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Abstract

Mild mutations in BRCA2 (FANCD1) cause Fanconi anemia (FA) when homozygous, while severe mutations cause common
cancers including breast, ovarian, and prostate cancers when heterozygous. Here we report a zebrafish brca2 insertional
mutant that shares phenotypes with human patients and identifies a novel brca2 function in oogenesis. Experiments
showed that mutant embryos and mutant cells in culture experienced genome instability, as do cells in FA patients. In wild-
type zebrafish, meiotic cells expressed brca2; and, unexpectedly, transcripts in oocytes localized asymmetrically to the
animal pole. In juvenile brca2 mutants, oocytes failed to progress through meiosis, leading to female-to-male sex reversal.
Adult mutants became sterile males due to the meiotic arrest of spermatocytes, which then died by apoptosis, followed by
neoplastic proliferation of gonad somatic cells that was similar to neoplasia observed in ageing dead end (dnd)-knockdown
males, which lack germ cells. The construction of animals doubly mutant for brca2 and the apoptotic gene tp53 (p53)
rescued brca2-dependent sex reversal. Double mutants developed oocytes and became sterile females that produced only
aberrant embryos and showed elevated risk for invasive ovarian tumors. Oocytes in double-mutant females showed normal
localization of brca2 and pou5f1 transcripts to the animal pole and vasa transcripts to the vegetal pole, but had a polarized
rather than symmetrical nucleus with the distribution of nucleoli and chromosomes to opposite nuclear poles; this result
revealed a novel role for Brca2 in establishing or maintaining oocyte nuclear architecture. Mutating tp53 did not rescue the
infertility phenotype in brca2 mutant males, suggesting that brca2 plays an essential role in zebrafish spermatogenesis.
Overall, this work verified zebrafish as a model for the role of Brca2 in human disease and uncovered a novel function of
Brca2 in vertebrate oocyte nuclear architecture.
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Introduction

People who are heterozygous for strong mutations in the tumor

suppressor gene BRCA2(FANCD1) have increased susceptibility to

breast, ovarian, prostate, and pancreatic cancers [1-3]. Breast

cancer risk for females heterozygous for germline mutations in

BRCA2 is nearly 60% by age 50 [4] and for ovarian cancer is 11%

[5]. BRCA2 is expressed in a broad range of mammalian tissues [6,7]

and null activity alleles are embryonic lethal in mouse and humans

but are viable in rats [8-11]. Biallelic inheritance of hypomorphic

BRCA2 mutations in the germline results in Fanconi anemia (FA), a

disease characterized by catastrophic anemia, genome instability,

characteristic morphological defects, and enormously elevated risk

for leukemia (800 fold) and squamous cell carcinomas (2000 fold)

[12-14]. The BRCA2 subtype of Fanconi anemia represents

complementation group D1 [15] and results in a severe form of

the disease with nearly 100% incidence of leukemia and/or solid

tumors by 5 years of age [16,17]. The role of BRCA2 in tumor

suppression and maintenance of genomic integrity is associated with

its function in error-free, homology-directed recombination (HDR)

[18]. HDR helps repair DNA breaks associated with meiosis, and

mouse mutants in FA genes have defects in meiotic cells [19].

Zebrafish fancl mutants experience female-to-male sex reversal due

to the apoptotic loss of meiotic oocytes at the time of sex

determination [20], consistent with the abnormal activation of the

apoptotic pathway in the absence of Fanconi gene activity [21].

The involvement of BRCA2 in HDR, ovarian cancer, hypogonadal

phenotypes, and the expression of Brca2 in mouse spermatocytes [22]

converge to suggest a role for Brca2 in gonadogenesis. Homozygous

Brca2 knockout mice die as embryos [23], but transgenic mice
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carrying a BRCA2-containing human BAC that expresses the human

gene at high levels everywhere except the gonads survive as sterile

males and females [24]. In contrast, rats bearing a premature stop

codon survive, but show slow growth and sterility [10], reflecting

conserved and lineage-specific roles of brca2.

To help understand the roles of Brca2 in vertebrates, we

characterized zebrafish bearing an insertional mutation in brca2. We

show here that comparative analysis of zebrafish brca2 [25] identifies a

few conserved, and hence putatively functional, coding regions and is

expressed in proliferating somatic cells and in meiotic oocytes and

spermatocytes. Surprisingly, brca2 transcript is asymmetrically local-

ized to the animal pole of the cytoplasm in developing wild-type

oocytes. The insertional brca2 null activity allele causes genome

instability, slow growth of tissue culture cells, male sterility, testicular

neoplasias, and female-to-male sex reversal that is rescued by mutation

of the tumor suppressor gene tp53(p53). Male and female double

mutants are sterile and develop testicular neoplasias and invasive

ovarian tumors. Nuclear symmetries are strikingly altered in oocytes of

double mutant females, revealing a novel role of Brca2 in establishing

or maintaining the architecture of the vertebrate oocyte nucleus. This

work reveals that this zebrafish brca2 mutant is a model for unraveling

gene functions as well as a valuable tool for small-molecule screens to

help discover therapeutic compounds for human patients.

Results

Zebrafish brca2 Shares with Human BRCA2 Features of
the Genome, Gene, and Protein

We isolated, cloned, and sequenced a zebrafish brca2 cDNA

(NM_001110394) and a BAC clone (AC149226). Because the

zebrafish Brca2 protein shares only 21% identity with human

BRCA2, we confirmed orthology by conserved syntenies [26]. Our

meiotic mapping on the HS panel [27] showed that brca2 lies on

zebrafish chromosome 15 (Dre15, Figure 1A top), and sequence

data at Ensembl (http://www.ensembl.org/Danio_rerio/Info/

Index) showed that its genomic neighborhood contains 14 genes

with conserved synteny to the orthologous region on human

chromosome 13 (Hsa13, Figure 1A middle), as would be expected

if zebrafish brca2 and human BRCA2 are orthologs. The absence of

a second copy of brca2 in the co-orthologous region in Dre10

(Figure 1A bottom) provides evidence that, like all 13 other

zebrafish fanc genes [25,28], brca2 evolved to single copy in the

zebrafish lineage after the teleost genome duplication [27,29-31].

A comparison of our cDNA and BAC sequences revealed that

zebrafish brca2 has 26 exons (numbered 2–27 to follow human

nomenclature; Figure 1B) like its tetrapod ortholog [7,32-34].

Despite low sequence identity (21%), zebrafish Brca2 conserves an

N-terminal acidic transcriptional activation domain and a C-

terminal DNA binding domain (DBD) [35-37] (Figure 1C). Exon-

11, with 1,397 amino acid residues in zebrafish and 1,643 residues

in human, is one of the longest vertebrate exons, 28 times larger

than average [38]. Use of the stickleback brca2 sequence (Figure S1)

to help inform alignments showed that exon-11 of zebrafish brca2

contains a central array of BRC repeats conserved in approximate

number, relative position, and sequence identity to those in

tetrapods [34] (Figure S2A). Phylogenetic analysis of BRC repeats

revealed orthology between chicken and human repeats 1, 5, 7, and

8 (Figure 1D) but not a one-to-one orthology between zebrafish and

tetrapod repeats, suggesting that some individual repeats may have

evolved independently by tandem duplication and/or gene

conversion. Despite differences in BRC repeat sequences, the

correlation of hydrophobicity indexes among repeats revealed great

structural similarity (Figure 1E). The DBDs of zebrafish and human

Brca2 contain three oligonucleotide binding folds (OB1-3) and a

helical domain (HD) [37] (Figure 1C and Figure S3). The mapping

of human tumor-derived mutations to these conserved features [37]

supports the hypothesis that they are critical for functionally similar

molecular interactions across vertebrates.

brca2 Is Expressed in Meiotic Germ Cells
In zebrafish embryos, brca2 has been shown to be expressed

maternally and zygotically [25], and this is confirmed here by RT-

PCR (Figure S4A) and histological sections that show broad

expression that is elevated in rapidly proliferating cells in the

embryonic and larval central nervous system, in the proliferating

ventricle margins of adult brains, in the blood-forming kidney

marrow, and in the proliferative intervillus region of the intestine

[39] (Figure S4B-S4N). Germ line cells expressed brca2 in both male

and female gonads in transitional stages (Figure 2A, 2B), in

immature gonads (Figure 2C, 2D), and in the mature gonads of

adults (Figure 2E, 2F). Somatic cells of the zebrafish gonad either do

not express brca2, or do so at a low level like mouse Sertoli cells [40].

Unexpectedly, in stage III and IV oocytes, brca2 transcripts

became asymmetrically distributed to a small peripheral patch of

the ooplasm (Figure 2E). Comparison with the distribution of

pou5f1(oct4) [41,42] revealed that brca2 mRNA transcripts accu-

mulated asymmetrically at the animal pole of the oocyte

(Figure 2G, 2H). Expression of brca2 was obvious in spermatocytes

(sc, Figure 2F), but not in spermatids and sperm (sp, Figure 2F), as

in mouse [40]. Expression of brca2 in meiotic cells is consistent with

a role in repairing DNA breaks associated with meiotic HDR.

Furthermore, the accumulation of brca2 transcript at the animal

pole suggests a role of maternal message in provisioning embryos

with Brca2 protein that could help effect DNA repair during the

rapid cleavage divisions that occur before the initiation of zygotic

transcription at the mid-blastula transition.

A Zebrafish brca2 Null Allele Shows That brca2 Is
Required for Genome Stability

To understand brca2 function, we studied a zebrafish line with the

insertional mutation ZM_00057434, which disrupts brca2 exon-11 in

Author Summary

Women with one strong BRCA2(FANCD1) mutation have
high risks of breast and ovarian cancer. People with two
mild BRCA2(FANCD1) mutations develop Fanconi Anemia,
which reduces DNA repair leading to genome instability,
small gonads, infertility, and cancer. Humans and mice
lacking BRCA2 activity die before birth. We discovered that
zebrafish brca2 mutants show chromosome instability and
small gonads, and they develop only as sterile adult males.
Female-to-male sex reversal is due to oocyte death during
sex determination. Normal animals expressed brca2 in
developing eggs and sperm that are repairing DNA breaks
associated with genetic reshuffling. Normal developing
eggs localized brca2 RNA near the nucleus, suggesting a
role in protecting rapidly dividing early embryonic cells.
Sperm-forming cells died in adult mutant males. Inhibition
of cell death rescued sex reversal, but not fertility. Rescued
females developed invasive ovarian tumors and formed
eggs with abnormal nuclear architecture. The novel role of
Brca2 in organizing the vertebrate egg nucleus may
provide new insights into the origin of ovarian cancer.
These results validate zebrafish as a model for human
BRCA2-related diseases and provide a tool for the
identification of substances that can rescue zebrafish
brca2 mutants and thus become candidates for therapeu-
tic molecules for human disease.

