show a modest delay in Sml1

degradation and, more significantly, CRT1 deletion suppresses,

although not completely, the sensitivity of the double mutant strain

to HU (Figure 4D, 4E).

Sld2 and DNA polymerase e are required for
Ddc1-independent checkpoint activation

Sld2/Drc1 and Pole participate in replication checkpoint

signaling [24,25]. Moreover, these factors were recently found to

be part of the same pre-loading complex, together with Dpb11

and GINS [44]. An interesting possibility is that Sld2 and Pole
exert their checkpoint function by controlling Dpb11-mediated

Mec1 activation. To address this hypothesis we combined the drc1-

1 allele with the DDC1 deletion. As it is shown in Figure 5A,

similarly to what reported above for Dpb11, Sld2 also acts in a

pathway that is parallel to that involving Ddc1; indeed, residual

Rad53 phosphorylation present in ddc1D cells depends on Sld2.

Moreover, drc1-1 cells do not show hyperphosphorylation of Rad9

in response to HU treatment, excluding the possibility of a

secondary DNA damage response (Figure S4A). In agreement with

these data, deletion of DDC1 displays a synergistic sensitivity to

HU when combined with the drc1-1 mutation and the HU

sensitivity of the double mutant strain is very similar to that

observed for ddc1Ddpb11-1 cells (Figure 5B).

The checkpoint function of Pole appears to reside in the C-

terminal domain of Pol2, which is bound, either directly or

indirectly, by the three smaller subunits Dpb2, Dpb3 and Dpb4

and by Dpb11 [31,45]. To assess if Pole participates in the Dpb11

signaling branch via its minor subunits, we deleted DPB4 in

combination with the DDC1 deletion. Figure 5C shows that Rad53

phosphorylation is severely impaired in the double mutant

ddc1Ddpb4D, closely resembling the phenotype of a ddc1Ddpb11-1

mutant. The same effect is measured by testing H2A phosphor-

ylation in HU-treated samples (Figure 5D). The signals obtained

for each time-point are quantified with respect to the signal

detected in G1-arrested cells, in order to compensate for the

higher basal level of cH2A observed in ddc1Ddpb4D double mutant

cells in the absence of any treatment. Moreover, no unscheduled

DNA damage checkpoint activation occurs, since no Rad9

phosphorylation is detected in dpb4D or dpb4D ddc1D cells treated

with HU (Figure S4B). Finally, the ddc1Ddpb4D strain shows an

HU sensitivity similar to that found in ddc1Ddpb11-1 cells

(Figure 5E).

Discussion

Apical checkpoint kinases (Mec1/Tel1 in budding yeast, ATR/

ATM in humans) convert a structural signal coming from

damaged DNA to a phosphorylation-based signaling cascade,

and a large amount of work has been devoted to clarify the

underlying mechanisms. Initially, the attention was focused on the

recruitment of these kinases to damaged DNA [15], based on the

assumption that binding to damaged chromatin sites would lead to

their activation. More recently, the finding that Dpb11/TopBP1

stimulates Mec1 activity suggests a more complex scenario

[40,41,42].

In vitro data obtained in Xenopus egg and mammalian cell

extracts demonstrate the ability of TopBP1 to increase Mec1

kinase activity [35,38]. The significance of this TopBP1 function

does not appear to be specific for multicellular eukaryotes, since an

interaction between Rad4/Cut5 and the checkpoint sensor kinase

Rad3-Rad26 has also been found in S. pombe [46,47]. More

recently, in S. cerevisiae cells, Dpb11 has been demonstrated to

contain an ATR activation domain (AAD), which is sufficient to

promote Mec1 activation in vitro [41,42]. These findings

apparently contradict a previous observation that Mec1 can

normally phosphorylate Ddc2 in a dpb11-1 mutant, lacking part of

the AAD, after UV damage in M phase [16], while in our hands

DDC1 deletion prevents Ddc2 phosphorylation (unpublished

observation). Two explanations can be envisaged: in dpb11-1

mutant cells, Mec1 activity may be sufficient to phosphorylate

Ddc2, while being defective towards other substrates; alternatively,

Dpb11 may play only a marginal role in response to UV

irradiation in M phase. We favored the second hypothesis because

dpb11-1 mutant cells are mildly sensitive to UV irradiation and are

proficient in the G2/M checkpoint; moreover, the 9-1-1 complex

has also been identified as an activator of Mec1 in vitro [39,40] and

may play a prominent role in M phase. If this assumption is

correct, Dpb11 could play a role in Mec1 activation in response to

a different kind of damage or in other cell cycle phases.

