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Abstract

Replication fork integrity, which is essential for the maintenance of genome stability, is monitored by checkpoint-mediated
phosphorylation events. 14-3-3 proteins are able to bind phosphorylated proteins and were shown to play an undefined
role under DNA replication stress. Exonuclease 1 (Exo1) processes stalled replication forks in checkpoint-defective yeast
cells. We now identify 14-3-3 proteins as in vivo interaction partners of Exo1, both in yeast and mammalian cells. Yeast 14-3-
3–deficient cells fail to induce Mec1–dependent Exo1 hyperphosphorylation and accumulate Exo1–dependent ssDNA gaps
at stalled forks, as revealed by electron microscopy. This leads to persistent checkpoint activation and exacerbated recovery
defects. Moreover, using DNA bi-dimensional electrophoresis, we show that 14-3-3 proteins promote fork progression
under limiting nucleotide concentrations. We propose that 14-3-3 proteins assist in controlling the phosphorylation status
of Exo1 and additional unknown targets, promoting fork progression, stability, and restart in response to DNA replication
stress.
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Introduction

DNA lesions can cause stalling and collapse of the replication

fork and lead to chromosome breaks, mutations, genome

rearrangements and eventually cancer [1]. To prevent this, a

replication checkpoint has evolved as surveillance mechanism to

control components of the replisome [2] and to allow coordinating

replication with cell cycle progression and DNA repair. Mainte-

nance of stable replication intermediates when DNA synthesis is

impeded, requires replisome stability and checkpoint-dependent

phosphorylation [3]. Although crucial targets for this checkpoint

function await identification, nuclease activities are particularly

likely to require fine-tuning, to avoid unscheduled DNA processing

under DNA replication stress [4].

Exo1 is a Rad2 family DNA repair nuclease able to remove

mononucleotides from the 59 end of the DNA duplex [5] that was

originally identified in the Schizosaccharomyces pombe [6] and

subsequently in humans [7]. Exo1 is implicated in several DNA

repair pathways including mismatch repair, post replication

repair, meiotic and mitotic recombination and double strand

break repair [8–12]. Saccharomyces cerevisiae Exo1 acts redundantly

with Rad27 in processing Okazaki fragments during DNA

replication [13]. More recently, Exo1 was shown to be recruited

to stalled replication forks where it counteracts fork reversal [4].

Human EXO1 activity is controlled by post-translational modi-

fications, with ATR-dependent phosphorylation targeting it to

ubiquitin-mediated degradation upon replication fork stalling

[14,15], and ATM-dependent phosphorylation apparently re-

straining its activity during homologous recombination [16].

Analogously, Mec1-dependent phosphorylation inhibits yeast

Exo1 activity at uncapped telomeres [17]. Studies in budding

yeast showed that EXO1 deletion suppresses the sensitivity of

rad53, but not mec1, mutant cells to agents causing reversible or

irreversible stalling of replication forks [18]. Taken together, this

evidence indicates that Exo1 activity is tightly controlled under

DNA replication stress and DNA damage.

Eukaryotic 14-3-3 are highly conserved proteins that establish

phosphorylation-dependent interactions and modulate the func-

tions of proteins involved in processes such as metabolism, protein

trafficking, signal transduction, apoptosis and cell-cycle [19].

Seven 14-3-3 isoforms exist in mammalian cells, but only two in

yeast. Structural analysis showed that 14-3-3 proteins self-assemble

into flexible homo- and hetero-dimers forming a central groove

that is able to adapt two extended peptides [20,21]. This feature

confers them the ability to act as adaptors that integrate signals

from different pathways [22,23]. 14-3-3 proteins can also bind

cruciform DNA [24] and replication initiation proteins such as

Mcm2 and Orc2 [25]. Upon DNA damage and DNA replication

stress, 14-3-3 proteins are required for cell cycle restart,

suppression of genomic instability and viability [26]. Moreover,

14-3-3 proteins genetically and physically interact with the

checkpoint protein Rad53 [27] as well as the acetyltransferases

and deacetylases Esa1 and Rpd3 upon replication perturbations

[28]. Although these data point to an important role of 14-3-3
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during replication stress, the exact mechanism of 14-3-3 action

remains unknown.

In this study, we identify 14-3-3 as novel interaction partners of

Exo1 and demonstrate that they regulate phosphorylation of the

nuclease. We provide evidence for an accumulation of Exo1-

dependent ssDNA gaps at stalled forks in yeast 14-3-3 deficient

cells and we show that this causes persistent checkpoint activation

and recovery defects. We also show that 14-3-3 proteins control

progression and stability of replication forks under conditions of

limiting nucleotide availability. Taken together, our data demon-

strate that 14-3-3 have a crucial role in regulating the function of

proteins at stalled forks, among which Exo1 is a key target.

