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Abstract

During cell division, the spindle checkpoint ensures accurate chromosome segregation by monitoring the kinetochore–
microtubule interaction and delaying the onset of anaphase until each pair of sister chromosomes is properly attached to
microtubules. The spindle checkpoint is deactivated as chromosomes start moving toward the spindles in anaphase, but the
mechanisms by which this deactivation and adaptation to prolonged mitotic arrest occur remain obscure. Our results
strongly suggest that Cdc28-mediated phosphorylation of Bub1 at T566 plays an important role for the degradation of Bub1
in anaphase, and the phosphorylation is required for adaptation of the spindle checkpoint to prolonged mitotic arrest.
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Introduction

The kinetochore, composed of centromere DNA and associated

proteins, mediates the attachment of chromosomes to spindle

microtubules and directs chromosome movement during mitosis

and meiosis, thus maintaining the high fidelity of chromosome

transmission during cell division. The plus ends of microtubules are

captured and stabilized by kinetochores, causing chromosomes to

mono-orient to 1 pole [1–3]. Replicated chromosomes are

composed of 2 chromatids, each with its own kinetochore.

Chromosomes become bi-oriented when sister kinetochores are

captured by a microtubule emanating from the opposite pole [4–7].

Sister chromatids remain paired until all chromosomes achieve

correct bi-orientation. Sister chromatid cohesion is regulated by the

control of separase activity [2,8–11]. Sister chromatids disjoin after

all chromosomes are bi-oriented, marking the onset of anaphase;

this lack of cohesion allows each chromatid to move to its respective

pole. The metaphase-to-anaphase transition and exit from mitosis

are initiated by a ubiquitin-mediated proteolysis complex called the

cyclosome or anaphase-promoting complex (APC/C). Before

anaphase, separase is inactive because it is bound to securin [9].

Anaphase is initiated by the ubiquitin-mediated proteolysis of

securin, which is triggered by activation of the APC/CCdc20 [12].

The spindle checkpoint regulates faithful chromosome segrega-

tion during mitosis by monitoring the bipolar kinetochore–

microtubule interaction and delaying the onset of anaphase until

stable bipolar attachment is achieved [13]. Genes involved in the

spindle checkpoint were first isolated from Saccharomyces cerevisiae

and include MAD1, MAD2, and MAD3 (mitotic arrest–deficient);

[14] BUB1 and BUB3 (budding uninhibited by benzimidazoles [a

microtubule-depolymerizing drugs]) [15]; and MPS1 (monopolar

spindle) [16]. Mutual inhibition between the APC/C and Mps1,

an essential component of the spindle checkpoint, causes sustained

inactivation of the spindle checkpoint that cannot be reactivated in

anaphase [17], and two groups have recently reported that protein

phosphatase 1 activity is required for silencing the spindle

checkpoint by reversing key phosphorylation events [18,19].

The duration of mitotic arrest induced by the spindle

checkpoint is not indefinite [20,21]. Thus, cells eventually exit

from mitosis and re-enter interphase. Because continued activation

of the spindle checkpoint is lethal, adaptation to the spindle

checkpoint arrest is beneficial so that cells have a chance to survive

rather than undergo certain death [13,22]. However, the

mechanism of adaptation that could occur by spindle checkpoint

inactivation remains to be characterized.

We report here that Cdc28-mediated phosphorylation of T566

plays an important role in Bub1 degradation in anaphase, and this

phosphorylation is essential for deactivating the spindle checkpoint

in anaphase and adaptation to prolonged mitotic arrest.

Results

Bub1 is phosphorylated at threonine-566 in a Cdc28-
dependent manner in vivo

To study whether phosphorylation of Bub1 contributes to its

degradation, we determined the phosphorylation sites of Bub1 by

mass spectrometry. From extracts of cells expressing myc-tagged

Bub1, myc-tagged Bub1 was immunoprecipitated with anti-myc

antibody conjugated to Sepharose. Mass spectrometry of immu-

noprecipitated myc-tagged Bub1 revealed that threonine-566

(T566) on Bub1 is phosphorylated (Figure 1A).

To monitor the status of T566 phosphorylation, we generated

polyclonal antibodies against an oligopeptide containing phos-

phorylated T566. Antibody specificity for T566 phosphorylation

was verified by immunoprecipitating myc-tagged Bub1 and Bub1-

T566A followed by phosphatase treatment of immunoprecipitates

(Figure 1B). The band that is recognized by the phospho-T566

antibodies in wild-type cells is absent upon phosphatase treatment,

confirming the specificity of phospho-T566 antibodies for phos-

phorylated Bub1 (Figure 1B).
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We used the phospho-T566 antibodies to identify the kinase

responsible for T566 phosphorylation. Sequence analysis revealed

that T566 is within a potential phosphorylation site for the Cdk1/

Cdc28 kinase [23]. To determine whether Cdc28 is required for

T566 phosphorylation of Bub1, we analyzed wild-type strains and

cdc28-1N mutants arrested in metaphase by nocodazole treatment

and incubated at the nonpermissive temperature of 37uC.

Phosphorylated T566 was abolished in cdc28-1N mutant cells,

indicating that Cdc28 is required for T566 phosphorylation on

Bub1 in vivo (Figure 1C). We also found that this phosphorylation is

independent of the kinase activity of Bub1 (Figure S1). In addition,

as Bub1 and Mps1 kinases act together at an early step in the

spindle checkpoint pathway [24] and as Mps1 is a serine/

threonine kinase [24], we also examined whether Mps1 is required

for T566 phosphorylation of Bub1. However, phosphory-

lated T566 was not abolished in mps1-1 mutant cells at the

nonpermissive temperature of 37uC, suggesting that Mps1

is not required for T566 phosphorylation on Bub1 in vivo (Figure

S2).