Interestingly, it was demonstrated that the dpb11-1 temperature-

sensitive mutant is defective in checkpoint activation after

replication stress caused by HU treatment at the restrictive

temperature (36uC), while it is only mildly sensitive to the drug at

permissive temperature ([23,25] and Figure 2B).

Figure 3. Low levels of Rad53 activity are sufficient to prevent
replication fork breakdown. (A) HU recovery assay: K699 (WT),
YFP20 (dpb11-1), YAN21/8d (ddc1D), YFP62/1d (ddc1Ddpb11-1) and
YMIC5A3 (mec1-1) were synchronized in G1 with a-factor and released
into fresh medium supplemented with 200 mM HU. 90 min later cells
were transferred to fresh YPD + nocodazole and allowed to resume
DNA replication. Progression into S phase was monitored by FACS
analysis. (B) The indicated strains were synchronized in G1 with a-factor
and released into 100 mM HU + nocodazole. 3 and 5 hours later cells
were harvested and total DNA was analyzed by Pulse Field Gel
Electrophoresis (PFGE). (C) The strains in panel A were synchronized in
G1 and released in YPD supplemented with 200 mM HU. 90 min later
10-fold serial dilution were prepared and spotted onto YPD plates. The
same was done with the G1-synchronised cultures as control.
doi:10.1371/journal.pgen.1002022.g003
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To better understand the process of Mec1 activation in vivo

after DNA damage or replication stress, we analyzed the relative

functions of the two putative Mec1 activators: Dpb11 and the 9-

1-1 complex. We extended our previous analysis by monitoring,

in different cell cycle phases, a direct target of Mec1 kinase

(histone H2A) as marker of Mec1 activity. We found that, both

in G1 and in M phase, the 9-1-1 complex is absolutely required

for Mec1 activation in response to UV treatment, while the

contribution of Dpb11 AAD is only partial (,50%) and

restricted to G1. These in vivo findings are in agreement with

the current activation model inferred from in vitro biochemical

data [39], indicating that 9-1-1 can stimulate Mec1 through both

Dpb11-dependent and -independent pathways in G1 (Figure 6,

left). Differently, in M phase, the ATR activation domain of

Dpb11 is dispensable for full Mec1 activation, which relies

mainly on the presence of 9-1-1 (Figure 6, right). In fact, the

residual UV-induced H2A phosphorylation detectable in the

ddc1D strain, is dependent upon the Tel1 kinase (Figure 1).

Different requirements for Mec1 activation in G1 and in M

phase may reflect differences in CDK-controlled processing of

DNA filament ends to generate the substrate detected by

checkpoint factors [48,49].

To complete studying of the pathways leading to Mec1

activation in different cell cycle stages, we analyzed the

contribution of Dpb11 and Ddc1 to Mec1 activation in S phase

cells challenged with replication stress. HU decreases the cellular

concentration of dNTPs available for DNA synthesis and yeast

cells respond by activating the replication checkpoint.

In vivo analysis of the phosphorylation state of two Mec1

substrates, H2A and Rad53, indicates that Dpb11 and 9-1-1

participate in Mec1 activation in response to HU treatment

independently of each other in two parallel pathways. The

possibility that dpb11-1 may cause problems to the replication

process triggering a DNA damage response mediated by the 9-1-1

complex, similarly to what happens in mrc1D cells [22], seems

unlikely. In fact, the Rad9 DNA damage-specific adaptor does not

become hyperphosphorylated in both dpb11-1 and ddc1D single

mutants. In agreement with such observation, rad9Ddpb11-1 cells

are much less sensitive to HU than ddc1D dpb11-1 cells (Figure 2

and [43]).

