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Abstract

Technological advances make it possible to use high-throughput sequencing as a primary discovery tool of medical
genetics, specifically for assaying rare variation. Still this approach faces the analytic challenge that the influence of very rare
variants can only be evaluated effectively as a group. A further complication is that any given rare variant could have no
effect, could increase risk, or could be protective. We propose here the C-alpha test statistic as a novel approach for testing
for the presence of this mixture of effects across a set of rare variants. Unlike existing burden tests, C-alpha, by testing the
variance rather than the mean, maintains consistent power when the target set contains both risk and protective variants.
Through simulations and analysis of case/control data, we demonstrate good power relative to existing methods that assess
the burden of rare variants in individuals.
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Introduction

High throughput sequencing of the human genome is now a

reality: recent advances in sequencing technology now permit near

complete ascertainment of genetic variation, including rare

variants (,1% population frequency), across large portions of

the genome in thousands of individuals. While this in principle can

reveal the role of each gene in every medical phenotype, the

analytic challenges are profound. Of particular concern are

genetically complex common diseases for which the role of any

gene is expected to be quite modest and an individual rare variant

would have relatively small impact on the common endpoint.

Under this scenario there would be little power when testing one

variant at a time, as in traditional association testing. For example,

while in African Americans low-frequency variants in PCSK9 can

have a substantial effect on serum low-density lipoprotein

cholesterol (LDL-C) [1], these variants influence risk or protection

to myocardial infarction by only a factor of 2 [2,3]. In such

instances, rare variants will almost never stand out as associated

individually, particularly when all variation in the genome is

measured and tested in an effort to discover novel loci, rather than

simply evaluate existing candidate genes.

Recently published methods show that power to detect rare risk

variation can be greatly enhanced by combining information across

variants in a target region, such as a gene or exon, when multiple

variants influence phenotype. The ‘‘cohort allelic sums test’’ (CAST)

[4,5] and ‘‘Combined Multivariate and Collapsing (CMC) method’’

[6] use this approach. CAST contrasts the number of individuals

with one or more mutations between cases and controls. Like

CAST, in CMC all rare variants are collapsed and treated as a

single count for analysis with common variants in a multivariate test.

CMC permits a coherent test for common and rare variants (rare

being defined arbitrarily, but usually at 1%). Madsen and Browning

[7] introduced a non-parametric weighted sum test in which rare

variants ‘‘are grouped according to function (e.g. gene), and each

individual is scored by a weighted sum of the mutation counts.’’ The

incorporation of weights improves the power of the test, and would

be especially powerful when most of the rare variation is functionally

relevant. While each of these rare variant tests differs in form, each

seeks to assess the overall genetic burden due to rare variants, hence

we call them ‘‘burden tests’’. By design, they implicitly assume that

all variation affecting phenotype acts in the same direction.

Even in a gene harboring phenotypically relevant variation,

however, many variants will be phenotypically neutral. Indeed, the

target region could include a handful of rare Mendelian mutations

that cause disease, some variants that moderately increase or

decrease risk, along with numerous variants of no effect. To gain

insight into a new model for analysis, it is helpful to think of a coin
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toss associated with each variant. If the variant is phenotypically

neutral, the coin is fair and the variant is as likely to appear in a case

as it is in a control. In contrast, risk variants correspond to biased

coins and are more likely to be observed in cases. Similarly,

protective variants correspond to coins biased in the opposite

direction and are more likely to be observed in controls, particularly

if they are selected. See Figure 1, which illustrates this scenario and

motivates a new testing procedure. Burden tests seek to determine if

the coin is biased, on average, across all variants. Invariably they

include phenotypically neutral variants in the burden score, which

diminishes the power of the test. In addition, there are many

examples in which gain or loss of function in the same gene have

opposite effects on phenotype [8-10].

Table 1 illustrates the challenges by presenting novel sequencing

of the gene APOB (Apolipoprotein-B) in 96 individuals who have

high triglycerides and 96 individuals who have low triglycerides.