Results/Discussion

14-3-3 proteins interact with EXO1
To identify novel interaction partners for human EXO1 we

designed a yeast two-hybrid screen with GAL4-bait fusion proteins

that contain either full-length EXO1 or DN-EXO1 (EXO1366–846),

which lacks the entire catalytic domain. Since the former was not

expressed (data not shown), we used the latter to screen a blood

peripheral cDNA library. Three 14-3-3 proteins were the highest hits

(Table S1), with the b- being more represented than the e- and f-
isoform. The presence of an established EXO1 binding protein

among the hits, MLH1 (Table S1), confirmed the reliability of this

screen.

To independently verify these data, we performed co-immuno-

precipitation experiments. Given the low abundance of EXO1 in

the cell [14], we transiently transfected HEK-293 cells with an

Omni-tagged EXO1 construct [14] and immunoprecipitated the

expressed protein using a pan-14-3-3 antibody. The data showed

that Omni-EXO1 and 14-3-3 proteins could be recovered as a

complex (Figure 1A).

To assess the physiological significance of the EXO1/14-3-3

interaction we selected Sacc. cerevisiae, a system where only two 14-

3-3 proteins are present, namely Bmh1 and Bmh2. In preliminary

experiments we examined whether yeast Exo1 and 14-3-3 proteins

interact. A C-terminal Myc- or a HA-tag was added to the

endogenous EXO1 or BMH1/BMH2 genes, respectively. Immu-

noprecipitation experiments showed that Exo1 formed complexes

with Bmh1 or Bmh2 in a HU-dependent manner (Figure 1B). We

next explored a possible direct Bmh/Exo1 interaction by Far

Western blot analysis. Exo1-Myc immunoprecipitated from

control or HU-treated cells was resolved by SDS-PAGE and

denatured/renatured on PVDF. Probing the membrane with

purified GST-Bmh1 revealed that a direct interaction with Exo1

occurred both in the case of untreated and HU-treated cells

(Figure S1). These data possibly indicate that an Exo1 domain

normally hidden in non-treated cells may become available for

interaction with 14-3-3 proteins upon HU-treatment. Such

domain may be artificially exposed during Far Western analysis

due to incomplete renaturation of Exo1.

Taken together, these data suggest that the EXO1/14-3-3

interaction is conserved from yeast to mammalian cells. While the

interaction is HU-independent in mammalian cells, it requires HU

in yeast. This may reflect the different modes of EXO1 regulation

in the two systems [15,17].

14-3-3–deficient cells cannot restart stalled replication
forks, but their recovery defect is partially suppressed by
EXO1 deletion

Genetic and flow cytometric analysis evidenced the sensitivity of

14-3-3-deficient cells to DNA replication stress, with distinct bmh1

(bmh2D) alleles showing different defects upon nucleotide depletion

(HU) or treatment with DNA damaging agents (UV or methyl-

methansulfonate, MMS) [26]. However, despite the evidence that

14-3-3 proteins bind origins of replication and cruciform DNA [29],

suggesting a regulatory role in DNA replication [25], the issue of

possible direct involvement of 14-3-3 in fork stability or processing

under genotoxic stress conditions remained to be clarified. Given

the comprehensive molecular characterization of yeast Exo1 as

component of the replisome and of its role, in checkpoint defective

cells, in the processing of forks stalled by nucleotide depletion [4],

we focused our investigations on the bmh1-280 bmh2D double

mutant (bmh1bmh2 hereafter). This mutant shows normal cell cycle

progression in unperturbed conditions, but selective sensitivity and

cell cycle recovery defects in response to HU [26]. The mutant

Bmh1-280 protein carries a single point mutation (E136.G) in helix

aE at a residue neighboring amino acids that form salt bridges and

hydrogen bonds with the ligand [21]. Interestingly, immunopre-

cipitation experiments showed that the mutant Bmh1-280 protein

did not interact with Exo1 in untreated nor HU-treated cells

(Figure 1C). Thus, we asked whether the cell cycle recovery defects

of this mutant reflect a direct role of 14-3-3 proteins at replication

forks and whether Exo1 is also implicated in these processes. We

performed neutral-neutral bidimensional gel electrophoresis (2D

gel) on the early origin of replication ARS305, which is known to be

activated in HU-treated cells [3]. Although the 2D gel pattern

looked normal in HU-treated bmh1bmh2 cells, we observed that

replication intermediates (RIs) in 14-3-3 defective cells were still

present close to the origin 60 min after HU removal and were only

restarted at 90–120 min (Figure 2A and data not shown). This

suggests that misregulation of the replisome, without dramatic

physical processing of the forks, might be sufficient to impair fork

restart. This effect was not detectably suppressed by EXO1 deletion

(Figure 2A).