Immunoprecipitated Cdc28 was able to efficiently phosphory-

late the maltose binding protein (MBP)-fused Bub1 fragment (400–

700 amino acids) but not MBP-Bub1 with T566A (400–700 amino

acids), indicating that Cdc28 phosphorylates T566 on Bub1 in vitro

(Figure 1D).

T566 phosphorylation plays a role in adaptation of the
spindle checkpoint

Next, we examined the in vivo function of T566 phosphoryla-

tion. BUB1-T566A (this mutant is dominant, Figure S3) and bub1D
mutant cells were sensitive to the microtubule-depolymerizing

drug nocodazole (at 2.5 mg/mL and 10 mg/mL) or benomyl on a

plate (Figure 2A and data not shown), suggesting that T566

phosphorylation is important for spindle checkpoint function.

Thus, we examined whether BUB1-T566A mutant cells can be

arrested in metaphase with nocodazole. Interestingly, a FACS

analysis showed that BUB1-T566A mutant cells, but not bub1D
mutant cells, were arrested in G2/M by nocodazole treatment

(Figure 2B and Figure S4). Therefore, BUB1-T566A mutant cells

can activate the spindle checkpoint in response to microtubule

depolymerization.

Interestingly, FACS analysis showed that wild-type cells

appeared to be ‘‘adapted’’ to nocodazole at a high concentration

(10 mg/mL; nocodazole is nearly saturated at 10 mg/mL in water)

[25] after incubation at 30uC for 5 h but BUB1-T566A mutant

cells were still tightly arrested in G2/M (Figure 2B). Analysis of

nuclear morphology over time revealed that adaptation to the

mitotic arrest results in G1 cells (unbudded or small budded –

types 1 and 2) rather than in rebudded cells without cell division

(Figure 2C and 2D – type 6) and that half of these G1 cells did not

have nuclei (Figure 2C and 2D – type 1), suggesting that

premature cytokinesis occurred without chromosome segregation

(Figure 2C and 2D). Consistent with these results, Clb2 levels

started to decrease after incubation for 3 h in wild-type cells but

not in BUB1-T566A mutant cells (Figure 2E). These results

indicate that BUB1-T566A mutant cells were arrested in mitosis

longer than wild-type cells in the presence of nocodazole at the

high concentration.

We also studied the adaptation status of cells at a low concentra-

tion of nocodazole (2.5 mg/mL). At this concentration, normal

cytokinesis probably occurs because the microtubules are not

completely depolymerized. FACS analysis and a count of adapted

cells over time suggest that there is a substantial delay in adapta-

tion in BUB1-T566A mutant cells (Figure 3A and 3B). Time-lapse

analyses revealed that BUB1-T566A mutant cells stayed longer

(,12 h) in mitosis in the presence of nocodazole at a low

concentration (Figure 3C, Video S1 and S2). These results strongly

suggest that BUB1-T566A mutant cells fail to adapt to the spindle

checkpoint activated by nocodazole treatment after a prolonged

mitotic arrest.

However, it is possible that BUB1-T566A mutant cells are

sensitive to nocodazole on a plate because metaphase-arrested

mutant cells cannot recover from mitotic arrest (i.e., microtubules

cannot reassemble on kinetochores). To test this possibility, cells

were arrested by nocodazole treatment, nocodazole was washed

away, and then budded cells were counted. The increase in the

number of budded BUB1-T566A mutant cells after the release was

comparable to that of wild-type cells (Figure 4A), indicating that

BUB1-T566A mutant cells can recover from nocodazole-induced

mitotic arrest. Furthermore, in a viability assay after nocodazole

incubation for several hours, BUB1-T566A mutant cells were more

viable than bub1D mutant cells and as viable as wild-type cells

(Figure 4B and Figure S5).

Therefore, we conclude that BUB1-T566A mutant cells do not

grow on a nocodazole/benomyl plate because they are arrested in

mitosis for a prolonged period as they cannot ‘‘adapt’’ and not

because they die due to premature mitotic exit as in the case of

bub1D mutant cells.

T566 phosphorylation affects Bub1 stability in mitosis
To examine the effect of phosphorylation of T566 on Bub1

stability, the HA-tagged nonphosphorylated mutant protein

(T566A) was expressed from the GAL1 promoter and expression

was induced for 2 h before terminating transcription by adding

glucose. Indeed, the Bub1-T566A mutant protein was more stable

than the wild-type protein in anaphase but not in G1 (Figure 4C

and Figure S6), indicating that T566 phosphorylation is important

for Bub1 degradation in anaphase.

In addition, we monitored the protein levels of myc-tagged Bub1

and Bub1-T566A mutant proteins expressed from the endogenous

promoter in the presence of nocodazole at 30uC over time. FACS

profiles obtained under the same conditions showed that adaptation

seemed to start around 3 h after addition of nocodazole (Figure 2B).

Author Summary

The spindle checkpoint protects cells from aneuploidy by
monitoring the status of the kinetochore-microtubule
attachment. Defects in this checkpoint pathway and in
kinetochore-microtubule attachment can cause substantial
aneuploidy in cells. The duration of the mitotic arrest
induced by the spindle checkpoint is not indefinite: cells
eventually exit from mitosis and re-enter interphase.
Because continued activation of the spindle checkpoint
is lethal, adaptation to the spindle checkpoint arrest is
essential so that cells have a chance for survival as
opposed to certain death. However, adaptation of the
spindle checkpoint has a flip side—adapted cells could
have an increased chance of aneuploidy due to premature
mitotic exit. Thus, it is essential that this mechanism be
regulated appropriately. Despite the importance of under-
standing the adaptation of the spindle checkpoint, little is
known to date about this mechanism. We found that
Cdc28-mediated phosphorylation of Bub1 at T566 plays an
important role for adaptation of the spindle checkpoint, a
finding providing the molecular insight on how adaptation
to prolonged mitotic arrest induced by the spindle
checkpoint occurs.