Roles of brca2 (fancd1)
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BRC repeat-z (Figure 1C, Figure 3A and 3B, Figure S2). Reverse

transcriptase-PCR and sequence analysis detected no normal transcript

in mutants, but instead identified two aberrant transcripts, one lacking

the DBD and the other lacking all BRC repeats (Figure 3C–3G).

Because Brca2 protein cannot function without either of these features

[37], we conclude that ZM_00057434 is a null allele.

Genome instability is a cardinal characteristic of Fanconi

anemia [43,44]. Cell cultures from fins of homozygous brca2

zebrafish mutants and wild-type controls revealed normal

karyotypes (2n = 50) with low levels of spontaneous breakage

(Figure 3H). After treatment with 10 ng/ml of the DNA-damage

agent MMC, however, mutant cells showed many chromosome

Figure 1. Zebrafish brca2 genomics and Brca2 structure. (A) Syntenies conserved between human and zebrafish brca2 chromosomes were
examined using the Synteny database [26]. Synteny analysis shows that the portion of zebrafish linkage group 15 (Dre15) that contains brca2 (arrow,
top row) possesses many genes that are orthologous to, and in the same order as, genes in the portion of human chromosome 13 (Hsa13) that
contains BRCA2 (arrow, middle row). A portion of Dre10 is co-orthologous to the portion of Hsa13 that contains BRCA2 but has no brca2 gene (lower
row). Genes represented above the line are transcribed to the right and those below to the left. Gene names are from Ensembl. Lines connect
orthologs (dark gray). (B) Exons (black bars) in zebrafish brca2 are similar in size to orthologous exons in human BRCA2, including the large exon-10
and the enormous exon-11. Introns not drawn to scale. (C) Zebrafish Brca2 protein shares domain structure with the human protein. Amino acid
positions are listed below. (D) BRCA2 proteins were aligned and phylogenetic trees were inferred using ClustalW [90] and diagrammed with NJPlot
[91]. Phylogenetic analysis of human, chicken, and zebrafish BRC repeats shows that individual BRCs are mostly not orthologous. A strongly
supported clade grouped BRCy with zebrafish BRC 6 and 8, as expected if they arose by tandem duplication or experienced gene conversion.
Numbers at nodes are bootstrap values for 1000 runs. (E) Comparison of amino acid hydrophobicities of aligned BRC repeats used the Kyte–Doolittle
method [92]. Correlation of hydrophobicity indices among zebrafish BRC repeats shows that the physical properties of BRC repeats have been
maintained despite residue evolution.
doi:10.1371/journal.pgen.1001357.g001
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aberrations, including chromatid and chromosome breaks, radial

reunion figures, and acentric chromosome fragments. Of 100

metaphases counted in mutant cells, 66 showed chromosome

aberrations, including 32 that showed one or two anomalies, 23

with 3 or 4 abnormal chromosomes, and 11 with more than 5

aberrations (Figure 3I). In contrast, all 24 metaphases from wild-

type cells treated with MMC were normal (Figure 3H). These

results show that zebrafish cells require brca2 activity to prevent

chromosome aberrations.

To test genome stability in living animals, we crossed brca2

heterozygotes, stained resulting embryos at 28hpf with acridine

orange (AO, which fluoresces strongly when it intercalates into

DNA with double-strand breaks [45]), scored the amount of AO

staining in individual embryos, and genotyped embryos by PCR.

Untreated mutants and wild-type controls had about the same

amount of AO staining (Figure 3J, 3K). In contrast, after treatment

with the DNA damage agent diepoxybutane (DEB) at 4hpf,

mutants accumulated substantially more AO-positive cells than

wild-type siblings (Figure 3L-3N). Thus, we conclude that Brca2

helps protect zebrafish embryos from DNA damage.

To learn the role of brca2(fancd1) in zebrafish somatic cells, we

established tissue cultures from fin biopsies of brca2 mutants and

wild types and studied their growth rates. Mutant cultures showed

significantly slower growth compared to wild-type cultures

(Figure 3O, p,0.001 at day 5). Addition of MMC further delayed

culture growth both for brca2 mutants (p,0.5 vs. untreated) and

for wild types, although delay in wild types was not statistically

significant (Figure 3O). The poor growth of brca2 mutant cultures

was due to high rates of spontaneous apoptosis (15%, Figure 3P-

3S), as evidenced by propidium iodide exclusion and anti-active

Caspase-3 staining. In brca2 mutants, addition of MMC increased

the non-apoptotic cell death rate from 2.9% to 4.8% while the

proportion of apoptotic cells remained essentially the same (15.0

and 14.1%, respectively, Figure 3P, 3Q). Untreated wild-type

cultures revealed much less spontaneous apoptosis than mutant

cultures (2% vs. 15%; Figure 3R) and showed just a small effect of

MMC on the non-apoptotic cell death rate (2.0% untreated, 3.9%

treated, Figure 3S). We conclude that mutant cultures grow more

slowly than wild-type cultures due to high rates of spontaneous

apoptosis.

Figure 2. Expression of brca2 in wild-type gonads. (A,B) 26dpf transitioning stage ovaries and testes, respectively, express brca2 in the ooplasm
of oocytes (arrow) and in male germ cells. (C,D) Expression of brca2 increases in 33dpf immature ovaries and testis, respectively. Arrows indicate
examples of brca2-expressing cells. (E) In wild-type ovaries, brca2 transcript is highly expressed in the ooplasm of late stage IB oocytes (L-IB, arrow)
and gradually becomes localized to a small portion of the ooplasm in stage III and IV oocytes (arrowheads). (F) Spermatocytes contain brca2 transcript
but spermatids and sperm do not. (G) Stage III-IV oocytes accumulate brca2 transcript in a pole of the oocyte. (H) Comparison to the adjacent section
probed for the animal pole marker pou5f1(oct4) reveals that brca2 transcript localizes to the animal pole in the same location as pou5f1(oct4) message
(arrows in G and H). Abbreviations: II, III, IV, stages of oocyte development; L-IB, late stage IB oocyte (stages according to [49]); do, degenerating
oocyte; GV, germinal vesicle; sc, spermatocyte; sp, sperm.
doi:10.1371/journal.pgen.1001357.g002
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Lack of brca2 Activity Causes Female-to-Male Sex
Reversal

To test the viability of zebrafish brca2 mutants, we mated

heterozygotes, and among 414 adult offspring, 24.9% were

homozygous wild types, 44.9% were heterozygotes, and 30.2%

were homozygous mutants, a ratio indistinguishable from the

expected 1:2:1 ratio (X2 test, p = 0.37, df = 2). We conclude that

zebrafish brca2 mutants survive about as well as wild types, as in

Drosophila [46]. In addition, zebrafish brca2(fancd1) mutants

expressed genes for primitive and definitive hematopoiesis

normally (Figure S5), providing no evidence for the early

hematopoietic defects found in human FA patients.

Remarkably, however, all homozygous brca2 mutants developed

exclusively as males. A series of heterozygote in-crosses gave 199

wild-type homozygotes and heterozygotes, about half of which

were females (50.2%60.1% (sd)). In contrast, of the 61

homozygous mutants, none were female (X2 test, p = 0.00003,

df = 2). Genotypic ratios following Mendelian principles ruled out

female-specific lethality; thus, we conclude that individuals that

would otherwise have become females experienced female-to-male

sex reversal. Homozygous brca2 mutant males were sterile (the 35

males tested fertilized no eggs, with an average clutch size of 197

eggs tested per male), but wild-type sibling males were all fertile

(the 28 males tested fertilized an average of 80% of the eggs per

male with an average clutch size of 210 eggs tested per male).

These data show that brca2 plays a role in male fertility and is

necessary for female development in otherwise wild-type fish.

Juvenile Gonads of brca2 Mutants Lack Perinucleolar
Oocytes and Sperm

To investigate the developmental basis of sex reversal in brca2

mutants, we analyzed transitional and immature (but differenti-

ated) gonads. All juvenile zebrafish, regardless their definitive sex,

initially develop oocytes; in females, these oocytes continue to

develop but in males, they disappear [47,48]. In our experiments,

some wild types at 21dpf contained perinucleolar oocytes (early

stage IB) and other wild types contained a few pyknotic cells and

oocytes at earlier stages of development (early oocytes at stage IA

(leptotene to pachytene) [49]) (Figure 4A, 4B). In contrast, all eight

homozygous brca2 mutants examined at 21dpf lacked perinucleo-

lar oocytes and contained earlier stage oocytes and large numbers

of pyknotic cells (Figure 4C). By 27dpf, wild types contained either

ovaries or testes (Figure 4D, 4E). All eight brca2 mutants analyzed,

however, showed testis-like gonads that lacked perinucleolar

oocytes but retained a few early oocytes and pyknotic cells

(Figure 4F). At 32dpf, perinucleolar oocytes in wild-type animals

reached late stage IB and entered diplotene, as indicated by the

presence of lampbrush chromosomes (Figure 4G), while testes of

wild-type males showed all stages of spermatogenesis including

sperm (Figure 4H). In contrast, all eight brca2 mutants analyzed at

32dpf had only testes that possessed spermatogonia (sg) and

spermatocytes (sc) but lacked later developmental stages (sperma-

tids and sperm) (Figure 4I). In addition, 32dpf mutant gonads

showed abnormal clusters of cells with pyknotic nuclei (pc,

outlined by dashed lines in Figure 4I) and contained tubules

abnormally depleted of germ cells (asterisk, Figure 4I).

