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Abstract

The protein complex known as cohesin binds pericentric regions and other sites of eukaryotic genomes to mediate
cohesion of sister chromatids. In budding yeast Saccharomyces cerevisiae, cohesin also binds silent chromatin, a repressive
chromatin structure that functionally resembles heterochromatin of higher eukaryotes. We developed a protein-targeting
assay to investigate the mechanistic basis for cohesion of silent chromatin domains. Individual silencing factors were
tethered to sites where pairing of sister chromatids could be evaluated by fluorescence microscopy. We report that the
evolutionarily conserved Sir2 histone deacetylase, an essential silent chromatin component, was both necessary and
sufficient for cohesion. The cohesin genes were required, but the Sir2 deacetylase activity and other silencing factors were
not. Binding of cohesin to silent chromatin was achieved with a small carboxyl terminal fragment of Sir2. Taken together,
these data define a unique role for Sir2 in cohesion of silent chromatin that is distinct from the enzyme’s role as a histone
deacetylase.
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Introduction

Proper segregation of chromosomes at mitosis and meiosis

requires sister chromatid cohesion. The process ensures that newly

replicated chromatids bi-orient on spindle microtubules such that

a single copy of each chromosome transfers to progeny cells.

Defects in the sister chromatid cohesion pathway lead to certain

developmental diseases, and chromosome segregation defects like

those seen in cancer [1–4].

Cohesion of sister chromatids is mediated by a protein complex

known as cohesin [5,6]. The core complex consists of a hetero-

dimer of SMC proteins Smc1 and Smc3, as well as non-SMC

proteins Scc3/Irr1 and Mcd1/Scc1/Rad21 (hereafter referred to

as Scc3 and Mcd1, respectively). The subunits form a large protein

ring with a striking central void. Thus, a prominently held view is

that cohesin holds sister chromatids together by single complexes

embracing both chromatids. Elegant protein-crosslinking studies

showed that single cohesin rings can indeed hold together two

partially purified minichromosomes [7]. Other data raises the

possibility that cohesin might hold sister chromatids together by a

different mechanism [8–10].

Cohesin binds discrete sites on chromosomal DNA. Most non-

centromeric sites in budding and fission yeasts lie within the AT-

rich regions between convergently transcribed genes [11–13].

Transcriptional elongation redistributes complexes from intragen-

ic to intergenic regions, suggesting that cohesin enrichment is

maintained dynamically. In contrast to the situation in these fungal

systems, cohesin maps along the lengths of actively transcribed

genes in Drosophila and to sites within transcribed genes in humans

[14–16]. Thus, cohesin binding and transcription are not always

mutually exclusive.

Cohesin is also found within pericentric heterochromatin

regions where transcription is suppressed but not extinguished.

In fission yeast, the complex is retained at these locations by Swi6,

a homolog of heterochromatin protein HP1, which interacts with

cohesin subunit Psc3 (Scc3 in budding yeast) [17,18]. During

meiosis, Swi6 also interacts with shugoshin, a protein that protects

centromeric cohesin from being dismantled [19]. In heterochro-

matin mutants, cohesin does not bind pericentric domains and

mitotic chromosomes fail to mount properly onto spindle

microtubules.

Budding yeast lacks Swi6 and pericentric heterochromatin but it

does contain transcriptionally silenced domains that nevertheless

bind cohesin. Using the HMR locus as one representative example,

we found that silencing mutations selectively disrupted cohesin

binding and correspondingly abolished cohesion of sister chroma-

tid DNA bearing the locus [9]. A search to understand why

cohesin accumulates at HMR served as the impetus for this study.

Based on the chromatin-mediated mechanism of regional DNA

inactivation, transcriptionally silenced domains in budding yeast

are referred to as silent chromatin [20]. Like heterochromatin

domains in other organisms, silent chromatin is packaged with

histones that bear a distinct signature of post-translational

modifications. Specifically, acetylation and methylation of lysines

are absent. Silent chromatin domains associate with a complex of

non-histone silencing factors known as the Sir proteins (Sir2, Sir3

and Sir4). Sir2 is a member of the evolutionarily conserved class of

NAD+-dependent protein deacetylases known as sirtuins. The

enzyme creates and maintains histone deacetylation within silent

chromatin. Sir3 and Sir4 associate with the suitably deacetylated

histones. The complex of Sir proteins is first recruited to sites of

action by cis-acting elements known as silencers, which bind ORC,
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as well as Abf1 and Rap1 in various combinations. Following

recruitment, cycles of histone deacetylation and histone binding

allow the Sir proteins to spread over kilobases. A tRNA gene acts

as a barrier element on the right side of HMR that blocks silent

chromatin from spreading further downstream [21]. The element

also augments HMR with sufficient cohesin for cohesion [22],

probably through recruitment of the Scc2/4 cohesin loading

complex [23,24].

We considered two competing hypotheses to account for

retention of cohesin at HMR. The first, based on a simple

recruitment model, posits that a silent chromatin component

interacts directly with cohesin or some factor associated with the

complex. A second hypothesis stems from the ability of silent

chromatin to impede a broad-range of DNA-based events, such as

DNA replication, repair and transcription [20]. If silent chromatin

also suppresses an activity that mobilizes cohesin, the complex

would accumulate at silenced loci. To distinguish between these

possibilities, we developed assays to determine whether silencing

or silent chromatin components were required for cohesion of

HMR. Our studies show that Sir2 is sufficient for cohesion, even in

the absence of silencing.

