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Abstract

Neural signals are processed in nervous systems of animals responding to variable environmental stimuli. This study shows
that a novel and highly conserved protein, macoilin (MACO-1), plays an essential role in diverse neural functions in
Caenorhabditis elegans. maco-1 mutants showed abnormal behaviors, including defective locomotion, thermotaxis, and
chemotaxis. Expression of human macoilin in the C. elegans nervous system weakly rescued the abnormal thermotactic
phenotype of the maco-1 mutants, suggesting that macoilin is functionally conserved across species. Abnormal thermotaxis
may have been caused by impaired locomotion of maco-1 mutants. However, calcium imaging of AFD thermosensory
neurons and AIY postsynaptic interneurons of maco-1 mutants suggest that macoilin is required for appropriate responses
of AFD and AIY neurons to thermal stimuli. Studies on localization of MACO-1 showed that C. elegans and human macoilins
are localized mainly to the rough endoplasmic reticulum. Our results suggest that macoilin is required for various neural
events, such as the regulation of neuronal activity.
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Introduction

Genome projects have determined DNA sequences of various

organisms and identified locations of predicted genes in genomes.

Surprisingly, numbers of genes are relatively similar across

evolutionally divergent animal species. For example, estimated

gene numbers are 20000–25000 in human [1], 14000 in Drosophila

melanogaster [2], and 19000 in Caenorhabditis elegans [3]. Of the

estimated genes in C. elegans, more than 40 percent of the predicted

protein products show significant matches to those from other

animals [3]. Despite this species homology, functions of these

genes are poorly understood. Therefore, further characterization

of these proteins could lead to novel insights about important

cellular processes, such as gene regulation, protein maturation,

signal transduction, and intracellular transport.

Animals use the nervous system to detect stimuli in the

surrounding environment. These stimuli are then assessed based

on past experiences, and converted into adaptive behaviors.

Many neurons are required to act in coordination to execute

these processes. However, it is difficult to address individual

neuronal function in relation to other neurons in neural circuits

because animal brains generally consist of enormous numbers

of neurons. The anatomically characterized nervous system of

C. elegans is composed of only 302 neurons [4], making it an

effective model for studying neuronal function in circuits. Despite

their simple nervous systems, C. elegans can sense an array of

environmental stimuli and produce appropriate behavioral

outputs. For example, worms remember cultivation temperatures

in association with food conditions [5–7]. This thermotaxis

behavior can be divided into two behavioral aspects. First, after

cultivation C. elegans with food at a certain temperature for several

hours, they will migrate to this cultivation temperature along a

temperature gradient [5–7]. Previous studies have suggested that

this migratory behavior could be explained by the following two

opposing strategies: migrations up thermal gradients when

located at temperatures below the cultivation temperature (i.e.,

thermophilic drive); and migrations down thermal gradients

when at a higher temperature (i.e., cryophilic drive) [5–7]. Work

by several groups has been unable to confirm thermophilic drive

in C. elegans [8–11]. However, recent theoretical and experimental

studies have shown that the steepness of the thermal gradient

drastically changes migration behavior [12,13]. The second

behavioral aspect of thermotaxis involves worms leaving

isothermal tracks (IT) on a temperature gradient as they migrate

to the cultivation temperature associated with food (Figure 1B

and [5,6]). Previous reports have suggested that the neuron-

specific calcium sensor-1 (NCS-1) plays an important role in

optimizing IT [14]. Specifically, reports showed that a knockout

phenotype of ncs-1 animals could be rescued by introducing a

wild-type NCS-1 into the AIY interneuron, which is a component

of the thermotaxis neural circuit, and that NCS-1 overexpression

enhanced the frequency of IT behavior [14].
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The thermotaxis phenotype of C. elegans, which was achieved by

laser-ablating specific neurons, has been examined previously, and

results led to the hypothesis of a neural circuit for thermotaxis [6].

This neural circuit is presently one of the simplest circuits to

regulate animal behavior. By capitalizing on this simple structure,

we expect that the study of thermotaxis behavior will reveal

molecular mechanisms of thermosensation and concepts of neural

plasticity and neuronal function. Several molecular components

related to thermotaxis behavior have been identified. The three

guanylyl cyclases, GCY-8, GCY-18 and GCY-23, which are

expressed in AFD thermosensory neurons, appear to redundantly

produce cyclic guanosine monophosphate (cGMP) as a second

messenger. The cGMP-dependent cation channel, which is

composed of TAX-2 and TAX-4, is crucial in activating AFD

neurons [15–17]. TAX-6 (calcineurin) and TTX-4 (PKC-1;

nPKC-epsilon/eta), both of which act as negative regulators of

AFD thermosensory signaling, have also been reported [18,19].

Calcium imaging using the genetically encoded calcium indicator

cameleon can display fluorescence changes from variable intra-

cellular calcium concentrations [20]. This imaging has shown that

AFD neurons respond to thermal stimuli in a cultivation

temperature-dependent manner [21]. This response occurred

even after disconnecting the AFD dendrites from their cell bodies

[22], indicating that temperature memories are stored in AFD

neurons. Consistent with findings in AFD neurons, recent calcium

imaging analyses also suggest that AWC thermosensory neurons

can also store temperature memories [23,24].

In this study, we found that the novel protein MACO-1 is

required for diverse neuronal functions in C. elegans. maco-1/ttx-8

mutants exhibited abnormalities in thermotaxis and chemotaxis to

odorants and sodium chloride (NaCl). The maco-1 gene encodes a

conserved novel protein that is expressed in many neurons. A

previous study reported that the mouse ortholog of MACO-1,

macoilin (C61), showed neuron-specific expression [25], although

its function remained largely unknown. Rescue experiments

revealed that simultaneous expression of MACO-1 in AFD, AIY

and AIZ neurons of maco-1 mutants is required for thermotaxis

behavior. We also found that maco-1 mutants showed abnormal

locomotion resulting from frequent turns. Although defective

locomotion of maco-1 mutants might have caused abnormal

thermotaxis, calcium imaging indicated that MACO-1 is required

for activation of AFD and AIY neurons. In vivo co-localization

studies have shown that both MACO-1 and human macoilin are

localized to the rough endoplasmic reticulum (rER). All together,

our results suggest that macoilin is required for a variety of

intracellular events that influence basic neuronal function across

species.