The lack of perinucleolar oocytes in brca2 mutant gonads during

the critical period for sex determination is consistent with the

finding that gonads lacking oocytes during this period assume a

male fate [20]. In addition, results showed that brca2 mutant germ

cells became pyknotic, disappeared, and left empty spermatogenic

tubules.

brca2 Spermatocytes Undergo Apoptosis
The presence of pyknotic spermatocytes, lack of spermatids and

sperm, and the existence of empty tubules in brca2 mutant testes

suggested the hypothesis that spermatocytes did not progress

through meiosis and died. To test if the activation of apoptotic

pathways is involved in spermatocyte death, we used immunoas-

says to detect active-Caspase-3, a marker of apoptosis [50]. In

contrast to wild-type gonads, brca2 mutant testes showed clusters of

cells with active-Caspase-3 that were clearly pyknotic after

hematoxylin and eosin staining (Figure 4J–4M), confirming that

brca2 spermatocytes undergo apoptosis.

Immature brca2 Gonads Have a Male-Expression Profile
At 47dpf, brca2(fancd1) mutants already showed hypogonadism

(Figure S6I), a characteristic shared by many FA patients. Germ

cell distribution as revealed by vasa expression [51] was similar in

mutants and wild-type gonads (Figure S6A, S6E, S6I). In mutants,

somatic cells expressing the Sertoli cell marker amh (anti-Müllerian

hormone) [52,53] failed to form neat borders surrounding tubules as

Figure 3. A zebrafish brca2 insertional mutant reveals a role for brca2 in zebrafish genome stability and cell growth. (A) The
ZM_00057434 insertion disrupts exon-11 of zebrafish brca2 in the last BRC repeat. (B) The insertion (arrow) disrupts the wild-type (WT) sequence,
leading to a mutant (MUT) sequence that contains five substituted amino acid residues encoded by the insert followed by a stop codon (*) that
truncates the protein before the DNA binding domain, which is essential for Brca2 activity. (C) Amplification using primers F1 and R1 (see panel A and
Table S1) produced a transcript from wild-type cDNA but none from homozygous mutant cDNA. (D) Amplification using primers F2 and R2 showed
that transcripts including exon-18 occur in both wild types and mutants. (E) Amplification using primers F3 and R3 revealed that mutants, but not
wild types, made transcripts that lack exon-11. (F) Amplification using primers F4 and R4 showed that mutants, but not wild types, made transcripts
that include part of exon-11 and the insert. (G) The transcript amplified in panel F is predicted to make a transcript that lacks exon-11 but continues
in-frame and makes a non-functional protein lacking all BRC repeats. (H) Most tissue culture cells established from the caudal fin of wild-type adults
had a normal karyotype even after MMC treatment. (I) Most tissue culture cells established from the caudal fin of homozygous brca2 mutant adults
showed chromatid breaks after MMC treatments, including acentric fragments, and radial chromosomes (arrows). (J,K) Acridine orange (AO)
treatment of wild types and brca2 mutants not treated with DEB revealed about equal levels of cells staining with AO. (L,M) After DEB treatment, the
number of AO-positive cells increased a small amount in 28hpf wild-type embryos but increased substantially in 28hpf brca2 mutant embryos. (N)
The number of AO-positive cells increased with DEB concentration in all three genotypes tested, but nearly twice as much in brca2 mutant cells. (O-S)
Growth, apoptosis and non-apoptotic cell death in cultured zebrafish fibroblasts. (O) Cell cultures established from brca2 mutant caudal fins (brca2,
triangles) grew slower than cultures established from wild types (circles), reaching only 33.5% of the control count after 5 days. The additional effect
of 15 nM mitomycin C (MMC) on growth retardation was relatively low but more distinct in brca2 mutant cultures than wild-type cultures (open
triangles and open circles, respectively). The graph displays the mean and standard deviation of multiples of the seeded cell number from three
independent experiments. (P-S) Apoptosis is mainly responsible for the growth deficit of brca2 mutant cells. (P) Untreated brca2 cultures showed
spontaneous apoptosis of 15% of cells (upper right quadrant) and 2.9% of cells experienced non-apoptotic death (upper left quadrant). (Q) Exposure
to 50 nM mitomycin C for 24 h increased the non-apoptotic cell death rate in brca2 mutant cultures only to 4.8%, whereas the rate of apoptotic cells
remained about the same (14.1%). (R) Wild-type cultures revealed just 2% spontaneous apoptosis (upper right quadrant) and 2% non-apoptotic cell
death (upper left quadrant). (S) Exposure to 50 nM mitomycin C for 24 h increased the non-apoptotic cell death rate to 3.9% but left the rate of
apoptotic cells unchanged (1.6%).
doi:10.1371/journal.pgen.1001357.g003
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in wild-type males (Figure S6F,S6J) and lacked expression of the

female marker cyp19a1a (aromatase) [54] (Figure S6C, S6G, S6K).

The early meiotic marker sycp3 (synaptonemal complex protein 3, [55])

was expressed by groups of spermatocytes in wild-type and mutant

males (Figure S6H, S6L). We conclude that mutant gonads

develop a molecular profile similar to wild-type testis accompanied

by disorganization of amh-expressing somatic cells that surround

testis tubules.

Neoplasia and Impaired Spermatogenesis in Adult
Mutant Testes

To understand the cellular basis of male infertility in brca2

mutants, we compared adult testis histology in wild types (n = 3)

and brca2 mutants (n = 7). Comparison of the anterior part of the

testes (anterior testes) of wild types and brca2 mutants revealed

persistent hypogonadism (smaller diameter gonads) in the mutants

(Figure 5A, 5B). Strikingly, brca2 mutant testes lacked sperm and

showed tubules with central empty cavities (asterisks). Wild-type

and mutant testes both contained spermatocytes at the bouquet

stage (late-zygotene/early-pachytene [56,57]) (sc-b, Figure 5C,

5D), but mutants lacked later stages (spermatids and sperm).

Mutant testes also contained abnormal clusters of pyknotic cells

(pc, Figure 5D). Occasionally, bouquet stage spermatocytes and

pyknotic cells occupied the same tubule (Figure 5E), suggesting

that spermatocytes blocked in meiosis became pyknotic. Eosino-

phils (eos, Figure 5F) invaded some cavities containing pyknotic

cells, suggesting an inflammation-like response in mutant gonads.

In the posterior part of the testes (posterior testes) of wild types,

tubules demarcated by interstitial cells were filled with sperm (sp,

Figure 5G), but in the posterior testes of brca2 mutants, tubules

were devoid of sperm (Figure 5H). This observation can account

for the infertility phenotype of adult brca2 mutant males.

Figure 4. Developing gonads of brca2 mutants lack perinucleolar oocytes and develop testes that contain pyknotic and apoptotic
cells. In transitioning gonads of wild types at 21dpf, ovary-like gonads (A) contained perinucleolar oocytes (early stage IB), while testis-like gonads (B)
contained gonia, some early oocytes, and a few pyknotic cells. (C) Gonads of 21dpf brca2 mutants contained a few early oocytes and many pyknotic
cells. (D) By 27dpf, perinucleolar oocytes had enlarged in wild-type ovaries. (E) Wild-type 27dpf testes possessed gonia. (F) 27dpf brca2 mutant
gonads contained gonia, some early oocytes (judging from cell size and the location and number of nucleoli), showed testis-like morphology, and
had many pyknotic cells. (G) At 32dpf, wild-type immature ovaries contained growing perinucleolar oocytes that had reached diplotene stage (late
stage IB). (H) Wild-type 32dpf testes showed germ cells at all stages of spermatogenesis: spermatogonia, spermatocytes, spermatids, and sperm. (I)
Homozygous brca2 mutant gonads at 32dpf possessed spermatogonia and spermatocytes, and tubules filled with pyknotic cells (dashed area) but
lacked spermatids and sperm and had instead empty tubules (*). In transitioning gonads at 21–27dpf, we use the term ‘gonia’ (g) to represent cells
that show the histological characteristics of spermatogonia (central nucleolus) and in differentiating testes at 32 dpf, we used the term
‘spermatogonia’ (sg) to represent such cells (Figure 4H9, 4I9). (J) Anti-active-Caspase-3 staining did not label cells in immature 60dpf wild-type testes.
(K) In contrast, anti-active-Caspase-3 stained cohorts of cells in immature 60dpf mutant testes. (L,M) Staining the same sections with hematoxylin and
eosin showed that cells staining for anti-active-Caspase-3 were pyknotic (arrows). Oocyte staging according to [49]. Magnification bar for A-I shown in
A and for J-M shown in J. Abbreviations: asterisks (*), empty testis tubules; eo, early oocyte; pc, pyknotic cells; po, perinucleolar oocyte; sc,
spermatocytes; sd, spermatids; sg, spermatogonia; sp, sperm.
doi:10.1371/journal.pgen.1001357.g004
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In addition to truncated spermatogenesis, brca2 mutant testes

displayed abnormal regions of accumulating cells (Figure 5I-5L). Some

of these neoplasias contained both spermatogonia (sg) and interstitial

cells (ic, Figure 5I, 5K) and others contained only spermatogonia (sg,

Figure 5J, 5L). We conclude that brca2 provides some function that

regulates proliferation of spermatogonia and interstitial cells.

Sertoli Cells Are Altered in Adult Mutant Testes
To help understand the altered morphologies of adult mutant

testes, we studied gene expression patterns. In the anterior testis,

brca2 mutants contained more clusters of vasa-expressing cells than

did wild types (Figure 6A, 6A9, 6D, 6D9), reflecting the

accumulation of vasa-expressing early germ cell stages (spermato-

gonia and spermatocytes, Figure 6A9, 6D9)) and the depletion of

non-vasa expressing late stages (spermatids and sperm; purple

circle, Figure 6A9). In brca2 mutants, amh-expressing cells were less

frequent and did not surround tubules normally (Figure 6B, 6E). In

addition, sycp3-expressing pachytene spermatocytes accumulated

abnormally in mutant testes (Figure 6C, 6F), as expected from the

histological data that showed the lack of post-meiotic cells.

The posterior testes of adult wild types did not express vasa and

amh, consistent with the presence of interstitial cells and late germ cells

(sperm), which no longer express vasa, and the absence of Sertoli cells

(Figure 6G–6I). In contrast, posterior testes of adult mutants

contained empty cavities and abnormally proliferating cells

(Figure 6J–6O) similar to those observed in histological analyses

(Figure 5I–5L). Neoplasias contained either mixtures of vasa-

expressing and non-vasa-expressing cells (Figure 6J–6L) or possessed

only vasa-expressing, early spermatogenic cells (Figure 6M–6O).

These results revealed the abnormal presence of early spermatogenic

cells in the posterior part of the testes in mutants. Moreover, the

presence of scattered amh-expressing cells revealed the abnormal

presence of Sertoli cells in mutant posterior testes (Figure 6K, 6N).