Results

An assay for targeted sister chromatid cohesion
Our principle assay for cohesion at HMR utilizes a strain in

which the locus is tagged with lac-GFP and flanked by target sites

for a site-specific recombinase [9]. Inducible excision after arrest in

M phase converts HMR loci on sister chromatids into a pair of

extrachromosomal circles that produce one bright fluorescent

focus if they are held together and two foci if they are not

(Figure 1A and 1B).

To test whether silent chromatin components can mediate

cohesion we tethered individual silencing factors directly to the

DNA circles (Figure 1C). To this end, the E silencer of HMR was

replaced with a synthetic construct (6lexopssEB) that includes

binding sites for Rap1, Abf1 and the bacterial protein lexA. The I

silencer was deleted. These modifications were previously shown

to eliminate silencing of the locus [25]. Individual silencing factors

were then targeted to HMR-6lexopssEB as lexA-linked fusion

proteins. Cell cycle arrest in M phase, recombinase induction and

fluorescence microscopy were performed as described previously

[9].

Tethering silent chromatin components to DNA often nucleates

silent chromatin assembly and restores transcriptional repression

[25,26]. In these situations, it would be impossible to determine

whether the tethered protein, a co-recruited protein or the silenced

state was responsible for cohesion. Therefore, tethered proteins

were also examined under conditions that abolish silent chromatin

assembly to evaluate their precise roles in cohesion.

Sir2 is sufficient for cohesion of HMR
Pilot experiments showed that excised circles bearing the HMR-

6lexopssEB construct colocalized infrequently [9]. When lexA was

expressed, only 22% of the nuclei contained the single bright

fluorescent spot (Figure 1D). Strikingly, cohesion of the circles

increased to 67% when lexA was fused to Sir2 (designated lexA-

Sir278–562). Tethering Sir2 to DNA was essential. In a strain

lacking lexA binding sites at HMR, the chimera failed to produce

cohesion (Figure S1).

LexA-Sir278–562 lacks the first 77 amino acids of Sir2 that are

dispensable for transcriptional repression [27]. We confirmed that

lexA-Sir278–562 nucleates silencing at HMR using a strain that

contains lexA binding sites and a TRP1 reporter gene at the locus

(Figure 1E). Taken together, these initial findings demonstrate that

tethered Sir2 confers both silencing and cohesion at HMR.

The Sir2 polypeptide consists of a conserved catalytic core, as

well as N and C terminal domains that help target the deacetylase to

sites of action [28]. An allele lacking the N-terminal 198 amino acids

confers little transcriptional repression, even when tethered to DNA

[29]. To generate a lexA chimera with similar characteristics, we

eliminated the entire N-terminal domain (amino acids 1–242).

Surprisingly, this construct (lexA-Sir2243–562) yielded a measurable

degree of silencing in a strain with intact SIR genes (for comparisons,

see lexA-Sir278–562 and lexA alone in figure 2A). Deletion of either

the SIR2 or SIR4 genes eliminated silencing by lexA-Sir2243–562,

indicating that 1) the chimera operates within the Sir pathway, and

that 2) the chimera requires the endogenous full-length Sir2 for

transcriptional repression. The reliance of lexA-Sir2243–562 on other

SIR genes, including SIR2, for silencing made the chimera an ideal

candidate for further study.

Figure 2B shows that lexA-Sir2243–562 produced cohesion in

over 60% of the nuclei examined. Importantly, cohesion of the

excised HMR circles persisted in strains that lacked SIR2, SIR3 or

SIR4. We conclude that tethered Sir2 can mediate cohesion in the

absence of transcriptional silencing and without the aid of

endogenous Sir proteins.

Sir3 was also examined directly with the targeted cohesion

assay. When the protein was linked to lexA, HMR circles

colocalized in over 60% of wild-type cells (Figure 2C). The

tethered protein also conferred transcriptional repression in the

wild-type reporter strain (Figure 2A). Both cohesion and silencing

by Sir3-lexA were significantly diminished by deletion of Sir2.

Elimination of Sir4, on the other hand, disrupted silencing but not

cohesion. A simple explanation for the requirement of Sir2 but not

Sir4 is that tethered Sir3 recruits Sir2, which in turn mediates

cohesion of the locus.

We note that in the absence of Sir2, Sir3-lexA yielded a slightly

higher level of cohesion than lexA alone (Sir3-lexA = 34% vs lexA

= 26.3%). This difference is sufficiently small (p = 0.03) that we

cannot conclude equivocally whether Sir3 possesses a subtle

intrinsic cohesion activity. Given the strong cohesion signals

afforded by Sir2, we focused our attention on this Sir protein for

the remainder of the study.

Author Summary

Replication of chromosomes in each cell cycle produces
pairs of identical sister chromatids that are held together
by a protein complex known as cohesin. At mitosis,
cohesin is dismantled, permitting segregation of one full
set of chromosomes to each daughter cell. Cohesin binds
at discrete sites along chromatids, including domains that
are commonly referred to as silent chromatin in budding
yeast. Silent chromatin, like heterochromatin in higher
eukaryotes, is a repressive structure that hinders a variety
of DNA-based events. We discovered that a single silent
chromatin constituent, Sir2, was both necessary and
sufficient for cohesion of silent chromatin domains. Sir2
is the founding member of the sirtuin family of NAD-
dependent protein deacetylases that exist in most
organisms. Substrate deacetylation by sirtuins has been
linked to numerous pathways that promote health and
survival in humans, including lifespan extension. Enrich-
ment of cohesin at silent chromatin domains in yeast,
however, is the first example of a role for Sir2 that does not
explicitly require the protein deacetylase activity.