Results

maco-1/ttx-8 mutants showed prominent thermotaxis
defects and slight chemotaxis defects

To elucidate molecular mechanisms of thermotaxis, we

performed a genetic screen and isolated several mutants that were

thermotaxis defective [19]. Two of these mutants, maco-1(nj21) and

maco-1(nj34), were isolated as novel mutants. Two other mutant

alleles, maco-1(tm2917) and maco-1(ok3165), were isolated by the

National Bioresource Project (Japan) and the C. elegans Gene

Knockout Consortium, respectively. All four alleles were geneti-

cally recessive (data not shown). Despite obvious defects in

thermotaxis after cultivation at 20uC (Figure 1B and 1C), maco-

1(nj21) and maco-1(nj34) mutants were slightly defective in

chemotaxis to odorants (Figure 1D and Figure S1) or to NaCl

(Figure 1E). These results suggest that MACO-1 is necessary for

animals to respond normally to various stimuli, including

temperature, odorants and NaCl. Strong thermotaxis defects in

maco-1 mutants after cultivation at 20uC suggest that MACO-1

may play an important role in thermotaxis, especially after

cultivation at 20uC. Alternatively, the thermotaxis defects in maco-

1 mutants could have been more easily detected in thermotaxis

assays for 20uC-grown animals (20uC TTX assay) than 17uC or

23uC TTX assays. Specifically, during 20uC TTX assays, animals

must migrate and remain in the 20uC region, which is shown as

the light grey zone in the left schematic of Figure 1A. By contrast,

during 17uC and 23uC TTX assays, animals can achieve

thermotactic behaviors by migrating to 17uC and 23uC regions

at the center and the periphery of a 9 cm plate, respectively. These

areas are places where animals tend to remain due to the nature of

assay plates and non-linear temperature gradients.

The maco-1 gene encodes a novel protein
The maco-1 gene was identified by mapping it with the snip-

single nucleotide polymorphisms (SNPs) method [26] and

conducting subsequent rescue experiments with genomic or

polymerase chain reaction (PCR) fragments. Defective thermotaxis

of maco-1 mutants was rescued by introduction of the cosmid

C09C9. However, thermotaxis was not rescued by the cosmid

C15E12 or C03F5 (Figure 2A), suggesting that maco-1 is located in

the region between cosmids C15E12 and C03F5 within the

cosmid C09C9. In addition, a PCR fragment containing D2092.4

gene (PCR1) did not rescue abnormal thermotaxis behavior of

maco-1 mutants. However, another PCR fragment containing

D2092.5 gene (PCR2) could rescue this behavior (Figure 2A),

suggesting that D2092.5 is identical to the maco-1 gene. D2092.5/

maco-1 gene encodes a novel protein that was predicted to have five

transmembrane domains in the N-terminus and four coiled coil

domains in the C-terminus as determined by the TMHMM Server

v. 2.0 [27] and by COILS server [28], respectively (Figure 2B).

Blast searches of the U.S. National Center for Biotechnology

Inventory (NCBI) inventory identified maco-1 orthologs in several

species, including the invertebrates Drosophila melanogaster, and

vertebrates Xenopus laevis, Mus musculus and Homo sapiens (Figure 2B,

2C and Table S1). The nj21 mutant has a G-to-A substitution at

Author Summary

Any animals, including humans, have to be capable of
properly sensing and responding to various environmental
stimuli for survival and reproduction. Environmental
stimuli are evaluated and, based on past experiences,
converted to produce appropriate adaptive behaviors.
Even the small, free-living soil nematode Caenorhabditis
elegans can sense diverse environment stimuli using a
nervous system that consists of only 302 neurons. C.
elegans exhibit thermotaxis that allows them to remember
ambient temperatures and use this information as a cue to
seek and remain near food sources. We show here that a
novel and conserved protein, MACO-1, is important for
proper execution of thermotaxis by C. elegans. The maco-1
gene was originally identified in a novel thermotaxis-
defective mutant. Abnormal thermotaxis of maco-1
mutants was weakly but apparently rescued by expressing
human MACO-1, suggesting that MACO-1 is functionally
conserved among species. MACO-1 protein is required for
appropriate regulation of neuronal activity, and the activity
of neurons required for thermotaxis is impaired in maco-1
mutants. This analysis provides an important basis for the
function of the macoilin family.

Neuronal Function of Macoilin/MACO-1
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Figure 1. Phenotype of maco-1. (A) Thermotaxis assay with a radial temperature gradient. (Left panel of A) The center of the assay plate (a 9 cm-
diameter petri dish) is approximately 17uC and the periphery is approximately 25uC. Tracks of animals were categorized into four groups after one-
hour of free movement. Animals that moved to the 17uC region (center) were classified as ‘17’. Animals that moved to the 20uC region or 25uC region
(periphery) were classified as ‘20’ or ‘25’, respectively. Animals that moved randomly around both 17uC and 25uC regions were classified as ‘17/25’. (B)
Tracks of wild-type and maco-1 mutant animals showing thermotaxis behaviors on a radial temperature gradient ranging from 17uC (center) to 25uC
(periphery). Animals were grown at 20uC. (C) Thermotaxis of wild-type and maco-1 mutant animals cultivated at 17uC (upper graph), 20uC (middle

Neuronal Function of Macoilin/MACO-1
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the splice acceptor site of the 9th intron. The nj34 mutant has two

nonsense mutations (W231stop and Q761stop) and a missense

mutation (A805T) (Figure 2D). The tm2917 mutant has a 780-base

pair (bp) deletion and 1-bp insertion just before the first coiled coil

domain (Figure 2D). The ok3165 mutant has a 972-bp deletion

and 1-bp insertion in the coiled coil region (Figure 2D).

MACO-1 is mainly localized to the rER
To study subcellular localization of MACO-1, we introduced

the almost full-length genomic maco-1::GFP, which can rescue

abnormal thermotaxis of maco-1 mutants (Figure S2A), into wild-

type animals and observed green fluorescent protein (GFP)

fluorescence. Expression of this fusion protein was observed in

the cell body but not in the neurite (Figure 3A and 3B). Because

MACO-1 was found in the cell body and is predicted to be a

membrane protein, we investigated whether the protein is

localized to organelles, such as the ER or the Golgi bodies. We

made several transgenic lines co-expressing cyan fluorescent

protein (CFP)- or yellow fluorescent protein (YFP)-fused MACO-

1 and one of the following organelle markers: Translocating-chain

associating membrane protein (CFP::TRAM) as a rER marker;

Mannosidase (MANS::CFP) as a Golgi marker and membrane

anchored YFP (YFP::GPI) as a plasma membrane marker [29].