Adaptation to Prolonged Mitotic Arrest
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Consistently, Bub1 protein reduced significantly after 3 h of incubation

with nocodazole (Figure 4D, left and Figure S7), whereas the Bub1-

T566A mutant protein appeared to be more stable for 5 h incubation

with nocodazole (Figure 4D, right and Figure S7).

T566A mutation does not affect kinase activity and
chromosome segregation function of Bub1

Fernius and Hardwick showed that the Bub1 kinase domain is

required for accurate chromosome bi-orientation after nocodazole

Figure 1. Threonine 566 on Bub1 is phosphorylated dependently on Cdc28 in vivo. (A) Cycling cells with Bub1-myc were lysed and
immunoprecipitated with antibody to the myc epitope. Immunoprecipitates were digested with trypsin and analyzed by mass spectrometry. The
coverage of the identified peptides was 23%. The phosphorylation site was confirmed as threonine 566 (T566) on the basis of the MS/MS data. The
phosphorylated peptide sequence and characteristic ions representing loss of phosphoric acid (-H3PO4) are shown. (B) Antiphosphorylated T566
antibodies. Strains with Bub1-myc or Bub1-T566A-myc were lysed and immunoprecipitated with antibody to the myc epitope. Immunoprecipitates
were incubated with and without calf intestinal phosphatase (CIP) and analyzed with anti-phospho-T566 antibody (a-pT566). The membrane was
then stripped and immunoblotted with antibody to the myc epitope (a-myc). (C) Phosphorylation of T566 on Bub1 requires Cdc28. Wild-type and
cdc28-1N cells with Bub1-myc were grown at 25uC and then shifted to 37uC for 90 min in the presence of nocodazole (15 mg/mL). Cells were lysed
and immunoprecipitated with antibody to the myc epitope. Immunoprecipitates were analyzed with anti-phospho-T566 antibody (a-pT566). The
membrane was then stripped and immunoblotted with antibody to the myc epitope (a-myc). DNA content was measured by FACS analysis. (D)
Cdc28 phosphorylates T566 on Bub1 in vitro. Wild-type cells with and without myc-tagged Cdc28 were incubated with nocodazole (15 mg/mL) at
30uC for 90 min. Cells were lysed and immunoprecipitated with antibody to the myc epitope. Immunoprecipitates were incubated with 100 mM ATP,
0.2 mCi [gamma-32P]ATP with and without histone H1, MBP fused recombinant protein Bub1_400-700-MBP (MBP-fused Bub1 fragment 400–700
amino acids), and Bub1_400-700-T566A-MBP (MBP-fused Bub1 fragment 400–700 amino acids with T566A change). Coomassie Brilliant Blue staining
(CBB) is shown as a loading control. A background band is indicated by the asterisk (*).
doi:10.1371/journal.pgen.1001282.g001

Adaptation to Prolonged Mitotic Arrest
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treatment and that cells lacking the kinase domain are sensitive to

microtubule drugs despite being able to arrest in response to

kinetochore–microtubule attachment defects [26]. They conclud-

ed this because the kinase deletion mutants display significant

chromosome missegregation when released from nocodazole

arrest [26]. Therefore, we examined whether the T566A mutation

affects Bub1 kinase activity and chromosome segregation function.

Immunoprecipitated myc-tagged wild-type Bub1 and Bub1-

T566A proteins were used for the in vitro kinase assay, and both

proteins phosphorylated histone H2A and H3 comparably

(Figure 5A and Figure S8), indicating that T566A mutation does

not affect kinase activity.

More importantly, BUB1-T566A mutant cells do not show a

significant chromosome missegregation phenotype in colony-

Figure 2. BUB1-T566A mutant cells are deficient in adapting to mitotic arrest induced by nocodazole treatment. (A) BUB1-T566A mutant
cells were sensitive to nocodazole on a plate. Wild-type (WT), BUB1-T566A, and bub1D mutant cells were spotted in 5-fold dilutions from 46107 cells
per spot on YPD plates containing nocodazole (2.5 and 10 mg/mL). (B) Wild-type (WT), bub1D, and BUB1-T566A cells were incubated with nocodazole
(10 mg/mL) for 1.5, 2, 3, 4 and 5 h; at the indicated times, samples were taken for FACS analysis. (C) Cell and nuclear morphologies. Wild-type (WT) and
BUB1-T566A cells were incubated with nocodazole (10 mg/mL) for 1.5, 2, 3, 4 and 5 h; at the indicated times, samples were fixed with 4%
paraformaldehyde and stained with DAPI. Percentages of indicated morphologies are presented. (D) Representative pictures of cell and nuclear
morphologies analyzed in Figure 2C. 1: an unbudded cell without a nucleus, 2: an unbudded cell with a nucleus, 3: a large budded cell with a nucleus
in the mother cell, 4: a large budded cell with a nucleus at the neck in the mother cell, 5: a large budded cell with a nucleus at the neck between the
mother cell and the daughter cell, and 6: a rebudded cell with a nucleus. Bar, 5 mm. (E) Clb2 levels in nocodazole-treated cells. Wild-type (WT) and
BUB1-T566A cells were incubated with nocodazole (10 mg/mL) for 1.5, 2, 3, 4, 5 and 6 h; at the indicated times, samples were taken for Western blot
analyses with Clb2 antibody. Cdc28 was used as a loading control.
doi:10.1371/journal.pgen.1001282.g002

Adaptation to Prolonged Mitotic Arrest
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sectoring assays [27,28] (Figure 5B), in diploid bimater assay

(Figure 5C) [29] or in a faker assay (Figure 5D) [29]. These results

indicate that T566A mutation does not affect the chromosome

segregation function of Bub1. Therefore, there is no kinetochore

defect that can activate the spindle checkpoint in BUB1-T566A

mutant cells.

