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Abstract

Lipids are constantly shuttled through the body to redistribute energy and metabolites between sites of absorption,
storage, and catabolism in a complex homeostatic equilibrium. In Drosophila, lipids are transported through the
hemolymph in the form of lipoprotein particles, known as lipophorins. The mechanisms by which cells interact with
circulating lipophorins and acquire their lipidic cargo are poorly understood. We have found that lipophorin receptor 1 and 2
(lpr1 and lpr2), two partially redundant genes belonging to the Low Density Lipoprotein Receptor (LDLR) family, are
essential for the efficient uptake and accumulation of neutral lipids by oocytes and cells of the imaginal discs. Females
lacking the lpr2 gene lay eggs with low lipid content and have reduced fertility, revealing a central role for lpr2 in mediating
Drosophila vitellogenesis. lpr1 and lpr2 are transcribed into multiple isoforms. Interestingly, only a subset of these isoforms
containing a particular LDLR type A module mediate neutral lipid uptake. Expression of these isoforms induces the
extracellular stabilization of lipophorins. Furthermore, our data indicate that endocytosis of the lipophorin receptors is not
required to mediate the uptake of neutral lipids. These findings suggest a model where lipophorin receptors promote the
extracellular lipolysis of lipophorins. This model is reminiscent of the lipolytic processing of triglyceride-rich lipoproteins that
occurs at the mammalian capillary endothelium, suggesting an ancient role for LDLR–like proteins in this process.
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Introduction

Organisms need to tightly regulate the balance between energy

intake, usage and storage. Imbalances in these processes are at the heart

of several major human health problems such as obesity, cardiovas-

cular disease and diabetes [1]. In recent years, the use of Drosophila and

other genetically tractable model organisms has provided novel

approaches and insights into the study of the mechanisms controlling

energy balance. In particular, genetic screens have shown their

potential for the identification of novel genes and regulatory

mechanisms involved in the maintenance of lipid homeostasis.

Importantly, despite the evolutionary distance separating humans

from flies, many of the central pathways controlling metabolism are

conserved (for reviews, see [2–6]). Despite these advances, several basic

aspects of Drosophila lipid metabolism are still unknown. Here we focus

on the mechanisms controlling the cellular uptake of neutral lipids.

Most metazoans accumulate triacylglycerol (TAG), a strongly

hydrophobic molecule with a high energy content, as the main

substrate for energy storage. Large amounts of TAG are stored in fat

body cells, the Drosophila equivalent of adipocytes, but most other cell

types also accumulate limited amounts of it as intracellular lipid

droplets. Because of their hydrophobicity, the extracellular transport

of lipids requires dedicated mechanisms to increase their solubility in

extracellular fluids. In mammals, lipids are packed into several types

of lipoprotein particles which contain a hydrophobic core of neutral

lipids (mostly TAG and esterified cholesterol) surrounded by a

monolayer of phospholipids. In addition, apolipoproteins stabilize

and regulate these particles [7]. Similar lipoproteins, named

lipophorins, are also found in insects [8,9]. They share the same

basic structure and play similar functions as mammalian lipopro-

teins. In Drosophila, apolipophorins are exclusively synthesized in the

fat body [10,11], where they are partially lipidated and released into

the hemolymph. It has been suggested that lipophorins act as a

reusable shuttle in lipid transport. Lipids, primarily diacylglycerol

(DAG), derived from the digestion of food in the gut or from the

mobilization of lipids in the fat body, are loaded onto pre-formed,

circulating lipophorins, then transported through the body via the

hemolymph and unloaded upon reaching peripheral tissues for use

as a source of energy and phospholipids. During this cycling process,

negligible degradation of apolipophorin occurs [8,12].

In mammals, the Low Density Lipoprotein Receptor (LDLR) and

other related proteins mediate endocytosis and the clearance of

lipoproteins from plasma [13]. Similar proteins belonging to the

LDLR family, known as lipophorin receptors, were subsequently

identified in insects. They can bind to lipophorins and mediate their

endocytosis both in cell culture systems and in vivo [14–16]. Because

of these properties, it has been suggested that lipophorin receptors

may play an important role in insect lipid metabolism [17].
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Here, we examine the function of Drosophila lipophorin receptors

in the uptake of neutral lipids. We show that this organism has two

lipophorin receptor genes, the lipophorin receptor 1 (lpr1) and lpr2,

which are translated into multiple, functionally diverse isoforms.

lpr1 and lpr2 are required for neutral lipid uptake in imaginal disc

cells and oocytes. Our results suggest a model where lpr1 and lpr2

promote the extracellular hydrolysis of neutral lipids contained in

lipoprotein particles.

Results

Genomic organization and alternative splicing of
Drosophila lipophorin receptor genes

A defining characteristic of the LDLR family of transmembrane

receptors is the presence of an ectodomain containing specific

combinations of three types of protein modules: LDL receptor

type A modules (LA), also called complement-type repeats, EGF

modules and YWTD b-propellers [18]. This structural definition

was used to identify LDLR family members in the Drosophila

genome. Of the seven genes identified (Figure S1), two are

arranged in tandem and show a high degree of homology to insect

lipophorin receptors. On this basis, we named then lipophorin

receptor 1 (lpr1) and lpr2 (Figure 1A). The analysis of cDNA clones

generated during large scale transcriptomic studies [19] suggested

the existance of multiple isoforms for each gene. To further

characterize the range of isoforms derived from lpr1 and lpr2, we

obtained additional cDNAs from whole adult fly RNA, as well as

from RNA purified from specific tissues. These cDNAs were

genotyped by PCR and sequenced, leading to the identification of

a total of 6 isoforms for lpr1 and 5 for lpr2 (Figure 1B). The

different isoforms result from alternative splicing and from the use

of two alternative promoters for each gene, that we named

proximal and distal promoters, referring to their chromosomal

position with respect to the centromere. The number and

organization of exons are remarkably similar between the two

genes, with lrp1 and lpr2 exons in equivalent positions coding for

equivalent protein domains. Isoforms differ in three main

characteristics: (1) the number and identity of LA modules; (2)

the presence of an extended putative O-glycosylation region rich

in serine and threonine next to the transmembrane domain and (3)

the presence of an N-terminal domain with no homology to other

proteins (non-conserved N-terminal domain, NCN) (Figure 1B). It

is noteworthy that isoforms transcribed from the distal promoters

are predicted, using PrediSi software [20], to have unusually long

putative signal peptides: 68 and 88 amino acids for lpr1 and lpr2,

respectively. Isoforms transcribed from the proximal promoters

are predicted to have more typical signal peptides of 20 (lpr1) and

24 (lpr2) amino acids.

lpr1 and lpr2 are required for the accumulation of lipid
droplets in oocytes and imaginal disc cells

To examine the role of the lipophorin receptors in lipid

metabolism, we first generated three small deletions in the lpr1-lpr2

genomic region (Figure 1A). Df(3R)lpr1 completely deletes lpr1;

Df(3R)lpr2 deletes exons 1 to 8 of lpr2, including the promoters and

translation initiation codons, while Df(3R)lpr1/2 affects both genes.

The breakpoints for each deficiency were confirmed by PCR

analysis. Even though several lpr2 exons are still present in

Df(3R)lpr2 and Df(3R)lpr1/2 chromosomes, we did not detect Lpr2

protein expression in either deficiency using an antibody which

recognizes Lpr2 intracellular domain, which is common to all

Lpr2 isoforms (Figure S2C–S2F and not shown). This data

strongly suggests that Df(3R)lpr2 is a null allele for lpr2 and

Df(3R)lpr1/2 is a null allele for both lpr1 and lpr2. Flies with

mutations in individual lipophorin receptor genes as well as the

double mutant Df(3R)lpr1/2 were homozygous viable and

displayed fertility phenotypes: Df(3R)lpr1 females laid eggs which

hatched at rates similar to wild-type females (85.5% hatching rate

for Df(3R)lpr1 compared to 87.5% for the wild-type stock Oregon

R, n = 200). Df(3R)lpr2 females laid eggs but most of them failed to

hatch (0.5% hatching rate; n = 200). Df(3R)lpr1/2 females were

completely sterile, where the few eggs laid by young flies failed to

hatch. These results indicate that lpr2, and to a lesser extent lpr1,

are required for normal oogenesis. The Drosophila ovarian follicle is

composed of a 16-cell germ-line cyst with one oocyte and 15 nurse

cells, which is surrounded by somatic follicle cells. During

vitellogenesis, the oocyte and nurse cells increase in volume and

accumulate large amounts of yolk proteins and neutral lipids

(Figure 2F–2I) that are captured from the surrounding hemo-

lymph [21]. The Yolkless (Yl) receptor mediates the endocytic

uptake of yolk proteins [22,23]. However, no receptor involved in

lipid uptake has been reported. To analyze whether lpr1 or lpr2

mediate lipid uptake during vitellogenesis, we first examined the

lipid content of ovaries from wild-type and Df(3R)lpr2 females with

the lipophilic nile red dye. Accumulation of neutral lipids was first

visible in stage 9 wild-type egg chambers and reached a maximum

by the end of vitellogenesis at stage 11 (Figure 2F–2I). A marked

decrease in lipid droplets was observed in Df(3R)lpr2 egg chambers

(Figure 2J, compare to Figure 2G. Figure S3A) or when this

deficiency was combined with the double mutant Df(3R)lpr1/2

(not shown). Most of the embryos originating from Df(3R)lpr2

mutant oocytes could not complete embryogenesis and died at

various stages of development, showing generalized apoptosis and

pleiotropic phenotypes such as muscle detachment and nervous

system malformations (not shown). A small number of Df(3R)lpr2

egg chambers exhibited higher lipid levels (Figure S3A). It seems

likely that the few embryos that successfully hatched from

Df(3R)lpr2 females (0.5%) were derived from these egg chambers.