We report that the HU sensitivity of ddc1D dpb11-1 strain is not

due to replication fork collapse or premature elongation of the

mitotic spindle (Figure 3 and Figure S2), two phenotypes

characteristic of mutants defective in the replication checkpoint

Figure 4. The inability to fully activate Rad53 causes defects in the control of RNR induction. (A) K699 (WT), YFP20 (dpb11-1), YAN21/8d
(ddc1D), YFP62/1d (ddc1Ddpb11-1) and YMIC5A3 (mec1-1) were synchronized in G1 with a-factor and released into fresh medium supplemented with
100 mM HU. At the indicated time-points after the release, progression into the cell cycle was monitored by FACS analysis. (B) DNA extracted from
the G1-arrested cells and from the cells released for 20 hours in HU was separated by PFGE and stained with ethidium bromide. (C) A plot
representing the intensity profile of the significant gel lanes in panel C. (D) K699 (WT), YFP20 (dpb11-1), YAN21/8d (ddc1D) and YFP62/1d
(ddc1Ddpb11-1) strains were synchronized in G1 with a-factor and released into fresh medium supplemented with 200 mM HU. At the indicated time-
points protein extracts were prepared and probed with a-Sml1 antibodies to measure the levels of Sml1 and with a-actin antibodies as a loading
control. (E) Ten fold serial dilutions of overnight cultures of strains K699 (WT), YFP328 (crt1D), YFP62/1d (ddc1Ddpb11-1) and YFP330 (ddc1Ddpb11-
1crt1D) were spotted on YPD plates supplemented with HU at the indicated concentration. Survival was assayed by monitoring cell growth after 6
days.
doi:10.1371/journal.pgen.1002022.g004
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[7,12]. Accordingly, the HU sensitivity of ddc1Ddpb11-1 double

mutant cells, differently from that of a mec1-1sml1 strain, is not

detectable in the case of transient HU treatment. This

observation suggests that another Rad53 function activated by

the replication checkpoint, and different from that responding to

temporary fork arrest, is essential for sustaining growth in the

constant presence of hydroxyurea. Indeed, ddc1D dpb11-1 double

mutant cells grown in the presence of HU show defects in

completing replication and accumulate replication intermediates.

Moreover, ddc1D dpb11-1 cells are unable to counteract the effect

of HU by upregulating ribonucleotide reductase. Interestingly,

CRT1 deletion partially suppresses HU sensitivity of the double

mutant strain (Figure 4E).

To obtain more insights on the pathways leading to Ddc1-

dependent and Dpb11-dependent activation of replication check-

point and to identify possible mechanisms specific for lagging or

leading strand fork arrest, we analyzed mutants in the genes

coding for proteins that are known to be involved in leading strand

replication. During initiation of DNA replication, Dpb11 interacts

with both Sld2 and Sld3 in a phosphorylation-dependent manner,

a process that is required for origin firing [26,27]. Moreover,

temperature sensitive drc1-1 strains, mutated in Sld2, display the

same checkpoint-deficient phenotype of dpb11-1 cells, when

treated with HU at the non-permissive temperature, (Figure 5

and [25]). We tested whether Sld2 functions with Dpb11 in the

same 9-1-1-independent pathway for Mec1 activation. Combining

the drc1-1 allele with the DDC1 deletion, we found that ddc1D drc1-

1 double mutant cells display the same Rad53 phosphorylation

defect and the same HU sensitivity of a ddc1Ddpb11-1 strain,

indicating that Mec1 activation by Dpb11 also requires Sld2

(Figure 5).

Mutants in the Pol2 C-terminus, the enzyme replicating the

leading strand [50], are defective in the establishment of the

replication checkpoint [24,50] and this protein region of Pol2 was

suggested to be involved in its interaction with other three Pole
subunits: the essential Dpb2 protein and the non-essential Dpb3

and Dpb4 subunits [31,45,51]. Disruption of the DPB4 gene in a

ddc1D background leads to identical phenotypes to the one

observed in ddc1D dpb1-1 and ddc1D drc1-1, strongly suggesting

that the 9-1-1-independent pathway involves leading strand

replication factors. The observations that Dpb11 acts directly on

Mec1 activity [41,42] and that, in the dpb11-1 mutant, Pole seems

to be normally loaded onto replication origins [52], strongly

suggest that Dpb4, and possibly Sld2, function upstream of Dpb11

during checkpoint signaling. Unfortunately, it is impossible to

perform a complete formal epistatic analysis as the dpb11-1

mutation also affects replication initiation and deletion of DPB4 or

mutations in SLD2 are synthetic lethal when combined with the

dpb11-1 allele [28,53].

In conclusion our data suggest that during exposure to

hydroxyurea, two independent pathways sense replication stress

and signal for Mec1 activation. The first pathway depends on 9-

1-1, which is known to be loaded at the 59 of primer-template

junctions, when RPA covers ssDNA ahead of the primer [34].