These results suggest that the stability change caused by the

T566A mutation contributes to the lack-of-adaptation phenotype

of BUB1-T566A mutant cells.

Discussion

We have shown that in yeast, Cdc28-mediated T566 phos-

phorylation of Bub1 facilitates Bub1 degradation in anaphase and

thus deactivation of the spindle checkpoint in anaphase. This

phosphorylation is required to adapt to prolonged mitotic arrest.

Inactivation of the spindle checkpoint in a normal cell
cycle

Mps1 protein abundance decreases in anaphase and Mps1 is a

target of the APC/C [17], which is a mechanism of inactivating

the spindle checkpoint in anaphase. The 3-D boxes on yeast Mps1

are required for its degradation in anaphase [17], and the KEN-

box on human Bub1 is required for its degradation by APC/C in

mitosis [30]. However, the D-boxes or KEN-box on Bub1 are not

involved in its degradation during anaphase (will be described

elsewhere). T566 phosphorylation of Bub1 is important for its

degradation at least in part in anaphase. Similar to findings from

previous studies that levels of human Bub1 peak in mitosis and are

low in G1/S phase [30,31], we found that in the budding yeast

Bub1 levels peak in G2/M and drop in late anaphase or G1

(Figure S9 and S10) as described previously [32]. Consistent with

this, T566 phosphorylation peaks in G2/M (Figure S9 and S10).

However, T566 phosphorylation is not essential to exit from

mitosis, suggesting another mechanism to degrade Bub1. Indeed,

we found that another site (amino acids 301-400) is important for

Bub1 degradation in anaphase (will be described elsewhere). Also,

we have not directly demonstrated that degradation of Bub1

caused by T566 phosphorylation is required for adaptation. There

is a possibility that T566 phosphorylation is required for

adaptation by unknown mechanisms. Further analysis is required

to clarify these issues.

Figure 3. BUB1-T566A mutant cells are deficient in adapting to mitotic arrest induced by nocodazole at a low concentration. (A) Wild-
type (WT) and BUB1-T566A cells were arrested using alpha-factor and released into medium containing 2.5 mg/mL nocodazole at 30uC. After 1 h,
alpha-factor was added to the medium and samples were taken for FACS analysis at the indicated times. (B) Graph representing the G1 and rebudded
cells shown in Figure 3A. The percentages of G1 and rebudded cells were scored in samples taken at the indicated times (n = 100). (C) Wild-type
(Video S1) and BUB1-T566A (Video S2) mutant cells were arrested by alpha-factor and released from G1 onto plates containing 2.5 mg/mL nocodazole
at 30uC. Time-lapse images of representative examples of each strain were taken at the indicated times.
doi:10.1371/journal.pgen.1001282.g003

Adaptation to Prolonged Mitotic Arrest
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CDC28-VF
It has been suggested that inhibitory phosphorylation of Cdc28,

which is antagonized by Cdc55 phosphatase, allows cells to exit

from mitosis [22]. Also, previous studies have suggested that this

‘‘bypass’’ could help cells adapt to prolonged mitotic arrest

[13,22]. CDC28-T18V, Y19F (CDC28-VF), a mutant lacking

inhibitory phosphorylation sites, delays the exit from mitosis and

is hypersensitive to perturbations that arrest cells in mitosis

[22,33]. However, these phenotypes result not from lack of

inhibitory phosphorylation or increased kinase activity but from

reduced activity of the APC/C [33]. Cdc28 is required to induce

metaphase-to-anaphase transition by phosphorylation of APC/C

components [33,34]. Thus, it is not certain that inhibitory

phosphorylation of Cdc28 can be the mechanism of adaptation

of the spindle checkpoint.

Our findings suggest that when Cdc28 activates the APC/C by

phosphorylation, it simultaneously phosphorylates Bub1 to make it

a preferable substrate for degradation, which in turn facilitates

deactivation of the spindle checkpoint.

Nocodazole activity
To confirm that nocodazole is not deactivated after incubation