Targeted Cohesion by Sir2
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Figure 1. Tethered Sir2 mediates cohesion. A) Evaluation of chromosomal cohesion by DNA circle formation. Site-specific recombination is
initiated by galactose-induced expression of the R recombinase in cells arrested at M phase with microtubule inhibitors. Recombinase sites are
depicted with half-filled boxes. Silent chromatin domains are highlighted with pink and lac-GFP is represented with green spheres. Cohesion of DNA
circles yields a singe bright dot of fluorescence whereas lack of cohesion yields two dots. B) Representative image of M phase-arrested cells with
circularized HMR loci. C) Protein-targeting assay for cohesion. Unexcised recombination cassettes are drawn for simplicity. The HMR silencers (orange

Targeted Cohesion by Sir2
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Tethered Sir2 can mediate cohesion at an ectopic locus
If Sir2 mediates cohesion at HMR then the protein ought to

impart cohesion when tethered at other genomic positions. We

explored this possibility by targeting the protein to the LYS2 locus.

LYS2 is situated near the center of chromosome II, hundreds of

kilobases away from silent chromatin domains at the chromosome

ends [30]. The locus had previously been modified to contain

lexA-binding sites, as well as lac repressor sites and recombinase

sites for the DNA excision assay [31]. When lexA alone was

expressed, LYS2 DNA circles colocalized in 37% of the cells

(Figure 3). This value is higher than the baseline for HMR

cohesion under similar conditions (Figure 1D). The value is

sufficiently low, however, to detect increases in cohesion due to

tethered Sir2 fragments. Indeed, cohesion of LYS2 circles

increased to 60% when lexA-Sir2243–562 was expressed. Pairing

persisted in a strain lacking SIR3 indicating that cohesion was due

to the tethered protein and not due to formation of silent

chromatin at LYS2. These findings indicate that Sir2 can impart

cohesion at chromosomal locations other than HMR.

A non-catalytic domain of Sir2 mediates cohesion
We next asked whether the deacetylase activity of Sir2 was

responsible for Sir2-mediated cohesion. To address this question,

we introduced a well-characterized active site mutation (H364Y)

into lexA-Sir2243–562. Previous studies showed that this mutation

abolishes Sir2 deacetylase activity, silencing and silent chromatin

formation [32,33]. We found here that the mutated polypeptide

conferred as much cohesion to HMR circles as the unaltered

polypeptide (Figure 4A). This experiment was performed in a sir2

null strain to eliminate contributions of the endogenous gene (see

figure 2A). Furthermore, acting on the remote possibility that

tethered Sir2 mediates cohesion by recruiting one of the other

yeast sirtuins (Hst1-4), we repeated the experiment in media

supplemented with nicotinamide, a generic sirtuin inhibitor [28].

No decrease in cohesion was observed (64% vs. 61% with

nicotinamide; p = 0.5). Collectively, these results show that the

enzymatic activity of Sir2 or other sirtuins is not required for

cohesion by tethered Sir2.

To map the Sir2 domain responsible for cohesion we generated

a set of truncation mutants. Figure 4A shows that all but one of the

constructs yielded HMR cohesion levels significantly above

background. The exception is a lexA chimera that bears just the

conserved catalytic core of Sir2 (residues 243–499). All of the other

cohesion-proficient chimeras share in common a small C-terminal

domain of Sir2 spanning amino acids 525–547. The picture that

emerges is that Sir2 contains a discrete motif within the non-

catalytic, C-terminal region of the protein that mediates cohesion.

Hst1 is a yeast sirtuin that bears considerable amino acid

similarity to Sir2 in the C-terminal region (Figure 4B). The

deacetylase represses middle sporulation genes in vegetative cells,

as well as genes involved in NAD+ and thiamine biosynthesis [34–

36]. Hst1 differs from Sir2 in that the protein acts locally to repress

specific promoters rather than by forming an extended repressive

domain [37]. We tethered the C-terminal domain (amino acids

440–503) to HMR in the same Dsir2 strain used to evaluate the

lexA-Sir2 constructs. Figure 4A shows that lexA-Hst1440–503

imparts a comparable degree of targeted cohesion. These results

indicate that Sir2-mediated cohesion is not limited to just one

member of the sirtuin family.

Sir2-mediated cohesion requires cohesin
Both Sir2 and its yeast paralog Hst2 can form homotrimers

[38,39]. Thus, one explanation for DNA colocalization is that

tethered Sir2 fragments on different DNAs associate with one

another directly. To explore this possibility we performed a two-

hybrid analysis using lexA-Sir2243–562(H364Y) as a bait protein. The

experiments utilized a HIS3 reporter strain that lacks the

endogenous SIR2 gene. A weak positive interaction signal was

obtained with a prey vector bearing full length Sir2 fused to the

Gal4 activation domain (Figure 5A). Importantly, no interaction

was seen with a prey vector bearing the shorter Sir2243–562

fragment. Given that all of our critical experiments were

performed with this fragment in strains lacking full length Sir2,

colocalization of HMR circles is not likely attributable to Sir2 self-

association.