We found that functional YFP::MACO-1 fusion protein was co-

localized with the rER marker, CFP::TRAM in AFD neurons

(Figure 3C–3E, Figure S2C and Text S1). Similarly, YFP fusion

protein with human macoilin, YFP::FLJ10747, was also co-

localized with CFP::TRAM in AFD neurons (Figure 3F–3H).

Further, little to no co-localization of YFP::MACO-1 was observed

with the Golgi marker, MANS:CFP (Figure 3I–3K), and

CFP::MACO-1 was not co-localized with the plasma membrane

marker, YFP::GPI (Figure 3L–3N). These results suggest that

MACO-1 is mainly localized to the rER. Consistent with these

findings, Arellano-Carbajal et al. showed that an antibody against

MACO-1 was predominantly localized to the rER of C. elegans

neurons (Arellano-Carbajal et al., personal communication).

MACO-1 functions in neurons and is conserved across
species

To investigate the expression pattern of maco-1, we constructed

the maco-1 promoter::GFP reporter that used an approximately 5-

kilobase (kb) upstream region from the ATG initiation codon as a

maco-1 promoter. This construct was then introduced into wild-

type animals. We found that strong expression was observed in

many neurons (Figure S3A and Text S1), while very weak

expression was also detected in tissues. Thermotaxis defects were

consistently rescued when maco-1 cDNA was expressed in almost

all neurons of maco-1 mutants using the unc-14 promoter,

indicating that MACO-1 acts in neurons (lower left panel of

Figure 4A and Figure 4D).

To examine whether MACO-1 is conserved functionally among

species, we introduced FLJ10747, a predicted human ortholog of

MACO-1, into almost all neurons of maco-1 mutants using the unc-

14 promoter. We then evaluated the thermotaxis phenotype of the

transgenic strain (lower right panel of Figure 4A, Figure 4D,

Figure S2B and Text S1). FLJ10747 rescued, albeit weakly,

abnormal thermotaxis phenotype of maco-1 mutants, suggesting

that MACO-1 is functionally conserved across species.

Both transmembrane domains and coiled coil domains
are required for appropriate function of MACO-1

MACO-1 was predicted to have transmembrane domains in the

N-terminus and coiled coil domains in the C-terminus (Figure 2B).

To examine whether these regions are necessary for MACO-1

function, we constructed two truncated proteins, MACO-1 TM

(lacks coiled coil region) and MACO-1 CC (lacks transmembrane

region), and conducted rescue experiments using each protein

(Figure 4C and 4D). Expression of MACO-1 TM did not rescue in

nearly all neurons of maco-1 mutants using the unc-14 promoter,

while MACO-1 CC slightly rescued the abnormal thermotaxis of

maco-1 mutants (Figure 4D). We also conducted rescue experi-

ments using YFP::MACO-1 TM or YFP::MACO-1 CC fusion

proteins to address whether degradation of these truncated

proteins or ER quality influenced rescue experiment results. We

verified that YFP fluorescence was observed in both truncated

fusion proteins (Figure S4J–S4M and Text S1). YFP::MACO-1

TM did not rescue and YFP::MACO-1 CC slightly rescued

defective thermotaxis of maco-1 mutants (Figure S2C and Text S1).

We also found that YFP::MACO-1 TM appeared to localize to the

rER (Figure S4D–S4F and Text S1). However, YFP::MACO-1

CC localization to the rER was minimal, but rather was localized

to cell bodies and neurites (Figure S4G–S4I, S4L, S4M and Text

S1). These results suggest that MACO-1 TM regions are necessary

for appropriate MACO-1 localization, and MACO-1 CC regions

are important for proper function of MACO-1.

Proper function of MACO-1 is necessary for normal
thermotaxis in many neurons

To identify cells that require MACO-1 activity for sensory

behavior, maco-1 cDNA was expressed by using various cell-

specific promoters. Expression of MACO-1 in AFD, AWC, AIY,

AIZ and RIA neurons, which are essential for thermotaxis

behavior (Figure 4B and [6,24]), partially rescued the thermotaxis

defect of maco-1 mutants (Figure 4D). By contrast, specific

expression of maco-1 cDNA in AFD, AWC, AIY AIZ or RIA

neurons individually did not rescue or only slightly rescued the

abnormal thermotaxis phenotype of maco-1 mutants (Figure 4D).

Thus, we propose that simultaneous expression of MACO-1 in

multiple neurons of the thermotaxis neural circuit is necessary to

rescue abnormal thermotaxis among maco-1 mutants. We

attempted but were unable to express MACO-1 in several

combinations of neurons in maco-1 mutants to find the minimum

set of neurons required to ensure full rescue of thermotaxis

behavior. However, the expression of MACO-1 in AFD, AIY and

AIZ neurons rescued maco-1 mutant defects similar to the

expression of MACO-1 in AFD, AWC, AIY, AIZ and RIA

neurons (Figure 4D). Notably, expression of MACO-1 in any other

combinations of AFD, AWC, AIY, AIZ and RIA neurons only

graph) and 23uC (lower graph). n = 60–380. Single and double asterisks indicate p,0.05 and p,0.01 by ANOVA with a Dunnett’s post hoc test,
respectively. (D) Chemotaxis of wild-type and maco-1 mutant animals for odorants. Odorant concentrations are described in the Materials and
Methods section. For each assay, 50–300 animals were analyzed. A single asterisk indicates p,0.05 compared to wild-type by ANOVA with a
Dunnett’s post hoc test. Bars represent the mean of three independent assays with error bars showing the standard error of the mean (SEM). (E)
Chemotaxis to sodium chloride (NaCl). For each genotype, 40–120 animals were individually assayed. The phenotypic categories are described in the
Materials and Methods section. Mean fractions categorized as ‘Normal’ were 0.8660.05 among wild-type animals, 0.4060.04 in maco-1(nj21) mutants
and 0.2360.18 in maco-1(nj34) mutants. Statistically significant differences were observed between the fraction of ‘Normal’ of wild-type and maco-1
mutants (p,0.01 by ANOVA with a Dunnett’s post hoc test).
doi:10.1371/journal.pgen.1001384.g001
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weakly rescued the defect (Figure 4D). All together, these results

suggest that MACO-1 activity in AFD, AIY and AIZ neurons is

required for thermotaxis behavior, and MACO-1 activity is

needed in many neurons to achieve full rescue.