During unchallenged DNA replication these structures are

normally formed on the lagging strand as a consequence of

discontinuous DNA synthesis, and rapidly removed by refilling

polymerase activity. Inhibition of DNA polymerization by HU

likely stabilizes the 59 DNA end providing the structure required

for 9-1-1 loading. On the other hand, the higher processivity of

leading strand synthesis makes it likely that the nearest 59 end will

be far away from the site of polymerase stalling, where ssDNA is

generated and the Mec1-Ddc2 complex should be recruited. The

absence of such structure could prevent the 9-1-1-dependent

Mec1 activation. In this case a pathway requiring the leading

strand factors Dpb4, Dpb11 and Sld2 becomes relevant to induce

Mec1 activation (Figure 6, center). The hypothesis that Pole, Sld2

Figure 5. Pole associated proteins are involved in the 9-1-1–
independent checkpoint signaling branch. (A) Strains K699 (WT),
Y799 (drc1-1), YAN21/8d (ddc1D), YFP218/1a (ddc1Ddrc1-1) and YFP62/1d
(ddc1Ddpb11-1) were cultured to mid-log phase, synchronized in G1 with
a-factor and released into fresh medium supplemented with 200 mM HU.
At the indicated time-points Rad53 phosphorylation was assayed by SDS-
PAGE and Western blotting. (B) Ten-fold serial dilutions of overnight
cultures of the strains in panel A were spotted on YPD plates supple-
mented with HU at the indicated concentration. Survival was assayed by
monitoring cell growth after 6 days. (C) Strains K699 (WT), YFP167/1a
(dpb4D), YAN21/8d (ddc1D), YFP206/1a (ddc1Ddpb4D) and YFP62/1d
(ddc1Ddpb11-1) were cultured to mid-log phase, synchronized in G1 with
a-factor and released into fresh medium supplemented with 200 mM HU.
At the indicated time-points, protein extracts were prepared and separated
by SDS-PAGE. Rad53 phosphorylation was assayed by western blotting. (D)
The same filter was probed for Mec1 activity by testing histone H2A
phosphorylation. A quantification of cH2A, using a-Rad53 cross reacting
band as loading control is shown in the lower panel. The values indicate
the fold increase respect to the WT G1 sample. (E) Ten-fold serial dilutions
of overnight cultures of the strains in panel C were spotted on YPD plates
supplemented with HU at the indicated concentration. Cell survival was
assayed monitoring cell growth after 6 days. In all the relevant panels the
loading control is indicated by an asterisk.
doi:10.1371/journal.pgen.1002022.g005
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and Dpb11 work together in sensing replication stress is

supported by the recent finding that an unstable complex

containing Dpb11, Sld2, Pole and GINS is formed at the

beginning of S-phase [44]. Moreover, the demonstration that

under unstressed conditions Pole acts on the leading strand while

Pold works on the lagging strand [50,54] supports the hypothesis

that Pole and its interacting subunits may function in sensing

replication stress on the leading strand, while the 9-1-1 complex

may be more important to detect lagging strand fork arrest.

Additional work will be needed to confirm this model and to

identify the mechanisms leading to Dpb11 recruitment at the sites

of replication fork stalling, since Dpb11 appears to co-localize

with Pole during initiation of DNA replication, but not during

elongation [52].

Materials and Methods

Yeast strains
All of the strains used in this work are derivatives of

W303 (K699 [MATa ade2-1 trp1-1 can1-100 leu2-3,12 his3-

11,15 ura3]) and are listed in Table 1. Deletion strains were

generated by using the one-step PCR system [55] or by genetic

crossing.

Cell cycle synchronization and HU treatment
Cells were grown overnight at 25uC to a concentration of

56106 cells/ml and arrested in G1 with 5 mg/ml a-factor for

three hours. 60 ml of cultures were spun and resuspended in the

same volume of YPD supplemented with HU (200 mM or

100 mM, depending on the experiment). 20 ml samples were

taken every 30 minutes after the release. In the case of untreated

samples cells were released in fresh YPD +10 mg/ml nocodazole

and every 5 minutes samples were taken for SDS-PAGE and

FACS analysis.

Cell cycle arrest and DNA damage treatments
Cells were grown in YPD medium at 25uC to a concentration of

56106 cells/ml and arrested with nocodazole or a-factor (20 mg/

ml). 50 ml of cultures were spun, resuspended in 500 ml of sterile

water, and plated on a Petri dish (14-cm diameter). Rapidly, a

15 ml untreated sample was taken. Plates were irradiated at 75 J/

m2 and cells were resuspended in 50 ml of YPD + nocodazole or a
factor. Three 15 ml samples were taken every 10 minutes after

irradiation.

