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Abstract

Although great progress in genome-wide association studies (GWAS) has been made, the significant SNP associations
identified by GWAS account for only a few percent of the genetic variance, leading many to question where and how we
can find the missing heritability. There is increasing interest in genome-wide interaction analysis as a possible source of
finding heritability unexplained by current GWAS. However, the existing statistics for testing interaction have low power for
genome-wide interaction analysis. To meet challenges raised by genome-wide interactional analysis, we have developed a
novel statistic for testing interaction between two loci (either linked or unlinked). The null distribution and the type I error
rates of the new statistic for testing interaction are validated using simulations. Extensive power studies show that the
developed statistic has much higher power to detect interaction than classical logistic regression. The results identified 44
and 211 pairs of SNPs showing significant evidence of interactions with FDR,0.001 and 0.001,FDR,0.003, respectively,
which were seen in two independent studies of psoriasis. These included five interacting pairs of SNPs in genes LST1/NCR3,
CXCR5/BCL9L, and GLS2, some of which were located in the target sites of miR-324-3p, miR-433, and miR-382, as well as 15
pairs of interacting SNPs that had nonsynonymous substitutions. Our results demonstrated that genome-wide interaction
analysis is a valuable tool for finding remaining missing heritability unexplained by the current GWAS, and the developed
novel statistic is able to search significant interaction between SNPs across the genome. Real data analysis showed that the
results of genome-wide interaction analysis can be replicated in two independent studies.
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Introduction

In the past three years, about 400 genome-wide association

studies (GWAS) that focused largely on individually testing the

associations of single SNP with diseases have been conducted [1].

These studies have identified more than 531 SNPs associated with

different traits or diseases [2] and have provided substantial

information for understanding disease mechanisms. Despite the

progress that has been made, the significant SNP associations

identified by GWAS account for only a few percent of the genetic

variance which begs the question where and how the missing

heritability can be identified [3,4]. Possible explanations include

[1,4]:

(1) The previous GWAS are mainly based on the common

disease, common variant hypothesis. However, in addition to

single nucleotide polymorphisms (SNPs) with a minor allele

frequency (MAF) greater than 1%, there are other classes of

human genetic variation including: (a) rare variants that are

defined as mutations with a MAF of less than 1% and (b)

structural variants including copy number variants (CNVs)

and copy neutral variation such as inversions and transloca-

tions. Common diseases can also be caused by multiple rare

mutations, each with a low marginal genetic effect. A more

realistic model is that the entire spectrum of genetic variants

ranging from rare to common contributes to disease

susceptibility.

(2) Most of current GWAS have focused on SNP analysis in

which each variant is tested for association individually.

However, common disease often arises from the combined

effect of multiple loci within a gene or interaction of multiple

genes within a pathway. If we only consider the most

significant SNPs, the genetic variants that jointly have

significant impact on risk, but individually make only a small

contribution, will be missed.

(3) The power of the widely used statistics for detection of gene-

gene interaction and gene-environment interactions is low.

Many interacting SNPs have not been identified.

Another way to discover the missing heritability of complex

diseases is to investigate gene-gene and gene-environment

interaction. Disease development is a dynamic process of gene-

gene and gene-environment interactions within a complex

biological system which is organized into interacting networks

[5]. Modern complexity theory assumes that the complexity is

attributed to the interactions among the components of the system,

therefore, interaction has been considered as a sensible measure of
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complexity of the biological systems. The more interactions

between the components there are, the more complex the system

is. The disease may be caused by joint action of multiple loci.

Motivation for studying statistical interaction is to provide

increased power for detecting joint acting effects of interacting

loci than testing for only marginal association of each of the loci

individually. Screening for only main effects might miss the vast

majority of the genetic variants that interact with each other and

with environment to cause diseases [6]. We argue that the

interactions hold a key for dissecting the genetic structure of

complex diseases and elucidating the biological and biochemical

pathway underlying the diseases [7,8]. Ignoring gene-gene and

gene-environment interactions will likely obscure the detection of

genetic effects and may lead to inconsistent association results

across studies [9,10].