Flow cytometric analysis of HU-released cells confirmed the

slow recovery of the bmh1bmh2 strain and showed that lack of Exo1

per se did not alter the pattern of cell cycle progression (Figure 2B).

On the other hand, EXO1 deletion in a bmh1bmh2 background led

to a partial rescue of the recovery defect, particularly evident at

late time points ($120 min) after release from HU (Figure 2B).

This evidence prompted us to ask whether EXO1 deletion in this

background may affect Rad53 activity. Western blot analysis with

Author Summary

Stalling and collapse of DNA replication forks is an
important source of genome instability and has been
implicated in early steps of carcinogenesis. The mainte-
nance of stable intermediates upon stalled replication
requires the coordinated action of a number of proteins
and proper inhibitory control of dangerous enzymatic
activities. In this study, we uncover an evolutionarily
conserved mechanism through which 14-3-3 proteins
modulate the checkpoint-mediated phosphorylation of,
and in turn limit the activity of, an exonuclease (Exo1)
previously implicated in pathological processing of stalled
replication forks and other sensitive DNA intermediates.
This represents an unprecedented link in the field of DNA
repair and genome stability, providing a molecular
rationale to the yet undefined role of 14-3-3 proteins in
the maintenance of genome integrity after replication
stress. In analogy to Exo1, our data suggest that additional
factors at replication forks may be subjected to similar
regulation, pointing to the 14-3-3 proteins as central
components of the checkpoint triggered in response to
replication stress.

14-3-3 Regulate Exo1 at Replication Forks
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total and phosphospecific Rad53 antibodies [30] showed that,

compared to wild type cells, Rad53 was hyperphosphorylated in

HU-treated bmh1bmh2 cells and that its dephosphorylation was

retarded during the HU-recovery phase (Figure 2C and 2D), thus

correlating with the described replication restart defect. Impor-

tantly, deletion of EXO1 in 14-3-3-deficient cells re-established to a

great extent the pattern of rapid Rad53 dephosphorylation in the

recovery phase (Figure 2C and 2D), substantiating the flow

cytometry data (Figure 2B).

Overall these data suggest that 14-3-3 proteins are directly

implicated in the effective restart of stalled DNA replication forks.

Alternatively, they may assist rapid Rad53 dephosphorylation,

which is in turn required for fork restart upon HU removal [31].

The latter interpretation is however unlikely as EXO1 deletion,

which markedly restores Rad53 dephosphorylation upon HU

removal, does not detectably improve the defective fork restart

observed in 14-3-3 deficient cells on the ARS305 replicon. Thus,

in the 14-3-3 defective background, Exo1 activity does not directly

impact the rate of fork restart, but slows down checkpoint

inactivation and delays cell cycle resumption.

Reversible Exo1 phosphorylation in response to HU is
dependent on 14-3-3 proteins

Exo1 is controlled in a phosphorylation-dependent manner

upon replication fork stalling in mammalian cells [14] and upon a

variety of genotoxic insults in yeast [17]. We obtained evidence

that yeast Exo1 is phosphorylated in a Mec1-dependent manner

also in response to HU (Figure 3A). Notably, the improved

resolution of Exo1 phospho-forms by Phos-tag SDS-PAGE [32]

allowed us visualizing the complete pattern of Exo1 phosphory-

lation in response to replicative stress (Figure 3A and 3B).

Next, we asked whether 14-3-3 proteins might be involved in

the regulation of Exo1 phosphorylation and stability. Western blot

analysis showed that in 14-3-3-deficient cells total Exo1 levels were

unchanged (Figure S2), but Exo1 was not phosphorylated to the

same stoichiometry observed in wild type cells (Figure 3B, 90 min).