for 3 h, yeast medium (YPD) containing 10 mg/mL nocodazole

was incubated with yeast cells for 3 h, and fresh cycling yeast cells

were incubated in the ‘‘used’’ medium. The FACS profiles showed

that the cells were arrested in G2/M after 1.5 h and 2 h

Figure 4. T566 phosphorylation affects Bub1 stability. (A) BUB1-T566A mutant cells do not show substantial delay in recovering from
nocodazole arrest. Wild-type (WT) and BUB1-T566A mutant cells were incubated with nocodazole (15 mg/mL) at 30uC for 90 min and then released
from nocodazole arrest; at the indicated times, samples were taken to measure rebudded cells. (B) BUB1-T566A mutant cells show no significant
sensitivity to nocodazole in a survival assay. Wild-type (WT), bub1D, and BUB1-T566A cells were incubated with nocodazole (15 mg/mL); at the
indicated times, cells were washed out and approximately 200 cells were plated on a YPD plate. Cell viability was calculated by dividing the number
of colonies formed at the 2.5 and 5 h time points by that formed in the absence of nocodazole (0 h) at 30uC. (C) Phosphorylation of T566 is important
for degradation of Bub1 during anaphase but not during G1. cdc15-2 cells with HA-tagged Bub1 or Bub1-T566A expressed by the GAL1 promoter
(GAL-BUB1 and GAL-BUB1-T566A) were arrested in anaphase (cdc15-2) or in G1 (alpha-factor) and then transferred to medium containing galactose for
2 h to induce Bub1 expression. Glucose was added to shut-off Bub1 expression; samples were taken at the indicated times for Western blot analyses
with antibody to the HA epitope. Tubulin was used as a loading control. (D) The Bub1-T566A protein is more stable than wild-type in the presence of
nocodazole. Wild-type and BUB1-T566A mutant cells (Bub1 and Bub1-T566A are tagged with myc) were incubated in the presence of nocodazole
(10 mg/mL) at 30uC; at the indicated times, samples were taken for Western blot analyses with antibody to the myc epitope. Tubulin was used as a
loading control.
doi:10.1371/journal.pgen.1001282.g004

Adaptation to Prolonged Mitotic Arrest
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Figure 5. Bub1-T566A mutant has intact kinase activity or kinetochore function. (A) BUB1-T566A mutation does not alter kinase activity.
Cells expressing Bub1-myc or Bub1-T566A-myc were lysed and immunoprecipitated with antibody to the myc epitope. Immunoprecipitates were

Adaptation to Prolonged Mitotic Arrest
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incubation, indicating that the nocodazole after incubation for 3 h

was still active to arrest cells in G2/M (Figure S11). We also added

more nocodazole (the total concentration was 20 mg/mL) at the

2.5 h time point, and we did not see any difference in the numbers

of G1 cells at the 5 h time point with or without additional

nocodazole (Figure S12). These results indicate that the premature

cytokinesis is not due to inactivation of nocodazole.

Adaptation to mitotic arrest induced by the spindle
checkpoint

BUB1-T566A mutant cells fail to adapt to the mitotic arrest

induced by nocodazole. We found that the T566A protein is

stabilized in anaphase, but the T566A mutation does not affect the

kinase activity of Bub1. Therefore, the simplest interpretation is

that adaptation is induced by Bub1 degradation that is regulated

via T566 phosphorylation in anaphase.

If activation of the spindle checkpoint continues, cells eventually

die; adaptation to the mitotic arrest gives cells a chance to survive

[13,22]. However, adaptation of the spindle checkpoint has a flip

side: adapted cells could have an increased chance of aneuploidy

due to premature mitotic exit.

Bub1 is functionally highly conserved between yeast and

humans. The fission yeast homolog of Bub1 was shown to be

phosphorylated by Cdc2 (Schizosaccharomyces pombe CDK1) in vitro,

but none of the sites corresponding to T566 in budding yeast Bub1

[35]. Qi and Yu initially reported that overexpression of human

BUB1-KEN box mutant protein that is stable in cells does not

cause mitotic arrest or prevent cellular adaptation after prolonged

nocodazole treatment [30]. However, the same group has recently

found that the KEN boxes of BUB1 are required for the spindle

checkpoint in human cells [36]. Also, we found that T566 is

conserved in human BUB1 and BUBR1 (Figure S13). Therefore,

it is still possible that this adaptation mechanism occurs in humans.

Because aneuploidy may lead to tumorigenesis in humans,

either the adaptation might be controlled and balanced precisely

or programmed cell death such as apoptosis might occur instead

[37,38]. Further studies of this mechanism can improve our

understanding of the role of aneuploidy in the development of

cancer and drug resistance of cancer cells.

Materials and Methods

Yeast strains, techniques, and media
Media and microbial and genetic techniques were used as

described previously [39]. Table S1 presents the genotypes of yeast

strains used for this study. Strains that expressed myc- and HA-

epitope–tagged proteins were generated by the procedure of

Longtine and coworkers [40]. The BUB1-T566A mutant was

generated as described previously [41] by changing threonine to

alanine at position 566. The mutation was verified by sequencing

and integrated into the yeast genome. Integrations were amplified

by PCR and fragments were sequenced to confirm the change and

the strains were generated (see Table S1). To generate bub1KDD
allele, amino acids 710–1021 were truncated by PCR-mediated

gene disruption as described previously [40]. Where indicated,

cells were arrested in G1 by using the alpha-factor mating

pheromone (5 mg/mL; Bio Vectra, Canada). Cells were released

from alpha-factor by washing twice in alpha-factor–free media and

resuspended in the appropriate medium. Where indicated, the

mitotic spindle was disrupted by growing cells in a medium

containing nocodazole (Sigma, St. Louis, MO) and benomyl

(DuPont, Wilmington, DE) at the indicated final concentration.

Expression from the GAL1 promoter was induced by growing cells

in media containing 2% w/v raffinose before transfer to media

containing 2% galactose. Expression from the GAL1 promoter was

repressed by adding 2% glucose to the medium. Cells containing

the temperature-sensitive cdc15-2 allele were grown at 23uC and

shifted to 37uC to induce anaphase arrest.

Plasmids
Table S2 lists the plasmids used in this study.

Mass spectrometry
The Bub1 phosphorylation site was identified by mass

spectrometry performed at the Hartwell Center for Bioinformatics

and Biotechnology, St. Jude Children’s Research Hospital. A

strain with myc epitope–tagged Bub1 was lysed, immunoprecip-

itated with antibody to the myc epitope, and the immunopurified

Bub1 proteins were subjected to SDS-PAGE. The protein in the

excised gel band was reduced and alkylated with iodoacetamide

and digested with trypsin.