Abnormal thermotaxis behavior is not attributable to
indirect effects of defective locomotion in maco-1
mutants

Cell-specific rescue experiments have implicated that a

functional defect of MACO-1 in AFD, AIY and AIZ neurons

caused defects in thermotaxis of maco-1 mutants. However, we also

observed that maco-1 mutants changed their direction of

movement more frequently than wild-type animals based on their

tracks left during TTX assays (Figure 1B). This observation raised

another possibility that locomotory defects secondarily causes the

abnormal thermotaxis behavior of maco-1 mutants.

Spontaneous locomotion of C. elegans is roughly classified into

two categories. The first category, runs, includes long series of

sinusoidal-swimming movement. The second category, turns, is

divided into two types. Omega turns involve the animal curling its

head toward the tail and continues to propel forward. Reversals

involve the animal moving backwards for several seconds and then

moving forwards in a new direction [30,31]. To quantify the

potential locomotory defect, we constructed curvature maps of

animal bodies along the head-to-tail axis using a tracking system

and homemade MATLAB programs. Locomotion was represent-

ed by patterns in the curvature map (Figure 5A and 5C–5E). Wild-

type animals spent most of their time moving forward (Figure 5C

and left graph of 5F). Conversely, forward movement was

interrupted by omega turns at short intervals among maco-1

mutant animals (Figure 5D and middle graph of 5F). A similar

tendency was observed in transgenic maco-1 mutants (Figure 5E

and left graph of 5F), whose abnormal thermotaxis was partially

rescued by expression of maco-1 cDNA in AFD, AWC, AIY, AIZ

and RIA neurons (Figure 4D). This finding supports that defective

locomotion does not cause abnormal thermotaxis in maco-1

mutants.

MACO-1 is required for proper activation of AFD and AIY
neurons

Cell-specific rescue experiments indicated that MACO-1

activity, at least in AFD, AIY and AIZ neurons, is necessary for

normal thermotaxis behavior (Figure 4D). To examine whether

the MACO-1 functional defect influenced activities of these

neurons, we conducted calcium imaging experiments and

monitored responses of AFD and AIY neurons from maco-1(nj34)

mutants to thermal stimuli. We found that the ratio change in

AFD neurons of maco-1(nj34) mutants was significantly less than

that of wild-type animals (Figure 6A). Previous work has shown

that the ratio change in AFD neurons of tax-4(p678) mutants was

hardly detected [21]. AFD neurons of the tax-4(p678) mutant do

not respond properly to temperature because of defective cGMP-

dependent cation channels composed of TAX-2 and TAX-4. The

average of maximum ratio change from baseline 6 SEM in maco-

1(nj34) mutants was slightly larger (4.360.8) relative to tax-4(p678)

mutants (3.360.6) [21] (Figure 6A), suggesting that AFD neuronal

response to thermal stimuli among maco-1(nj34) mutants was not

completely lost but partially reduced. Similarly, the ratio change in

AIY neurons of maco-1 mutants was also lower than that of wild-

type animals (Figure 6B). Taken together, our data suggest that

activities of both AFD and AIY neurons in maco-1 mutants are

partially decreased in response to thermal change, further

indicating that MACO-1 is required for activation of AFD and

AIY neurons. We also examined morphologies of these neurons in

maco-1 mutants by expressing GFP in AFD and AIY neurons to

determine whether the decreased activity of AFD and AIY

neurons was caused by developmental or functional defects. The

AFD and AIY neurons in maco-1 mutants appeared normal (Figure

S3B, S3C and Text S1), suggesting that MACO-1 is not required

for development but rather for proper function of AFD and AIY

neurons.

Discussion

MACO-1 is required for proper activation of neurons
We found that proper function of MACO-1 in AFD, AIY and

AIZ neurons is necessary for normal thermotaxis behavior.

Consistent with this result, calcium imaging suggested that

MACO-1 is required for accurate activation of AFD and AIY

neurons. Rescue experiments also indicate that appropriate

MACO-1 function in many other interneurons and motor neurons

is probably required for full rescue of abnormal thermotaxis

behavior. These results suggest that MACO-1 is required broadly

for proper neural activation. Consistent with this postulate, maco-1

mutants showed additional behavioral defects in chemotaxis and

locomotion.

MACO-1 likely plays a role in assisting fundamental
neuronal function

Co-localization studies revealed that MACO-1 was mainly

localized to the rER. The rER is generally thought to be required

for protein synthesis, folding and translocation of secretory and

transmembrane proteins. Thus, functional defects of MACO-1 in

the rER might alter these events, resulting in abnormal

phenotypes in maco-1 mutants.