We used a Lpr2-specific antibody to examine the distribution of

Lpr2 in wild-type egg chambers, detecting Lpr2 protein at the

membranes of nurse cells and oocytes in vitellogenic egg chambers

(Figure 2C–2E). This expression was low at the beginning of

Author Summary

Understanding the complex mechanisms that regulate the
storage of caloric surpluses in the form of fat is critical in
view of the public health problems caused by the
continuous rise of obesity and diabetes. Important
advances in the field have been obtained from studies
using simple animal models like worms or flies. Here we
focus on the molecular mechanisms involved in how cells
capture neutral lipids from the extracellular milieu, using
the fruit fly Drosophila melanogaster as a model organism.
Lipids are transported through the blood or the insect
hemolymph as small particles known as lipoproteins. We
show that two Drosophila proteins related to the
mammalian Low Density Lipoprotein Receptor, Lipophorin
Receptor 1 and 2, are essential for the cellular acquisition
of neutral lipids from extracellular lipoproteins. We have
found that the endocytic uptake of the lipoprotein
particles was not required for this process. Instead, we
propose that lipophorin receptors favor the extracellular
hydrolysis of lipids contained in lipoproteins, followed by
uptake of the released free fatty acids. This process is
similar to the extracellular processing of lipoproteins that
takes place in the capillaries of mammals, suggesting an
ancient role for LDLR–related proteins in the extracellular
processing of lipoproteins.

Neutral Lipids Uptake in Drosophila
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vitellogenesis (stage 8, Figure 2C asterisk) and increased as the egg

chamber matured, being maximal at stage 11 (Figure 2E). In situ

hybridization detected a similar expression pattern for lpr2

transcripts (Figure 2B). Together, these results demonstrate that

Lpr2 is the major receptor involved in the uptake of neutral lipids

by nurse cells and oocytes. In contrast, our results indicate that lpr1

is not essential for this process since egg chambers from Df(3R)lpr1

females had normal amounts of neutral lipids (Figure 2L, Figure

S3A). However, lpr1 appears to play some role in oogenesis since

Df(3R)lpr1/2 females, which lack both receptors, exhibited

stronger and qualitatively distinct phenotypes compared to

Df(3R)lpr2 mutants. Ovaries from Df(3R)lpr1/2 females were

Figure 1. Genomic organization of lpr1 and lpr2 genes. (A) lpr1 and lpr2 are transcribed as multiple isoforms. Each gene has two promoters, a
distal promoter (DP) and a proximal promoter (PP). Only one isoform transcribed from each promoter is displayed in the figure. The complete list of
isoforms is detailed in panel B. Exons are labeled from 1 to 15. We generated three deficiencies Df(3R)lpr1, Df(3R)lpr2 and Df(3R)lpr1/2, which are
indicated as grey rectangles. A natural roo transposon is present in the second lpr2 intron. (B) Modular structure of Lpr1 and Lpr2 isoforms, showing
the correspondence between protein domains and exons (blue box on top). The existence of all depicted isoforms is supported by the isolation of
corresponding cDNAs. The UTR regions are marked in grey.
doi:10.1371/journal.pgen.1001297.g001

Neutral Lipids Uptake in Drosophila
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Figure 2. Lpr2 is required for the uptake of neutral lipids during Drosophila vitellogenesis. (A–B) lpr1 (A) and lpr2 (B) expression in wild-
type ovarioles detected by in situ hybridization. Transcripts of both genes were first visible in the nurse cells (n) of stage 8 egg chambers (asterisk)
and their levels increased thereafter. lrp1 transcripts were also detected in the follicle cells of mature egg chambers (A, arrow in inset). (C–E)
Immunostaining showing Lpr2 protein localization during oogenesis. Lpr2 is first detected at low levels in stage 8 egg chambers, coinciding with the
start of vitellogenesis (asterisks in C). (D) Magnification of a stage 10 egg chamber showing expression at the nurse cells (n) and oocyte (o)
membranes. Maximal expression was detected at stage 11 egg chambers (E and E’, two focal planes). (F–M) Nile red staining of egg chambers (F–H
and J–M) and one blastoderm stage embryos (I) to reveal lipid droplets (yellow, nile red dye fluorescence was captured in the green and red
channels). (F–I) Wild-type (wt) genotype. Neutral lipids start to accumulate at vitellogenic stages and reach a maximum in blastoderm embryos. Note
that near the end of vitellogenesis, nurse cells degenerate and dump their content into the oocyte. (F) stage 9 (asterisk), (G) stage 10 and (H) stage 11
egg chambers. (J–M) stage 10 egg chambers of the indicated genotypes. Accumulation of neutral lipids is reduced in Df(3R)lpr2 (J), Df(3R)lpr1/2 (K,
egg chamber outlined) and Df(3R)lpr1/2 germ-line clones (M) and is normal in Df(3R)lpr1 egg chambers (L). The Df(3R)lpr1/2 egg chamber shown in (K)
was dissected from young females in which a few egg chambers in each ovary escaped degeneration at mid oogenesis. (N, O) Egg chambers of wild-
type (N) and Df(3R)lpr1/2 (O) ovaries stained with DAPI to reveal the nuclei. Several stage 10 egg chambers display nuclear fragmentation in
Df(3R)lpr1/2 females (arrows in O). Scale bars: 100 mm. (F–M) shown at the same magnification.
doi:10.1371/journal.pgen.1001297.g002

Neutral Lipids Uptake in Drosophila
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severely reduced in size and contained abundant cellular debris.

DAPI staining revealed condensation and fragmentation of the

nurse cell nuclei at stages 9–10, indicating cell degeneration

(Figure 2O, compare to Figure 2N. Figure S3B), a phenotype not

observed in Df(3R)lpr2 females, explaining the egg laying

phenotype described for these mutants earlier. Starvation and

other adverse stimuli are known to activate an oogenesis

checkpoint that results in the apoptosis of egg chambers at mid-

oogenesis [24]. Thus, the degeneration of Df(3R)lpr1/2 ovaries

probably results from activation of this checkpoint. As expected,

the few non-degenerating stage 10 egg chambers that can be found

in young Df(3R)lpr1/2 females had extremely low lipid content

(Figure 2K). These results indicate that lpr1 has a partially

redundant function during oogenesis, which was only revealed in

the absence of lpr2. Accordingly, we detected lpr1 expression in

nurse cells and follicle cells by in situ hybridization and RT-PCR

(Figure 2A, Figure 5G) but not by antibody staining (not shown),

suggesting that Lrp1 protein levels might be low. Oogenesis is a

complex process regulated by hormonal signals that relay

information about the nutritional status of the female and other

stimuli [25]. Thus, it is conceivable that mutations in lpr1 and lpr2

could affect oogenesis, at least in part, by altering the hormonal or

nutritional status of the female. To address this point, we

eliminated lpr1 and lpr2 exclusively in the oocyte and nurse cells

by generating Df(3R)lpr1/2 germ-line clones. The resulting females

were sterile but laid abundant non-viable eggs, the egg chambers

had low lipid content (Figure 2M) and no signs of degeneration

were observed at mid oogenesis (not shown). Taken together, these

experiments indicated that lpr2 and to a minor extent lpr1, are

autonomously required in the oocyte and nurse cells to mediate

lipid uptake during vitellogenesis. In addition, they suggest that

somatic expression of the lipophorin receptors contributes to the

regulation of the mid-oogenesis checkpoint.

To examine whether lpr1 or lpr2 are involved in lipid uptake in

other tissues, we analyzed larval imaginal discs, an epithelial tissue

known to accumulate abundant intracellular lipid droplets [26].