Mutation of tp53(p53) Rescues brca2 Sex Reversal
All zebrafish gonads initially form oocytes but these die in wild-type

juvenile males [47,48], and increased germ cell apoptosis leads to

oocyte loss and female-to-male sex reversal in fancl mutant zebrafish

[20]. Tp53 (alias p53) is an important activator of apoptosis and

zebrafish with hypomorphic mutations in tp53 are viable and fertile

despite reduced apoptosis [58,59]. To learn the role of apoptosis in sex

reversal of brca2 mutants, we made double mutants for brca2 and the

hypomorphic allele tp53M214K [58,59]. Results showed that no

brca22/2 mutants with at least one wild-type tp53 allele developed

into females (Figure 7A). In contrast, brca22/2 mutants that lacked a

normal tp53 allele became males and females with about equal

frequency (Figure 7A). This result shows that a tp53 mutation can

rescue the female-to-male sex reversal caused by the lack of brca2

activity. Because double mutant females develop ovaries containing

oocytes (Figure 7E), we conclude that Tp53-mediated apoptotic cell

death is important for sex reversal in brca2 mutants and interpret these

results to mean that the survival of oocytes in brca2 mutant gonads can

allow individuals to become females. The rescue of sex reversal by

Tp53 mutation reveals that brca2 function is required for oocyte

survival, which secondarily leads to female gonad fate and ovarian

development.

Brca2 Function Is Not Required to Localize Animal or
Vegetal Transcripts in Developing Oocytes

In wild-type late stage II to early stage III oocytes, brca2 and

pou5f1 transcripts localize to the animal pole and vasa transcripts

gradually spread out cortically from the vegetal pole (Figure 2G,

2H, Figure S7A–S7C, and [41,42,60-62]). To test the hypothesis

that brca2 function is important for the localization of these

transcripts, we examined mRNA distribution in oocytes of

brca2;tp53 double mutants. In situ hybridization on adjacent serial

sections showed that double mutant females produced oocytes

with brca2 and pou5f1 transcripts localized to one pole and vasa

transcripts positioned at the opposite pole of the same individual

oocytes (Figure S7D–S7F). We conclude that brca2 activity is not

necessary to localize the messages tested to their proper location in

developing zebrafish oocytes.

Mutation of tp53 Does Not Rescue Infertility in brca2
Mutants

To learn if tp53 mutation can rescue the infertility phenotype

observed in brca2 single mutants, we mated brca2 homozygous

mutants that were either wild type, heterozygous, or homozygous

for the tp53 mutation to wild-type animals and scored fertility.

Results showed that all brca2 mutant males were sterile regardless

of their tp53 genotype (for brca22/2;tp53+/+, brca22/2;tp53+/2, and

brca22/2;tp532/2: we found 0/200 offspring (8 males tested), 0/

349 offspring (13 males tested), and 0/148 offspring (6 males

tested), respectively). Female brca2;tp53 double mutants were also

sterile when mated to wild-type males (of 549 eggs produced by 9

females, 79 initiated cleavage (the average double mutant female

had 20%618% fertility compared to doubly heterozygous siblings

with 85%627% fertility). Non-developing eggs laid by double

mutant females were milky and were of highly variable size. Some

double mutant females mated to wild-type males produced doubly

heterozygous eggs that completed cleavage and gastrulation, but

failed to develop to later stages (Figure 7B). Because doubly

heterozygous individuals from doubly heterozygous mothers

develop normally but doubly heterozygous embryos from

homozygous brca2 mutants are lethal, and because homozygous

tp53 mutant females have normal fertility [58], we conclude that

maternal brca2 function is important for proper embryo

development.

Oocytes in brca2;tp53 Double Mutants Have Altered
Nuclear Architecture

Histological sections of 6mpf (months post-fertilization) adult

ovaries from wild types (brca2+/+;tp53+/+; n = 3), tp53 homozygous

Figure 5. Adult brca2 mutant testes showed meiotic arrest and lack of spermatids and sperm and developed neoplasias. (A) Adult
testes of wild types were organized into tubules that contained sperm (sp). (B) Adult testes of brca2 mutants were smaller in diameter and lacked
sperm, but instead contained clusters of pyknotic cells and empty tubules (asterisks). (C) The anterior part of the testes (anterior testes) in wild-type
adults possessed all stages of spermatogenesis: spermatogonia, spermatocytes at the bouquet stage (late zygotene-early pachytene) of meiosis, as
well as later stages -- spermatids and sperm. (D,E,F) brca2 mutant anterior testes also had spermatogonia and bouquet stage spermatocytes, but
strikingly, contained tubules of pyknotic cells, lacked spermatids and sperm, and had eosinophils that were not observed in wild-type testes. (G) The
posterior part of the testes (posterior testes) of wild types contained tubules filled with germ cells at only the latest stage of spermatogenesis: sperm.
(H) The posterior testis of brca2 mutants lacked sperm and had empty tubules (*) formed by interstitial cells. (I,J) The posterior testes of brca2 mutants
developed neoplasias formed by spermatogonia and interstitial cells, demarcated by dotted lines and shown in enlargements (K,L). Abbreviations:
asterisks (*), empty testis tubules; eos: eosinophils; ic: interstitial cells; pc: pyknotic cells; sc-b: spermatocytes at bouquet stage; sd: spermatids; sg:
spermatogonia; sp: sperm.
doi:10.1371/journal.pgen.1001357.g005
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Figure 6. Altered Sertoli cell distribution, proliferation of spermatogonia, and accumulation of recombination-phase
spermatocytes in brca2 mutant testes. In situ hybridization on adjacent sections of testes with markers for early germ cells (vasa), Sertoli
cells (amh) and germ cells during recombination stages (sycp3) in wild types and brca2 mutants. (A–C) The anterior testis of wild types expressed vasa
in early germ cells, amh in Sertoli cells surrounding tubules, and sycp3 in meiotic spermatocytes. (A9) Enlargement illustrates a gradient of vasa
expression in spermatocytes: from moderate vasa expression (red circle) to low vasa expression (green circle), and finally spermatids and sperm
(purple circle) that did not express vasa. (D) The anterior testis of brca2 mutants showed more tubules with vasa-expressing spermatogonia than wild
types (A). (D9) Enlargement shows cells expressing low levels of vasa (red circle) and spermatocytes not expressing vasa (green circle) but no small
spermatids or sperm. (E) brca2 mutants showed that amh-expressing cells were poorly organized and did not surround tubules neatly as in wild
types, revealing an altered Sertoli cell distribution. (F) brca2 mutants expressed the recombination marker sycp3 in locally larger cell clusters than wild
types, revealing an increased local concentration of cells at or entering pachytene stage. (G, H) In the posterior part of the testis, wild types did not
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mutants (brca2+/+;tp532/2; n = 3) and double mutants (brca22/2;tp532/2;

n = 4) revealed oocytes at a variety of developmental stages in all three

genotypes (Figure 7C–7E). In tp53 mutants and in wild types, late stage IB

oocytes (L-IB) contained nucleoli distributed uniformly along the nuclear

periphery (Figure 7C, 7D, 7D9), consistent with the normal fertility of

homozygous tp53M214K mutants [58]. In contrast, brca2;tp53 double

mutants contained degenerating late stage oocytes (d, Figure 7E) with a

granulosa cell layer (gc) that was poorly organized and sometimes

separated from the vitelline envelope (ve, Figure 7E9). Wild-type nuclei of

late stage IB to early stage II, stage II, and stage III oocytes were radially

symmetrical, containing peripheral nucleoli and central chromosomes

(Figure 7F–7H). In contrast, brca22/2;tp532/2 double mutant oocytes

were polarized, showing abnormally enlarged and variably shaped

nucleoli that accumulated asymmetrically towards one pole of the nucleus

while chromosomes concentrated towards the opposite pole (Figure 7I–

7K). We conclude that brca2 activity is essential to establish or to maintain

a normal architecture of the oocyte nucleus.

In addition to their abnormal location, oocyte chromosomes in

double mutants had altered morphology. In wild-type oocytes,

chromosomes were distributed independently in the center of the

nucleus (arrows in Figure 7L), but chromosomes in oocytes of

double mutants were interconnected and formed abnormal loops

(arrows in Figure 7M). These chromosome phenotypes were not

observed in oocytes of tp53 single mutant females. Aberrant

chromosome structure would be expected if recombination-

induced chromosome breaks are left unrepaired or are repaired

by an error-prone pathway. Our experiments showed that MMC-

induced DNA breaks caused chromatid and chromosome damage

that led to radial reunion formation in somatic cells (Figure 3I).

Likewise, inappropriate repair of recombination-induced DNA

breaks could prevent dispersal of oocyte chromosomes. These

results suggest a role of brca2 in repairing DNA breaks originating

either artificially by MMC or naturally in meiotic recombination.

Ovarian Tumors in brca2;tp53 Double Mutants
Because humans heterozygous for BRCA2 mutations have

elevated risk of tumors, we investigated older brca2:tp53 mutants

for abnormal growths. By 6mpf, tumors formed that invaded the

ovarian cavity and intercalated between oocytes in two of four

brca22/2;tp532/2 double mutants examined (asterisks, Figure 7N–

7Q). Tumors were not detected in wild types (n = 3) or in tp53

homozygous mutants (n = 3). One tumor appeared to originate at

the ovarian cavity membrane (arrow, Figure 7N). Tumor origin in

the other female was unclear because it was metastatic and

contacted both the ovarian cavity membrane and the swim bladder

(Figure 7P). Both tumors involved spindle-shaped cells that invaded

the ovary and surrounded the oocytes (Figure 7N9, 7O, 7Q). The

high incidence of ovarian cancer we observed in brca22/2;tp532/2

double mutants contrasts with the prior finding that animals

homozygous for either of two mutant tp53 alleles (tp53M214K, the

mutation used here, or tp53I166T) are viable and fertile, but at 8.5 or

8.8mpf (ten weeks later than our double mutants), 1 of 144 and 1 of

417 fish, respectively, began to show tumors and by 16.5 or 22mpf,

28% or 100%, respectively, of the tp53 mutants had developed

tumors [58,59]. Of several hundred tumors previously described in

tp53 mutants, none were reported to involve the ovarian cavity

membrane [58,59]. The early appearance and unique ovarian

location of tumors in brca22/2;tp532/2 double mutants suggest a

specific association with brca2 activity, potentiated by impaired tp53

function and Tp53 deficiency is cooperative with Brca2 in

tumorigenesis in humans [8]. Future long-term investigations are

required that focus on tumor development in a large cohort of

brca22/2;tp532/2 double mutants (1/16th of the progeny of double

heterozygotes) compared to their single mutant tp532/2 siblings to

more clearly define the role of brca2 in the development of ovarian

tumors.