Previous studies have reported that Resistant to Inhibitors of

Cholinesterase 3 (RIC-3) is localized to the ER and required for

the maturation (the folding, assembly or transport) of nicotinic

acetylcholine receptors [32–39]. RIC-3 is predicted to have two

transmembrane domains followed by coiled-coil domains. Similar

structural motifs and intracellular localization patterns of RIC-3

and MACO-1 suggest that MACO-1 might be involved in the

maturation of membrane proteins like RIC-3. To explore this

Figure 2. Genetic and molecular analysis of maco-1. (A) Position of maco-1 on chromosome I. Arrowheads show locations of single nucleotide
polymorphisms (SNPs). Results of rescue experiments among thermotaxis-defective maco-1 mutants are indicated as + (rescued) or 2 (not rescued)
on the right side. Numbers in parentheses indicate the fraction of rescued lines. For each genotype, 120–180 animals were individually assayed for
thermotaxis. The maco-1 gene was mapped to a 100–kb region between two SNPs (1.1 and 1.18) on chromosome I. We conducted rescue
experiments using overlapping cosmids to encompass this 100-kb region. (B) Predicted structure of maco-1 gene family. Black and gray boxes
indicate transmembrane domains and coiled coil domains, respectively. Numbers of amino acids are shown on the right. (C) Unrooted dendrogram of
MACO-1. The dendrogram was generated using the freely available program, Clustal W [52] (http://clustalw.genome.jp/) and NJplot [53]. (D)
Comparison of sequences of MACO-1 and orthologs of MACO-1 in other species and mutation sites of maco-1. Black and gray boxes highlight
identical and similar residues, respectively. Black bars and gray bars above the sequences indicate predicted transmembrane domains (TM1–TM5) and
coiled coil domains (CC1–CC4) of MACO-1 in C. elegans, respectively. Boxes below the amino-acid alignment correspond to mutation sites of tm2917
and ok3165.
doi:10.1371/journal.pgen.1001384.g002
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Figure 3. Subcellular localization of MACO-1. (A, B) Subcellular localization of the almost full-length genomic maco-1::GFP, including predicted
transmembrane domains and coiled coil domains in wild-type animals. (A) Merged differential interference contrast (DIC) and green fluorescent
protein (GFP) images. (B) GFP image. Anterior is to the left and dorsal is up. (C–N) Co-expression of MACO-1 or human ortholog of MACO-1 (FLJ10747)
fused to yellow fluorescent protein (YFP) or cyan fluorescent protein (CFP) with organelle markers in AFD thermosensory neurons of wild-type animal.
The following markers were used: CFP-tagged translocating chain-associating membrane protein (CFP::TRAM) as a marker of rough endoplasmic
reticulum (rER); CFP-tagged mannosidase (MANS::CFP) as a marker of Golgi bodies; membrane anchored YFP (YFP::GPI) as a marker of plasma
membranes [29]. (C–E) Co-expression of YFP::MACO-1 with CFP::TRAM. (F–H) Co-expression of YFP::FLJ10747 with CFP::TRAM. (I–K) Co-expression of
YFP::MACO-1 with MANS::CFP. (L–N) Co-expression of YFP::GPI with CFP::MACO-1. Scale bars: A and B = 5 mm; C–N = 2 mm.
doi:10.1371/journal.pgen.1001384.g003
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Figure 4. Cell-specific rescue experiments for thermotaxis defects in maco-1(nj34) mutants. (A) Tracks of animals showing thermotaxis
behavior when grown at 20uC. Upper left panel is wild-type animal. Upper right panel is maco-1(nj34) mutant. Lower left panel is maco-1(nj34)
expressing maco-1 cDNA in almost all neurons. Lower right panel is maco-1(nj34) expressing human ortholog of MACO-1 in almost all neurons. The
unc-14 promoter was used for expression in almost all neurons. (B) The proposed neural circuit model for thermotaxis [6]. Temperature is sensed by
AFD and AWC sensory neurons. The AIY-RIA circuit is involved in thermophilic behavior (i.e., movements to temperatures higher than the cultivation
temperature indicated as ‘T’). The AIZ-RIA circuit is involved in cryophilic behavior (i.e., movements to temperatures lower than the cultivation
temperature indicated as ‘C’). RIA neurons are proposed to integrate these signals. (C) Truncated forms of MACO-1. MACO-1 TM (from 1 to 453 amino
acids) lacks coiled coil regions and MACO-1 CC (from 446 to 897 amino acids) lacks transmembrane regions. (D) Rescue of the thermotaxis defect in
maco-1 mutants by specific expression of maco-1 cDNA, human ortholog of maco-1 cDNA, MACO-1 TM or MACO-1 CC in almost all neurons using the
unc-14 promoter. Specific observed expressions of maco-1 cDNA using several cell-specific promoters. Expression patterns of each promoter are listed
in Table S2. Bars show the percentage of animals that moved to the cultivation temperature (20uC). Error bar indicates the standard error of the mean
(SEM). Asterisks indicate statistically significant differences between fractions of 20 of 20uC-cultivated transgenic strains relative to fractions of 20 of
20uC-cultivated maco-1 mutants. One asterisk denotes statistical significance at p,0.05 and two asterisks denote statistical significance at p,0.01
(ANOVA with a Dunnett’s post hoc test; n = 120–680).
doi:10.1371/journal.pgen.1001384.g004
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possibility, we observed the localization of several membrane

proteins that could influence abnormal behaviors of maco-1

mutants. We found slightly increased spacing between adjacent

SNB-1::GFP puncta (presynaptic marker) in DD motor neurons of

maco-1 mutants compared with wild-type animals (Figure S5, Text

S1 and [40,41]). This change could be attributable to MACO-1

being directly associated with the maturation of presynaptic

proteins. However, we cannot exclude the possibility of reduced

excitability or altered Ca2+ signaling in maco-1 mutant neurons

resulting in weak mislocalization of presynaptic proteins. Further

studies on MACO-1 targets may reveal its molecular function and

involvement in several intracellular events, such as the maturation

of presynaptic proteins and proper neuronal activity.

Materials and Methods

Strains
C. elegans strains were maintained and grown according to

standard procedures [42]. The following strains were used: wild-

type Bristol strain (N2), wild-type Hawaiian strain (CB4856) for

mapping with the snip-SNPs method [26], IK732 maco-1(nj21) I,

IK734 maco-1(nj34) I, IK809 maco-1(tm2917) I, IK811 maco-

1(ok3165) I, N2; Is[flp-13p::snb-1::gfp] II [41], and many transgenic

strains derived from them. maco-1(nj21) and maco-1(nj34) mutants

were isolated in genetic screens that bypassed temperature-

dependent dauer formation of daf-7(e1372) backgrounds [43]. All

mutant strains used in this study were backcrossed to N2 one to

ten times before characterization.

Behavioral analysis
Animals were grown at 20uC for all behavioral assays in this

study, unless otherwise described. The procedure for the

thermotaxis assay using radial temperature gradients was based

on previously published research by Mori and Ohshima [6] with

some modification. Evaluation of thermotaxis was consistent with

methods of Mohri et al. [7]. Thermotaxis of individual animals on

a radial temperature gradient was evaluated using the following

four phenotypic categories: animals that moved to the cold region

(i.e., center of plate) were classified as ‘17’; animals that moved to

the 20uC region were classified as ‘20’; animals that moved to

warm regions (i.e., plate periphery) were classified as ‘25’; animals

that moved to cold and warm regions were classified as ‘17/25’.

Chemotaxis to odorants was assayed according to Bargmann et al.