Cohesin mediates cohesion of the native HMR locus [9]. We

therefore anticipated that cohesin genes would also be required for

cohesion by tethered Sir2. To test this possibility we crossed

temperature sensitive alleles of MCD1/SCC1 and SMC3 into our

DNA circle-producing strain. The scc1-73 and smc3-42 mutants

and a wild-type counterpart were arrested in mitosis at permissive

temperature (24uC). After recombining the HMR locus, the

cultures were divided: half was maintained at the permissive

temperature while the other half was shifted to 37uC, the non-

permissive temperature for these mutants (see Figure 5 legend for

details). In the wild-type strain, cohesion of the HMR circles by

lexA-Sir2243–562 was unaffected by the temperature shift

(Figure 5B). By contrast, both mutant strains displayed a

significant reduction in HMR cohesion at the non-permissive

temperature. This data indicates that cohesin is responsible for

cohesion of DNA circles bound by Sir2.

Binding of cohesin at HMR requires Sir2 within silent
chromatin

Chromatin immunoprecipitation (ChIP) was used previously to

show that cohesin associates with HMR in a silencing-dependent

manner [9]. We showed that Mcd1-TAP binding was lost when

silent chromatin assembly was blocked by 1) deletion of SIR3, or 2)

inhibition of the Sir2 deacetylase (see ChIPs of chromosomal

templates in figures 5A and 7D of [9]). In the current study, a

similar ChIP protocol was used to test whether lexA-Sir2243–562

retained cohesin at HMR-6lexopssEB. Unexpectedly, we could not

obtain reproducible enrichment of the targeted locus. A variety of

conditions and reagents were tested, and the procedure was

validated with native silent chromatin (see below). We suspect that

the level of cohesin necessary for colocalization in the targeted

cohesion assay falls below the detection limit of this ChIP

experiment.

We turned instead to a protein chimera approach we recently

developed to study other aspects of transcriptionally silent

ovals) were deleted and HMR-E is replaced with a fragment containing lexA sites (6lexopssEB). D) Tethered Sir2 mediates cohesion. HMR circles were
counted in strain CSW19 that lacked lexA, and in strains CSW36 and CSW37 that contained integrated expression cassettes for lexA alone or lexA-
Sir278–562, respectively. N represents the number of cells examined. The strain bearing lexA alone was used as point of comparison in significance
tests. E) Tethered Sir2 mediates silencing. Strain GA-2050 was transformed with plasmids expressing either lexA alone (pBTM116H) or lexA-Sir278–562

(pCSW22) and spotted in 10-fold serial dilutions on SC-trp,-his to measure silencing of the TRP1 reporter and SC-his to measure growth. The strain
contains an array of 4 lexA operators in place of the Rap1 and Abf1 binding sites at the HMR-E silencer (Aeb-4lexop) [76]. Parallel assays with the HMR-E
silencer of the targeted cohesion assay (6lexopssEB) yielded similar results, albeit less dramatic ones (data not shown).
doi:10.1371/journal.pgen.1002000.g001
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chromatin [40]. In that study, Sir3 was fused to the Rpd3-family

deacetylase Hos3 to show that the roles of Sir2 in silencing could be

bypassed entirely. We demonstrated that the Sir3-Hos32–549

chimera 1) spread throughout HMR, 2) deacetylated histones across

the locus and 3) required both silencers and Sir4 to mediate

repression. Silencing could also be achieved by fusing Sir3 to a

fragment of Sir2 that possessed enzyme activity but that lacked

domains necessary for targeting. Here these Sir3 chimeras (Sir3-

Sir2243–562 and Sir3-Hos32–549) were used to investigate the role for

Sir2 in binding cohesin at a silenced domain. An additional chimera

(Sir3-Hos32–549-Sir2499–562) was constructed to study the contribu-

tion of the 64 amino acid, cohesion-proficient fragment of Sir2.

Mating assays were used to evaluate the silencing potential of

each chimera. In this assay, loss of HMR silencing in MATa cells

creates a pseudo-diploid state that blocks mating and thus

subsequent growth on SD indicator plates. Figure 6A confirms

previous findings that Sir3-Sir2243–562 and Sir3-Hos32–549 mediate

silencing of HMR in the absence of endogenous Sir2. The figure

shows that Sir3-Hos32–549-Sir2499–562 also conferred silencing of

HMR, albeit at a reproducibly reduced level. This functional assay

indicates that Sir3-Hos32–549-Sir2499–562 delivers the Sir2499–562

fragment to the site where cohesion and cohesin binding were to

be tested.

Cohesion by the Sir3 chimeras was evaluated in a sir2 null strain

that produces GFP-tagged HMR circles with wild-type silencers

(Figure 6B). In the absence of a chimera, HMR cohesion occurred

in 33% of the cells. When Sir2 or the Sir3-Sir2243–562 was

expressed, HMR cohesion levels rose to 69% and 61%,

Figure 2. Cohesion by tethered Sir2 does not require other Sir proteins. A) Silencing assays for tethered Sir2 constructs. Strains GA-2050
(wt), CSW98 (Dsir2) and CSW157 (Dsir4) expressing lexA-Sir278–562 (pCSW22), lexA-Sir2243–562 (pCSW21), lexA alone (pBTM116H) or Sir3-lexA (pCSW17)
were spotted on SC-his (growth) and SC-trp,-his plates (silencing). In the Dsir4 strain, high expression of the lexA-Sir2 constructs caused a slight
growth defect, as reported previously [77]. To compensate, the cell density of Dsir4 isolates bearing lexA-Sir2 constructs was concentrated 10-fold
before plating. B) Cohesion of HMR circles by lexA-Sir2243–562 in silencing-deficient mutants. Strains CSW18 (wt), CSW42 (Dsir2), CSW85 (Dsir3) and
CSW43 (Dsir4) were transformed with pCSW21. C) Cohesion of HMR circles by Sir3-lexA. Strains CSW19 (wt), CSW42 (Dsir2) and CSW85 (Dsir3) and
CSW43 (Dsir4) were transformed with a plasmid expressing Sir3-lexA (pCSW14).
doi:10.1371/journal.pgen.1002000.g002
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respectively. By contrast, expression of Sir3-Hos32–549 did not