Neoplasia and Megalospermatogonia in brca2;tp53
Double Mutants

Testis development was abnormal in double mutants. Analyses

of wild-type (n = 4) and tp53 single mutant (n = 3) testes in 6mpf

adults revealed germ cells at all stages of spermatogenesis in all the

animals analyzed (Figure 8A, 8B). In contrast, all testes analyzed of

brca22/2 single mutants (brca22/2;tp53+/+; n = 4) and double

mutants (brca22/2;tp532/2, n = 6) abnormally lacked spermatids

and sperm (Figure 8C, 8D). Furthermore, in all brca22/2;tp53+/+

single mutants and all brca22/2;tp532/2 double mutants, posterior

tubules contained empty cavities lacking germ cells (asterisks in

Figure 8C, 8D) consistent with our finding that adult double

mutants failed to recover fertility. Unexpectedly, some testes in

brca22/2;tp532/2 double mutants (n = 2), but not in the other

genotypes, contained germ cells enlarged up to ten times normal

diameter (Figure 8E). Some of these enormous cells we call

megalospermatogonia (ms) because, like normal spermatogonia

[63], they contained an enlarged central nucleolus (nc). Testes of

some brca22/2;tp532/2 double mutants (n = 3) contained other

large cells that showed the peripheral distribution of numerous

nucleoli, which constitutes an oocyte-like morphology [63], so we

interpret these as large early oocytes (eo), and additionally we

observed the presence of enlarged pyknotic cells (pc) (ms, pc, and

eo in Figure 8E, 8F, 8F9, compare to normal spermatogonia (sg)

outlined by dashed lines in Figure 8E, 8F). The lack of sex-specific

markers for early gonial cells precludes a more precise definition of

cell type. Somatic cell neoplasias appeared in the posterior testis of

all double mutants (but showing variability on the neoplastic tissue

size) (Figure 8G, 8G9) suggesting the hypothesis that late stage

spermatogenic cells negatively regulate the proliferation of somatic

cells in testes. To test this hypothesis and to investigate whether the

absence of brca2 activity or merely the absence of germ cells allows

over-proliferation of the somatic component of the testis, we

examined animals depleted of germ cells by dead end-morpholino

(dnd2/2; n = 10; see also [64]). Dnd is an RNA binding protein

that is essential for germ cell survival in mice and zebrafish

[64,65]. Our results revealed that testes in 18mpf dnd-morpholino

treated animals developed neoplastic somatic proliferation

(Figure 8H, 8H9) similar to those observed in brca2 single and

brca2;tp53 double mutants (Figure 5I, 5K, Figure 8G). In five of ten

dnd-injected animals, neoplasias invaded the intestine and body

wall musculature (Figure 8H). Although we did not detect invasive

somatic proliferation in brca2 mutants, these dnd-knockdown

animals were 12 months older than our brca2 mutants, suggesting

that invasive proliferation might arise in brca2 mutants as they age.

express vasa or amh. (I) Hematoxylin and eosin (H&E) staining clearly showed sperm in many tubules in the posterior testes of wild types. (J–O) The
posterior testes of brca2 mutants contained many tubules that were devoid of sperm (*) and contained vasa-expressing germ cells and Sertoli cells,
which are not normally found in the wild-type posterior testes. (M–O) In one of two mutants analyzed, the posterior testes contained a larger
proliferation of vasa-positive spermatogonia and also showed disorganized amh-expressing Sertoli cells, lacked sperm, and had empty tubules.
Abbreviations: asterisks (*), empty testis tubules; gc, germ cells; i, intestine; ic, interstitial cells; sg, spermatogonia; sc, spermatocytes; Se, Sertoli cells;
sp, sperm.
doi:10.1371/journal.pgen.1001357.g006
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Overall, these results would be expected if somatic cell neoplasias

in brca2 and brca2;tp53 mutants were not due to a direct effect of

the lack of brca2 activity, but arose as a secondary effect of germ

cell loss in brca2 mutants. A possible mechanism to explain these

results is that late stage germ cells in the wild-type spermatogenic

pathway exert a negative control over the proliferation of somatic

cells in zebrafish testes. Loss of Dead end function in mouse

results in germ cell tumors in a strain-specific manner [65].

Because dnd-knockdown zebrafish have no germ cells, the origin

of gonad tumors after dnd-knockdown differs between mouse and

zebrafish. Long-term investigations are required to examine

whether the somatic testicular tumors we observed in zebrafish

lacking dnd function are subject to effects of the genetic

background.

Discussion

The biological mechanisms that underlie Fanconi anemia and

hereditary breast, ovarian, and prostate cancer intersect at

Brca2(Fancd1). Null alleles of Brca2 are embryonic lethal in mouse

and human [11,23,66], which precludes study of the gene’s full

function in homozygous null-allele adults in these species. Rats

lacking Brca2 activity are viable [10], but mammals are not

favorable for a whole-animal small molecule screen for therapeutic

substances related to Brca2 disease. Here we exploit a viable

zebrafish brca2 null-allele. We show that zebrafish brca2 is the

ortholog of human BRCA2, it shares important coding features

with the human gene, and it is expressed in rapidly dividing and

meiotic cells. Importantly, we show that brca2 maintains genome

stability in response to DNA damaging agents and it is essential for

the survival of post-recombinant spermatocytes. Loss of brca2

function causes female-to-male sex reversal that is rescued by

mutating tp53, indicating that brca2 subverts female development

by apoptosis and is required for normal oogenesis. Unexpectedly,

we found that brca2 transcript localizes asymmetrically to the

animal pole of wild-type oocytes and that brca2 activity is essential

for establishing or maintaining the architecture of the oocyte

nucleus. Moreover, results showed that brca2 activity is necessary

in zebrafish as it is in humans to prevent ovarian tumors in the

absence of tp53 function. Therefore, this work validates the

zebrafish brca2 mutant as a useful tool for small-molecule screens

to help discover potential therapeutic compounds for human

patients.

A Zebrafish brca2-Null Allele Disrupts Genome Stability
Genomic and genetic evidence shows that zebrafish has a single-

copy of brca2 that is orthologous to its mammalian counterpart.

We found that the zebrafish genome has duplicate copies of the

human chromosome segment that contains BRCA2, and that these

duplicates arose from the teleost genome duplication (TGD). In

one of these duplicated segments, the BRCA2 ortholog disap-

peared, leaving zebrafish with a single copy of brca2. About 75% of

genes from the TGD event reverted to singletons [27], but all of

the 13 zebrafish orthologs of FA pathway genes are present in

single copy [25], which would happen rarely (2.4%) solely by

chance. We conclude that evolutionary forces probably acted to

reduce brca2 and other FA pathway genes to single copy after the

TGD. This finding is predicted by the duplication-degeneration-

complementation hypothesis [67], which suggests that genes with

simple tissue- and time-specific regulatory elements would be more

likely to revert to singletons than those with complex regulation. In

addition, many Fanc proteins join to form molecular machines in

a 1:1 stoichiometry, so that if one gene in the network evolves to

single copy, the others might follow by natural selection or neutral

evolutionary forces.

Expression analyses showed that maternal brca2 message

accumulated in zebrafish embryos. This message would be

available to provide embryos with Brca2 protein that could

function to help resolve stalled replication forks [68] during the

rapid cleavage divisions that precede the mid-blastula transition,

the stage at which zygotic transcription initiates [69]. Our finding

that the heterozygous offspring of homozygous brca2 mutant

mothers fail to develop much past gastrulation supports this

conclusion. Expression of brca2 in meiotic cells of zebrafish, as in

mammals [24], suggests a role in the repair of DNA breaks

incurred during meiotic homologous recombination [46].

Zebrafish brca2 ZM_00075660 mutants generate only aberrant

transcripts that lack domains essential for Brca2 activity and

provide a vertebrate null allele model to unravel the effects of brca2

during embryonic and post-embryonic development. Mutant

tissue culture cells and developing embryos show more chromo-

some damage and excess staining of broken DNA, respectively,

than wild-type cells or embryos after exposure to DNA damaging

agents. Similarly, loss of BRCA2 function in humans results in

hypersensitivity to DNA crosslinking agents [44,70], thus leading

to chromosome breaks [43,71], showing that zebrafish and human

Brca2 orthologs share functions in maintaining genome stability.

Figure 7. Mutation of tp53 rescued the brca2 sex reversal phenotype, yielding infertile double-mutant females that produced
ovaries containing oocytes with altered nuclear architecture that developed into defective embryos and that produced invasive
ovarian tumors. (A) Expected (ex) and observed (ob) frequencies of various tp53 genotypes among the homozygous brca2 mutant offspring of
parents doubly heterozygous for tp53M214K and brca2 ZM_00075660 alleles. Females developed only in the absence of a wild-type tp53 allele, showing
that the tp53 mutation rescued the sex reversal phenotype. (B) Doubly heterozygous embryos from the mating of homozygous tp53 females to males
heterozygous for the brca2 mutation develop like normal embryos (B1 and B4 at 6 and 19 hpf, respectively) but the same genotype developing from
the mating of rescued brca2;tp53 double mutant females and homozygous wild-type males stopped developing shortly after gastrulation (B2, B3, B5,
B6). (C–E) Sections of ovaries from 6mpf wild-type, single mutant tp53, and double mutant brca2;tp53 adults, respectively, showed that oocytes in
tp53 mutants developed normally (D9) but that oocytes degenerated and the vitelline envelope was abnormally separated from the granulosa cells in
double mutants (E9). Strikingly, oocytes in double mutants showed nuclear anomalies (arrowheads in E). (F–H) Sections of wild-type late stage IB
(transitioning to stage II), stage II, and stage III oocytes, respectively, contained radially symmetrical nuclei with small round nucleoli located mostly
near the nuclear envelope and thin chromosomes separated from each other in the middle of the nucleus. (I–K) Sections of late stage IB, stage II, and
stage III oocytes of brca2;tp53 double mutants showed abnormal nuclear asymmetry. Oocytes contained nuclei with large, variably-shaped nucleoli
clustered at one side of the periphery of the nucleus instead of the normal uniform distribution around the periphery of the nucleus and
chromosomes clustered at the other side of the nucleus opposite to the nucleoli. (L) Chromosomes in wild types were thin and separated
(arrowheads). (M) Chromosomes in oocytes of double mutants were thicker and clumped and formed abnormal crosses and loops (arrowheads). (N,P)
Invasive ovarian tumors (asterisks) were detected in sections of two of four brca2;tp53 double mutants by 6mpf but were not present in other
genotypes (wild-types and single tp53 mutants). (N) One tumor appeared to originate at the ovarian cavity membrane (arrow) and the other tumor
(P) was metastatic and contacted the ovarian cavity membrane and the swim bladder. (N9,Q) Both tumors were formed by spindle-shaped cells (O)
that invaded the ovary and surrounded the oocytes. Abbreviations: IB,II,III: oocyte stages; ca, cortical alveoli; ch, chromosomes; d, degenerating
oocyte; gc, granulosa cell; nc, nucleoli; oc, ovarian cavity; sb, swim bladder; ve, vitelline envelope.
doi:10.1371/journal.pgen.1001357.g007
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Flow cytometry showed that the poor growth of zebrafish brca2