Digests were fractionated by online reverse-phase (C18) ultra-

high-pressure liquid chromatography on a nanoAcquity Ultra

Performance LC system (Waters Corporation, Milford, MA) using

a Waters BEHC18 column (internal diameter of 75 mm, bed

length of 10 cm, and particle size of 1.7 mm) and gradient-eluted

directly into an LTQ linear ion trap mass spectrometer (Thermo

Fisher Scientific, San Jose, CA) using electrospray ionization (ESI).

Data dependent scanning was incorporated by acquisition of a full-

scan mass spectrum followed by MS/MS on 10 most abundant

precursor ions (one micro scan per spectra; precursor m/z

61.5 Da, 35% collision energy, 30 ms ion activation, 35 s

dynamic exclusion, repeat count 2).

Product ions generated by fragmentation along peptide

backbone by collision activated dissociation (CAD) (b/y-type ions)

were used in an automated database search against yeast BUB1

subset database using Mascot search routine with following residue

modifications being allowed: Cysteine (Carbamidomethylation),

Methionine (Oxidation) and Serine, Threonine and Tyrosine

(Phosphorylation). Phosphopeptide identified from automated

search was further validated through manual de novo sequencing

analyzed by performing a kinase assay with 100 mM ATP, 0.2 mCi [gamma-32P]ATP in the presence or absence of human histone H2A recombinant.
Coomassie Brilliant Blue staining (CBB) is shown as a loading control. (B) BUB1-T566A mutant cells do not display a chromosome missegregation
phenotype. The colony color assay was performed as previously described [27,43]. Briefly, wild-type, bub1D and BUB1-T566A mutant cells containing a
single SUP11-marked chromosome fragment were plated at a density of ,200 colonies per plate on minimal (SD) medium containing a limiting
amount of adenine (6 mg/mL) and grown at 30uC. A colony consists of cells containing the chromosome fragment (white) and cells that have lost it
(red), resulting in a white-and-red sectored phenotype. (C) BUB1-T566A mutant cells do not lose their endogenous chromosome. Diploid strains at
MAT do not mate because of codominant suppression of haploid-specific cell differentiation pathways. Loss of either the MATa or MATalpha allele
results in mating competence, where mating type is determined by the remaining allele [29,44]. The indicated diploids cells were mated with haploid
MATa (17/14) and MATalpha (17/17) tester strains and the mating products were selected. Two independent clones of BUB1-T566A/BUB1-T566A
mutant cells are shown. (D) BUB1-T566A mutant cells do not show elevated a-like faker frequency. Loss of the MATalpha locus leads to the default
mating type. MATalpha cells that lose the MAT locus will mate as a-type cells [29,44]. Indicated MATalpha strains were mated with the MATalpha
tester strains (17/17) and mating products were selected.
doi:10.1371/journal.pgen.1001282.g005
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of corresponding raw spectrum to assign characteristic fragment

ions (b/y-type ions & ions representing loss of phosphoric acid).

Cell synchronization
For G1 arrest, the indicated strains were released from an

alpha-factor-induced G1 arrest at 30uC. Samples were taken at the

indicated times for FACS analysis.

For G2/M arrest, the indicated strains were tagged with the

myc epitope and incubated in the presence of nocodazole at the

indicated concentrations; samples were taken for FACS and

Western blot analyses.

In cdc15-2 cells with HA-tagged Bub1 or Bub1-T566A

expressed from the GAL1 promoter (GAL-BUB1 and GAL-BUB1-

T566A) were used to test the stability of Bub1 in G1 and in

anaphase. The cells were arrested in G1 (alpha-factor at 23uC) and

in anaphase (cdc15-2 at 37uC). The cells were transferred to

medium containing galactose (and alpha-factor where appropriate)

for 2 h to induce Bub1 expression. Glucose was added to shut-off

Bub1 expression; samples were taken at indicated times for

Western blot analyses with antibodies to the HA epitope and

tubulin protein.

To test the possibility that BUB1-T566A mutant cells might

have difficulty leaving mitosis, wild-type and BUB1-T566A mutant

strains were incubated with nocodazole (15 mg/mL) for 90 min at

30uC to induce mitosis and then released from nocodazole arrest;

at indicated times, approximately 200 cells were counted to

estimate rebudded cells (Figure 4A). All synchronizations were

confirmed by FACS analysis.

FACS profile
DNA contents were measured by flow cytometry. The cell

culture for each time point was washed with 0.2 M Tris-HCl (pH

7.5) and fixed in 70% ethanol at room temperature for 1 h. Cells

were pelleted and resuspended in 200 ml of 0.2 M Tris-HCl

(pH 7.5) containing 1 mg/mL RNase A (Sigma, St. Louis, MO).

They were then incubated at 37uC for 2 h, centrifuged,

resuspended in 200 mg/mL proteinase K (Invitrogen, Carlsbad,

CA) for 2 h at 50uC, and stained with 3 mg/mL propidium iodide.

Microscopy
Cells were fixed with 4% paraformaldehyde for 5 min at room

temperature. Cells were washed with SK buffer (1 M sorbitol,

50 mM KH2PO4 [pH 7.5]) and stained with 1 mg/mL DAPI

(4969-diamidino-2-phenylindole) for 5 min at room temperature.

The cells were washed, sonicated briefly to disrupt clumps, and

mounted on glass slides. For time-lapse microscopy, cells were

arrested by alpha-factor for 2 h, washed twice with alpha-factor-

free media, and spotted onto glass-bottomed culture dish (MatTek,

Ashland, MA) containing 2.5 mg/mL nocodazole in a YPD plate.