Do rare variants in APOB influence lipid levels? Figure 2A

illustrates the distribution of APOB variants amongst high/low

individuals. Notice the unlikely occurrence of variants with 6:0 and

0:6 counts out of fewer than 20 variants discovered. A test that

incorporates this increase in variance, or overdispersion, could in

principle give better power. This observation suggests a novel

approach to the problem: tally the number of copies of each

variant in cases, relative to the number copies in controls, and

evaluate overdispersion in the set of counts. Overdispersion in this

setting measures an increase from the expected binomial variance,

driven by a subset of variants seen preferentially in cases or

controls (the biased coins in the example in Figure 1).

A well-established and powerful test for the presence of a

mixture of biased and neutral coins is the C-alpha score-test

[11,12]. We describe here the adaptation of this test for the

analysis of sequence level case-control data and demonstrate its

performance in a variety of simulated and actual data examples.

We then move to a few key assumptions of C-alpha and how to

accommodate realistic scenarios that violate those assumptions.

Finally, we propose extensions of the method.

Methods

C-alpha test
To illustrate where the information for C-alpha originates,

consider a standard balanced case-control study. If the target

region has no alleles associated with the phenotype, then the

distribution of counts should follow a binomial distribution,

indexed by n, the total number of copies of an observed variant.

In Figure 2 we contrast the expected distribution of binomial

counts (background) with observed counts (foreground) for three

phenotypes. Each row of the triangle corresponds with a different

value of n. The number of distinct variants observed for panel (b) is

m = 14 with n ranging from 2 to 40. The number of variants with n

copies, m(n), varies from row to row: m(2) = 2, m(3) = 3, …, and

m(40) = 1. C-alpha detects unusual numbers of counts falling

toward the outer edges of the triangle; In Figure 2A, one variant is

observed exclusively in cases (6:0) and another in controls (0:6).

Both configurations generate overdispersion. Any mixture of

binomials leads to overdispersion, which can be detected by a one-

sided test. This is the fundamental basis of C-alpha. See Figure S1

for further illustration.

We have tailored the C-alpha score test so that it is suitable for

testing a set of rare variants for association. The binomial (n,p)

distribution evaluates the probability of observing a particular

variant y times in the cases out of n total, assuming the rare

variants are distributed at random across the subjects. For variants

seen twice (doubletons) in a balanced sample of cases and controls

(p = 0.5), we expect y to be 0, 1 and 2 with probability J, K and

J, respectively. We typically will observe a higher proportion of

doubletons with y = 2 and/or y = 0 than expected, if some variants

are detrimental or protective. For each variant, there will be

insufficient information from which to draw firm conclusions

about association. C-alpha can be used to detect a pattern across

the full set of rare variants in the target region. For the i’th variant,

observed ni times, we assume yi is binomial (ni,pi). Under the null

hypothesis, pi = p0 (say K if cases and controls are equal in number

and we expect rare variants to fall in either sample at random).

The alternative hypothesis is that pi follows a mixture distribution

across the m variants, I = 1,…,m, with some variants detrimental

(pi.p0), some neutral, and some protective (pi,p0).

The C-alpha test statistic T contrasts the variance of each

observed count with the expected variance, assuming the binomial

distribution

T~
Xm

i~1

(yi{nip0)2{nip0(1{p0)
� �

:

To standardize this quantity we require c, the variance of T:

c~
Xmax n

n~2

m(n)
Xn

u~0

u{np0ð Þ2{np0 1{p0ð Þ
h i2

f uDn,p0ð Þ ,

in which m(n) is the number of variants with n copies, and

f uDni,p0ð Þ denotes the probability of observing u copies of the i’th

variant assuming the binomial model.

The resulting test statistic is defined as Z~T=
ffiffiffi
c
p

. We reject the

null hypothesis when Z is larger than expected using a one-tailed

standard normal distribution for reference. See the Text S1 for a

derivation of the C-alpha test.