mutant cell cultures results from high rates of spontaneous

apoptotic cell death. This finding parallels our finding of increased

apoptosis in juvenile mutant gonads that results in oocyte loss and

sex reversal and that the inhibition of cell death in brca2;tp53

double mutants rescues sex reversal. Spontaneous apoptosis

leading to bone marrow failure is also a problem in hematopoietic

stem cells in human FA patients, [21]. Zebrafish therefore appears

to be a valid model to study the basic influence of Brca2 deficiency

on apoptosis. In contrast, the effect of damage caused by MMC in

zebrafish brca2 mutant cell cultures on non-apoptotic cell death

rates is surprisingly low compared to humans; the cause of which

remains unexplained.

Lack of Brca2 Activity Results in Female-to-Male Sex
Reversal

Results showed that brca2 mutant zebrafish developed exclu-

sively as males due to female-to-male sex reversal. Sex ratios also

appear to be skewed in the offspring of human carriers of BRCA2

mutations, suggesting a possible role in sex determination or

differential survival [72]. During the sex determination period,

zebrafish mutant gonads contained apoptotic cells and lacked

diplotene oocytes, the presence of which is essential to tip gonad

fate towards the female pathway in fancl zebrafish mutants [20]. In

contrast to fancl mutants, which become fertile males, fancd1(brca2)

mutants become sterile males. The more severe phenotype of brca2

mutants compared to fancl mutants parallels the fact that human

homozygotes for FANCD1(BRCA2) null alleles are lethal as

embryos [11]. In the FA-BRCA network, FANCL should act

upstream of BRCA2 (see for review [73]. Because the phenotype

of brca2 mutant zebrafish is more severe than that of fancl mutant

zebrafish, BRCA2 likely plays roles in addition to its function

downstream of fancl. Because FANCD1(BRCA2) is the only FA

complementation group that fails to form RAD51 foci after

ionizing radiation and crosslink damage, FANCD1(BRCA2), but

not FANCL, is required for RAD51-mediated DNA repair

[74,75].

The inhibition of apoptosis in brca2 mutants by the mutation of

tp53 rescued female-to-male sex reversal and led to the

development of females, consistent with the idea that brca2 mutant

oocytes die by apoptosis when unable to repair DNA breaks

associated with meiotic recombination. This conclusion parallels

that from zebrafish fancl mutants, in which oocytes die in juveniles

followed by female-to-male sex reversal [20] and supports the

notion that fanc-related sex reversal acts via Tp53-mediated

apoptosis.

The brca2(fancd1) and fancl results combine to support the

following model for zebrafish sex determination. (1) The FA

network facilitates DNA repair associated with meiosis and hence

the survival of oocytes during the critical period for zebrafish sex

determination. (2) Activation of Tp53-dependent germ cell

apoptosis, at least in fanc mutants, alters the total number of germ

cells and thus reduces the number of surviving oocytes below the

threshold necessary to maintain female fate. (3) Post-recombinant

oocytes release a signal that down-regulates amh and/or maintains

cyp19a1a (aromatase) expression in somatic cells of the bipotential

gonad [20,48,52,64,76-80]; the fewer the number of post-

recombinant oocytes, the less aromatase-maintenance signal. (4)

Aromatase converts testosterone to estrogen, thereby reinforcing

ovary development and the female fate. (5) In normally developing

males at the juvenile hermaphrodite stage [47], unknown genetic

factors that may be influenced by the environment stimulate the

death of oocytes and hence loss of the aromatase-maintenance

signal. According to this model, in the absence of either

brca2(fancd1) or fancl, oocytes do not effectively repair the DNA

breaks of meiosis, DNA-damaged oocytes die by apoptosis before

they liberate the aromatase-maintenance signal, the gonad

becomes a testis, and individuals that otherwise would have

become females develop into males.

The study of zebrafish brca2 mutants verifies the importance of

Brca2 for gonad development and provides a new vertebrate model

for the adult roles of Brca2 that is obscured by null mutant

lethality in human and mouse. Neither Brca2 knockout rats nor

Brca2 knockout mice rescued by a human BRCA2 BAC showed sex

reversal [10,24], reflecting lineage-specific sex determining

mechanisms. Zebrafish brca2 mutants developed gonads without

diplotene oocytes, but rescued mice did develop oocytes, many of

which disappeared post-natally, but some of which progressed

through meiotic prophase I, became fertilized, and produced

embryos [24]; in contrast, Brca2 mutant rats were sterile. A

possible explanation for the difference between mouse and rat is

that the transgenic mice might not be total null mutants because

expression of human BRCA2 was detected in their gonads [24].

Brca2 Activity Is Essential for Normal Spermatogenesis
Zebrafish brca2 mutants contained spermatocytes arrested in

meiosis, as did transgenic mice rescued by human BRCA2 [24] and

rats mutant for Brca22/2 [10]. We found that zebrafish brca2

mutant testes (1) showed hypogonadism like human FA patients;

(2) developed spermatogonia that entered meiosis as shown by

sycp3 expression and histological data; (3) contained bouquet stage

spermatocytes that arrested in late zygotene-early pachytene; (4)

lacked post-meiotic spermatogenic stages, including spermatids

and sperm; (5) failed to properly organize Sertoli cells, as shown by

amh expression; (6) contained abnormal pyknotic cells that were

positive for the apoptotic marker active-Caspase-3; and (7) formed

tubules that lacked germ cells but contained eosinophils, blood

cells involved in inflammation. Together, these results suggest a

mechanistic model in which brca2 mutant spermatogenic cells

develop rather normally until meiotic recombination (pachytene),

fail to repair double strand DNA breaks associated with

homologous recombination, then die, leaving empty testis tubules

in hypogonadal sterile males.

Figure 8. Mutation of tp53 failed to rescue infertility in brca2 mutants. (A,B) Wild-type testis and tp53 single mutant testis showed germ cells
at all stages of spermatogenesis: spermatogonia, spermatocytes, spermatids and sperm. (C) brca2 single mutant testis contained spermatogonia and
spermatocytes, lacked spermatids and sperm and had large regions devoid of germ cells (asterisks). (D) Testes in brca2;tp53 double mutants were
similar to the brca2 single mutant, but had additional developmental problems. (E) Double mutant testis formed large cells with a single central
nucleolus like spermatogonia (called here megalospermatogonia). (F) Some of these abnormally enlarged cells were pyknotic and some showed an
oocyte-like morphology similar to early oocytes (inset). (G) Double mutants showed neoplastic regions of abnormal somatic cell proliferation in the
posterior regions of the testes that were depleted of sperm. (G9) Enlargement of the somatic proliferation of double mutant testes. (H) Genetically
wild-type testes depleted of germ cells due to dnd morpholino knockdown formed neoplasms of somatic cells of the testis similar to the ones
observed in brca2;tp53 double mutants, but that invaded the intestine and muscle at older stages. (H9) Enlargement of the somatic proliferation of
dnd testes. Abbreviations: asterisks (*), empty testis tubules; eo: early oocyte; i, intestine; m, muscle; ms, megalospermatogonia; nc, nucleolus; pc,
pyknotic cell; sc, spermatocytes; sd, spermatids; sg, spermatogonia; sp, sperm; t, testis.
doi:10.1371/journal.pgen.1001357.g008
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Because spermatogenic cells die even in brca2;tp53 double

mutants, we conclude that, after meiotic failure, brca2 spermato-

genic cells die by a Tp53-independent pathway in double mutants,

or alternatively, that the hypomorphic nature of the tp53M214K

allele may allow cells to disappear by a Tp53-dependent pathway.

Megalospermatogonia with enormous nuclei appeared in double

mutants, possibly due to continued DNA replication in spermato-

gonia damaged by inadequate DNA repair in the absence of brca2

activity. In brca2 single mutant testes, cells may experience extra

rounds of replication but tp53-mediated cell death may delete

them. Alternatively, in the absence of brca2 function, tp53 activity

might be required to prevent abnormal functions that lead to cell

enlargement and megalospermatogonia. The presence of oocytes

in testes of double mutant animals might be explained by the

alteration of somatic cell-to-germ cell signaling in testes that are

developing with abnormal Sertoli cell distribution and lack of

spermatids and sperm. Normal Tp53 function might be necessary

to induce oocyte apoptosis in brca2 single mutant testes.

brca2 Mutant Testes, Neoplasia, and Germ Cell-to-Soma
Signaling

Six-month old brca2 single mutants accumulated neoplastic

growths involving spermatogonia with or without disorganized

clumps of interstitial cells. The posterior part of the testis, which

completely lacked germ cells in brca2 single and brca2;tp53 double

mutants, showed abnormal proliferation of somatic cells in the

testes. The investigation of genetically wild-type animals lacking

germ cells due to dnd knockdown uncovered somatic neoplasias of

the testes similar to those found in brca2 mutant testes. Knockdown

of dnd was not previously reported to cause neoplasias, but the

oldest dnd-knockdown animals previously reported were 6 months

old [64] and our dnd-knockdowns were 18 months old, suggesting

that these neoplasias arise with age, although we can’t rule out

strain-specific effects. We conclude that post-meiotic germ cells,

specifically the spermatids or sperm that are lacking from brca2

mutants, control growth of surrounding somatic cells by an as yet

unknown mechanism that is secondary to brca2-impaired

spermatogenesis.