Microscopic images were captured by using a Leica DM IRE2

motorized microscope equipped with an HCX PL FLUOT AR

40x objective lens (Leica, Germany) and images were captured

with a ORCA-ER high-resolution digital CCD camera (Hama-

matsu Photonics, Japan). All images were analyzed by using

Openlab software (Improvision, Lexington, MA). The time-lapse

analyses were conducted at 30uC.

Nocodazole and benomyl sensitivity
Sensitivity of the wild-type, bub1D, and BUB1-T566A mutant

cells in the presence of nocodazole or benomyl was tested by

growing them overnight in YPD at 30uC. Strains were then

spotted in 5-fold dilutions from 46107 cells per spot on YPD plates

with and without nocodazole or benomyl.

Nocodazole survival assay
The nocodazole survival assay was performed as described

previously [42]. Briefly, wild-type, bub1D, and BUB1-T566A

mutant cells were incubated with nocodazole (15 mg/mL and

2.5 mg/mL) at the indicated times. Cells were then washed out and

approximately 200 cells were plated on a YPD plate. Cell viability

was calculated by dividing the number of colonies formed at the

2.5 and 5 h time points by that formed in the absence of

nocodazole (0 h) at 30uC.

Sectoring assay
The colony color assay was performed as previously described

[27,43]. Briefly, wild-type, bub1D, and BUB1-T566A mutant cells

containing a single SUP11-marked chromosome fragment were

plated at a density of approximately 200 colonies per plate on

minimal (SD) medium containing a limiting amount of adenine

(6 mg/mL) and grown at 30uC. A colony consists of cells

containing the chromosome fragment (white) and cells that have

lost it (red), resulting in a white-and-red sectored phenotype.

Diploid bimater and a-Like faker assay
Bimater assay was performed as described previously [29,44].

Diploid BUB1-T566A/BUB1-T566A mutants and haploid BUB1-

T566A mutants were patched onto YPD plates. Diploid cells were

replica to both MATa and MATalpha lawns and haploid cells were

replica to MATalpha lawns, and mating products were selected.

Kinase assay
The kinase assay was performed as described previously [45].

Briefly, myc-tagged Bub1 and Bub1-T566A cells were immuno-

precipitated with a myc epitope antibody and the immunoprecip-

itate was washed thrice with kinase buffer (50 mM Tris-HCl

[pH 7.5], 10 mM MgCl2, and 1% Triton X-100). The volume

was reduced to 50 mL, and the solution was incubated with

100 mM ATP, 0.2 mCi [gamma-32P]ATP and substrate (10 mg

histone H3 [USBiological, Swampscott, MA]; 1 mg histone H2A

human, recombinant [New England BioLabs, MA]; 1 mg histone

H1 [Upstate Biotechnology, Lake Placid, NY]; 1 mg BUB1_400-

700-MBP and BUB1-T566A_400-700-MBP) at 30uC for 20 min.

The reaction was stopped by adding SDS loading buffer, and the

protein were then separated by SDS-PAGE, stained with

Coomassie Brilliant Blue, and analyzed by autoradiography.

Coimmunoprecipitation assay
Whole-protein extracts for Western blot analysis and immuno-

precipitation assays of yeast cell lysates were performed as

described previously [46].

Antibodies
Western blot analysis was performed using mouse anti-myc

9E10 purified monoclonal antibody, rat anti-HA purified

monoclonal antibody (Roche Applied Science, Indianapolis, IN),

and rat YOL1/34 monoclonal anti-tubulin alpha antibody

(Serotec, Oxford, UK). The rabbit antibody to phosphorylated

T566 of Bub1 was generated by immunizing rabbits (Covance,

Denver, PA) with a corresponding KLH-conjugated phosphopep-

tide (H-TETDVVPIIQpTPKEQIR-OH).

Protein expression
For bacterial expression, BL21-CODONPLUS(DE3)-RIL

(Stratagene, La Jolla, CA) cells were transformed with pDEST-

HISMBP (Addgene, Cambridge, MA); and protein expression was

performed as described previously [47].
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Supporting Information

Figure S1 Bub1 kinase domain is not required for T566

phosphorylation. Cells expressing myc-tagged Bub1, Bub1-K733A (a

kinase dead mutant), and Bub1-KDD (a kinase domain deleted

mutant; 1–709 amino acids) were lysed and immunoprecipitated with

antibody to the myc epitope. Immunoprecipitates were analyzed with

anti-phospho-T566 antibody (a-pT566). The membrane was then

stripped and immunoblotted with antibody to the myc epitope (a-myc).

Found at: doi:10.1371/journal.pgen.1001282.s001 (0.15 MB TIF)

Figure S2 Wild-type and mps1-1 cells with Bub1-myc were

grown at 25uC and then shifted to 37uC for 90 min. Cells were

lysed and immunoprecipitated with antibody to the myc epitope.

Immunoprecipitates were analyzed with anti-phospho-T566

antibody (a-pT566). The membrane was then stripped and

immunoblotted with antibody to the myc epitope (a-myc).

Found at: doi:10.1371/journal.pgen.1001282.s002 (0.09 MB TIF)

Figure S3 BUB1-T566A is dominant. Wild-type, BUB1-T566A/

BUB1 and BUB1-T566A/BUB1-T566A mutant cells were spotted

in 5-fold dilutions from 46107cells per spot on a YPD plates with

and without benomyl (15 and 20 mg/mL) and incubated at 30uC
for 3 days.