[44], except that the assay plates contained a slightly different

Figure 6. Calcium imaging of neurons in the thermotaxis circuit among wild-type or maco-1 mutants. In vivo Ca2+ ratio imaging in
individual genotypes cultivated at 20uC. (A) AFD thermosensory neuron. (B) AIY interneuron. Relative increases or decreases in the intracellular Ca2+

concentration were measured as increases or decreases in fluorescence of the yellow fluorescent protein/cyan fluorescent protein (YFP/CFP) of the
cameleon protein ratio (ratio change). Blue and red traces represent the mean value of ratio changes of wild type and maco-1(nj34) animals,
respectively, during temperature changes as indicated in the bottom panel of each graph (n = 10). Error bars (gray line) indicate the standard error of
the mean (SEM). The average of the maximum ratio change from baseline 6 SEM was as follows: 17.161.6 for wild-type (AFD); 4.360.8 for maco-1
(AFD); 6.361.0 for wild-type (AIY) and 3.860.6 for maco-1 (AIY).
doi:10.1371/journal.pgen.1001384.g006

Figure 5. Curvature maps of animal body along the head-to-tail axis. (A) Examples of locomotor states. Black bars above and below the
curvature map indicate the state of forward movement and backward movement, respectively. The state of omega turn was indicated as white space
(arrow). Although animals sometimes showed modest changes in direction, it is not reflected in this curvature map. (B) An image of omega turn. The
head of animal curls to touch its own body. (C–E) Curvature maps of individual animals. Well-fed single animals were placed on TTX plates.
Observations began 10 min after transfer. Freely moving individual animals were captured by video camera for 30 min. The x-axis and y-axis indicate
time and the position along animal midlines, respectively. The color-map to the right of the graph (numbered from 230 to 30) depicts curvatures
(see the Materials and Methods section for calculation procedures). (C) Wild-type. (D) maco-1(nj34). (E) maco-1(nj34) expressing maco-1 cDNA in AFD,
AWC, AIY, AIZ and RIA neurons. This transgenic strain showed a partially rescued phenotype in thermotaxis behavior (Figure 4D). (F) Duration
between omega turns. Initial 1000-second video images of each animal were analyzed by image-processing software, MATLAB. n = 4 (wild-type), 3
(maco-1) and 2 (transgenic strain).
doi:10.1371/journal.pgen.1001384.g005
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medium (2% agar, 1 mM magnesium sulfate (MgSO4), 1 mM

calcium chloride (CaCl2) and 25 mM potassium phosphate

(pH 6)). Dilutions of odorants with ethanol were as follows:

1:1000 diacetyl, 1 mg/ml pyrazine, 1:100 isoamyl alcohol, and

1:100 benzaldehyde. The chemotaxis index was calculated

according to Bargmann et al. [44]. Chemotaxis to NaCl was

essentially as described previously [15]. Briefly, animals were

scored as ‘normal’ when they migrated repeatedly to the

concentration peak or remained at the peak during the assay.

The animal was scored as ‘partially defective’ when it migrated

toward the peak only once or stayed very briefly at the peak. The

animal was scored as ‘defective’ when it failed to migrate to the

peak.

Molecular biology
The maco-1 promoter::GFP (pMYA3) used in Figure S3A was

constructed by PCR amplification of the maco-1 promoter region

(i.e., the 4900-bp upstream sequence of maco-1). This fragment was

then inserted into the GFP vector pPD95.77 to generate pMYA3.

The almost full-length genomic maco-1::GFP (pMYA52) was construct-

ed by PCR amplification of the 59 5-kilobase (kb) region of maco-1

gene and 2-kb fragment downstream of 59 5-kb fragment using the

cosmid C09C9 and wild-type genomic DNA, respectively. These

fragments were inserted between the maco-1 promoter and GFP of

pMYA3 to generate the almost full-length genomic maco-1::GFP

(pMYA52). The almost full-length genomic maco-1 contains a maco-1

promoter region and a 6621-bp fragment of a 7536-bp full-length

genomic maco-1 sequence, which includes predicted transmem-

brane domains and coiled coil domains. The full-length maco-1

cDNA was constructed by PCR amplifications of the 59 partial

maco-1 cDNA (723-bp region of 2694-bp full-length maco-1 cDNA)

and the rest of maco-1 cDNA region using a cDNA library and

yk1296a05 clone, respectively. These fragments were ligated into

pPD49.26 to generate pMYA17. All cell-specific promoter::maco-1

cDNA plasmids were generated by inserting each cell-specific

promoter fragment into pMYA17. Cell-specific promoters are as

follows: unc-14p for almost all neurons [45]; gcy-8p and gcy-18p for

AFD neurons [17,46]; ttx-3p for AIY neurons [43]; lin-11p for AIZ

neurons (unpublished data); odr-1p for AWC neurons [47] and glr-

3p for RIA neurons (unpublished data). Detailed expression

patterns of these cell-specific promoters are shown in Table S2.

The fluorescent protein fused maco-1 cDNA and several organelle

markers used in Figure 3 were also constructed. Specifically, the

glr-1 promoter of glr-1p::YFP::TRAM [29] was replaced with gcy-8

promoter to generate gcy-8p::YFP::TRAM (pMYA161). The

TRAM of pMYA161 was replaced with maco-1 cDNA to generate

gcy-8p::YFP::maco-1 (pMYA174). The YFP of pMYA161 was

replaced with CFP to generate gcy-8p::CFP::TRAM (pMYA212).

The TRAM of pMYA161 was replaced with FLJ10747 cDNA to

generate gcy-8p::YFP::FLJ10747 (pMYA182). The glr-1 promoter

of glr-1p::MANS::YFP [29] was replaced with gcy-8 promoter to

generate gcy-8p::MANS::YFP (pMYA145), and then YFP of

pMYA145 was replaced with CFP to generate gcy-8p::MANS::CFP

(pMYA208). The glr-1 promoter of glr-1p::YFP::GPI [29] was

replaced with the gcy-8 promoter to generate gcy-8p::YFP::GPI

(pMYA153). The glr-1 promoter of glr-1p::CFP::PIS [29] was

replaced with the gcy-8 promoter to generate gcy-8p::CFP::PIS

(pMYA141). The PIS of pMYA141 was replaced with maco-1

cDNA to generate gcy-8p::CFP::maco-1 (pMYA176). Two types of

truncated forms of MACO-1, MACO-1 TM (1–453 amino acid)

and MACO-1 CC (446–897 amino acid) (Figure 4), were PCR

amplified from unc-14p::maco-1 cDNA and replaced with full-length

maco-1 cDNA of unc-14p::maco-1 to generate unc-14p::MACO-1 TM

(pMYA107) and unc-14p::MACO-1 CC (pMYA109), respectively.