The Animal Pole Distribution of brca2 Transcript Does
Not Appear to Generate Oocyte Polarity

Our gene expression analyses showed unexpectedly that brca2

transcript localizes asymmetrically at the animal pole of wild-type

oocytes. The asymmetrical distribution of certain mRNAs in the

oocyte cytoplasm helps to promote animal or vegetal pole identity

[41,42,60-62]. In brca2;tp53 double mutants, however, the

localization of messages for pou5f1, vasa, and even brca2 itself were

normal, suggesting that brca2 activity is not essential to polarize the

oocyte cytoplasm. Furthermore, brca2 transcript begins to be

localized in stage III oocytes but ccnb1 transcripts begin to be

localized earlier [41,42], a timing that is incompatible with the

hypothesis that brca2 initiates ooplasm asymmetry. The germinal

vesicle (the oocyte nucleus) lies in the center of stage I-III oocytes,

but moves to the animal pole by stage IV [41,49]; thus, the oocyte

nucleus -- and hence the resulting zygote and cleavage nuclei --

occupy cytoplasm enriched in brca2 transcript. The translation of

this transcript would be available to support the repair of DNA

damage incurred in the rapid divisions of cleavage before zygotic

transcription initiates at the mid-blastula transition. The observa-

tion that brca2;tp53 double mutant females formed doubly

heterozygous embryos that cleaved normally, completed gastrula-

tion, but then died by 24 hpf supports the notion that maternally

transmitted brca2 transcript is important for normal early

development and that zygotic brca2 transcript is too little or too

late to rescue the phenotype.

Brca2 Activity Is Essential for Normal Architecture of the
Oocyte Nucleus

brca2;tp53 double mutant females produced oocytes with

normally organized ooplasm but aberrantly organized nuclei.

Developing oocytes that lacked brca2 activity partitioned nucleoli

aberrantly to one side of the nucleus rather than their usual radial

location and distributed chromosomes opposite to the nucleoli

rather than their normal central position. Although these ovaries

were also homozygous mutant for tp53 (which was necessary to

obtain homozygous brca2 mutant females), the oocyte nucleus

architecture defect is due to brca2 deficiency because homozygous

tp53 mutant females form normal oocytes [58,59], as we

confirmed. Oocytes in brca2;tp53 females reached the bouquet

stage of meiosis in which telomeres cluster at one side of the

oocyte. The asymmetric localization of chromosomes in the

oocytes of brca2;tp53 females may result from a deficiency in DNA

repair that inhibits exit from the bouquet stage. This could result,

for example, if Brca2 is necessary for the relaxation of telomere

clustering that generates the bouquet stage, a proposition

supported by the high rate of recombination in subtelomeric

sequences [81]: a high rate of recombination near the telomeres

could create interlinked chromosomes like the radial reunion

figures we observed in somatic cell chromosomes and these links

might not permit normal chromosome dispersal in the nucleo-

plasm. It is unclear, however, how the abnormal persistence of

chromosome clustering would generate the asymmetric distribu-

tion and abnormal morphologies of nucleoli that we found in

oocytes of mutant females. Drosophila brca2 mutants develop

oocytes with an abnormally asymmetric karyosome and dorso-

ventral defects [46], phenotypes that may be functionally related to

those we observe in zebrafish. Transgenic female mice rescued

with a human BRCA2-containing BAC have abnormal polar

bodies in meiosis [24], a phenotype that may be a consequence of

nuclear symmetry problems we demonstrate here in zebrafish. We

conclude that brca2 is generally important for the organization of

oocyte nuclei both in protostomes and in vertebrates.

brca2;tp53 Double Mutant Females and Invasive Ovarian
Tumors

Tp53 deficiency coupled with diminished Brca2 activity

promotes mammalian breast tumors [8]. Likewise, zebrafish

brca2;tp53 double mutants develop invasive ovarian tumors, and

these appear earlier and more frequently than tumors in animals

with lower Tp53 activity alone. We conclude that zebrafish shares

with human and rat [10] a requirement for Brca2 activity to help

suppress the formation of ovarian cancers. The genome instability

we observed in brca2 mutant tissue culture cells may contribute to

tumor formation because zebrafish gin mutations identified on the

basis of genomic instability have elevated cancer risk [82]. Future

studies are necessary to better understand the etiology of brca2-

dependent ovarian tumors in zebrafish.

FANCD1 is an alias of BRCA2 because homozygous hypomor-

phic mutations in this gene cause Fanconi Anemia while

heterozygous null mutations increase the risk of breast and

ovarian tumors and homozygous null mutations cause lethality

[11]. In addition to genome instability, bone marrow failure,

leukemia, and squamous cell carcinomas, many FA patients

experience hypogonadism, impaired gametogenesis, defective

meiosis, and sterility [19,83]. Thus, zebrafish brca2(fancd1) shares

genome instability and gonad developmental phenotypes with FA

Roles of brca2 (fancd1)
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patients and ovarian tumors with human heterozygotes for BRCA2

mutations. These findings indicate that zebrafish brca2 mutants

provide a suitable model for human BRCA2-related disease. In a

result of special significance, the embryonic sensitivity of zebrafish

brca2 mutants to a DNA damage agent provides an assay for a

small molecule screen to identify compounds that can rescue the

DNA damage phenotype and thus has the potential to contribute

to the discovery of substances that can ameliorate at least some of

the phenotypes observed in human patients.

Methods

DNA Amplification and Cloning
A partial gene model for zebrafish brca2 was inferred using

GenomeScan (http://genes.mit.edu/genomescan.html) to match

the human BRCA2 protein to a zebrafish genomic BAC clone we

identified and sequenced (Genbank accession #AC149226).

Primers for RACE (Clontech) were designed using this preliminary

gene model. RACE template was 59 first-strand zebrafish cDNA

synthesized from pooled mRNA from embryos at 12, 24, and 48

hours post-fertilization (hpf). A BLAST search of the zebrafish EST

database (http://www.ncbi.nlm.nih.gov/genome/seq/BlastGen/

BlastGen.cgi?taxid = 7955) using the 39 UTR modeled with

GenomeScan recovered EST CT605096. This EST and our

GenomeScan model were used to design primers for amplification

of the entire brca2 cDNA (primers in Table S1) using as template

second strand cDNA from 60hpf embryos. Amplified fragments

were cloned using the TOPO Cloning Kit for Sequencing

(Invitrogen).

Bioinformatics
We applied reciprocal best BLAST ‘‘hit’’ (RBH) [84] as an

initial test for orthology of zebrafish and human BRCA2 genes.

We queried the stickleback genome (http://www.ensembl.org/

Gasterosteus_aculeatus/blastview) using zebrafish Brca2 and

found stickleback brca2 on contig 2939. This contig, together with

human BRCA2, was used to develop a preliminary gene model for

stickleback brca2 (Figure S1). The Synteny Database identified

paralogous and orthologous chromosome segments [26].

Animals
The insertional brca2 mutant (ZM_00075660) was purchased

from Znomics, which randomly inserted derivatives of a Moloney

murine leukemia-based retroviral vector into zebrafish [85]. To

genotype ZM_00075660, we used primers F4/R4 to amplify the

mutant allele, and primers F1/R1 to amplify the wild-type allele.

Table S1 lists primer sequences. To reduce Tp53 activity, the

hypomorphic mutation tp53M214K was obtained from ZIRC

(http://zebrafish.org/zirc/home/guide.php) and was used and

genotyped as described [58]. All animals were reared and collected

under standard conditions [86]. The University of Oregon

Institutional Animal Care and Use Committee approved all

animal work (Animal Welfare Assurance Number A-3009-01,

IACUC protocol #08-13). Genetic nomenclature follows guide-

lines from ZFIN (http://zfin.org/zf_info/nomen.html), e.g.,

human gene, BRCA2; mouse gene, Brca2; zebrafish gene, brca2;

human protein BRCA2 and mouse and zebrafish protein, Brca2.

In Situ Hybridization and Histology
Whole mount in situ hybridizations were performed as described

[87] using several individuals for each developmental stage. In situ

hybridization experiments on zebrafish cryosections were per-

formed following [52]. Probes for amh and cyp19a1a were made

following [52] and probe for vasa was made from its 39end as

described [51]. A brca2 cDNA fragment of 725nt (nucleotides

2627-3351 of NM_001110394), a pou5f1 cDNA fragment of 778nt

(nucleotides 705-1482 of NM_131112), and a sycp3 cDNA

fragment of 620nt (nucleotides 265-884 of NM_001040350) were

used to synthesize DIG-labeled riboprobe (Boehringer Mann-

heim). For gonad histology, paraffin embedded Bouin’s fixed tissue

was sectioned at 7 microns and stained with hematoxylin and

eosin.

Immunohistochemistry
Animals were fixed at 60dpf in 4% PFA overnight at 4uC,

embedded in paraffin, and sectioned at 7 microns. Apoptotic cells

were detected by immunofluorescence using anti-active Caspase-3

(Pharmingen, # 559565 Purified Rabbit anti-active caspase-3)

following published protocols [20,39].

dead end Morpholino Injections
Animals depleted of germ cells were obtained by injecting wild-

type zebrafish embryos from the AB strain at the 1–2 cell stage

with dead end antisense morpholino oligonucleotide (Gene Tools) as

described [88]. Injected and non-injected animals were raised to

adulthood and collected at 18 months post-fertilization.

Acridine Orange Staining
Embryos were exposed to diepoxybutane (DEB) in embryo

medium from 7–28hpf, or left untreated. Embryos were stained

with acridine orange (AO) and mounted following [89]. The initial

focal plane was the otolith, and a z-series consisting of seven 10-

micron steps was captured on a Bio-Rad Radiance 2100 confocal

microscope. Images were merged into a single plane with Velocity

4.4.0 and the number of AO-positive cells in the central nervous

system anterior to the beginning of the yolk extension was

quantified using ImageJ.

Karyotyping
Distal tips of caudal and dorsal fins from mutant and wild-type

adult fish were cultured in 1:1 (vol/vol) DMEM (Gibco) and

Amniopan (PAN) media supplemented with 100 mg/ml penicillin

and 0.1 mg/ml streptomycin in a 5% CO2 atmosphere at 28uC.