Wild-type wing imaginal discs displayed strong neutral lipid

accumulation in the wing pouch region (Figure 3A). In contrast,

Df(3R)lpr1/2 wing imaginal discs exhibited severely reduced levels

of intracellular lipids droplets (Figure 3B), suggesting that

lipophorin receptors might mediate neutral lipids uptake in

imaginal disc cells in a similar way to the oocyte. Significantly,

animals with single mutations in lpr1 or lpr2 did not exhibit this

strong phenotype: Df(3R)lpr1 discs were undistinguishable from

wild-type discs (Figure 3C) while Df(3R)lpr2 discs showed a mild

reduction in lipid droplet content (Figure 3D), indicating that the

functions of lpr1 and lpr2 are mostly redundant in this tissue.

Consistent with a redundant function, we detected transcripts of

both lpr1 and lpr2 in the wing pouch region by in situ hybridization

(Figure 3E, 3F and [27]). High levels of Lpr2 protein were also

detected in the wing pouch by immunostaining, with two stripes of

lower expression along the antero-posterior and dorso-ventral

compartment borders (Figure 3G, 3H).

To examine whether Drosophila lipophorin receptors had an

impact on total lipid content, we measured total TAG content in

Df(3R)lpr1, Df(3R)lpr2 and Df(3R)lpr1/2 male flies under a normal

diet as well as under starvation conditions. No differences were

observed between the three genotypes and the wild-type control

(Figure S4A–S4F and Text S1). The fat body stores most of the

fly’s TAG reserves and in agreement with our previous results, we

did not observe differences in the number or size of lipid droplets

in the fat body of Df(3R)lpr1/2 and control animals (Figure S4G–

S4J), suggesting that TAG storage in the fat body is independent

of the lipophorin receptors. Finally, since impaired neutral lipid

Figure 3. lpr1 and lpr2 are required for the uptake of neutral
lipids by wing imaginal disc cells. (A–D) Wild-type (A), Df(3R) lpr1/2
(B), Df(3R)lpr1 (C) and Df(3R)lpr2 (D) wing imaginal discs stained with
nile red to reveal lipid droplets (yellow). In lpr1-, lpr22 double mutant
there is a sharp decrease in lipid accumulation (B) whereas lpr22 discs
display a mild reduction (D). (E, F) in situ hybridization to detect lpr2 (E)
and lpr1 (F) mRNA expression in wild-type wing imaginal discs. Both
genes are mainly expressed in the wing pouch area. Insets show a
Df(3R)lpr1/2 disc (E) and a Df(3R)lpr1 disc (F) as negative controls. (G–H)
Immunostaining with a-Lpr2 antibody detected expression in the wing
pouch area of wild-type imaginal discs with minimal expression near
the antero-posterior (arrow) and dorso-ventral compartment boundar-
ies. (H) Magnification of the disc shown in (G). Lpr2 accumulates at
baso-lateral membranes. Scale bars: 100 mm (A, G) and 25 mm (H). (A–F)
shown at the same magnification.
doi:10.1371/journal.pgen.1001297.g003
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uptake by peripheral tissues could have an impact on circulating

lipid levels, we measured TAG content in the hemolymph of

control, Df(3R)lpr1, Df(3R)lpr2 and the double mutant animals. We

did not observe statistically significant differences between the four

genotypes (Figure S4K and Text S1).

Only a subset of lipophorin receptor isoforms mediates
the uptake of neutral lipids

lpr1 and lpr2 are transcribed as multiple isoforms (Figure 1B),

raising the issue of whether they share similar properties regarding

lipid uptake. To answer this question, we first compared the

isoforms transcribed from the corresponding distal versus proximal

promoters. We generated two HA-tagged transgenes that allowed

controlled expression of Lpr2F isoform (UAS-lpr2F) and Lpr2E

isoform (UAS-lpr2E) and examined their ability to rescue lipid

uptake in Df(3R)lpr1/2 animals. Expression of UAS-lpr2E in the

posterior compartment of the wing imaginal disc driven by en-gal4

completely rescued lipid accumulation in that compartment

(Figure 4A). In contrast, expression of UAS-lpr2F did not rescue

lipid uptake (Figure 4B). In a similar assay, we found that whereas

Lpr1H isoform rescued lipid uptake, expression of Lpr1D did not

(Figure 4C, 4D). Equivalent results were obtained when we

examined the role of these isoforms during vitellogenesis. Germ-

line expression of UASp-lpr1J or UASp-lpr2E, driven byV32-gal4,

rescued oogenesis and fertility of Df(3R)lpr1/2 females. The

amount of lipid droplets accumulated in nurse cells was similar to

the wild-type (Figure 5C, 5E, compare to wild-type in Figure 2G)

and the number of degenerating egg chambers was dramatically

reduced (Figure 5D, 5F and Figure S3B). In contrast, expression of

UASp-lpr2F did not rescue fertility, lipid uptake nor egg chamber

degeneration (Figure 5A, 5B).

The LA-1 module, present in all isoforms transcribed from
the distal promoters, defines the capacity to mediate
neutral lipid uptake

The surprising finding that only a subset of lpr1 and lpr2

isoforms tested were able to mediate lipid uptake prompted us to

examine the essential protein domains required for this function.

Lipid uptake-promoting isoforms Lpr1H and Lpr2E are both

transcribed from the corresponding alternative distal promoters

and contain a non-conserved N-terminal domain (NCN) adjacent

to the LA module 1 (LA-1), encoded by exons 2 and 3 respectively.

In contrast, these domains are not present in the lipid uptake-

defective Lpr2F and Lpr1D isoforms (Figure 1B). Thus, a

sequence critical for the uptake of neutral lipids may lie in this

N-terminal region. However, given that Lpr1H and Lpr2E both

contain eight LA modules whereas Lpr2F and Lpr1D have seven,

it is also possible that the total number of LA modules is the key

factor in defining lipid uptake function. To test the role of the

NCN and LA-1, we made a chimeric protein identical to Lpr2F

except for its signal peptide, which was replaced with the NCN

and LA-1 domains from Lpr2E, generating UAS-lpr2F+LA1+NCN.

Overexpression of this transgene in the posterior compartment of

Df(3R)lpr1/2 wing imaginal discs completely rescued the accumu-

lation of lipid droplets in this compartment (Figure 4F), demon-

strating that this N-terminal segment was able to confer lipid

uptake activity. To analyze whether NCN, LA-1 or both domains

were required, we prepared two more transgenes. In UAS-

lpr2F+LA1, the LA-1 domain from Lpr2E was inserted in between

the signal peptide and LA-2 of Lpr2F. In UAS-lpr2F+NCN, the

lpr2F signal peptide was replaced by the lpr2E NCN domain

(Figure 4G, 4H). Using our rescue assay, only UAS-lpr2F+LA1 was

able to mediate lipid uptake (Figure 4G, 4H). Thus, the NCN

domain, even though present in all tested lipid uptake-promoting

isoforms, was not essential for this function. These results

suggested that the LA-1 module was critical for the uptake of

neutral lipids. However, we still could not exclude the possibility

that it is the number rather than the identity of LA modules that

determines lipid uptake capacity. To analyze this possibility, we

examined the Lpr1J isoform which is identical to the lipid uptake-

promoting Lpr1H isoform except that it has seven LA modules

due to the absence of LA-4. In our rescue assay, Lpr1J did mediate

lipid uptake (Figure 4E), indicating that it is the presence of LA-1

and not the number of LA modules that defines the ability to

mediate lipid uptake. Moreover, in an additional transgene we

modified Lpr2F by introducing a tandem duplication of LA-2, so

that the new protein (Lpr2F+LA2) had eight LA modules but still

lacked LA-1. Lpr2+LA2 did not mediate lipid uptake, confirming

our previous conclusion (Figure 4I). Taken together, these

experiments indicate that the key property that distinguishes lipid

uptake-promoting from lipid uptake-defective isoforms is the

presence of the LA-1 domain. It should be noted that all isoforms

containing LA-1 are transcribed from the distal promoters.

Consistent with the lipid uptake phenotypes of Df(3R)lpr1/2

mutants in wing imaginal discs and ovaries, RT-PCR experiments

showed that the predominant lpr1 and lpr2 isoforms expressed in

these tissues were transcribed from the distal promoters and thus

contained the LA-1 domain (Figure 5G).

Endocytosis is not required for the uptake of neutral
lipids in the oocyte or imaginal discs

During the rescue experiments described in the previous

sections, we realized that expression of UAS-lpr2E in the posterior

compartment driven by en-gal4 not only autonomously rescued

lipid uptake in that compartment but also promoted the formation

of lipid droplets in a one to two cells wide region of anterior tissue

abutting the anterior-posterior compartment border (Figure 6B,

arrow). Analysis of confocal sections spanning the thickness of the

imaginal disc confirmed that cells not expressing UAS-lpr2E but

adjacent to expressing cells, accumulated higher levels of lipid

droplets than more anteriorly located cells (Figure 6A, arrow).