The unc-14p::FLJ10747 shown in Figure 4 was constructed by

ligation of the unc-14 promoter into pPD49.26 vector to generate

pMYA171. The full-length cDNA of human macoilin, FLJ10747

cDNA, was PCR amplified from a Mammalian Gene Collection

(MGC) clone (Invitrogen), which contained full-length FLJ10747

cDNA. This product was inserted into pMYA171 to generate unc-

14p::FLJ10747 (pMYA172).

Germline transformation
Transgenic strains were constructed by injecting DNA into the

gonad of adult animals [48]. The almost full-length genomic maco-

1::GFP used in Figure 3A, 3B and Figure S2A was injected into

wild-type animals at a concentration of 50 ng/ml. Transgenic

animals were recognized with neuronal GFP expression.

Figure 3C–3E depicts the co-injection of gcy-8p::YFP::maco-1

(pMYA174) (20 ng/ml) and gcy-8p::CFP::TRAM (pMYA212)

(20 ng/ml) into wild-type animals. This injection was coupled

with 120 ng/ml of pTAN124.5 (ges-1p::DsRed) as a co-injection

marker. Figure 3F–3H shows that gcy-8p::YFP::FLJ10747

(pMYA182) (50 ng/ml) and gcy-8p::CFP::TRAM (pMYA212)

(4 ng/ml) were co-injected into wild-type animals with ges-

1p::DsRed (pTAN124.5) (120 ng/ml) as a co-injection marker.

Figure 4D shows co-injections of test DNA and the injection

marker, ges-1p::NLS-GFP (pKDK66) [49], into the strain IK734,

maco-1(nj34) at 2 and 50 ng/ml, respectively.

Video analysis
Animal behavior was recorded using a custom made tracking

and live imaging system. Well-fed single animal was placed on a

TTX plate for tracking experiments. An ordinal analog video

camera (Olympus) captured freely moving individual animal for

30 min with adequate sampling rate (30 frames/sec). A computer-

controlled microscope stage was automatically moved to center

animals in the visual field using a custom image analysis algorithm

with microscope software (MetaMorph: Universal Imaging

Corporation). Midlines of recorded animals were extracted from

each image, and curvatures at certain positions were calculated by

analyzing points along midline with constant intervals. Spatio-

temporal curvature maps were constructed by expressing the

quantity of curvatures with a color-map (x-axis = time and y-

axis = position along midline of animal). A smoothing filter (363

dimensions) was applied to the curvature map to reduce noise

effects. Omega turn states (i.e., head of the animal curls to touch its

own body; Figure 5B) were identified by an independent algorithm

and expressed as white color in the curvature map. All video

images were analyzed with MATLAB (Mathworks, Natick, MA).

In vivo calcium imaging and data analysis
In vivo calcium imaging was performed according to previous

studies [21,50]. Well-fed animals expressing yellow cameleon 3.60

[51] caused by AFD and AIY promoters, gcy-8p::yc3.60 (pSAS309)

and AIYp::yc3.60 (pNR86.79), were glued onto a 2% agar pad on

glass, immersed in M9 buffer, and covered by cover glass. The

agar pad and M9 buffer were kept at the initial imaging

temperature. Sample preparation was completed within one

minute. The sample was then placed onto a Peltier-based

thermocontroller (Tokai Hit, Japan) on the stage of a Nikon

E600 or Olympus BX61WI microscope at the initial imaging

temperature for two minutes. Fluorescence was introduced into

W-View (Hamamatsu Photonics, Japan) or Dual-View (Molecular

devices, USA) optic systems. Cyan fluorescent protein (CFP; F480)

and yellow fluorescent protein (YFP; F535) images were

simultaneously captured by a CCD camera HiSCA or EM-

CCD camera C9000-13 ImagEM (Hamamatsu Photonics).
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Images were taken with a 200-ms exposure time with 464 or 262

binning. Temperatures on the agar pad were monitored by the

thermometer system, DCM-20 (Tokai Hit and Hamamatsu

Photonics). For each imaging experiment, fluorescence intensities

of F535 and F480 were measured using AquaCosmos (Hama-

matsu Photonics) or MetaMorph (Molecular Device) imaging

analysis systems. Relative increases or decreases in intracellular

Ca2+ concentrations were measured as increases or decreases in

YFP/CFP fluorescence ratios of cameleon protein (ratio change).

Statistical analysis
Error bars in figures indicate standard errors (SEM). The

statistical analysis for behavioral experiments was performed by

one-way analysis of variance (ANOVA) for multiple comparisons

followed by post hoc Dunnett’s multiple comparison. A single

asterisk and double asterisk indicate statistical significance at

p,0.05 and p,0.01, respectively. The value of p is probability.

Supporting Information

Figure S1 Chemotaxis to odorants. (A) Chemotaxis to diacetyl

with varying dilutions. (B) Chemotaxis to pyrazine with varying

dilutions. (C) Chemotaxis to isoamyl alcohol with varying

dilutions. (D) Chemotaxis to benzaldehyde with varying dilutions.

Error bar indicates the standard error of the mean (SEM).

Asterisks indicate statistically significant differences between the

index of maco-1(nj21) or maco-1(nj34) and index of wild-type at each

concentration. One asterisk denotes statistical significance at the

p,0.05 level and two asterisks denote statistical significance at the

p,0.01 level (ANOVA with a Dunnett’s post hoc test).

Found at: doi:10.1371/journal.pgen.1001384.s001 (0.26 MB TIF)

Figure S2 Rescue experiments for thermotaxis defects in maco-

1(nj34) mutants. (A–C) All animals tested were cultivated at 20uC.

The y-axis shows the fraction of 20 animals that migrated to the

20uC region. Error bar indicates the standard error of the mean

(SEM). (A) Expression of almost full-length genomic maco-1::GFP

(50 ng/ml) in most neurons of maco-1(nj34) mutants rescued the

abnormal thermotaxis phenotype of maco-1. Statistical significance

could not be described due to insufficient assay numbers (two).