Found at: doi:10.1371/journal.pgen.1001282.s003 (0.18 MB TIF)

Figure S4 BUB1-T566A mitotic arrest depends on mad2D.

(Upper panel) Wild-type, bub1D, BUB1-T566A, and BUB1-

T566A mad2D cells were incubated with nocodazole (15 mg/mL)

at 30uC for 0, 1.5, 2, 2.5, 3, 4 and 5 h; at the indicated times,

samples were taken for FACS analysis. (Lower panel) Wild-type,

bub1D, BUB1-T566A, and BUB1-T566A mad2D cells were

incubated with nocodazole (15 mg/mL), washed out at the

indicated times and approximately 200 cells were plated on a

YPD plate. Cell viability was calculated by dividing the number of

colonies formed at the 2.5 and 5 h time points by that formed in

the absence of nocodazole (0 h) at 30uC.

Found at: doi:10.1371/journal.pgen.1001282.s004 (0.27 MB TIF)

Figure S5 Wild-type and BUB1-T566A cells were incubated

with nocodazole (2.5 mg/mL) and washed out at the indicated

times. Approximately 200 cells were plated on a YPD plate. Cell

viability was calculated by dividing the number of colonies formed

at the 2, 4, 6, 8 and 12 h time points by that formed in the absence

of nocodazole (0 h) at 30uC.

Found at: doi:10.1371/journal.pgen.1001282.s005 (0.07 MB TIF)

Figure S6 Quantification of the results shown in Figure 4C,

lower panel. Data represent the relative protein concentration

estimated by measuring the intensity of Bub1-HA bands relative to

the intensity of tubulin bands.

Found at: doi:10.1371/journal.pgen.1001282.s006 (0.08 MB TIF)

Figure S7 Quantification of the results shown in Figure 4D. Data

represent the relative protein amounts estimated by measuring the

intensity of Bub1-Myc bands relative to the intensity of tubulin bands.

Found at: doi:10.1371/journal.pgen.1001282.s007 (0.08 MB TIF)

Figure S8 Cells expressing Bub1-myc or Bub1-T566A-myc

were lysed and immunoprecipitated with antibody to the myc

epitope. Immunoprecipitates were analyzed by performing kinase

assay with 100 mM ATP, 0.2 mCi [gamma-32P] ATP in the

presence or absence of histone H3. Coomassie Brilliant Blue

staining (CBB) is shown as a loading control.

Found at: doi:10.1371/journal.pgen.1001282.s008 (0.16 MB TIF)

Figure S9 Strains with Bub1-myc cells were arrested by alpha-

factor and released from G1. Cells were taken for co-immunopre-

cipitation analyses. The cells were lysed and immunoprecipitated

with antibody to the myc epitope. Immunoprecipitates were

analyzed with anti-phospho-T566 antibody (a-pT566). The mem-

brane was then stripped and immunoblotted with antibody to the

myc epitope (a-myc). DNA content was measured by FACS analysis.

Found at: doi:10.1371/journal.pgen.1001282.s009 (0.29 MB TIF)

Figure S10 Asynchronous Bub1-myc cells and Bub1-myc cells

synchronized in G1 (alpha-factor), S phase (Hydroxyurea) and

G2/M (Nocodazole) were lysed and immunoprecipitated with

antibody to the myc epitope. Immunoprecipitates were analyzed

with anti-phospho-T566 antibody (a-pT566). The membrane was

then stripped and immunoblotted with antibody to the myc

epitope (a-myc). DNA content was measured by FACS analysis.

Found at: doi:10.1371/journal.pgen.1001282.s010 (0.19 MB TIF)

Figure S11 Wild-type and BUB1-T566A cells were incubated

with nocodazole (10 mg/mL) at 30uC. At the 3 h time point, the half

of the cells were centrifuged, and the supernatant was transferred to

fresh cycling cells and incubated for additional 1.5 h and 2 h. At the

indicated times, samples were taken for FACS analysis.

Found at: doi:10.1371/journal.pgen.1001282.s011 (0.08 MB TIF)

Figure S12 Wild-type and BUB1-T566A cells were incubated

with nocodazole (10 mg/mL) at 30uC. At the 2.5 h time point,

additional nocodazole (the total concentration was 20 mg/mL) was

added to the half of the cells. At the indicated times, samples were

taken to count the G1 cells.

Found at: doi:10.1371/journal.pgen.1001282.s012 (0.07 MB TIF)

Figure S13 Alignment of the amino acid sequences of Human

BUB1 and BUBR1 and budding yeast BUB1 is shown.

Found at: doi:10.1371/journal.pgen.1001282.s013 (0.07 MB TIF)

Table S1 Strains used in this study.

Found at: doi:10.1371/journal.pgen.1001282.s014 (0.11 MB

DOC)

Table S2 Plasmids used in this study.

Found at: doi:10.1371/journal.pgen.1001282.s015 (0.05 MB

DOC)

Video S1 Wild-type cells were arrested by alpha-factor and

released from G1 onto plates containing 2.5 mg/mL nocodazole at

30uC. Time-lapse images were taken at the indicated times. The

time-lapse experiment was performed 4 times, and all showed

essentially the same results.

Found at: doi:10.1371/journal.pgen.1001282.s016 (7.27 MB ZIP)

Video S2 BUB1-T566A mutant cells were arrested by alpha-

factor and released from G1 onto plates containing 2.5 mg/mL

nocodazole at 30uC. Time-lapse images were taken at the

indicated times. The time-lapse experiment was performed 4

times, and all showed essentially the same results.

Found at: doi:10.1371/journal.pgen.1001282.s017 (6.78 MB ZIP)
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