Similar results were obtained using a different Gal4 driver line to

express UAS-lpr2E in the dorsal wing disc compartment (Figure

S5C, S5D). To analyze whether non-autonomous lipid uptake

could be detected in other tissues, we returned to the egg chamber

because of its particular morphology. In the Drosophila egg

chamber, the oocyte and nurse cells are surrounded by a closely

associated somatic follicular epithelium. This allowed us to

examine whether expression of the lipophorin receptors in the

germ-line could non-autonomously direct lipid uptake in the

follicular epithelium. Follicle cells of ovaries dissected from

Df(3R)lpr1/2 females had very few lipid droplets (Figure 6C).

However, after V32-gal4-mediated expression of UASp-lpr2E

exclusively in the germ-line, we observed a remarkable increase

in the number and size of lipid droplets in the follicular epithelium

(Figure 6D). In fact, the rescue was similar to the one obtained by

the expression of the lipid uptake-promoting UAS-lpr1J isoform

directly in the follicle cells using the follicle cell driver CY2-gal4

(Figure 6E). These results indicated that Lpr2E can non-

autonomously promote neutral lipid uptake in adjacent cells.

All members of the LDLR family are known to mediate

endocytosis of ligands in clathrin coated vesicles [28]. In Drosophila,

Lpr1 and Lpr2 have been shown to endocytose lipophorins when

overexpressed in imaginal discs [11,27]. Thus, a possible

hypothesis for lipophorin receptor-mediated lipid uptake is that

the receptors induce the endocytosis of lipophorin particles

resulting in the catabolic hydrolysis of lipids in lysosomes.

Neutral Lipids Uptake in Drosophila
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Figure 4. Uptake of neutral lipids is mediated by a subset of lpr1 and lpr2 isoforms. (A–I) Wing imaginal discs of Df(3R)lpr1/2 genotype in
which the indicated lpr1 and lpr2 isoforms and chimeras were overexpressed in the posterior compartment using the en-gal4 driver. The relevant
protein domains of the overexpressed isoforms are depicted in the drawings, which follow the code shown in Figure 1. Neutral lipids are shown in
green and in grey in a separate channel. The overexpressed Lpr1 and Lpr2 proteins were detected by immunostaining using an antibody that
recognizes the HA tag except in panel D in which a-Lpr1 was used. Lpr2E (A), Lpr1H (C), Lpr1J (E), Lpr2F+LA1+NCN (F) and Lpr2F+LA1 (G) proteins
rescued lipid uptake in the posterior compartment whereas Lpr2F (B), Lpr1D (D), Lpr2F+NCN (H) and Lpr2F+LA2 (I) did not. Note that the presence of
LA-1 defines the isoform ability to rescue neutral lipid uptake. Scale bar: 100 mm. All panels are shown at the same magnification.
doi:10.1371/journal.pgen.1001297.g004
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However, our finding that lipophorin receptors have non-

autonomous activity appears to be in conflict with this simple

hypothesis, prompting us to test the requirement of endocytosis for

lipophorin receptor-mediated lipid uptake. We took advantage of

the fact that the Drosophila oocyte is a well characterized model of

endocytosis, and importantly, that the endocytic pathway can be

blocked in the oocyte and nurse cells without affecting their

survival [29,30]. We generated germ-line clones of a null rab5

mutation, an essential mediator of endocytic vesicle formation and

maturation [31]. As previously reported, rab52 mutant oocytes

were unable to accumulate yolk proteins, demonstrating that the

endocytic pathway was blocked [29,30] (Figure 6G’, compare to

6F’). More importantly, rab52 mutant egg chambers showed a

normal accumulation of intracellular lipid droplets, indicating that

the endocytosis of lipophorins is not required for neutral lipid

uptake during vitellogenesis (Figure 6G, compare to 6F). Similarly,

the AP-2 adaptor complex is not required for neutral lipid uptake

(Figure S6 and Text S1). Together, these results suggest that in

Drosophila, the neutral lipid uptake promoting activity of lipophorin

receptors occurs extracellularly and that the targeting of

lipophorins to lysosomes for their catabolic degradation is not

required. In this scenario, a possible mechanism for lipophorin

receptors to promote the uptake of neutral lipids would be by

stabilizing lipophorins at the extracellular matrix. We tested this

hypothesis by examining the extracellular distribution of lipophor-

ins in Df(3R)lpr1/2 imaginal discs that overexpressed UAS-lpr2E

in the posterior compartment. We observed increased accumula-

tion of extracellular lipophorins at the basolateral membranes

of cells expressing Lpr2E (Figure 7A, 7B, arrows). In contrast,

similar expression of the lipid uptake-defective Lpr2F isoform

had no visible effect on the extracellular distribution of

lipophorin (Figure 7C, 7D). Similar results were obtained

overexpressing UAS-lpr2E and UAS-lpr2F with additional gal4

drivers (Figure S7).

Discussion

Over the past decade, Drosophila has become a prominent model

organism for the study of lipid metabolism. Aspects ranging from

the composition and regulation of lipid droplets, to the

developmental control of adipose tissue differentiation or to the

hormonal regulation of lipid storage and mobilization have

revealed multiple parallels between Drosophila and mammals

[3,32]. Moreover, large scale genetic screens in Drosophila have

identified novel genes and pathways involved in energy homeo-

stasis, some of which are conserved in mammals [32–36]. In this

Figure 5. Germ-line expression of Lpr1J or Lpr2E rescues the oogenesis phenotypes of lpr1-, lpr22 double mutant females. (A–F)
Df(3R)lpr1/2 egg chambers overexpressing the lipid uptake-defective UASp-lpr2F isoform (A–B) or the lipid uptake-promoting UASp-lpr2E (C–D) or
UASp-lpr1J (E–F) isoforms in the germ-line driven by V32-gal4. (A,C,E) Lpr2F (A), Lpr2E (C) and Lpr1J (E) proteins were detected in the nurse cells (n)
and oocyte (o) membranes using an a-HA antibody (arrowheads, shown in green). Egg chambers were stained with the lipophilic nile red dye (red)
and DAPI (blue) to mark nuclei. (B, D, F) Ovarioles containing multiple egg chambers stained with DAPI. Several degenerating egg chambers are
labeled with a bracket in (B). Note that germ-line specific expression of UASp-lpr2E and UASp-lpr1J but not of UASp-lpr2F induced accumulation of
neutral lipids in nurse cells (arrows in C and E) and rescued mid-oogenesis degeneration (D and F, compare also with the wild-type and Df(3R)lpr1/2
egg chambers in Figure 2). (G) Semiquantitative RT-PCR showing the relative abundance of lpr1 and lpr2 transcripts in several tissues, as indicated
(wing imaginal discs, third instar larva fat body, ovary, adult fat body, adult brain and whole female fly). The oligo pairs used discriminated between
isoforms transcribed from the proximal promoter (PP) and from distal promoter (DP). Analysis of ribosomal protein rp49 transcription was included as
a control. Scale bars: (A, C and E) 50 mm, (B, D and F) 100 mm.
doi:10.1371/journal.pgen.1001297.g005
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context, we have studied an aspect of lipid metabolism that was

largely unknown in Drosophila: the cellular uptake of neutral lipids

mediated by the lipophorin receptors.

The Drosophila genome contains two closely related genes (lpr1

and lpr2, Figure 1A) homologous to other described lipophorin

receptors in insects like locust, mosquitoes, cockroaches, silkworm,

wax moth or bees [14,37–41]. Insect lipophorin receptors were

first isolated because of their homology to the mammalian LDLR

and subsequently shown to be involved in insect lipid metabolism.