increase cohesion above background levels. Remarkably, addition

of Sir2499–562 to the Sir3- Hos32–549 chimera restored colocaliza-

tion to the level obtained with Sir3- Sir2243–562. This analysis

indicates that the C-terminal fragment of Sir2 must be present

within silenced chromatin for cohesion to occur.

ChIP of TAP-tagged Mcd1 was used to measure the ability of

the chimeras to position cohesin at the HMR a2 gene. A cohesin-

associated region of chromosome V (designated 549.7) that is not

influenced by the SIR genes was used as a point of comparison

[22]. Reference SIR2 and Dsir2 strains in figure 6C confirmed

earlier findings: binding of Mcd1-TAP at HMR is hindered when

silent chromatin is disrupted by loss of a single Sir protein, in this

case Sir2. Expression of the Sir3-Sir2243–562 chimera restored

cohesin binding at HMR to within 20% of the native level. By

contrast, expression of the silencing-proficient Sir3-Hos32–549

chimera did not raise cohesin binding above the background sir2

null level. Importantly, the addition of 64 amino acids of Sir2 to

the end of the Sir3-Hos32–549 chimera increased cohesin binding

substantially. Taken together, these data indicate that Sir2 must be

present within silent chromatin for cohesin to accumulate at

silenced loci, and that a small C-terminal portion of Sir2 is

sufficient for this activity.

Sir2 mediates HMR cohesion without proteins required
for rDNA silencing and stability

Sir2 associates with the cluster of tandemly repeated ribosomal

RNA genes known as the rDNA array. In this context the protein

suppresses recombination between the repeated elements and

suppresses RNA polymerase II transcription within each element

[41–43]. Sir2 has been implicated in cohesin binding at the rDNA

[44,45]. It therefore seemed prudent to test whether rDNA-specific,

protein partners of Sir2 modulate cohesion by the tethered

protein. We first considered Net1, which along with Sir2 and

Cdc14 forms the RENT complex [46,47]. This protein is required

for Sir2 binding at the rDNA and it has been found at HMR when

over-expressed [46,48]. A 15 amino acid C-terminal truncation of

Sir2 disrupts the Net1-Sir2 interaction, abolishing rDNA silencing

but not silencing of telomeres or the HM loci [49]. Figure 4A

shows that deleting these 15 residues (lexA-Sir2243–547) did not

interfere substantially with cohesion of HMR circles. We conclude

that the RENT complex is not necessary for cohesion by tethered

Sir2.

Transcriptional silencing by Sir2 at the rDNA recombinational

enhancer requires a set of interacting proteins that includes Tof2

and a pair of bifunctional factors Csm1 and Lrs4. During meiosis

I, Csm1 and Lrs4 form the monopolin complex that orients sister

chromatid pairs towards the same spindle pole [50,51]. Csm1

interacts with both Mcd1 and Smc1 prompting Huang and

Moazed to hypothesize that these proteins link cohesin to the

rDNA [52]. We tested whether these genes were required for

cohesion by lexA-Sir2243–562. Figure 7 shows that neither TOF2,

CSM1 nor LRS4 were required for colocalization of HMR circles.

Collectively, the findings indicate that these rDNA silencing and

stability proteins do not contribute to cohesion of HMR by

tethered Sir2.

Discussion

In this study we examined the mechanistic basis for Sir-

dependent cohesion of a silenced chromosomal domain in

budding yeast. We developed a protein-targeting assay and found

that the evolutionarily conserved Sir2 deacetylase was both

necessary and sufficient for pairing DNA circles. Cohesin was

required but other silencing factors like Sir3 and Sir4 were not.

Through the use of mutants we showed that transcriptional

silencing and cohesion are separable events: tethered Sir2

conferred cohesion in the absence of silencing and the Sir3-

Hos3 chimera generated silencing in the absence of cohesion.

Importantly, fusing a small fragment of Sir2 to Sir3-Hos3 was

sufficient to restore cohesin binding and cohesion of the locus. We

conclude that, in addition to deacetylating histones for silent

chromatin assembly, Sir2 also orchestrates cohesin-dependent

cohesion of silent chromatin domains on sister chromatids.

Sir2, cohesin and transcriptional silencing
Although our studies here focused on HMR we expect that the

relationship between Sir2 and cohesion extends to other loci where

Sir proteins assemble. Indeed, preliminary evidence indicates that

the HML mating-type locus is also cohered in a silencing-

dependent manner (Campor and Gartenberg, unpublished

results). Why do silent chromatin and cohesion converge? Initial

studies suggested a role in regulating transcriptional repression.