Moreover, the rate of Exo1 dephosphorylation upon recovery

from HU was considerably reduced in mutant cells, with Exo1

being completely dephosphorylated in wild type but not in 14-3-3-

deficient cells (Figure 3B, 120 min). Defective Exo1 phosphory-

lation in HU-treated 14-3-3-deficient cells is not an indirect

consequence of defective checkpoint activation, as under these

conditions Rad53, another Mec1-dependent checkpoint target, is

promptly phosphorylated (Figure 2C and 2D). Since phosphory-

lation restrains yeast Exo1 activity [17], we propose that 14-3-3

proteins play an important role in the dynamic control of Exo1

activity upon DNA replication stress and may act as platform for

the control of Exo1 phosphorylation. In this respect, attempts to

assess the phosphorylation status of Bmh-bound Exo1 were

unfortunately inconclusive, as - differently from TCA extracts

(Figure 3) - the extracts used for immunoprecipitation fail to be

resolved in discrete bands by Phos-tag SDS-PAGE (data not

shown). Given that 14-3-3 proteins bind ligands in phospho-

dependent and -independent manner [21], it will be important to

overcome these technical limitations to address the role of 14-3-3

proteins in controlling the phosphorylation of Exo1 and, possibly,

additional targets in the DNA damage response (see below).

Exo1 is responsible for the accumulation of ssDNA gaps
behind the fork in bmh1bmh2 cells

As Exo1 activity and Rad53 phosphorylation have been linked

to the processing of stalled DNA replication forks, we decided to

assess whether defective Rad53 and Exo1 phosphorylation in 14-

3-3-deficient cells could reflect changes in the fine architecture of

stalled forks. To answer this question, we synchronized the cells in

G1, released them for 1 h in YPD medium containing 0.2 M HU

Figure 1. EXO1 interacts with 14-3-3 proteins. (A) HEK-293 cells were transiently transfected with empty vector (2) or pcDNA3.1-Omni-EXO1
(+). Whole cell extracts (WCE, 2.5 mg) were immunoprecipitated with a pan-14-3-3 antibody and proteins were detected as indicated. Input = 50 mg
WCE. (B) Control yeast culture (wt) or cultures expressing Bmh1-HA Exo1-Myc (1) or Bmh2-HA Exo1-Myc (2) were treated for 90 min with 150 mM HU.
WCE (10 mg) were immunoprecipitated with the monoclonal antibody to HA, proteins were resolved on an 8% SDS-polyacrylamide gel and detected
as indicated. CNTL = immunoprecipitation performed in the absence of the antibody. Input = 100 mg WCE. (C) WCE from control yeast culture (wt) or
cultures expressing Bmh1-HA Exo1-Myc (1) or Bmh1-280-HA Exo1-Myc (3) were immunoprecipitated as described in (B).
doi:10.1371/journal.pgen.1001367.g001

14-3-3 Regulate Exo1 at Replication Forks
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and examined RIs by electron microscopy (EM) under non-

denaturing conditions [33]. For each strain, about 100 RIs were

analyzed in duplicate. 14-3-3-deficient cells showed a dramatic

accumulation of ssDNA gaps behind the replication fork

(Figure 4A). Statistical analysis indicated that approximately

50% of all RIs analyzed contained one or more ssDNA gaps

(Figure 4B). Interestingly, deletion of EXO1 in the bmh1bmh2

background completely suppressed this phenotype, leading to a

reduction of the ssDNA gaps behind the fork to a level similar to

wild type or exo1D cells (Figure 4B). The comparison of ssDNA

gaps length scored by EM evidenced a striking difference: whereas

bmh1bmh2 cells displayed a significant number of large size gaps

(.0.5 Kb), the latter were absent in bmh1bmh2exo1D cells

(Figure 4C). The resolution limit of 50–70 nucleotides may have

impaired detection of nicks/small gaps in this as well as in previous

EM studies with HU [34]. Such structures, however, become

visible in 14-3-3-deficient cells, where the unleashed Exo1 activity

would enlarge gaps above the detection limit.

These data suggest that 14-3-3 proteins are required to prevent

unscheduled Exo1 activity behind stalled replication forks in a

checkpoint-proficient background. The implications of these

observations are of great significance. A loose control of Exo1

activity may render DNA synthesis more discontinuous in

conditions of replicative stress, either promoting additional

uncoupling/repriming events or enlarging existing ssDNA gaps

via 59-39 exonucleolytic processing. Although additional work is

required to directly address this point, it is conceivable that

continuous polymerase stall due to insufficient deoxynucleotide

levels might per se lead to increased repriming events, thus raising

the number of 59-ends available for processing by Exo1. In this

setting, a strict control of Exo1 activity would be needed to limit

damage. We observed no bias for the presence of gaps in leading

vs. lagging strands - whenever these could be identified [35] - and

we could occasionally detect gaps on opposite strands within the

same molecule (Figure S3), suggesting that unscheduled Exo1

activity in 14-3-3 defective cells is not restricted to leading or

lagging strand.