In particular, the locust Lipophorin Receptor, by far the best

characterized member of the family, was able to induce the

endocytic uptake of labeled lipophorins when expressed in

mammalian cells [42]. Moreover, it was required for the

endocytosis of lipophorins by locust fat body cells [15,16]. Here,

we generated several novel mutations in Drosophila which disrupted

lpr1, lpr2 and, in view of a possible functional redundancy between

Figure 6. Neutral lipid uptake does not require endocytosis. (A–B) Wing imaginal disc of Df(3R)lpr1/2 genotype expressing UAS-lpr2E in the
posterior compartment driven by en-gal4. Neutral lipids were revealed by nile red staining (red). Lpr2E distribution was detected with a-HA antibody
(green). Lipophorin distribution is shown in magenta to mark cell outlines. The wing imaginal disc is shown in a cross-section in (A), with the apical
side at the top and the basal at the bottom. A basal section of the same disc is shown in (B). Note that Lpr2E expressing cells and two rows of
adjacent non-expressing anterior cells (arrows) accumulate high levels of lipid droplets in a basal location. A line marks the limit of Lpr2E expression.
Nile red staining is also shown in a separate panel (B’). (C–E) Detail of the somatic follicle epithelium (f) wrapping around the oocyte (o) in a stage 10
egg chamber dissected from a Df(3R)lpr1/2 female (C) and similar Df(3R)lpr1/2 mutant egg chambers overexpressing UASp-lpr2E in the germ-line
driven by V32-gal4 (D) or UAS-lpr1J in the follicular epithelium driven by CY2-gal4 (E). Lpr2E and Lpr1J were detected with an a-HA antibody (green).
The oocyte membrane was marked with a dotted line. Overexpressed proteins accumulated at the oocyte membrane (arrow in D) and at the apical
region of the follicle cells (arrow in E). DAPI marks the cell nuclei (blue). Lipids are shown in grey as a separate channel (C’, D’ and E’). Note that
expression of UASp-lpr2E in the nurse cells and oocyte induces an autonomous increase in lipid accumulation in these cells and also a non-
autonomous rescue in the adjacent follicular epithelium (yellow arrows in D’). Expression of Lpr1J in the follicular epithelium rescues lipid
accumulation in these cells to a similar extent (yellow arrows in E’). Note that the Df(3R)lpr1/2 egg chamber shown in (C) was dissected from young
females in which a few egg chambers from each ovary escaped mid oogenesis degeneration. (F–G) Egg chambers stained with the lipophilic dye nile
red (red) and DAPI (blue) to mark cell nuclei. (F) Wild-type genotype. Note the accumulation of lipids (arrow) in the nurse cells (n) and the auto-
fluorescence of yolk proteins (Y) (in F’) in the DAPI channel within the oocyte (o). (G) rab5 mutant egg chamber. Lipids accumulate in the nurse cells
(arrow) similarly to the wild-type but no yolk proteins are present in the oocyte (G’), confirming that endocytosis is blocked in the rab5 genetic
background. Scale bars: 10 mm (A–B), 20 mm (C–E), 100 mm (F–G).
doi:10.1371/journal.pgen.1001297.g006
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the two receptors, we also generated a deficiency that affects both

genes simultaneously (Df(3R)lpr1/2), representing a null mutation

for lipophorin receptor function (Figure 1A). Despite the critical

role lipophorins play in lipid transport in insects [8,17] and the

embryonic lethal phenotype of a null mutation in the single

Drosophila apolipophorin gene [11], complete disruption of both

Drosophila lipophorin receptors does not affect the viability of flies.

Moreover, we did not detect any significant change in total body

TAG content when we compared animals with mutations in lpr1,

lpr2 or the double mutant with their isogenic controls (Figure S4A–

S4C). Moreover, the fat body cells of mutant and control animals

were indistinguishable, containing similar number of lipid droplets

and of equivalent sizes (Figure S4G–S4J). The rate of lipid

mobilization under starvation conditions was also unaffected in

lpr1 and lpr2 mutants (Figure S4D–S4F). Taken together, these

results clearly demonstrated that Drosophila lipophorin receptors

are not essential for the storage of TAG in the fat body or for its

mobilization. Despite this lack of a requirement, we detected lpr1

and lpr2 expression in the adult fat body (Figure 5G and Figure

S2C), and lipophorin receptors have been identified in the fat body

of other insects [14,39–41,43,44]. Thus, the lipophorin receptors

probably have functions in the fat body that are unrelated to the

uptake of neutral lipids. Significantly, it has recently been reported

that lpr2 is involved in immune response in Drosophila as a regulator

of the serpin Necrotic metabolism [45]. In addition, it was shown

in microarray experiments that lpr2 transcription changes upon

immune challenge [46]. Since the fat body is a key immunological

organ in the fly [47], it is possible that lpr2 expression in this tissue

is related to immunity.

We have shown that lpr1 and lpr2 have a key role in neutral lipid

uptake in two Drosophila organs: the imaginal disc and the ovaries.

In both cases, they are required to attain high levels of intracellular

TAG. lpr1 and lpr2 are expressed in the wing pouch region of wing

imaginal discs and mediate the uptake of neutral lipids by these

cells (Figure 3). Another protein involved in lipid storage as a

component of lipid droplets, the perilipin-like protein Lipid storage

droplet-2 (Lsd-2), is also preferentially expressed and required in

the wing pouch region for the accumulation of intracellular lipid

droplets [26]. Thus, lipid accumulation in this region of the disc

appears to be regulated at multiple levels. Unfortunately, the

functional relevance of this lipid accumulation is still unknown.

Our results indicate that lpr1 and lpr2 genes are transcribed as

multiple isoforms each (Figure 1B) with dramatically different

properties. Only those isoforms transcribed from the distal

promoters and containing the LA-1 module mediate lipid uptake.

Similarly, the lipophorin receptor gene from the mosquito Aedes aegypti

has been shown to be translated into fat body and oocyte specific

isoforms from two alternative promoters [48]. Several members of

the mammalian LDLR family are similarly processed by

alternative splicing. Variations in the O-glycosylation region and

the LA domains in mammalian VLDLR and ApoER2 have been

related to differential sensitivity to proteolytic processing by

gamma-secretases [49,50] and to differential ligand binding

[51,52], respectively. Thus, the multiple lpr1 and lpr2 isoforms

might have different ligand binding and/or stability properties,

allowing these receptors to be involved in processes as diverse as

neutral lipid uptake, regulation of the immune system [45] and

regulation of neurite outgrowth [53].

Lipophorin receptors function during oogenesis
During vitellogenesis, the nurse cells and the oocyte grow

rapidly accumulating large amounts of yolk proteins and lipids

from the hemolymph over approximately 18 hours [21,54]. Work

from the Mahowald lab has shown that Yolkless, an LDLR family

protein, mediates the endocytic uptake of yolk proteins in

Drosophila [22,23]. Here we demonstrate that a different receptor

type, the lipophorin receptor, is essential for the uptake of neutral

lipids during vitellogenesis (Figure 2). This is clearly shown in

Df(3R)lpr2 females and in double mutant lpr12, lpr22germ-line

clones. In both cases, the mutant egg chambers accumulate low

levels of neutral lipids (Figure 2J, 2M and Figure S3A). In addition

to impaired lipid uptake during vitellogenesis, we observed a

second phenotype in Df(3R)lpr1/2 double mutant females, where

most of the egg chambers degenerated at mid-oogenesis (Figure 2O

and Figure S3B). A simple explanation for this phenotype would

be that degeneration was triggered by the low lipid content of

Df(3R)lpr1/2 egg chambers. In fact, it is known that multiple

challenges like starvation, extreme temperatures or chemical

treatments, trigger a mid-oogenesis checkpoint and induce

apoptosis at this stage [24]. Significantly, flies with a mutation in

the gene midway, which encodes an acyl coenzyme A: diacylgly-

cerol acyltransferase required for the synthesis of TAG, were

Figure 7. Lpr2E stabilizes lipophorins in the extracellular
space. (A–D) Df(3R)lpr1/2 wing imaginal discs overexpressing the lipid
uptake-promoting UAS-lpr2E isoform (A–B) or the lipid uptake-defective
UAS-lpr2F isoform (C–D) in the posterior compartment driven by en-
gal4, shown in green. A modified immunostaining protocol was used to
detect extracellular lipophorin (red, also shown in a separate panel in
grey). (A, C) Optical cross-sections. Apical (a) and basal (b) sides as
indicated. (B, D) Optical basal section. Cells overexpressing Lpr2E
displayed increased accumulation of extracellular lipophorins at
basolateral membranes near the basal side of the imaginal disc (arrows
in A and B). The accumulation was more prominent near the antero-
posterior compartment boundary, a region that also displayed higher
Lpr2E protein levels. No noticeable changes in extracellular lipophorin
were detected in cells overexpressing UAS-lpr2F (C–D). Scale bar: 10 mm.
All panels are shown at the same magnification.
doi:10.1371/journal.pgen.1001297.g007
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described to have severely reduced levels of neutral lipids in the

germ-line and displayed apoptosis at mid oogenesis, thus

paralleling the Df(3R)lpr1/2 phenotype [55]. However, it was

difficult to fully attribute degeneration to low lipid levels as we

observed some experimental conditions which resulted in egg

chambers with very low levels of neutral lipids but that did not

undergo degeneration. In particular, in Df(3R)lpr1/2 germ-line

clones degeneration was absent even though the neutral lipid

content of the egg chambers was low (Figure 2M). Similarly,

expression of UAS-lpr1J exclusively in the follicle cells of

Df(3R)lpr1/2 females abolished egg chamber degeneration even

though neutral lipid accumulation in the nurse cells and oocytes

was low (Figure 6E and not shown). These experiments suggest

that the lipophorin receptors might have an additional function in

the follicle cells which is necessary to avoid egg chamber

degeneration. Accordingly, we detected lpr1 expression in the

follicular epithelium (Figure 2A, inset). In this direction, it has

recently been described that blocking the nutrient sensing TOR

pathway in follicle cells induced apoptosis at mid oogenesis [56].