Let’s examine data from two genes, PCSK9 and APOB, in which

rare variation is known to affect lipid levels (LDL and Triglycerides),

and treat the phenotypic extremes as binary traits (i.e. high lipid

levels are cases and low lipid levels are controls). The previously

reported PCSK9 data result from sequencing its coding regions [1] in

128 individuals with extremely high and 128 with extremely low

plasma LDL-C levels. Applying C-alpha produces a significant

association (p-value = 0.0023.) The loss of functional variants

Author Summary

Developments in sequencing technology now enable us to
assay all genetic variation, much of which is extremely rare.
We propose to test the distribution of rare variants we
observe in cases versus controls. To do so, we present a
novel application of the C-alpha statistic to test these rare
variants. C-alpha aims to determine whether the set of
variants observed in cases and controls is a mixture, such
that some of the variants confer risk or protection or are
phenotypically neutral. Risk variants are expected to be
more common in cases; protective variants more common
in controls. C-alpha is sensitive to this imbalance,
regardless of its origin—risk, protective, or both—but is
ideally suited for a mixture of protective and risk variants.
Variation in APOB nicely illustrates a mixture, in that
certain rare variants increase triglyceride levels while
others decrease it. The hallmark feature of C-alpha is that
it uses the distribution of variation observed in cases and
controls to detect the presence of a mixture, thus
implicating genes or pathways as risk factors for disease.

Unusual Distribution of Rare Variants Testing
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(C679X, Y142X) in PCSK9 are associated with a 28 percent

reduction in mean LDL cholesterol and an 88 percent reduction in

the risk for coronary heart disease [2]. The gain of function variant

(H553R) in PCSK9 is associated with increased plasma levels of

LDL-C [13]. The pattern of overdispersion is also apparent when

examining the genotype counts derived from a pooled sequencing

experiment of coding regions in APOB (Figure 2A). We do not

report a P-value for the APOB example, as these data are pooled and

so we cannot assess significance empirically. In this case DNA from

96 individuals with extremely high triglyceride levels was pooled, as

was DNA from 96 individuals with extremely low triglyceride levels

[3], and these two pools were sequenced. Another example of rare

variation predisposing to disease is clearly evident from a study of

Crohn’s disease (Figure 2B). Association of low frequency variation

at NOD2 (excluding two common coding variants R702W and

insCfs1003) is demonstrated in 350 Crohn’s disease cases and 350

GWAS matched controls with a P-value of less than 1026 from

individual level data.

Estimation of mixtures
It is additionally possible to estimate the underlying mixture

model from the distribution of variants used for C-alpha testing. For

instance, if the target region includes risk variants, phenotypically

neutral variants, and variants that engender a modest protective

effect, then a 3-component mixture will fit the data corresponding to

the 3 genetic components. Whenever C-alpha shows significance,

we can estimate the number of mixture components and the

posterior probability that a particular variant is detrimental or

protective using the EM algorithm (see Text S1 and Figure S4).

Singleton counts
A variant observed only once provides no direct information

about over-dispersion; however the distribution of singletons as a

group reflects on the question of association between the target

region and phenotype. Singletons can be pooled into a single

binomial count that can be included in the C-alpha test. This

treatment of singletons, which is essentially identical to a burden

test (see Text S1 on mixtures of biased and unbiased coins and

Figure S1), allows robust integration of singletons. However, it can

only be informative if the majority of the singleton variants have

effects in the same direction. Other approaches to addressing

singleton variants in parallel with C-alpha are considered in the

discussion.

Simulation experiments
We conduct two main sets of simulations to compare C-alpha

with Li and Leal burden tests and Madsen and Browning’s test.

Tests proposed by Li and Leal are all built around a regression

model, predicting phenotype based on recoding of rare variation.