Defective fork progression in 14-3-3–defective cells is
independent on EXO1

Replication recovery defects have been previously described

and usually reflect replication fork collapse detectable by 2D gel

analysis [3]. On the contrary, stalled replication forks in 14-3-3

deficient cells, albeit unable to restart DNA synthesis and

abnormally processed by Exo1 activity, upon prolonged HU

Figure 2. Pattern of HU recovery in wild-type, exo1D, bmh1-280 bmh2D, and bmh1-280 bmh2D exo1D strains. (A) Representative 2D gels of
replication intermediates (RIs) at ARS305 analyzed after 90 min HU-treatment and upon HU removal (recovery, 60 and 90 min). (B) Time-course flow
cytometric analysis of the DNA content in the indicated strains upon recovery from a HU-arrest. (C) Western blot analysis showing in the indicated
strains the phosphorylation-dependent mobility shift of Rad53 during the HU-arrest and the recovery phase. (D) Western blot analysis performed with
monoclonal antibody F9 to phosphorylated Rad53 showing in the indicated strains the status of Rad53 activation in HU-arrested cells and during the
recovery phase.
doi:10.1371/journal.pgen.1001367.g002

14-3-3 Regulate Exo1 at Replication Forks
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treatment show a 2D gel pattern indistinguishable from that of

wild type cells. We thus decided to investigate in more detail the

structure and progression of these forks, performing 2D gel

analysis at different time points after HU addition. To this end,

cells synchronized in G1 by a-factor were released into medium

containing HU and RIs were examined by 2D gels. Figure 5B

shows the probes designed to visualize replication fork progression

in a region of Chromosome III that contains, besides the early

active origin ARS305 [36], a contiguous passively replicated

region (Part A) and a region including the dormant origin ARS301

(Part D) [3]. As compared to wild type, bmh1bmh2 cells showed the

same kinetics of origin firing, albeit with slightly lower efficiency as

revealed by the intensity of the bubble arc at 30 min (Figure 5C).

Progression of the forks in HU from ARS305 across the region of

Part A (,5 Kb to the left of ARS305) was completed after 2–3 h

in wild type cells, with the peak of intermediates detectable after

,1 h. In bmh1bmh2 cells the first intermediates appeared on this

region with 30 min delay, whereas the peak of intermediates was

delayed of ,2 h as compared to wild type cells (Figure 5C),

indicative of a significant decrease in the rate of the replication

fork progression in HU. Slow RIs disappearance from the origin

and delayed invasion of adjacent chromosomal regions may in

principle result also from asynchronous firing of ARS305 during

the HU arrest. However we consider this alternative interpretation

unlikely for the following reasons: a) by budding experiments, 14-

3-3 defective cells do not display asynchronous entrance in S-

phase (data not shown); b) the comparable intensity of the Y arc on

fragment A in the wt (60 min) and in the 14-3-3 mutant (180 min)

suggests that forks progress synchronously but slower from the

early origin ARS305; c) accordingly, the progressive accumulation

of the Y signal on fragment A in 14-3-3 defective cells strictly

correlates with the disappearance of the bubble ark on the

Figure 3. Exo1 phosphorylation pattern in response to HU in
wild-type, mec1D, and bmh1-280 bmh2D strains. (A) Western blot
analysis of Exo1 phosphorylation in HU-arrested cells of wild type and
mec1D sml1D strains. (B) Western blot analysis of Exo1 phosphorylation
in HU-arrested cells and during the recovery phase of the indicated
strains. Both in (A) and (B) proteins were resolved on an 8% Phos-tag
SDS-polyacrylamide gel.
doi:10.1371/journal.pgen.1001367.g003

Figure 4. Exo1–dependent generation of ssDNA gaps in bmh1-280 bmh2D cells. (A) Representative RIs visualized by EM in bmh1-280 bmh2D
cells released synchronously from G1 phase in 0.2 M HU for 1 h: the magnified inset (asterisk) shows a representative ssDNA gap located behind the
replication fork. Black arrows: ssDNA gap at the fork; White arrows: internal ssDNA gap located behind the fork. (B) Statistical analysis of ssDNA gap
number. The number of analyzed molecules is indicated in brackets. (C) Statistical analysis of ssDNA gap length. The number of analyzed gaps/
molecules is indicated in brackets.
doi:10.1371/journal.pgen.1001367.g004

14-3-3 Regulate Exo1 at Replication Forks
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ARS305 fragment, further suggesting slow but synchronous

progression of replication forks on the ARS305 replicon.