Thus, Lpr1 could be required to maintain elevated levels of TOR

activity in follicle cells. In interpreting these results, we should also

consider the non-autonomous effects of lipophorin receptors. We

have shown that expression of UAS-lpr2E exclusively in the oocyte

and nurse cells increases lipid uptake in the follicle cells

(Figure 6D), which could potentially impact on their nutritional

status and restore their putative anti-apoptotic activity. Converse-

ly, expression of the transgene in the follicle cells might slightly

increase lipid uptake by the oocyte and nurse cells, even though we

have been unable to detect this effect (Figure 6E), and provide

enough lipids to bypass the mid-oogenesis checkpoint. More

studies will be required to assess the role of the lipophorin

receptors in the follicular epithelium.

A speculative molecular model for lipid uptake mediated
by the lipophorin receptors

Drosophila Lpr1 and Lpr2 are bona fide members of the LDLR

family, sharing a similar organization of proteins domains with the

human LDLR, ApoER2 and VLDLR. The human LDLR is the

archetypical endocytic receptor. It is expressed in the liver where it

mediates the endocytosis of cholesterol-rich LDL, regulating LDL

concentration in serum. Endocytosis of LDL results in the

catabolic processing of both, the lipidic and proteic moieties of

LDL in lysosomes [13]. Other members of the LDLR family are

also well known endocytic receptors with a broad variety of ligands

[28,57]. Drosophila lipophorin receptors can also mediate endocy-

tosis of their ligands. It has recently been reported that Lpr1 is

expressed in garland cells and pericardial athrocytes where it is

critical for the endocytic clearance of serpin/protease complexes

from the hemolymph, thus regulating the innate immune response

[45]. Overexpression of Lpr1 and Lpr2 in imaginal discs also

induced the endocytosis of lipophorins, which colocalized with

endocytic markers [11,27]. Similarly, the locust lipophorin

receptor mediated lipophorin endocytosis in the fat body and in

cell culture [14–16]. Despite this well documented endocytic

activity of LDLRs, our data demonstrates that neutral lipid uptake

mediated by Drosophila lipophorin receptors does not require the

endocytosis of lipophorin particles. Three lines of evidence support

this conclusion: (1) Blocking endocytosis did not affect lipid uptake

in the egg chambers (Figure 6G and Figure S6); (2) overexpression

of Lpr2E in groups of imaginal disc cells induced lipid uptake both

in cells expressing the receptor and in a 1–2 cell diameter region of

adjacent cells (Figure 6A, 6B, and Figure S5C, S5D) and (3)

expression of Lpr2E in the oocyte and nurse cells promoted lipid

uptake in the adjacent, somatic follicular epithelium (Figure 6D).

Our results also indicate that Lpr2E is able to locally increase the

concentration of lipophorins in the extracellular space (Figure 7A,

7B and Figure S7B, S7D, S7F). Taking into account this data, we

propose the following model for lipophorin receptor-mediated

neutral lipid uptake: lipophorin receptors interact with lipophorins

at the cell surface and promote the extracellular hydrolysis of their

DAG core by facilitating the activity of an as-yet-unidentified

lipase, associated with the extracellular matrix. The free fatty acids

generated during DAG hydrolysis could diffuse a few cell

diameters away before being captured by cells, explaining why

lipophorin receptors can promote lipid uptake non-autonomously.

Significantly, physiological data obtained from studies of flight

muscles and oocytes in insects indicated that lipid uptake mostly

occurs without the concomitant degradation of the apolipophorin

(for reviews, see [54,58]), which is consistent with our hypothesis.

Moreover, a lipophorin-specific lipase activity associated with

muscle and oocyte cell membranes was detected [54,58]. Our

model offers a possible explanation to understand why only a

subset of lpr1 and lpr2 isoforms mediates lipid uptake, whereby

only the lipid-uptake promoting isoforms can stabilize lipophorins

in the extracellular matrix (Figure 7 and Figure S7). Alternatively,

if lipophorin receptors must interact with both, a lipophorin

particle and a lipase to generate a ternary complex and facilitate

lipolysis, then the lipid uptake-defective isoforms might lack the

ability to interact with the lipase. Identification of such putative

lipase(s) will be necessary to test this hypothesis. The proposed

model displays a number of resemblances to the lipolytic

processing of triglyceride-rich lipoproteins in the microvascular

endothelium of adipose tissue, heart and striated muscles in

mammals. Circulating triglyceride-rich lipoproteins, chylomicrons

from the intestine and VLDL synthesized by the liver, reach the

capillary endothelium where they interact with lipoprotein lipase

at the luminal surface. Lipoprotein lipase is essential for the

lipolytic processing of chylomicrons and VLDL, generating non-

esterified fatty acids from the TAG fraction of lipoproteins. The

free fatty acids are then transported to the underlying adipocytes

and myocytes by specific transporters such as CD-36. Once inside

these cells they are re-esterified into newly synthesized TAG stores

or enter the b-oxidation cycle (for a recent review, see [59]).

Recent data indicated that the extracellular lipolysis of TAG-rich

lipoproteins is strongly potentiated by the endothelial protein

GPIHBP1. This protein is essential for the transcytosis of

lipoprotein lipase from the basolateral to the apical capillary

endothelial surface [60]. In addition, it has been suggested that it

may facilitate lipolysis by simultaneously interacting with lipopro-

tein lipase and chylomicrons in the luminal surface of capillaries,

providing a molecular platform for lipolysis to occur [61]. In

agreement with this essential functions, Gpihbp1-deficient mice

manifested severe hyperchylomicronemia [61]. The VLDLR,

which is also expressed at the capillary endothelium, seems to

participate in the lipolytic processing of TAG-rich lipoproteins in

similar ways. The VLDLR can mediate the transcytosis of

lipoprotein lipase across cultured endothelial cells [62] and

interacts with both, lipoprotein lipase and ApoE containing

TAG-rich lipoproteins, potentially tethering them to the endothe-

lium surface and thus promoting the action of lipoprotein lipase

(for a review, see [63]). These potential functions were supported

by the phenotype of vldlr2 mice, which showed delayed clearance

of TAG-rich lipoproteins after a meal [64] and increased plasma

TAG levels under a high fat diet [65] but normal lipoprotein

profiles under regular feeding conditions [66]. Unfortunately,

these weak phenotypes have hampered the elucidation of the

precise roles that VLDLR plays during the processing of TAG-rich

lipoproteins in vivo. We propose that in Drosophila, lipophorin
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receptors have an activity similar to the bridging role proposed for

GPIHBP1 and VLDLR in mammals, bringing lipophorins and a

putative lipophorin-specific lipase into close contact on the cell

surface and promoting in this way the lipolysis of lipophorins. We

speculate that during evolution, a protein related to VLDLR had a

critical role in promoting the extracellular hydrolysis of lipopro-

teins. In insects, this function is carried out by the lipophorin

receptors whereas in mammals, GPIHBP1 appears to have taken

most of this function, with VLDLR retaining a minor role. Our

data supports an ancient function for the LDLR family in

promoting the extracellular lipolytic processing of lipoproteins.

Methods

Genetics
Generation of deficiencies in the lpr1-lpr2 genomic region: The

three deficiencies used in this work were created by flipase-

mediated interchromosomal recombination between the following

pairs of FRT-containing transposon insertions: Df(3R)lpr1:

P{XP}d03066 and P{XP}d10508 to generate a 19.7 Kb deletion;

Df(3R)lpr2: PBac{RB}e00374 and PBac{WH}f03030 to generate

a 29.7 Kb deletion; and Df(3R)lpr1/2: PBac{RB}e00374 and

P{XP}d10508 to generate a 49,7 Kb deletion [67,68]. The

deficiency breakpoints were checked by PCR using appropriate

primers flanking the predicted breakpoints.

To generate Df(3R)lpr1/2 clones in the female germ-line,

Df(3R)lpr1/2 was recombined with FRT82B [69] using standard

genetic techniques. Females of the genotype: y,w,hs-flp; FRT82B,

Df(3R)lpr1/2/FRT82B,ovoD1 were heat-shocked for one hour at

37uC several times during larval stages. The resulting adult

females were fed yeast over two days before their ovaries were

dissected and processed for immunostaining. To generate rab5

germ-line clones, females of the genotype y,w,hs-flp; rab5,FRT40A/

ovoD1,FRT40A were similarly treated. The rab5,FRT40A/CyO stock

was obtained from Antoine Guichet [30]. FRT82B,ovoD1 and

ovoD1,FRT40A chromosomes were described in [70].

To quantify egg hatching rates, less than a week old adults of the

following genotypes: wild-type Oregon R, w;Df(3R)lpr1/TM6 and

w;Df(3R)lpr2/TM6 were kept on abundant yeast paste for two

days. Homozygous females were selected and allowed to lay eggs

in apple plates for periods of 4 hours. About 200 eggs were

individually placed in agar plates and incubated at 25uC for

48 hours. The number of empty egg shells and non-eclosed eggs

was quantified.