SDS page, western blot, and quantification
Trichloroacetic acid protein extracts [56] were separated by

SDS-PAGE; for the analysis of Rad9 phosphorylation, NuPAGE

Tris-Acetate 3–8% gels (Invitrogen) were used following the

manufacturer’s instructions. Western blotting was performed with

anti-Rad53, anti-H2A-S129 (Abcam #15083), anti-Actin (Sigma

#A2066), anti-Sml1 and anti-Rad9 antibodies, using standard

techniques. Values of phospho-H2A levels were obtained by

quantifying the signal in the corresponding lanes using Quantity

Figure 6. A model for 9-1-1 and Dpb11 function in Mec1 activation. After UV irradiation in G1, Mec1 is activated by the 9-1-1 complex both
directly and through the Dpb11 C-terminus (right); in M phase Mec1 activation is achieved mainly through the 9-1-1 complex, independently of
Dpb11 (left). In S phase Dpb11 and the 9-1-1 complex signal replication stress to Mec1 independently from each other, likely because the detection of
replication stress occurs independently on the leading and lagging strands. 9-1-1 complex could signal replication stress on the lagging strand, where
the 59 ends necessary for its loading are generated as the result of discontinuous replication. Dpb11, instead, could signal replication stress on the
leading strand together with the interacting Pole.
doi:10.1371/journal.pgen.1002022.g006
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One software (BioRad) and normalizing it, first on the loading

controls and then on the level of phospho-H2A in the untreated/

G1-arrested sample of each strain.

Immunofluorescence
1 ml of a 56106 cells/ml culture were fixed overnight at 4uC

with fixation buffer (3,7% formaldehyde, 0,1 M K-phosphate

pH 6,4, 0,5 mM MgCl2). Cells were then washed three times with

wash buffer (0,1 M K-phosphate pH 6,4, 0,5 mM MgCl2), one

time with spheroplasting solution (1,4 M sorbitol, 0,1 M K-

phosphate pH 6,4, 0,5 mM MgCl2) and resuspended in 200 ml of

the same solution. Spheroplasts were prepared using 5 ml of

10 mg/ml Zymolyase at 37uC. Spheroplasts were washed with the

same solution and used to prepare multi-well immunofluorescence

slides which were incubated overnight with a-tubulin antibody

(YOL1/34, Seralab) diluted 1:100 in PBS-5%BSA.

Sensitivity assay
HU plates were prepared by serial dilutions of the 2 M stock

solution. Plates containing 25 mM, 50 mM and 100 mM HU

were prepared. Overnight grown cultures were diluted to 16106

cell/ml, then 10-fold serial dilutions were prepared and 10 ml of

the suspensions were spotted on HU plates, which were incubated

at 25uC. Images were taken 2 to 7 days later.

Pulsed field gel electrophoresis
Agarose plugs containing yeast chromosomes were prepared as

described previously [57]. These were incubated overnight at

37uC in 0.5 ml/plug TE containing 1 mg/ml RNAseA. After

extensive washes with Wash Buffer (10 mM Tris-HCl pH 7.5

50 mM EDTA), plugs were loaded on 1% agarose gel and sealed

in the wells with a solution of 1% LMP agarose in TBE 0.5X. Gels

were run at 4uC for 24 h at 165 V, with 60 seconds pulses for 12 h

and 90 second pulses for 12 h, using an Amersham Gene

Navigator system.

Supporting Information

Figure S1 H2A is phosphorylated during the cell cycle. (A)

Strains K699 (WT) and YMIC5A3 (mec1-1 sml1) were arrested in

G1 with a-factor and UV irradiated. At the indicated time-points

Mec1 activation was assayed by western blotting monitoring

cH2A, using actin as loading control. (B) Strains K699 (WT) and

YMIC6C3 (tel1D) were arrested in M phase with nocodazole and

UV irradiated. At the indicated time-points Mec1 activation was

assayed by western blotting monitoring cH2A and using actin as

loading control. (C) K699 (WT) was synchronized in G1 with a-

factor and released into fresh medium. Every 10 min samples of

the culture were withdrawn and progression into the cell cycle was

monitored by FACS analysis. H2A phosphorylation was moni-

tored by western blotting. (D) Strains K699 (WT), YMIC6C3

(tel1D), YFP20 (dpb11-1) and YFP225 (tel1Ddpb11-1) were pro-

cessed as in B.