It was previously shown that yeast 14-3-3 proteins bind to the

checkpoint kinase Rad53 and directly influence its DNA damage-

dependent functions [27]. Therefore, we asked whether the slow

fork progression in bmh1bmh2 cells might be solely due to

checkpoint defects. To address this issue, we used checkpoint

defective Rad53-mutant cells (rad53-K227A). The latter displayed

striking differences when compared to bmh1bmh2 cells. Both the

destabilization of RIs (ARS305 and Part A) and the uncontrolled

firing of dormant origins displayed by rad53-K227A cells (Part D)

[3], were absent in bmh1bmh2 cells (Figure 5C). Furthermore, EM

did not display any fork reversal or accumulation of ssDNA at

replication forks, typical of HU-treated rad53 cells [34] (data not

shown). Finally, 2D gel analysis (Figure S4C, S4F and S4H) and

drop assays (Figure S5) revealed synergistic effects of 14-3-3 and

Rad53 on both fork stability and survival. Overall, these data

indicate that the phenotype observed in 14-3-3 deficient cells

reflects a genuine role of 14-3-3 proteins at replication forks and

that 14-3-3 and Rad53 have crucial but distinct roles at HU-

challenged forks.

Deletion of EXO1 partially rescued the HU-sensitivity of rad53-

K227A cells, but not of a bmh1bmh2 strain (Figure S5).

Furthermore, in contrast to checkpoint defective cells, where

stability of RIs could be rescued by EXO1 deletion [4], fork

progression defects of bmh1bmh2 cells were not rescued by loss of

EXO1 (Figure S4G). Thus, while the processing defect that leads to

accumulation of ssDNA gaps in 14-3-3-deficient cells was

completely suppressed by EXO1 deletion, this did not reflect in

suppression of HU sensitivity nor of defective fork progression in

HU-treated 14-3-3 deficient cells. Altogether this evidence suggests

that 14-3-3 proteins might regulate additional targets during

replication stress, possibly through modulation of their phosphor-

ylation. This is not unexpected, given the role of 14-3-3 as

integrators of signaling pathways [19] and considering the

multiplicity of 14-3-3 targets [37,38]. Our data implicate 14-3-3

proteins as possible central regulator of the checkpoint response.

In analogy with previously reported cases [22] and according to

structural data on the dynamic nature of 14-3-3 dimers [39], one

may envisage a role for 14-3-3 proteins as docking clamp tethering

Exo1 - and other unknown targets - with the kinase controlling its/

their activity. Notably, 14-3-3 proteins were reported to bind

Rad53 [27], one of the candidate checkpoint kinases required for

Exo1 phosphorylation [17].

In conclusion, this work sheds further light on processes

occurring at stalled replication forks, proposing 14-3-3 proteins

as central integrators of signals that regulate fork stability and

processing. Challenges lying ahead consist in the identification of

components of the replisome, or proteins controlling them, that

may be 14-3-3 targets, as well as in the elucidation of the exact

mechanism by which 14-3-3 modulate Exo1 phosphorylation and

activity.

Figure 5. 2D gel analysis of RIs from wild-type, bmh1-280 bmh2D, and rad53-K227A strains. (A) Schematic representation of RIs visualized
by 2D gel electrophoresis. (B) Chromosome III region adjacent to ARS305 with indication of restriction sites and probes used in 2D gel analysis
(E = EcoRV; H = HindIII). (C) Time-course resolution of RIs obtained from the indicated strains arrested in G1 (a-factor) and released in S phase in the
presence of 0.2 M HU. Genomic DNA was extracted at the indicated time points and digested with EcoRV and HindIII prior to standard 2D gel
analysis.
doi:10.1371/journal.pgen.1001367.g005

14-3-3 Regulate Exo1 at Replication Forks
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Materials and Methods

Materials
The antibodies used in this study were: goat polyclonal anti-

Omni-probe (M21, sc-499, Santa Cruz Biotechnology); rabbit

polyclonal anti-pan 14-3-3 (SA-483, Biomol); mouse monoclonal

anti-HA (12CA5, Sigma) and anti-Myc (9E10, Santa Cruz

Biotechnology); rabbit polyclonal anti-Rad53 (a kind gift from

C. Santocanale, Galway, Ireland); mouse monoclonal F9 to

phosphorylated Rad53 [30] (a kind gift of M. Foiani, Milano,

Italy).