Isolation and characterization of lpr1 and lpr2 isoforms
and RT-PCR

Some of the cDNAs corresponding to lpr1 and lpr2 isoforms used

in this work were isolated and sequenced by the Berkeley Drosophila

Genome Project [19]. In particular, we used the following full length

cDNAs: Lpr1D (RE14223), Lpr1H (LD21010), Lpr1J(RE40649),

Lpr2F (GH26833) and Lpr2E (LD11117). To identify additional

isoforms, total RNA was isolated from whole adult male flies and

specific tissues -wing imaginal discs, ovaries, adult brain and adult

fat body- using Trizol reagent (Invitrogen). 1 mg RNA for each

sample was retrotranscribed using random primer and Transcriptor

Reverse Transcriptase (Roche). The obtained cDNA libraries were

PCR amplified using four oligo pairs which specifically amplified

the complete coding regions corresponding to lpr1 and lpr2 genes

transcribed from the proximal and distal promoters. The PCR

products were directly cloned into pGEM-T (Promega) or alter-

natively, used for a second nested PCR reaction before purification

and cloning of the products. 33 isolated cDNAs were genotyped

by PCR and selected clones were also verified by sequencing to

unambiguously define their specific combination of exons. Signal

peptides were predicted using the SignalP 3.0 Server [71] and

Predisi [20].

RT-PCR was used to examine lpr1 and lpr2 transcription in

whole adult flies, larval fat body, wing imaginal discs, ovaries,

adult brains and adult fat body. For adult fat body preparation,

abdomen carcasses were used which primarily contained fat body.

However, contaminating tissues including oenocytes, dorsal vessel,

epidermis and muscle were also present in small quantities. Two

oligo pairs were used for each gene, which specifically detected

exons 2–3 (distal promoter isoforms; lpr1: attcggcaaatgctgcactgc

and tgtgatccttgcagtccgcatc, lpr2: accacccagtcagagttaacaac and

tgtggtccgggcaatccgagga) and exons 4–5 (proximal promoter iso-

forms; lpr1: cgaacctctcaaccaaacggat and gccagaacgcgaaaactttgg,

lpr2: aagaaacggacgtgtgtgctc and ccaatccgacgactctggag). In addi-

tion, oligo pairs for the ribosomal protein gene rp49 were used as

control (gaccatccgcccagcatacaggc and gagaacgcaggcgaccgttgg).

The oligos were designed to amplify a region encompassing an

intron to distinguish cDNA products from genomic DNA pro-

ducts. A rough estimate of relative expression levels in the different

tissues was obtained by comparing the PCR products at 20 and 30

cycles to avoid reaching an amplification plateau.

Immunostaining, in situ hybridization, and neutral lipids
visualization

To generate a-Lpr1 and a-Lpr2 antibodies, DNA fragments

containing the complete Lpr1 or Lpr2 intracellular domains were

amplified by PCR from lpr1 cDNA RE38584 and lpr2 cDNA

GH26833. The fidelity of the amplification was checked by

sequencing and the fragments were cloned in-frame with the

6xHis tag present in the bacterial expression vector pET14b.

Protein expression was induced in E. coli. The Lpr1 fragment was

purified under denaturing conditions by immobilized metal

affinity chromatography (IMAC) and dialyzed to remove urea.

The protein precipitated during dialysis and the precipitate was

used to immunize guinea pigs. Lpr2 fragment was purified from

the soluble fraction by IMAC. Antibodies were raised in guinea

pigs by Cocalico biologicals, Inc. Other antibodies used were:

rabbit anti-apolipophorin 1:500 [10]; rat anti-HA 1:500 (Roche);

and the dye DAPI to label nuclei.

For immunostaining, imaginal discs and ovaries were dissected

and fixed for 20 minutes with 4% formaldehyde dissolved in PBS

(PP) at room temperature, followed by a second fixation in PP plus

0.1% triton X-100. Tissues were extensively washed for 1 hour in

PBS containing 0.3% triton X-100 (PBT) and blocked in 1% BSA

dissolved in PBT for another hour. After incubation with the

primary antibodies overnight at 4uC, tissues were extensively

washed three times for a total of one hour in PBT and incubated

with the fluorescent secondary antibodies (alexa-fluor conjugates

from Invitrogen) for two hours (imaginal discs) or overnight

(ovaries). After washing, tissues were mounted in vectashield

media.

To detect extracellular lipophorins in imaginal discs, we used an

extracellular staining protocol modified from [72]. Imaginal discs

were dissected and accumulated in Sf-900 cell culture media

(Invitrogen) on ice. They were incubated with a-Lipophorin

antibody diluted 1:100 in cell culture media for 30 minutes with

constant rocking and washed four times for a total of 30 minutes

with PBS. Incubations and washes were done at 4uC to inhibit

antibody endocytosis. Imaginal discs were then fixed with PP and

from this point on processed following the standard immunostain-

ing procedure.

Neutral lipids in imaginal discs and ovaries were visualized by

nile red staining. Fixed tissues were incubated with 0.002% nile
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red diluted in PBT for 60 minutes and washed for 10 minutes

in the same buffer without the dye. To prepare embryos for

microscopy, we avoided the use of organic solvents that would

otherwise extract neutral lipids. Thus, after removing the chorion

with bleach, we fixed embryos with a heat treatment of 5 seconds

at 90uC and devitelinized them by hand using a sharp needle. The

embryos were then incubated with the nile red solution as above.

We analyzed the tissue distribution of lpr1 and lpr2 transcription

by in situ hybridization using DIG-labeled antisense RNA probes.

Some probes were specific to particular isoforms whereas others

recognized all isoforms derived from lpr1 or lpr2. They were

prepared from the following DNA fragments: (1) All lpr1 isoforms:

a 594 base pair DNA fragment including 64 base pairs from the C-

terminal coding region and part of the 39UTR of cDNA

RE14223. (2) All lpr2 isoforms: a 581 base pair fragment including

91 base pairs from the C-terminal coding region of cDNA

GH26833 and part of its 39UTR. (3) lpr1 isoforms transcribed

from the distal promoter: a 413 base pair fragment derived from

exons 1 and 2 of cDNA LD21010. (4) lpr2 isoforms transcribed

from the distal promoter: a 500 base pair fragment derived from

exon 2 of cDNA LD11117. Since the two lpr genes are highly

homologous, probes were designed from the most divergent

regions to avoid cross-reactivity. Probes 1 and 2 were used in

Figure 3E, 3F and probes 3 and 4 in Figure 2A, 2B. The in situ

hybridization protocol was carried out according to [73]. To

illustrate immunostaining and in situ data, representative images

were selected from each experiment after analyzing a minimum of

10 individual imaginal discs or egg chambers from at least two

independent experiments.

Transgene construction and overexpression experiments
A UAS-lpr1D transgene was made by cloning the complete

coding sequence of lpr1 cDNA RE14223 [74] into the pUAST

plasmid [75]. UAS-lpr1B, UAS-lpr1J, UAS-lpr2F and UAS-lpr2E

transgenes were obtained by first amplifying the complete

corresponding coding regions by PCR using the following tem-

plates: LD21010, RE40649, GH26833 and LD11117 [74]

respectively. The resulting fragments were fused to a C-terminal

3xHA tag and transferred to pUAST attB [76] to obtain

transgenic flies by the integrase phiC31 based system [76]. This

method allows for the integration of the transgenes into the same

chromosomal location, minimizing positional effects on transcrip-

tion. All pUAST attB transgenes used were inserted into the 22A

landing site [76]. The pUAST or pUAST attB plasmids do not

allow expression in the germ-line. Thus, for expression in oocytes

and nurse cells we generated UASp-lpr1J, UASp-lpr2F and UASp-

lpr2E using the plasmid pUASP [77]. The inserts are identical to

UAS-lpr1J, UAS-lpr2F and UAS-lpr2E including the C-terminal

3xHA tag. To generate the lpr2F-lpr2E chimeras, a NotI site was

first inserted after Leu30, located between the signal peptide and

the LA-2 domain of lpr2F (GH26833) by directed mutagenesis,

generating pAC-lpr2F-NotI. NotI flanked fragments containing

LA1 (from Ser186 to Thr232) and LA2 (from Glu233 to Cys272)

were generated by PCR using lpr2E cDNA LD11117 as template,

subsequently cloned into the NotI site of pAC-lpr2F-NotI and

transferred to pUAST attB to generate UAS-lpr2F+LA1 and UAS-

lpr2F+LA2 respectively. UAS-lpr2F+LA1+NCN and UAS-lpr2F+
NCN were similarly generated by replacing the Asp718 (located

at the transcription start site)-NotI region of pAC-lpr2F-NotI

vector by fragments containing LA1+NCN (from Met1 to Thr232)

and NCN (from Met1 to Ile185) regions of lpr2E cDNA LD11117

obtained by PCR and flanked by Asp718 and NotI sites. In all

cases, the limits of the protein domains coincided with exon

boundaries. All chimeras also contain a C-terminal 3xHA tag.