Donze and Kamakaka first showed that silencing spread beyond

HMR barrier elements in cohesin mutants [21]. Steve Bell and

colleagues followed by showing that cohesin delayed establishment

of silencing in cells that were walked step-wise through the cell

cycle [53]. A parsimonious explanation for these observations is

that cohesin impedes the conversion of active chromatin to

silenced chromatin. Numerous studies in higher eukaryotes have

further linked cohesin to gene regulatory phenomena (see [54] for

a review). Intriguingly, cohesin was recently shown to form loops

Figure 3. Sir2 mediates cohesion when tethered to an ectopic
site. Colocalization of DNA circles excised from the LYS2 locus was
measured in strains CSW91 (wt) or CSW95 (Dsir3) expressing either lexA-
Sir2243–562 (pCSW1) or lexA alone (pCSW2).
doi:10.1371/journal.pgen.1002000.g003
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between enhancers and promoters by interacting with a

transcriptional coactivation complex known as mediator [55].

Similarly, cohesin forms loops between distant sites by binding the

mammalian CTCF, a protein that associates with insulators as well

as other gene regulatory elements [56–59]. In yeast, silent

chromatin domains fold-back upon themselves and interact with

one another over great distances [60,61]. Thus, one possibility is

that cohesin facilitates long interactions to regulate silent

chromatin domains.

Sir2, cohesin, and rDNA stability

The rationale for Sir2 mediating cohesion might alternatively be

related to its role in genome stabilization at the rDNA. Binding of

the deacetylase is necessary for binding of cohesin, which in turn is

thought to block unequal sister chromatid exchange by maintain-

ing the register between rDNA elements of opposing sister

chromatids [44]. Exactly how Sir2 retains cohesin at the locus in

not entirely clear. In one model, the deacetylase modulates cohesin

levels indirectly by silencing a conserved RNA polymerase II

promoter element near the rDNA recombinational enhancer [45].

According to the model, transcription by RNA polymerase II

displaces cohesin when Sir2 is absent. A competing model by

Huang and Moazed suggests that direct interaction between

cohesin and one of the components of the rDNA silencing pathway,

Csm1 specifically, could account for recruitment of the complex

[52]. Our work with tethered fragments of Sir2 suggests an even

more direct possibility: the polypeptide, not its capacity to silence,

mediates cohesin recruitment directly. We note that a direct

recruitment model for Sir2 need not be mutually exclusive with

models based on transcriptional inhibition, or with other factors

that contribute to rDNA stability [62].

Figure 4. A non-catalytic domain of Sir2 mediates cohesion. A) Cohesion assays with Sir2 fragments. A map Sir2 shows the conserved
catalytic core domain in black. Strain CSW42 (Dsir2) was transformed with vectors expressing lexA-Sir2243–562 (pCSW1), lexA-Sir2243–562(H364Y) (pCSW3),
lexA-Sir2243–499(H364Y) (pCSW56), lexA-Sir2428–562 (pCSW6), lexA243–547 (pCSW10), lexA-Sir2499–562 (pYFC1), lexA-Sir2525–562 (pYFC2), lexA-Hst1440–503

(pYFC6) or lexA alone (pCSW2). Immunoblotting with antibodies to lexA confirmed that the cohesion-deficient chimera lexA-Sir2243–499(H364Y)

expressed appropriately (data not shown). ND = not determined. B) Alignment of the Sir2499–562 and Hst1440–503 with conservation noted according
to CLUSTALW criteria [78]: identical residues (*); conservative substitutions (:); semi-conservative substitutions (.).
doi:10.1371/journal.pgen.1002000.g004
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Roles for protein deacetylation in sister chromatid
cohesion

Acetylation and deacetylation of cohesin subunits plays a newly

appreciated role in regulating cohesion during the cell cycle.

Cohesion is established during S phase when the Eco1 protein

acetyltransferase acetylates Smc3 [63–66]. This modification

persists until cohesin complexes disassemble at anaphase onset.

Deacetylation is a prerequisite for Smc3 to be re-used in the next

cell cycle. Recently, the Rpd3-family member Hos1 was identified

as the principle Smc3 deacetylase in yeast [67–69]. That residual

deacetylation persists in the absence of Hos1 suggests that

additional Smc3 deacetylation activities remain to be discovered

[67]. Following DNA double strand breaks, Eco1 similarly

acetylates Mcd1 to establish damage-induced cohesion [70].

Presumably, a parallel pathway exists for Mcd1 deacetylation.

Whether Sir2 or a combination of sirtuins is involved in Mcd1

deacetylation or the residual deacetylation of Smc3 has not been

determined.

Other sirtuins, other contexts, other genomes
The catalytic activity of Sir2 accounts for all other known

functions of the enzyme. By contrast, cohesion by tethered Sir2

fragments does not even require the conserved catalytic core.

Instead, we found that a small domain at the carboxyl-terminus

was responsible. We anticipate that this domain retains cohesin at

silenced loci by interacting directly with a cohesin subunit or with

other proteins involved in cohesin utilization. Conversely, such an

interaction could be important in situations where Sir2 might be

recruited to sites where cohesin binds.