The chemicals and peptides used in this study were:

Hydroxyurea (Sigma); a1-Mating Factor (Sigma).

Saccharomyces cerevisiae strains
The yeast strains used in this study are isogenic to W303-1A

(wild type) [40] and are listed in Table 1. All strains have been

obtained by one step replacement using the indicated markers and

tags that have been generated by PCR. The isolated clones have

been verified by colony PCR and Southern Blot or Western Blot.

All deletion (D) strains lack the entire coding sequence. All

strains containing the bmh1-280 mutation have been generated

from strain YLL1090 [26]. The strain KE17 has been generated

from DMP4644/4A (M.P. Longhese, unpublished) and is a

derivative of YLL1090 [26].

Yeast two-hybrid screen
The yeast two-hybrid screening was performed with DN-EXO1

(EXO1366–846) as bait on a cDNA library generated from human

peripheral blood mRNA (a kind gift of I. Stagljar, Toronto,

Canada) as described previously [41] and using THY AP4 as

reporter strain.

Protein extraction, Western and Far Western blotting,
immunoprecipitation

Western blot analysis of yeast proteins was carried out upon TCA

extraction [42]. To visualize Exo1, an optimized Phos-tag system

(50 mM Phos-tag reagent) was employed according to [32]. Proteins

were transferred to nitrocellulose (porablot NCP, 0.45 mm pore size,

Machery-Nagel) overnight at room temperature applying constant

amperage (200 mA). Far Western blotting [43] was performed using

purified recombinant GST-Bmh1 [44] to probe Exo1 that was

immunoprecipitated from control or HU-treated yeast cells.

HEK293T cells were grown and lysed as described [14] and

protein concentration was determined using the Bio-Rad Protein

Assay Reagent (Bio-Rad). Immunoprecipitation of Omni-EXO1

or 14-3-3 proteins from 2.5 mg total cell extracts with specific

antibodies was performed as previously described [14].

For immunoprecipitation of yeast proteins, cells were lysed

using ice-cold lysis buffer (25 mM Tris-HCl pH 7.4, 15 mM

NaCl, 15 mM EGTA, 1 mM NaF, 1 mM Na orthovanadate,

4 mM p-Nitro-Phenyl-Phosphate (pNPP), 0.1% Triton X-100,

1 mM PMSF, complete protease inhibitors cocktail (Roche)). 14-3-

3-HA was immunoprecipitated from 10 mg total yeast cell extracts

using the monoclonal HA antibody.

2D gel electrophoresis and electron microscopy
DNA extraction with the CTAB method and neutral-neutral

two-dimensional gel electrophoresis were performed as described

[45]. EM analysis was performed as described [33].

Supporting Information

Figure S1 Far Western blot analysis. Exo1-Myc immunopre-

cipitated from untreated or HU-treated cells was resolved by SDS-

PAGE, proteins were transferred to PVDF and denatured/

Table 1. List of Saccharomyces cerevisiae strains used in this study.

Strain Name Genotype Origin Marker Tags

W303-1A MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 [phi+] [40]

CY2034 MATa rad53-K227A::KANMX4 [4] KanMX

CY5145 MATa exo1D::KANMX6 [4] KanMX

CY5469 MATa rad53-K227A::KANMX4 exo1D::HIS3 [4] KanMX/HIS3

KE2 MATa bmh2D::NAT1 bmh1D::HIS3::bmh1-280::LEU2 This study NatMX/HIS3/LEU2

KE4 MATa bmh2D::NAT1 bmh1D::HIS3::bmh1-280::LEU2 exo1::URA3 This study NatMX/HIS3/LEU2/URA3

KE7 MATa bmh2D::NAT1 bmh1D::HIS3::bmh1-280::LEU2 rad53-K227A::KANMX4 This study KanMX/NatMX/HIS3/LEU2

KE8 MATa bmh2D::NAT1 bmh1D::HIS3::bmh1-280::LEU2 exo1::URA3 rad53-
K227A::KANMX4

This study KanMX/NatMX/HIS3/LEU2/URA3

KE15 MATa BMH1-HA::URA3::bmh1 EXO1-Myc::KANMX4::exo1 This study KanMX/URA3 HA/Myc

KE16 MATa BMH2-HA::URA3::bmh2 EXO1-Myc::KANMX4::exo1 This study KanMX/URA3 HA/Myc

KE17 MATa bmh2D::KANMX4 bmh1D::HIS3::bmh1-280-HA::URA3::LEU2 EXO1-
Myc::NAT1::exo1