For Li and Leal’s approach, we sum the number of rare variants in

the region for each individual as the predictor. For Madsen and

Browning, the coding of variation is similar to the sum of rare

variants, but a weighting scheme based on the inverse of the

control allele frequency is included. The test statistic is evaluated

as a nonparametric rank sum test in which each individual is

scored by a weighted sum of the mutation counts. We also include

a variable threshold model, which is an implementation of a

burden test that selects the threshold for inclusion of variants by

optimizing the test statistic. Specifically, this burden test is

calculated at all allele frequency cutoffs. The test statistic is then

defined by the maximum of the test statistics for all cutoffs. The

distribution of the test statistic is obtained empirically by random

permutation of case/control status and recalculation of the test

statistic. This approach is described in Price et al [14]. In addition

to these simulations under the alternative hypothesis, we present a

series of simulations under the null hypothesis to investigate the

small sample properties of the test statistic. For each kind of

simulation and for all test statistics, we assess significance

Figure 1. Mixtures of biased coins in a set of largely neutral coins generate substantially increased variances compared to uniform
coins with the same bias. (A) shows distribution of the outcome of coin tosses generated using an 80:20 mixture of neutral coins and biased coins
(probability of a head = .9), compared with the outcome of a series of biased coin tosses (probability of a head = .58); the mixed coin toss (blue) has
the same mean bias (p = .58) as the biased coin toss (black). (B) shows distribution of a 10:80:10 mixture of a biased coin (probability of a head = .1),
neutral coin, and a biased coin (probability of a head = .9), compared with the outcome of a series of neutral coin tosses. In both simulations, coins
are selected and flipped 10 times and the resulting number of heads, ranging from 0 through 10, are shown. The increased variance of the outcomes
in the mixture setting carries information about the presence of some non-neutral coins in the experiment.
doi:10.1371/journal.pgen.1001322.g001

Unusual Distribution of Rare Variants Testing
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empirically, by using permutation, as described previously. For

each test, we permute 50,000 times to ensure accurate assessment

at P-value threshold of 0.001. Singletons are treated in accordance

with the original specification for each method. For C-alpha we

pooled the singletons into a single observation.

We first present a set of simulations for a population genetics

model that incorporates selection [15], and generates data that

matches the empirically observed allele frequency distribution

derived from sequence data. This approach implements a

demographic model by which variants in the region are in linkage

equilibrium (simulated, not forced) and mutations have selection

coefficients above 1023. Two genes were simulated, and the mean

liability value for an individual differed as a function of the number

of rare alleles occurring at these genes [14,15]. For individuals who

have no rare variants, liability was simulated using a N(0,1). Each

functional variant increased the mean of the liability distribution by

0.25, while maintaining the variance of 1. Each simulated gene was

1.5 kb long, with a mean and variance of number of variants at

,38.5 and 40 respectively. Of the variants observed, 52% were

functional. Note that this constitutes a favorable scenario for

frequency weighted burden testing as the burden continues to

increase with additional variants and the frequency of the functional

variants is generally kept lower. To expand these simulations, we

then randomly assigned a direction of effect for these variants,

according to a range of mixing proportions (0 to 50% probability of

assignment of protective in 10% increments).

For the second set of risk simulations, we assume a model with a

disease prevalence of 1%, 50 sites in the region of analysis with

allele frequency between 0.025% and 0.5% (this distribution is

similar to that observed from the Crohn’s data). These sites are

variable in the population, but may be invariant in any given

simulation, as they are probabilistically assigned for each member

of the sample. Of these 50 variants, 6 are chosen at random for

each simulation to affect the phenotype (regardless of whether they

are present in the dataset), and each variant explains 0.1% of the

variance of the disease under a liability threshold model (i.e. 2p [1-

p]a2 = 0.001, where p is the risk allele frequency and a is the effect

on mean liability [16]). The model assigns higher penetrance to

rarer alleles, yet no alleles are so highly associated that they would

be readily detectable by single variant analyses (see Text S1 and

Figure S3 for the relationship between odds ratio and frequency).

Furthermore, the functional variants may be singletons in the final

dataset, especially if they have a very rare population allele

frequency.