En-Gal4, obtained from A. Martı́nez-Arias, was used to drive

expression at the posterior compartment of wing imaginal discs, V32-

Gal4, a gift from Daniel St Johnston, to drive expression at the germ-

line, and CY2-gal4 [78] to direct expression at the ovarian follicle cells.

Supporting Information

Figure S1 The LDLR family in Drosophila. Analysis of the

Drosophila genome using Blast searches and manual annotation

resulted in the identification of seven genes encoding transmem-

brane proteins containing the three protein domains that define

the LDLR family: YWTD b-propellers, LA modules and EGF

modules. The uncharacterized Drosophila genes CG42611,

CG33087 and CG8909 are probable orthologs of mammalian

Megalin, Lrp1/Lrp1b and Megf7 (also known as Lrp4) genes

respectively. The double line in the eight b-propeller of CG33087

protein represents a post-transcriptional cleavage (our unpublished

results) similar to the one described for mammalian Lrp1 protein.

LA modules colored in light green are not present in all isoforms.

Domain composition for the human VLDLR and the locust

lipophorin receptor are shown for comparison.

Found at: doi:10.1371/journal.pgen.1001297.s001 (1.20 MB TIF)

Figure S2 Specificity of a-Lpr1 and a-Lpr2 antibodies. (A–B)

Wild-type (A) and Df(3R)lpr1 (B) embryos were immunostained

with a-Lpr1 (green) and a-Salm (red), a oenocytes marker. Only

wild-type oenocytes were stained with a-Lpr1. The a-Lpr1 channel

is shown in (A’–B’). (C–D) Wild-type (C) and Df(3R)lpr2 (D) adult

fat body were immunostained with a-Lpr2 (green). Nuclei were

stained with DAPI (blue) and cell outlines were revealed with

phalloidin staining (red). Only wild-type fat body was stained with

a-Lpr2. The a-Lpr2 channel is shown in (C’–D’). (E–F) Wild-type

(E) and Df(3R)lpr2 stage 10 egg chambers immunostained with a-

Lpr2. Only the wild-type egg chamber shows staining. Scale bars:

10 mm (A–B), 50 mm (C–D) and 100 mm (E–F).

Found at: doi:10.1371/journal.pgen.1001297.s002 (3.88 MB TIF)

Figure S3 Oogenesis phenotypes. (A) Plot of individual data

points of nile red fluorescence from stage 10 egg chambers of

control (w), Df(3R)lpr1 and Df(3R)lpr2 genotypes, as indicated

(n = 40). Mean values are marked by red lines. Nile red

fluorescence of the nurse cells was quantitated using ImageJ

software and shown as mean gray values (from 0, black to 255,

white). Nuclei were excluded from the measurements as indicated

by a dotted line in the second egg chamber. Note that in all three

genotypes, data points have broad distributions, partially reflecting

maturation degrees of stage 10 egg chambers. w and Df(3R)lpr1

genotypes have similar distributions, whereas most of the

Df(3R)lpr2 egg chambers have low lipid content. Three egg

chambers stained with nile red (yellow) and DAPI (blue) and

quantitated as having 200, 130 and 60 nile red fluorescence

arbitrary units are shown for reference. (B) Ratio of egg chambers

at each vitellogenic stage for the indicated genotypes. Note that

most Df(3R)lpr1/2 egg chambers degenerate at stages 9–10. This

explains the almost complete lack of post-stage 9 egg chambers in

this genotype. Overexpression of UASp-lpr2E or UASp-lpr1J in the

germ-line of Df(3R)lpr1/2 females using the V32-gal4 driver

restores the distribution of egg chamber stages to wild-type.

Found at: doi:10.1371/journal.pgen.1001297.s003 (1.77 MB TIF)

Figure S4 lpr1 and lpr2 do not affect TAG storage or

mobilization in the fat body. (A–C) TAG content of a cohort of

adult fly males of the indicated genotypes (red line) was measured

at the time of eclosion (0 days) and at 2 days intervals thereafter.

For each experiment, a similar cohort of isogenic w1118 males was

used as control (blue line). Both, mutant and control flies were kept
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in the same bottle during the course of the experiment. No

significant TAG content differences were observed between w1118

flies and any of the three genotypes tested. Evolution of TAG

content with age is slightly different from experiment to

experiment, probably because of uncontrollable differences in food

quality and environmental conditions in each bottle. (D–F) TAG

content of a cohort of adult males of the indicated genotypes (red

line) kept under starvation conditions. At the start of the experiment

(hour 0), the males were 10 days old and had been kept with

abundant yeast paste until that time. At time 0, males were

transferred to a bottle containing only water and no nutrients and

TAG content was measured at 5 h intervals. Males of the isogenic

stock w1118 were included as control in all experiments (blue line).

Linear regression are shown as dotted lines. The control flies were

kept in the same bottle as the experimental flies. Under these strict

starvation conditions, TAG content diminishes steadily for about

30 hours, at which time flies start dying. No significant differences

in the rate of lipid mobilization were observed between the control

and any of the three genotypes analyzed. In all graphs, 5% intervals

of confidence are shown. (G–J) Fat body tissue dissected from early

third instar larvae or adult male abdomens of Df(3R)lpr1/2 and

Df(3R)lpr1/2/+ genotypes as indicated, was stained with nile red

(yellow) to reveal lipid droplets and counterstained with TOTO3

(blue). The amount and size of lipid droplets is not altered in lpr12,

lpr22 double mutants. Scale bar: 50 mm (G–J, same magnification).

(K) TAG content in the hemolymph of third instar larvae of the

indicated genotypes. 5% confidence intervals are shown. No

statistically significant differences were observed.

Found at: doi:10.1371/journal.pgen.1001297.s004 (2.25 MB TIF)

Figure S5 Lpr2E mediates non-autonomous lipid uptake in the

wing imaginal disc. (A–D) Wing imaginal discs of Df(3R)lpr1/2

genotype expressing the lipid uptake-defective isoform Lpr2F (A–

B) and the lipid uptake-promoting isoform Lpr2E (C–D) in the

dorsal compartment driven by ap-gal4. Neutral lipids were revealed

by nile red staining (red). Lpr2F and Lpr2E were detected with a-

HA antibody (green). Cell outlines are marked in blue by a-Lp.

Wing imaginal discs are shown in cross-sections (A and C; a:

apical, b: basal) and in subapical sections (B, D). Note that Lpr2E

expressing cells and two-three rows of adjacent ventral cells (arrow

in D) accumulate high levels of lipid droplets. Expression of Lpr2F

does not rescue lipid uptake and is shown here as a control (A, B).

White lines mark the limit of Lpr2F and Lpr2E expression. Nile

red staining is shown in separate panels (B’, D’). Scale bar: 10 mm.

All panels shown at the same magnification.

Found at: doi:10.1371/journal.pgen.1001297.s005 (3.23 MB

TIF)

Figure S6 The AP-2 complex is not required for the uptake of

neutral lipids during vitellogenesis. Germ-line clones of the alleles

AP-2a40–31 and AP-2sKG0245 marked by the absence of GFP

(green) in nurse cells (n), as indicated. Neutral lipids are shown in

red and yolk proteins autofluorescence (Y) in blue. Accumulation

of neutral lipids during vitellogenesis does not require the AP-2

adaptor complex. Endocytosis of yolk proteins also appears to be

AP-2 independent. Scale bar: 100 mm.

Found at: doi:10.1371/journal.pgen.1001297.s006 (1.44 MB TIF)

Figure S7 Lpr2E overexpression stabilizes extracellular lipo-

phorin. (A) Wild-type wing imaginal disc showing the distribution

of extracellular lipophorin in red and grey in a separate panel. (B-

G) Wing imaginal discs overexpressing UAS-lpr2E (B, D, F) or

UAS-lpr2F (C, E, G) under the control of the ptc-gal4 (B-C), wg-gal4

(D–E) or en-gal4 (F–G) drivers on a wild-type genetic background

(B–E) or a Df(3R)lpr1/2 background (F–G). Lpr2E and Lpr2F are

shown in green. Extracellular lipophorin is shown in red and grey

in a separate panel. Note that UAS-lpr2E expression increases

extracellular lipophorin signal (B’, D’, F’, arrows). Overexpression

of UAS-lpr2F does not have this effect (C’, E’, G’). Scale bar:

100 mm.

Found at: doi:10.1371/journal.pgen.1001297.s007 (4.87 MB TIF)

Text S1 Supplementary methods. Triacylglycerol quatification

and generation of AP-2 germ-line clones.

Found at: doi:10.1371/journal.pgen.1001297.s008 (0.03 MB

DOC)
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