Significant homology exists between the C-terminal domain of

Sir2 and Hst1. That this Hst1 domain also mediates cohesion

when tethered to DNA suggests that cohesion occurs at the

numerous promoters where Hst1 binds to regulate gene expression

[34–36]. The lack of a homologous C-terminal domain in

mammalian sirtuins thwarts a simple extrapolation to a cohesion

connection in higher eukaryotes. However, the characteristics of

two mammalian sirtuins, SirT1 and SirT6, warrant consideration

(see [71,72], and references therein). Like Sir2, these mammalian

enzymes deacetylate histones (and other protein targets) to

regulate gene expression. Additionally, SirT1 plays multiple roles

in heterochromatic repression and SirT6 localizes to heterochro-

matin domains. Double strand breaks may represent sites of

particular interest. Cohesin is recruited to these sites in yeast and

in humans, as are Sir2, Hst1, SirT1 and SirT6 [73,74]. The

mammalian enzymes have been shown to suppress genomic

instability, in part, by modifying DNA repair factors (see [75] for

most recent example). Whether SirT1 and SirT6 also link sister

chromatid cohesion to these chromosome-based events has not yet

been tested.

Materials and Methods

Strain construction and application
Table S1 provides a complete list of strains used in this study.

Cohesion of HMR by tethered proteins was measured with

variants of strain CSW19 (RS::6lexopssEB-a2a1-256lacop-TRP1-

DhmrI::RS (LEU2::GAL1-R)2::leu2-3,112 ADE2::HIS3p-lacGF-

P::ade2-1). Recombinase target sites are designated as RS.

Cohesion of the LYS2 gene was measured with variants of strain

Figure 5. Cohesion by Sir2 requires the cohesin genes. A) Two-hybrid assay for Sir2 self-association. Strain JCY13 (LYS2::(4xlexop)-HIS3 Dsir2)
expressing lexA-Sir2243–562(H364Y) (pCSW55) in combination with Gal4AD (pGAD-C1), Gal4AD-Sir21–562 (pCTC85), or Gal4AD-Sir2243–562 (pCSW58) was
plated in serial dilution on SC-trp,-leu to monitor growth and SC-trp,-leu,-his supplemented with 5 mM 3-aminotriazole (3AT) and 5 mM nicotinamide
(NAM) to monitor interactions. 3-AT raises the level of HIS3 expression necessary for growth. NAM was included in case recruitment of functional Sir2
caused silencing of the reporter gene. B) Targeted cohesion assay in cohesin mutants. Cultures were pre-grown at 24uC according to the standard
protocol (Materials and Methods). Two hours after the addition of galactose and benomyl, half of each culture was shifted to 37uC while the other
half was maintained at 24uC. Two hours later, the cells were harvested and fixed. Strains CSW42 (Dsir2), CSW75 (scc1-73 Dsir2) and CSW152 (smc3-42
Dsir2) expressed lexA-Sir2243–562 (pCSW1). P values report the significance of the temperature shift on cohesion for each strain evaluated.
doi:10.1371/journal.pgen.1002000.g005
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CSW91 (RS::lys2-TRP1-4lexop-256lacop::RS). Cohesion of HMR by

Sir3 chimeras was measured with native silencers in strain CSW84

(RS::HMRE-a2a1-HMRI-TRP1-256lacop::RS Dsir2). Silencing as-

says were performed with strains derived from GA-2050 (Aeb4lexop-

TRP1-HMRI) and two hybrid assays were performed with strain

JCY13 (LYS2::(4xlexop)-HIS3 Dsir2). ChIP assays were performed in

variants of strain CSW116 (MCD1-TAP Dsir2).

Complete ORF deletions were generated by PCR-mediated

gene replacement using purified plasmids or extracted yeast DNA

as PCR templates. All modifications were confirmed by combined

gain and loss of diagnostic PCR products. Strains CSW18 and

CSW19 are segregants of a cross between CSW10 and YCL49.

Strains CSW47 and CSW48 are segregants of crosses between

CSW36 and either K5832 or CRC85. Strain CSW91 is a

segregant of a cross between CSW19 and GA-2627. Plasmids

pRS403-lexA-Sir278–562 and pRS403-lexA were integrated in

single copy at the HIS3 locus of CSW19 to yield strains CSW36

and CSW37, respectively.

Figure 6. Binding of cohesin at HMR requires Sir2. A) Silencing by
Sir2 and the Sir3-deacetylase chimeras used as substitutes for Sir2.
Strain YFC9 (MATa Dsir2) bearing plasmids expressing Sir2 (pCC7), Sir3-
Hos32–549 (pCC10), Sir3-Sir2243–562 (pCC4), Sir3-Hos32–549-Sir2499–562

(pYFC14) or empty vector (pRS414) was mated with tester strain K125
(MATa hom3 ilv1). SC-trp plates monitored growth of the YFC9
transformants and SD plates monitored mating. B) Cohesion by Sir3-

Figure 7. Cohesion persists in the absence of rDNA-specific,
protein partners of Sir2. Colocalization of DNA circles bearing the
6lexopssEB silencer was measured in strains CSW42 (Dsir2), CSW65
(Dcsm1 Dsir2), CSW68 (Dtof2 Dsir2) and CSW66 (Dlrs4 Dsir2, only two
trials) expressing lexA-Sir2243–562 (pCSW1).
doi:10.1371/journal.pgen.1002000.g007

deacetylase chimeras. Colocalization of DNA circles bearing native HMR
silencers was measured in strain CSW84 (Dsir2) bearing plasmids
expressing Sir2 (pYFC16), Sir3-Sir2243–562 (pCC34), Sir3-Hos32–549

(pCC24) or Sir3-Hos32–549-Sir2499–562 (pYFC15) or no plasmid at all. C)
Chromatin binding of Mcd1. Immunoprecipitation of Mcd1-TAP from
strain CSW116 (SIR2) or strain YFC9 (Dsir2) bearing plasmids expressing
Sir3-Hos32–549 (pCC10), Sir3-Sir2243–562 (pCC4), Sir3-Hos32–549-Sir2499–562