Three scenarios are explored: all 6 variants confer risk; 3

variants confer risk and 3 variants confer protection; and all 6

variants confer protection. We also consider two different

study designs: 1,000 cases (individuals who exceed the

threshold on the liability distribution) and 1,000 controls

(individuals selected for absence of disease); and 1,000 cases

and 1,000 selected controls, such that the controls are selected to

be in the bottom 1% of the latent liability distribution. The

latter strategy mimics experimental designs used for quantita-

tive phenotypes.

Figure 2. The distribution of recurrent, low frequency non-
synonymous variants. In (A) 100 high and 100 low extremes of
triglyceride levels drawn from the Malmo Diet and Cancer Study –
Cardiovascular Arm in APOB and (B) 350 cases of Crohn’s disease and
350 controls collected by the NIDDK IBD Genetics Consortium in NOD2,
identified from pooled data and then individually genotyped. The
background (gray) represents the binomial probability distribution
while the foreground (red points) shows observed data from NOD2 and
APOB sequencing, in which, for example, APOB (A) the n = 3 row
indicates three observed variants, one seen in 3 cases and 0 controls,
one seen in 2 cases and 1 control, and one seen in 0 cases and 3
controls.
doi:10.1371/journal.pgen.1001322.g002

Table 1. APOB variant counts.

Position Annotation High Lipid Level Low Lipid Level

21078358 Ala4481Thr 2 5

21078359 Ile4314Val 3 0

21078990 Arg4270Thr 6 3

21079417 Val4128Met 1 7

21083082 Thr3388Lys 2 1

21083637 Ser3203Tyr 6 0

21086035 Leu2404Ile 2 3

21086072 Glu2391Asp 2 2

21086127 Thr2373Asn 2 2

21086308 Val2313Ile 2 1

21087477 His1923Arg 6 12

21087504 Asn1914Ser 0 5

21087634 Asp1871Asn 2 0

21091828 Pro1143Ser 0 6

21091872 Arg1128His 0 3

21091918 Asp1113His 1 3

21106140 Thr498Asn 2 0

Singletons 6 4

Nonsynonymous variants discovered via targeted pooled sequencing in 192
individuals with extreme triglyceride levels. High counts represent the number
of copies of the variant discovered in 96 individuals who have high triglycerides
(defined as exceeding the 5% upper tail of the population distribution). Low
counts represent the number of copies of the variant discovered in 96
individuals who have low triglycerides (lower 5% tail). The singletons are
grouped together and listed as the penultimate row because its total count is
second largest (10, versus 18 for the His1923Arg). For details about pooled
sequencing, see Text S1.
doi:10.1371/journal.pgen.1001322.t001

Unusual Distribution of Rare Variants Testing

PLoS Genetics | www.plosgenetics.org 4 March 2011 | Volume 7 | Issue 3 | e1001322



Small sample properties
A third set of simulations explores behavior of test statistics

under the null hypothesis to determine whether the type I error

rate is well calibrated for C-alpha. Like many tests, C-alpha relies

on asymptotic properties consistent with the central limit theorem

(CLT). Specifically, the test statistic converges to a normal

distribution under the null hypothesis as the number of variants

tends toward infinity, with convergence being potentially faster if

the frequency of all variants is similar. Thus, we varied both the

number of variants and the distribution of allele frequencies to

explore type I error. For these simulations, we drew N variants

from the empirically observed allele frequency distribution used in

the second set of simulations above and performed 25,000

replicates for each value of N.

Results

Results of power comparisons
From simulation results evaluating power (Figure 3), C-alpha

shows comparable or slightly better power than burden testing in

the situation where all effects are in the same direction, and much

greater power when protective and risk variants exist in the test set.

Thus the mixture approach shows good power for a much broader

set of scenarios without sacrificing power when unidirectional

burden testing is also effective.