This study KanMX/NatMX/HIS3/LEU2/URA3 HA/Myc

THY AP4 MATa ura3, leu2, lexA::lacZ::trp1, lexA::HIS3, lexA::ADE2 [46] Myc

YMG1009 MATa EXO1-Myc::KANMX4::exo1 This study KanMX Myc

YMG 1197 MATa bmh2D::NAT1 bmh1D::HIS3::bmh1-280::LEU2 EXO1-Myc::KANMX4::exo1 This study KanMX/NatMX/His3/Leu2 Myc

YLL909 MATa BMH1-HA::URA3::bmh1 [28] URA3 HA

YLL910 MATa BMH2-HA::URA3::bmh2 [28] URA3 HA

YMG1201 MATa EXO1-Myc::HIS3::exo1 This study HIS3 Myc

YMG1215 MATa mec1D::TRP1 sml1D::HIS3 EXO1-Myc::HIS3::exo1 This study HIS3 Myc

doi:10.1371/journal.pgen.1001367.t001
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renatured as described in Materials and Methods. The membrane

was probed with purified, recombinant GST-Bmh1 (2 mg)

(middle), stripped and reprobed with monoclonal antibody 9E10

to the Myc-tag (top). Wt = control; 1 = Bmh1-HA Exo1-Myc;

2 = Bmh2-HA Exo1-Myc. Ponceau Red (PR) is shown in the lower

panel as loading control.

Found at: doi:10.1371/journal.pgen.1001367.s001 (0.28 MB TIF)

Figure S2 Analysis of Exo1 stability. Western blot analysis of

Exo1 during HU-arrest and release of the indicated strains. The

extracts used in Figure 3 were loaded on a standard (no Phos-tag)

SDS-polyacrylamide gel, where Exo1 appears as one compact

band. This allows visualizing stable and similar levels of total Exo1

protein in wild type and bmh1-280 bmh2D strains during HU-arrest

and release. Ponceau Red is shown in the lower panel as loading

control.

Found at: doi:10.1371/journal.pgen.1001367.s002 (0.59 MB TIF)

Figure S3 ssDNA gaps arise on both leading and lagging strands

in HU-treated bmh1-280 bmh2D cells. Two representative

replication bubbles visualized by EM in bmh1-280 bmh2D cells

synchronously released from G1 phase in 0.2 M HU for 1 h. The

molecules are shown at the same magnification. A scale bar is

included in the lower panel. Black arrows: ssDNA gaps at the fork.

White arrows: internal ssDNA gap located behind the forks. In the

top panel, length measurements show that two internal gaps on

opposite replicated duplexes cover the same distance from the

replication forks: by definition, one must have resulted from

leading strand and the other from lagging strand DNA synthesis.

Similarly, in the bottom panel, the two internal ssDNA gaps lay

very close to opposite forks on the same replicated duplex, marking

by definition opposite strands (leading and lagging) of DNA

synthesis.

Found at: doi:10.1371/journal.pgen.1001367.s003 (7.60 MB TIF)

Figure S4 2D gel analysis of RIs from wild-type and mutant

strains. Wild-type (B), rad53-K227A (C), exo1D (D), rad53-K227

exo1D (E), bmh1-280 bmh2D (F), bmh1-280 bmh2D exo1D (G), bmh1-

280 bmh2D rad53-K227A (H), bmh1-280 bmh2D rad53-K227A exo1D
(I) strains were used for 2D gel analysis as described in Figure 5.

Additional genomic fragments (B and C) were visualized by

Southern blot on the same filters, as depicted in panel (A).

Found at: doi:10.1371/journal.pgen.1001367.s004 (4.18 MB PDF)

Figure S5 HU-sensitivity assay of wild-type and mutant strains.

Wild-type, rad53-K227A, exo1D, rad53-K227A exo1D, bmh1-280

bmh2D, bmh1-280 bmh2D exo1D, bmh1-280 bmh2D rad53-K227A and

bmh1-280 bmh2D rad53-K227A exo1D cultures were grown

exponentially. Serial dilutions (1:10) were spotted on YPD plates

containing different HU concentrations and grown for 3 days

before scoring.

Found at: doi:10.1371/journal.pgen.1001367.s005 (3.12 MB TIF)

Table S1 Identification of novel EXO1 interacting partners by

two-hybrid-screen in yeast. List of the most prominent proteins

found to interact with human EXO1, with indication of the overall

hit representation.

Found at: doi:10.1371/journal.pgen.1001367.s006 (0.14 MB TIF)
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