Adherent fibroblast-like cells grew from primary explants. When

culture flasks were confluent, cells were trypsinized and subcul-

tured at split ratios of 1:4. Cells of the 20th or 21st passage were

exposed to 5 or 10 ng/ml mitomycin C for 24 hrs and screened

for chromosome morphology. Rates of chromatid and chromo-

some breaks, radial reunion figures, and other categories of

breakage were scored by analyzing 100 cells from each cell line.

To visualize mitotic chromosomes, subconfluent cultures were

exposed to colcemid for 3 hrs. Accumulated metaphases were

prepared following standard methods. Slides were stained with 5%

Giemsa solution. Metaphases were screened under a light

microscope. Line authenticity was confirmed by PCR genotyping

using the primer set Brca2zmwt.F2 59-GCAGGTTGTGAT-

GAAGCCACC-39 and Brca2zmwt.R1 59-GTGGTGTGAGGC-

CAGAGGTT-39 for amplification of a 888-bp fragment of the wt

brca2 sequence and the primer set 5Fd1ins.F 59-CTTGCGCAC-

CAAGGCTTCAC-39 and 5Fd1ins.R 59-ACCGCATCTGGG-

GACCATCT-39 for amplification of a 971-bp fragment of the

insert. For cell growth studies, 16105 cells per line were seeded

into six flasks. Following trypsinization, one flask per line was

counted daily until day 5. Resulting numbers were plotted as

multiples of the initial cell count. Mitomycin C (MMC) was added

at given concentrations at time 0 h. For flow cytometric assays,

cultures were harvested and cells were washed twice with PBS and
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fixed in 4% paraformaldehyde at 37uC for 10 min. The reaction

was stopped on ice for 2 min, then cells were pelleted and

resuspended in 100% methanol at 220uC for permeabilization.

For immunostaining, we used the CaspGLOW Fluorescein Active

Caspase-3 Staining Kit (BioVision # K183-25) and propidium

iodide (PI) counterstain at a final concentration of 8 mg/ml.

Histograms were recorded on an analytical, triple-laser equipped

flow cytometer (LSRII, Becton Dickinson) using Sapphire 488 nm

solid state laser excitation of 5(6)-fluorescein isothiocyanate (FITC)

and propidium iodide (PI) with appropriate filter sets to discern

fluorescence intensity of different emission wavelengths. Quanti-

fication of cell distributions was by FACSDiva Software, version

6.1.

Supporting Information

Figure S1 Sequence of Brca2 inferred from the well-assembled

sequenced genome of the stickleback, Gasterosteus aculeatus. The

stickleback sequence was used as a comparator to infer the

structure of the zebrafish brca2 gene. Ensembl (http://www.

ensembl.org/Gasterosteus_aculeatus/blastview) was searched us-

ing as query brca2 exons conserved between zebrafish and human.

This search recovered stickleback contig 2939, the sequence of

which allowed the construction of a preliminary model for

stickleback brca2 by comparing contig 2939 to human BRCA2.

This comparison allowed us to clarify zebrafish BRC repeats.

Found at: doi:10.1371/journal.pgen.1001357.s001 (1.14 MB

TIF)

Figure S2 Analysis of zebrafish BRC repeats. (A) Alignment of

the eight mammalian BRC repeats to the corresponding repeats in

zebrafish and stickleback. Sequence identity between homologous

zebrafish and human BRC repeats varied from 16% (BRC1) to

50% (BRC7) (mean = 38%). (B) Alignment of zebrafish BRC

repeats identified four more (w,x,y,z) than are found in

mammalian Brca2 proteins. A pairwise comparison of the 12

zebrafish BRC repeats to each other showed sequence identities

between 19% and 96%.

Found at: doi:10.1371/journal.pgen.1001357.s002 (0.81 MB TIF)

Figure S3 Sequence of the DNA binding domain (DBD) of

Brca2 in four vertebrates, zebrafish, human chicken, and mouse.

Abbreviations: HD, helical domain; OB, oligo nucleotide binding

motifs.

Found at: doi:10.1371/journal.pgen.1001357.s003 (1.22 MB TIF)

Figure S4 Expression of brca2 during zebrafish development. (A)

Expression of brca2 during zebrafish development assayed by RT-

PCR. Total RNA was extracted using TRI REAGENT according

to manufacturer’s instructions (Molecular Research Center Inc.,

TR-118) from pools of 40 to 50 embryos for each developmental

stage. First strand cDNA was generated from 2 mg of total RNA

using Superscript III Rnase H-reverse transcriptase (Invitrogen,

#18080-044) and oligo(dT) primer. Reverse transcriptase was

deactivated by incubating the sample at 70uC for 15 minutes,

followed by RNA digestion with RNase H (New England Biolabs,

M0297S). A dilution 1:20 of the first strand cDNA was used to

assay brca2 gene expression by non-quantitative PCR using the

gene specific oligonucleotides 59-GGGCCAGAAAACACAG-

CAACTCAAA-39 and 59-GCACAGGCCCAGATAG-

CACTCG-39. Detection of actin expression (oligonucleotides: 59-

GAGAAGATCTGGCATCACACCTTC-39 and 59-

GGTCTGTGGATACCGCAAGATTC-39) was used as an

internal control. Results showed substantial brca2 transcript in

early (1–2 cells) and later cleavage stages, demonstrating maternal

transcript, which apparently was supplemented from the begin-

ning of zygotic transcription until at least 5dpf. (B–E) Whole

mount in situ hybridization to embryos at 1, 12, 24, and 48 hpf

shows maternal expression, broad low level expression, and higher

expression in rapidly dividing cells. (F–K) In situ hybridization to

sections at the ages indicated shows expression in the central

nervous system (cns) and in the spinal cord (sc). (L) Expression in

the adult brain (sagittal section at position in L9) continued in

proliferative zones. (M) The adult kidney expressed brca2 strongly

in the hematopoietic marrow. (N) The adult intestine (cross

section) expressed more strongly in proliferative centers. Abbre-

viations: cce, cerebellar corpus; cns, central nervous system; eg,

granular eminence; epi, epiboly; in, intervillus region; ma, kidney

marrow; Neg. ctrl, negative control; ob, olfactory bulb; pg,

preglomerular area; pgz, periventricular gray zone of optic tectum;

pa, pharyngeal arches; r, retina; sl, spinal cord; som, somites; teo,

optic tectum; tel, telencephalon; tev, tectal ventricle; tu, kidney

tubules; val, lateral division of valvula cerebelli.

Found at: doi:10.1371/journal.pgen.1001357.s004 (6.54 MB TIF)

Figure S5 brca2 mutant embryos exhibited normal hematopoi-

etic development. Human Fanconi anemia patients develop

profound anemia of several lineages. To investigate hematopoietic

development in zebrafish brca2(fancd1) mutants, we studied gene

expression patterns. Results showed that 16-somite stage wild-type

embryos (A) and mutant (B) embryos had the same expression

pattern for the early hematopoietic marker scl (A, B) and the

‘master hematopoietic’ gene lmo2 (wild type, C, mutant, D).

Furthermore, 24 hpf embryos had normal expression of pu.1, a

marker of myeloid progenitors (E, F), mpo a marker of primitive

myelopoiesis (G, H), and gata1, a marker of erythropoietic

development (I,J). Late stage hematopoietic markers were also

expressed normally in brca2 mutants, including the myelopoietic

gene mpo (K,L), the leukocyte gene l-plastin (M,N), and the

erythrocyte gene a-globin (O,P) in 2dpf embryos, and myb (Q,R) in

3dpf embryos in definitive hematopoiesis. In addition, expression

of the T-lymphocyte gene rag1 was normal in 5dpf embryos (S,T).

We conclude that, in contrast to humans but more similar to

mouse, embryonic hematopoietic development appears to be

normal in brca2(fancd1) mutants.

Found at: doi:10.1371/journal.pgen.1001357.s005 (5.43 MB TIF)

Figure S6 Expression of female-specific, male-specific, and

meiotic recombination markers in adjacent sections of 47dpf

wild-type and brca2 mutant gonads revealed male development in

brca2 immature mutant testis. Oocytes in wild-type ovaries strongly

expressed vasa (A) and weakly expressed amh in granulosa cells (B).

Somatic cells of the ovary expressed cyp19a1a (C), but at this stage,

expression of the meiotic marker sycp3 was weak in the ovary (D).

Wild-type testes expressed vasa in early germ cells (E) and amh in

well-organized Sertoli cells surrounding testis tubules (F), but not

cyp19a1a (G). (H) Spermatocytes expressed sycp3 in wild type testes.

(I–L) In contrast, brca2 mutant testes showed hypogonadism but

contained vasa-expressing cells (I), disorganized and fewer Sertoli

cells expressing amh (J), and no expression of the female marker

cyp19a1a (K), but spermatocytes did express the recombination

meiotic marker sycp3 (L). Arrows point out examples of regions of

expression.

Found at: doi:10.1371/journal.pgen.1001357.s006 (7.37 MB TIF)

Figure S7 Brca2 function is not essential to localize brca2, pou5f1,

or vasa transcripts in zebrafish oocytes. (A–F) In situ hybridizations

on serial sections of wild-type (A–C) and brca2;tp53 double mutant

females (D–F). In wild-type ovaries transcripts of the brca2 (A) and

pou5f1 (B) genes localized to the same small cortical region of stage

III oocytes while vasa transcripts localized to the opposite pole of

the same individual oocytes (C). Similarly, serial sections of ovaries

Roles of brca2 (fancd1)
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from brca2;tp53 double mutants showed the same tight localization

of brca2 (D) and pou5f1 (E) transcripts to one pole and vasa

transcripts to the other pole (F). We conclude that brca2 function is

not essential to define polarity of the oocyte cytoplasm. Red

arrowheads: animal pole markers; green dotted line: vegetal pole

expression.

Found at: doi:10.1371/journal.pgen.1001357.s007 (8.21 MB TIF)

Table S1 Primers for brca2(fancd1) RACE-PCR, PCR, genotyp-

ing, and cDNA analysis. Numbers correspond to the position of

the most 39 base on the Danio cDNA sequence (Accession number

NM_001110394.1). Primers F1-F4 and R1-R4 correspond to

those in Figure 3.

Found at: doi:10.1371/journal.pgen.1001357.s008 (0.06 MB

DOC)
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