Results assessing asymptotic properties
Simulation results (Table 2) demonstrate that the tails of the

distribution are somewhat heavier than the assumed normal

distribution when the number of variants is small, but as expected,

they approach that of the assumed distribution when the number

of variants increases. Additionally, in simulations performed under

a single allele frequency, the test achieves asymptotic behavior

considerably more quickly. To estimate significance accurately

when small numbers of variants are under consideration, we

therefore recommend a standard permutation procedure whereby

we randomly reassign cases and controls and recalculate the test

statistic (just as would be applied in any association scenario

involving small sample numbers and/or frequencies). Regardless

of the slightly heavy tails for small numbers of variants, the test

statistic itself is still a fast, effective screen for identifying potential

regions of interest in the genome. We note that our power

calculations and any examples involving sequencing of individual

samples use p-values obtained by permutation of case-control

status. Additionally, C-alpha assumes independence of each

observed variant. Permutation yields appropriate p-value distri-

butions even in the presence of LD between variants because case-

control permutation maintains the LD relationship between all

SNPs [17].

Discussion

We have demonstrated here the adaptation of the C-alpha test

statistic and its broad applicability to medical sequence data on a

gene or pathway level. The approach, distinct from more

traditional burden testing, has several advantages over the

previously proposed test statistics. Its primary advantage is

sensitivity to risk and protective variants in the same gene or

pathway. Yet, even if the effects of rare alleles are uniformly in one

direction, such as increasing risk, C-alpha maintains comparable

power to burden tests. Grouping genes together into pathways and

testing rare variants falling into these groups of genes could

provide greater statistical power and biological insight into the

functionally relevant processes affecting the phenotype of interest.

In such groups the presence of both risk and protective variants is

even more likely. As demonstrated here, the C-alpha test is well

calibrated to incorporate such divergent effects on risk. Moreover

because it is a single degree of freedom test with normal

asymptotic properties, C-alpha enhances power and allows for

rapid and straightforward calculation.

As with other burden-style tests, C-alpha is designed for

situations in which numerous rare variants are observed in the

target region. We recommend permutation testing for accurate

significance estimation in scenarios where the asymptotic behavior

is not assured - in particular, for small numbers of variants, when

Figure 3. Power comparisons and variants. (A) shows power comparisons for the population genetics model simulations. Power comparisons
are for C-alpha, Madsen-Browning (MB), Variable threshold (VT), and Li-Leal’s approach (presence/absence Li-Leal_p and count of rare variants Li-
Leal_c). These simulations reflect the presence of selection on the variation which predisposes to phenotype. As we increase the mixing proportions
between risk and protective variants (moving from mixtures 1 to 6, which reflects 0, 10, 20, 30, 40 and 50% chance of any of the phenotypically
relevant variants are protective, rather than risk), C-alpha maintains power, while other tests lose power. In (B), the each of 6 variants explains 0.1% of
the variance of the phenotype. All three approaches have high power when all the effects are detrimental. For burden tests, the power drops
markedly when 3 variants are protective and 3 are detrimental. ‘‘Selected’’ controls are chosen from the lower 1% of the liability distribution. The solid
(dashed) lines represent power for selected (unselected) controls.
doi:10.1371/journal.pgen.1001322.g003
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LD is present, or when the test is driven by a single more common

variant. In this latter scenario, as in the example of NOD2, it will

likely be desirable to analyze the more common variant with

Fisher’s exact test and to reanalyze the remaining rarer variation

to search for additional signal.

While singleton variants can be combined in C-alpha, it seems

reasonable to consider a distinct analysis of singletons in a more

biologically motivated fashion. For example, when a truly rare and

fully penetrant mutational origin is suspected, one might focus on

variants seen only in cases and not seen in external reference data

such as from 1000 Genomes Project. One might then further filter

the identified variants to leave only putatively deleterious non-

synonymous, splice and obvious loss of function variants and then

compare the rate of these to the parallel set found in controls only.

Such a Mendelian-style analysis (already successfully applied in

several cases such as Miller syndrome [18]), focuses predominantly

or exclusively on singleton variants and is almost completely

independent of the complementary C-alpha analysis applied to

variants seen twice or more in a study. For a polygenic disease, it is

reasonable to predict that each of these models could be relevant

for different genes (and in some cases, such as APOB, the same

gene). Thus complementary and independent analyses may be a

desirable approach to surveying large, exome-scale datasets.