(TIF)

Figure S2 Tel1 contributes minimally to Rad53 phosphoryla-

tion in the absence of either Ddc1 or Dpb11-AAD. (A) Strains

K699 (WT), YAN21/8d (ddc1D), YFP20 (dpb11-1), YMIC6C3

(tel1D), YFP223 (tel1Dddc1D), YFP225 (tel1Ddpb11-1) were syn-

chronized in G1 with a-factor and released in fresh medium

supplemented with 200 mM HU. At the indicated time-points

Rad53 phosphorylation was assayed by SDS-PAGE and western

blotting. (B) Ten fold serial dilutions of overnight cultures of strains

K699 (WT), YMIC6C3 (tel1D), YFP62/1d (ddc1Ddpb11-1),

YMIC5A3 (mec1-1) and YFP230 (ddc1Ddpb11-1tel1D) were spotted

on YPD plates supplemented with HU at the indicated

concentration. Survival was assayed by monitoring cell growth

after 6 days.

(TIF)

Figure S3 Low levels of Mec1 activity are sufficient to delay

mitosis following S-phase arrest. (A) K699 (WT), YFP20 (dpb11-1),

Table 1. Strains used in this work.

Name Relevant Genotype Reference

K699 MATa ade2-1 trp1-1 leu2-3,112 his3-11,15 ura3-1, can1-100 K.Nasmyth

YAN21/8d (K699) ddc1D::kanMX6 A. Nespoli

YFP20 (K699) dpb11-1 Puddu, 2008

YFP62/1d (K699) ddc1D::kanMX6 dpb11-1 Puddu, 2008

YMIC5A3 (K699) mec1-1 sml1 M. Giannattasio

YFP125/6d (K699) mrc1D::HIS3 This Work

YFP167/1a (K699) dpb4D::HIS3 This Work

YFP206/1a (K699) ddc1D::KanMX6 dpb4D::HIS3 This Work

Y799 (K699) drc1-1 Wang & Elledge, 1999

YFP218/1a (K699) ddc1D::KanMX6 drc1-1 This Work

YFP74 (K699) rad9D::HIS3 This Work

YFP161/5C (K699) rad9D::HIS3 dpb11-1 This Work

YFP328 (K699) crt1D::HIS3 This Work

YFP330 (K699) ddc1D::KanMX6 crt1D::HIS3 dpb11-1 This Work

YMIC6C3 (K699) tel1D::KanMX6 M. Giannattasio

YFP223 (K699) ddc1::KanMX6 tel1D::HIS3 This Work

YFP225 (K699) dpb11-1 tel1D::HIS3 This Work

YFP230 (K699) ddc1::KanMX6 dpb11-1 tel1D::HIS3 This Work

doi:10.1371/journal.pgen.1002022.t001

Sensing Replication Stress

PLoS Genetics | www.plosgenetics.org 9 March 2011 | Volume 7 | Issue 3 | e1002022



YAN21/8d (ddc1D), YFP62/1d (ddc1Ddpb11-1) and YMIC5A3

(mec1-1) were synchronized in G1 with a-factor and released into

fresh medium supplemented with 200 mM HU. 90 min later

precocious ingression into mitosis was monitored measuring

spindle elongation by indirect immunofluorescence. Representa-

tive pictures are shown (blue = DNA; red = tubulin). Spindle

length of 200 cells for each sample was measured and the

frequencies of the different spindle length classes are shown in the

lower panel.

(TIF)

Figure S4 Hydroxyurea does not elicit a DNA damage response

in the drc1-1 and dpb4D mutants. (A) Strains K699 (WT), Y799

(drc1-1), YAN21/8d (ddc1D), YFP218/1a (ddc1Ddrc1-1) and

YFP62/1d (ddc1Ddpb11-1) were grown to mid-log phase, synchro-

nized in G1 with a-factor and released into fresh medium

supplemented with 200 mM HU. After 90 min Rad9 phosphor-

ylation was assayed by SDS-PAGE and western blotting. (B)

Strains K699 (WT), YFP167/1a (dpb4D), YAN21/8d (ddc1D),

YFP206/1a (ddc1Ddpb4D) and YFP62/1d (ddc1Ddpb11-1) were

grown to mid-log phase, synchronized in G1 with a-factor and

released into fresh medium supplemented with 200 mM HU. 90

minutes later protein extracts were prepared and separated by

SDS-PAGE. Rad9 phosphorylation was assayed by SDS-PAGE

and western blotting.

(TIF)
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