However, there was an obvious difference between the fraction of

20 of maco-1(nj34) and that of maco-1(nj34); Ex[almost full-length

genomic maco-1::GFP] strain (n = 40 animals; 20 animals per trial).

(B) Rescue experiments with varying concentration of FLJ10747,

human maco-1 cDNA (n = 99–260 animals). Single and double

asterisks indicate fractions of 20 of each transgenic strain that was

different from fraction of 20 of maco-1(nj34) mutants at the p,0.05

and p,0.01 level, respectively (ANOVA with a Dunnett’s post hoc

test). (C) n = 60–120 animals. Double asterisks indicate the fraction

of 20 of maco-1(nj34); Ex[unc-14p::YFP::maco-1] strain that were

different from that of maco-1(nj34) mutants at the p,0.01 level

(ANOVA with a Dunnett’s post hoc test).

Found at: doi:10.1371/journal.pgen.1001384.s002 (0.34 MB TIF)

Figure S3 Expression pattern of MACO-1 and neuronal

morphology of AFD thermosensory neurons and AIY ineterneur-

ons. (A) Expression of maco-1 promoter::GFP (pMYA3) in wild-type.

DIC and GFP images are merged. Anterior is to the left. GFP

expression was observed in many neurons. Names of several

neurons are shown. (B, C) Expression of GFP in AFD and AIY

neurons. (B) Wild-type. (C) maco-1 mutants. Left panels show

merged DIC and GFP images and right panels are GFP images

alone. A yellow arrowhead and white arrowhead indicate the cell

body of AFD and AIY neurons, respectively. Yellow arrows show

dendrites (left side of the yellow arrowhead) and axons (right side

of the yellow arrowhead) of AFD neurons. A white arrow shows an

axon of AIY neurons. Scale bars = 5 mm.

Found at: doi:10.1371/journal.pgen.1001384.s003 (1.93 MB TIF)

Figure S4 Subcellular localization of yellow fluorescent protein

(YFP)::MACO-1, YFP::MACO-1 TM, and YFP::MACO-1 CC.

(A–C) Expression of YFP::MACO-1 in almost all neurons and

cyan fluorescent protein (CFP)::TRAM (rER marker) in AFD

neurons of maco-1(nj34) animals. This transgenic strain showed a

partial-rescued phenotype (Figure S2C). (A) YFP::MACO-1. (B)

CFP::TRAM. (C) Merged YFP::MACO-1 and CFP::TRAM

images. YFP::MACO-1 was localized to peri-nuclear regions and

co-localized with CFP::TRAM, suggesting that MACO-1 is

localized to the rER. (D–F) Expression of YFP::MACO-1 TM

and CFP::TRAM in AFD neuron of wild-type animals. (D)

YFP::MACO-1 TM. (E) CFP::TRAM. (F) Merged YFP::MACO-

1 TM and CFP::TRAM images. YFP::MACO-1 TM was co-

localized with CFP::TRAM, suggesting that MACO-1 TM is

localized to the rER. (G–I) Expression of YFP::MACO-1 CC and

CFP::TRAM in AFD neuron among wild-type animals. (G)

YFP::MACO-1 CC. (H) CFP::TRAM. (I) Merged YFP::MACO-1

CC and CFP::TRAM images. YFP::MACO-1 CC was negligibly

co-localized with CFP::TRAM, suggesting that MACO-1 CC is

only slightly localized to the rER. (J, K) Expression of

YFP::MACO-1 TM in almost all neurons in maco-1(nj34). This

strain did not show the rescued phenotype (Figure S2C). (J)

Merged DIC and YFP images. (K) YFP image. (L, M) Expression

of YFP::MACO-1 CC in almost all neurons in maco-1(nj34). This

strain showed little to no rescued phenotype (Figure S2C). (L)

Merged DIC and YFP images. (M) YFP image. Dashed ellipse

shows a nerve ring (i.e., ring-shaped zone where axons of many

neurons overlap). YFP::MACO-1 CC is localized to not only

cytoplasm but neurites. Adult animals were observed in all images.

Scale bars: A–C and J–M = 5 mm; D–I = 2 mm.

Found at: doi:10.1371/journal.pgen.1001384.s004 (3.51 MB TIF)

Figure S5 Slight mislocalization of presynaptic marker, SNB-

1::GFP, in maco-1 mutants. (A–D) SNB-1::GFP expression in six

DD motor neurons of L2 larva. We observed transgenic strains,

N2; Is[flp-13p::SNB-1::GFP] [41] and maco-1(nj34); Is[flp-13p::SNB-

1::GFP]. The expression pattern of flp-13p::GFP was shown in

Table S2 [40]. Scale bars = 5 mm. (A) Wild-type. (B) maco-1(nj34)

mutant. (C, D) Arrowheads show cell bodies of DD2, DD3 and

DD4 motor neurons. (E) Quantification of distance between

adjacent puncta. We measured the distance between adjacent

puncta and categorized it into sixteen classes. The x-axis and y-

axis show each class and fraction of distance categorized into one

of sixteen classes, respectively. Error bar indicates the standard

error of the mean (SEM). The statistical difference was determined

by using a two-tailed Student’s test. A single asterisk indicates

statistically significant difference at p,0.05. n = 27 (wild-type) and

30 (maco-1).

Found at: doi:10.1371/journal.pgen.1001384.s005 (1.42 MB TIF)

Table S1 Homology search. Results of a homology search by

Blast using amino acid sequences of MACO-1 or human homolog

of MACO-1 as queries. Several molecules of vertebrate or

invertebrate are shown for each survey. The identity and similarity

are calculated using the software program, Mac vector.

Found at: doi:10.1371/journal.pgen.1001384.s006 (0.04 MB

DOC)

Table S2 Expression patterns driven by each promoter. We used

lin-11p as an AIZ promoter, glr-3p as a RIA promoter and odr-1p as

an AWC promoter (Figure 4D). Detailed information about

expression patterns of unc-14p, gcy-8p, gcy-18p, ttx-3p, odr-1p and flp-
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13p are shown in previous studies [17,40,43,45–47]. Data

describing expression patterns of lin-11p or glr-3p are unpublished.

Found at: doi:10.1371/journal.pgen.1001384.s007 (0.03 MB

DOC)

Text S1 Supplemental Materials and Methods.

Found at: doi:10.1371/journal.pgen.1001384.s008 (0.05 MB

DOC)
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