As with any statistical test, the presence of confounders can

seriously bias the results. For instance, we have demonstrated that

population stratification has a significant impact on rare variation

tests. C-alpha assumes cases and controls have the same balance of

ancestry, because the distribution of rare variants likely depends

on ancestry. Otherwise unequal representation could increase the

rate of false positives for any rare variant test. It is important to

note that the balanced sampling assumption is not equivalent to

requiring that samples be homogenous. Balanced sampling

requires solid experimental design. While statistical methods for

controlling for bias can be effective, proper study design is far

preferable. If a large set of genotypes were available, such as from

a genome-wide association (GWA) study, principal component

analyses and related procedures can be used to match or control

for ancestry [19–21]. For well-matched case-control samples,

under the null hypothesis, it is reasonable to assume the

distribution of rare variants is independent of case/control status;

i.e., a variant is as likely to be identified in a case as a control. One

approach to determining whether the assumption of balanced

ancestry is violated is to calculate the number of rare synonymous

variants observed in cases versus controls across the sequenced

regions. If there is a substantive difference between cases and

controls in the number of synonymous variation, one explanation

is that the matching of ancestry between cases and controls was

not successful. If the deviation is modest, that implies that the level

of ancestral mismatching is in all likelihood modest. One other

major source of bias is differential genotyping bias. For sequencing

experiments, variability in coverage and variant discovery between

cases and controls can behave similarly to population stratification

if such errors are not balanced between cases and controls. As with

population structure, appropriate balance of subjects to control for

technical variability before analysis should insulate sequencing

experiments from major bias, yet subtle excess variability might

persist. For well designed studies we propose that Genomic

Control [22] will help to correct for the effects of minor

stratification and technical variability (for details, see Text S1

and Figure S2).

More generally, the choice of target region and set of variation

affects power. A test based on all potentially functional variants

(non-synonymous, splice, nonsense, etc.) within a single gene will

often be effective as it strikes a balance between sufficient numbers

of variants and the enrichment of functional variation. In contrast,

a single exon is not likely to have enough variants for the test to be

powered adequately or to achieve asymptotic properties and, while

including introns and synonymous variants would dramatically

increase the number of variants, the expectation is that the vast

majority of these variants will be phenotypically neutral and thus

will mute the signal. Alternatively, a group of exons from related

genes (e.g., a biological pathway) could be analyzed jointly. The

test would then determine if some unspecified variants in the

pathway are associated with the phenotype via a deviation from

the expected distribution of variation. Using this strategy, if several

of the genes have an effect, then the power will be enhanced;

however, if only one gene in the pathway has an effect, including

the other genes in the test will reduce power to detect the effect.

For target regions that do show evidence of association, using a

nonparametric mixture model we can estimate the distribution of

pi across variants and estimate the posterior probability the i’th

variant is detrimental or protective [23]. In the application to a

pathway of genes, one is more likely to uncover both risk and

protective variants, making the proposed test even more desirable.

Selecting a subset of variants, as suggested above, is just one

form of weighting variants in the analysis. C-alpha allows for valid

weights to be incorporated into the calculation of the test statistic

(see Text S1). Tests that up-weight variants based on allele

frequencies find that power can be improved, if there is a

relationship between allele frequency and effect size [7]. However,

we found that using the allele frequencies derived from the

experiment bias the test. The 1000 Genomes Project provides an

independent source for weights for allele frequency weighting.

