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Natural selection sculpts phenotypes to
enable adaptation to local conditions.
Biologists have long been interested in
the phenotypic and molecular response to
selection, but we still know little about the
genetic basis of adaptation. With continu-
ing improvements in molecular technolo-
gies, we now have the tools to investigate
the genes that underlie ecologically im-
portant traits. Assessing the geographic
distribution of allelic variation at these loci
can point to the agents of selection, if
different alleles are advantageous in con-
trasting environmental conditions [1-3].
In theory, predictable patterns of clinal
variation in allele frequencies can arise
from divergent selection across environ-
mental gradients [1], although demo-
graphic factors may complicate identifica-
tion of adaptive changes [4,5].

Few studies have linked geographic
variation in allele frequencies with varia-
tion in phenotypes (but see [6-8]). Studies
of clinal variation are especially powerful
when a causative gene underlying a key
phenotype has already been identified. For
example, geographic clines in flowering
time are associated with variation at
flowering time genes in the model species
Arabidopsis  thaliana [2,3]. Many studies
focus on traits that vary on a broad
geographic scale, for which latitude, lon-
gitude, or elevation can be used as a proxy
for environment. Other environmental
conditions are more difficult to measure
at the landscape level, and have therefore
often been ignored in studies of the
geographic distribution of genetic and
phenotypic variation.

In this issue of PLoS Genelics, Baxter et al.
[9] present an elegant study of the
geographic variation in salinity tolerance,
and allelic variation at the sodium trans-
port gene AtHKT1;1 in European popula-
tions of A. thaliana. In a laboratory
experiment, Baxter and colleagues grew
Arabidopsis accessions in non-saline soil
(without elevated Na™) and found substan-
tial variation in the accumulation of
sodium in leaf tissue, which indicates
tolerance to saline soils. Furthermore,
foliar Na* of these genotypes decreased
with distance from the collection site to
nearby regions with saline soils [9]. This
geographic pattern suggests that the phe-
notype (salinity tolerance) could be a direct
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evolutionary response to a stressful envi-
ronmental condition (saline soils).

A genome-wide association study re-
vealed a significant association between
the AtHKTI1;] candidate gene and foliar
Na® accumulation [9], corroborating re-
sults of previous studies [10,11]. Baxter et
al. [9] conducted additional crosses be-
tween accessions with high and low foliar
Na*, in conjunction with gene expression
studies, and found that elevated salinity
tolerance is associated with hypofunctional
alleles of AtHK'T1;1. These molecular data
can be brought to bear on the geographic
cline in salinity tolerance: accessions with a
hypofunctional allele at A¢HKT1;1 occur in
arcas where the soil is likely to be saline.

Baxter and colleagues [9] conclude that
the geographic cline in AtHKTI;] is an
adaptive response to variation in soil
salinity. In addition, human disturbance
could contribute to this allelic cline, as the
genotype associated with salt tolerance is
distributed primarily near major ports and
could have been dispersed along shipping
lanes (see Figure 1 in [9]). Additional
sampling, as well as ecological studies and
whole-genome analysis of SNP geography,
may clarify the relative importance of
natural selection and possible human-
mediated gene flow in the geographic
distribution of alleles at A{HKT1;1.

What Comes after QTL Cloning?

For the past decade, QTL (quantitative
trait loci) cloning has been the rate-limiting
step for many laboratories. Now, improve-
ments in technology and resources are
enabling advances such as the current
study, and biologists can turn to functional
elucidation of newly identified genes and
ecological analyses of plants in their

environments. As the field matures, molec-
ular biologists and ecologists should work
together towards field studies of allelic
adaptation to local environments. Experi-
mental plants can be grown under ecolog-
ically relevant conditions, e.g., in soil of
different salinities collected from multiple
sites, or in common garden field experi-
ments at high and low salinity sites.
Quantification of traits and fitness compo-
nents under natural conditions is essential
for measuring selection on phenotypes and
on alleles at candidate genes. In this
instance, field studies could test whether
the hypofunctional allele at AtHKTI;1
increases salinity tolerance and reproduc-
tive fitness in saline soils, and whether it
diminishes fitness in non-saline soils. These
questions determine whether local adapta-
tion is due to tradeoffs in performance
between different environments (a home
genotype advantage), which can maintain
genetic variation within species [12].

Determining the mechanistic basis of
geographic clines will be considerably more
complicated for studies of quantitative traits
controlled by multiple loci. Nature is far
more complex than laboratory conditions,
and candidate genes identified in the lab
might not be associated with traits in the
field [13-15]. Here, Baxter et al. have
made substantial progress identifying the
causal gene underlying tolerance to a
stressful environment, and have demon-
strated that stress tolerance is associated
with specific features of the landscape (i.c.,
proximity to saline soils). Future integrative
studies combining techniques from molec-
ular genetics, ecology, and evolutionary
biology can begin to unveil the genetic basis
of adaptation in model and non-model
species alike.
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