(pYFC14) or no plasmid at all. The ratio of the HMR a2 gene relative to
the 549.7 site in the immunoprecipitated material (IP) was normalized
to the same ratio of input material (In). Reported values represent the
mean and standard deviation of at least three independent trials. See
Figure S2 for representative gels.
doi:10.1371/journal.pgen.1002000.g006
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Plasmid construction and confirmation
Tables S2–S3 provide detailed information about the plasmids

used and how they were constructed. In addition to using

traditional bacterial cloning techniques, plasmids were constructed

in yeast by PCR-mediated plasmid gap repair (P-MPGR) or

fragment-mediated plasmid gap repair (F-MGPR) using restriction

digestion products. SIR2 truncations were generated by oligonu-

cleotide-mediated plasmid gap repair (O-MPGR). All modifica-

tions within the gene chimeras were confirmed by sequencing.

Plasmid sequences are available upon request.

Cohesion assay
Colocalization of excised DNA circles in M phase was measured

as described in Chang et al. [9], unless specified otherwise. To

retain plasmids, selective media was used for pregrowth on

dextrose and subsequent growth on raffinose overnight. When the

cultures reached mid-log phase the following morning, an equal

volume of YPA media plus raffinose was added. Twenty minutes

later, nocodazole (stock 1 mg/ml in DMSO, Cf = 10 mg/ml) was

added to initiate M phase arrest. After three hours, galactose

(Cf = 2%) and benomyl (stock 1 mg/ml, Cf = 10 mg/ml) were

added. Two hours later, cells were harvested, fixed and mounted

on microscope slides with agar pads. Serial sections were obtained

by fluorescence microscopy and GFP-foci/nucleus were counted

manually. All measurements (reported as the percentage of cells

with single dots) are based on at least three independent trials,

which were pooled because they satisfied x2 tests of homogeneity

of proportions. Error bars represent the standard error of

proportion. In each data panel, values were compared to an

appropriate control by x2 tests and judged as significant using a

95% confidence interval.

Assays for two-hybrid interactions and silencing of
reporter genes

To measure silencing of TRP1 inserted at HMR or two-hybrid

interactions with the HIS3 reporter construct, plasmid-bearing

strains were grown to saturation in selective media to retain

plasmids and spotted in 10-fold serial dilutions. One set of selective

plates was used to measure reporter gene expression and a second

set was used as a loading control.

Mating assays for HMR silencing
Strain YFC9 (MATa Dsir2) bearing Sir2-substitution plasmids

was grown to saturation in selective medium, diluted 10-fold and

then spotted on a lawn of mating tester strain K125 (MATa) on

YPDA plates. After at least 5 hr at 30uC, the cells were replica

plated to SD agar to measure mating and SC-trp as a loading

control.

Chromatin immunoprecipitation
Nocodazole was added to mid-log cultures that were either

grown in YPDA overnight or that were sub-cultured in YPDA for

3 hours after overnight growth in selective media to retain

plasmids. Three hours later, cross-linking and subsequent ChIP

procedures were performed according to [22] using anti-TAP

antibody (Open Biosystems) and Protein A beads (Invitrogen).

PCR reactions were run in multiplex using primer sets listed in

Table S4. Simultaneous amplification of a cohesin-free site (534)

was included as an internal negative control of the immunopre-

cipitation reaction (Figure S2). Gels were stained with EtBr and

destained in water before digital photography (Alpha Innotech).

All bands were found to be non-saturating and within the linear

range. Reported values were calculated as (a2/549.7)IP/(a2/

549.7)In.

Supporting Information

Figure S1 LexA-Sir2 requires lexA operators to generate

cohesion at HMR. In panel (A), cohesion of a native HMR locus

was abolished by deleting SIR4. Expression of lexA-Sir2 did not

restore cohesion because the HMR DNA circle did not possess

lexA operators. Strains CSW10 (wt) and CSW20 (Dsir4) and

plasmids pBTM116H (lexA alone) and pCSW22 (lexA-Sir278–562)

were used. In panel (B), the experiment was repeated with a modified

HMR locus that contains lexA operators. In this case, expression of

lexA-Sir2 generated cohesion, even in the absence of Sir4 (also see

figure 2B). Strains CSW36 (integrated lexA-Sir278–562), CSW37

(integrated lexA alone) and CSW38 (integrated lexA-Sir278–562,

Dsir4) were used. Taken together, these data show that lexA-Sir2 can

generate cohesion only when lexA sites are present.

(EPS)

Figure S2 Representative gels of Mcd1-TAP ChIP. Extracts

were prepared from strains described in Figure 6 expressing Sir2,

Sir3-Sir2243–562, Sir3-Hos32–549, Sir3-Hos32–549-Sir2499–562 or no

Sir2 at all. Binding of Mcd1 at the a2 gene of HMR was compared

to known cohesin-bound (549.7) and cohesin-free sites (534).

Enrichment of a2 relative to 549.7 is reported as (a2/549.7)IP/

(a2/549.7)In. See Table S4 for primer sets.

(EPS)

Table S1 Strains.

(DOC)

Table S2 Expression vectors.

(DOC)

Table S3 Oligonucleotides for strain and plasmid construction.

(DOC)

Table S4 PCR primers for ChIP.

(DOC)
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