Alternatively, if weights are obtained from the data at hand, a

Table 2. Null simulation results for small sample properties.

a = 0.1 a = 0.05 a = 0.01

# of variants Limited Distribution Limited Distribution Limited Distribution

5 .118 0.105 .049 0.071 .012 0.033

10 .132 0.111 .066 0.071 .011 0.028

20 .087 0.110 .048 0.064 .012 0.026

50 .105 0.110 .045 0.064 .012 0.020

100 .09 0.104 .0508 0.059 .011 0.017

# of variants refers to the number of variants simulated in the region. a= 0.1, 0.05, and 0.01 refer to the significance levels for the test statistics. Limited and Distribution
refer to whether the simulation used sets of two doubletons and three tripletons, or an empirical allele frequency distribution of rare variants ranging from 1/1,000 to
1%, respectively in the Crohn’s sequence data.
doi:10.1371/journal.pgen.1001322.t002
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permutation procedure can be used to obtain P-values. Aside from

allele frequency, bioinformatic tools that predict the functionality

of a variant offer another source for weights. Many computational

tools classifying coding variants regarding impact on protein

function are already published In Silico Funcitonal Profiling [24]

POLYPHEN [25], SIFT [26], SNPs3D [27], and Pmut [28]. For

example, for POLYPHEN the larger the position-specific score the

more likely the substitution is deleterious and applying such

weights to each variant in C-alpha might further enhance power.

Similar tools are available to score functionality for consensus

transcription factor binding sites (TFSEARCH, MATINSPEC-

TOR) and 3’-UTR (ASTRA) [29].

Sequencing technology will continue to develop and reduce in

cost for the foreseeable future. Large medically-focused sequencing

efforts involving thousands of exomes or whole genomes are now

underway and are introducing a host of novel computational

challenges not encountered in GWAS and previous large-scale

medical genetics studies. By enabling powerful analyses of genes

and pathways, without concern for effect direction, C-alpha

promises to be a flexible and powerful approach for the

identification of functionally relevant regions from experiments

involving deep sequencing.

Supporting Information

Figure S1 The four panels show the distribution of the mean

and 2*variance of mixtures of binomial distributions under the

following set of simulation scenarios. For each set we start with a

50 random draws of size 2 from a binary variable with equal

probability of each outcome plus 10 "spiked-in variants" and

compare that to 60 random draws of size 2. The spiked-in variants

are either all protective (10 0/2’s), all risk (10 2/0’s) or a mixture as

indicated in the title of each panel. The distributions of mean and

2*variance is shown in each panel, with black and blue

representing the mean and 2*variance of the null simulations

and red and yellow representing the mean and 2*variances of the

simulations with spiked in draws. Including a subset of variants

with a protective and/or detrimental effect increases the variance

of the overall data in a way that is not described by shift in the

mean number of alleles in cases (see also Figure 1). C-alpha is

sensitive to this increase because it compares the observed variance

of the data with the expected variance under the binomial model.

Found at: doi:10.1371/journal.pgen.1001322.s001 (0.19 MB TIF)

Figure S2 (A) Distribution of p-values under the null hypothesis

of no disease association. The distribution of 1,000 p-values under

the null hypothesis is consistent with a uniform distribution. The

simulations were performed using 1,000 case versus 1,000 control

individuals. (B) Distribution of p-values evaluated over exons in a

pooled sequencing experiment. We artificially induce inflation to

the overall test statistic by including an African American pool,

which differs in allele distribution.

Found at: doi:10.1371/journal.pgen.1001322.s002 (0.10 MB TIF)

Figure S3 The relationship between the strength of the effect

and the population minor allele frequency of the locus where the

variance explained is fixed for all loci. The rarer the variant, the

stronger effect it has on phenotype.

Found at: doi:10.1371/journal.pgen.1001322.s003 (0.06 MB TIF)

Figure S4 We simulate mixture outcomes for each of the three

fixed mixture components, protective (red diamonds), risk (green

triangles), neutral (blue triangles). We demonstrate that the

Expectation Maximization algorithm, outlined in Text S1,

performs well and is able to accurately estimates the simulated

mixture components. The proposed EM algorithm can also be

used to determine posterior probabilities of belonging into each of

the components for each of variants observed.

Found at: doi:10.1371/journal.pgen.1001322.s004 (0.09 MB TIF)

Text S1 Supplementary methods.

Found at: doi:10.1371/journal.pgen.1001322.s005 (0.09 MB PDF)
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