GWAS in which several hundred thousands or even a millions

of SNPs are typed in thousands of individuals provide unprece-

dented opportunities for systematic exploration of the universe of

variants and interactions in the entire genome and also raise

several serious challenges for genome-wide interaction analysis.

The first challenge comes from the problems imposed by multiple

testing. Even for investigating pair-wise interaction, the total

number of tests for interaction between all possible SNPs across

the genome will be extremely large. Bonferroni-corrected P-values

for ensuring genome-wide significance level of 0.05 will be too

small to reach. The second challenge is the need for computa-

tionally simple statistics for testing interactions. The simplest way

to search for interactions between two loci is to test all possible

two-locus interactions. This exhaustive search demands large

computations. Therefore, the computational time of each two-

locus interaction test should be short. The third challenge is the

power of the statistics for testing interaction. To ensure the

genome-wide significance, the statistics should have high power to

detect interaction. Developing simple and efficient analytic

methods for evaluation of the gene-gene interactions is critical to

the success of genome-wide gene-gene interaction analysis. Finally,

the fourth challenge is replication of the finding of such

interactions in independent studies.

This report will attempt to meet these challenges, at least in part.

To achieve this, we first should define a good measure of gene-gene

interaction. Despite current enthusiasm for investigation of gene-

gene interactions, published results that document these interac-

tions in humans are limited and the essential issue of how to define

and detect gene-gene interactions remains unresolved. Over the last

three decades, epidemiologists have debated intensely about how to

define and measure interaction in epidemiologic studies [7,8,11–

15]; The concept of gene-gene interactions is often used, but rarely

specified with precision [16]. In general, statistical gene-gene

interaction is defined as departure from additive or multiplicative

joint effects of the genetic risk factors [17]. It is increasingly

recognized that statistical interactions are scale dependent [18]. In

other words, how to define the effects of a risk factor and how to

measure departure from the independence of effects will greatly

affect assessment of gene-gene interaction. The most popular scale

upon which risk factors are measured in case-control studies is odds-

ratio. The traditional odds-ratio is defined in terms of genotypes at

two loci. Similar to two-locus association analysis where only

genotype information at two loci is used, odds-ratio defined by

genotypes for testing interaction will not employ allelic association

information. However, it is known that interaction between two loci

will generate allelic associations in some circumstances [19]. Since

they do not use allelic association information between two loci, the

statistical methods based on the odds-ratio that is defined in terms

of genotypes will have less power to detect interaction. To

overcome this limitation, we will define odds-ratio in terms of a

pseudohaplotype (which is defined as two alleles located on the

same paternal or maternal chromosomes) for measuring interac-

tion, and then we will investigate its properties and develop a

statistic based on pseudohaplotype defined odds-ratio for testing

interaction between two loci (either linked or unlinked).

To demonstrate that the pseudohaplotype odds-ratio interaction

measure-based statistic for detection of interaction between two loci

will not cause false positive problems, we then investigate type I error

rates. To reveal the merit and limitation of the pseudohaplotype

odds-ratio interaction measure-based statistic for detection of

interaction, we will compare its power for detecting interaction with

the traditional logistic regression and ‘‘fast-epistasis’’ in PLINK [20].

Although nearly 400 GWAS have been documented, few

genome-wide interaction analyses have been performed and few

findings of significant interaction reported [8,21,22]. Emily et al

[23] tested about 3,107,904–3,850,339 pairs of SNPs located in

genes with potential protein-protein interaction and reported four

significant cases of interactions, one in each of Crohn’s Disease,

bipolar disorder, hypertension and rheumatoid arthritis in the

WTCCC dataset, but these have not been replicated. To further

evaluate the performance of our new statistic and test the

feasibility of genome-wide interaction analysis, the presented

statistic was applied to interaction analysis of two independent

GWAS datasets of psoriasis where 1,266,378,301 pairs of SNPs

from 50,327 SNPs in the first dataset and 1,243,782,750 pairs of

SNPs from 49,876 SNPs in the second dataset were tested for

interactions. These SNPs in the datasets were selected from 501

pathways assembled from KEGG [24] and Biocarta (http://www.

biocarta.com) pathway databases. A program for using the

developed statistic to test interaction which was implemented by

C++ can be downloaded from our website http://www.sph.uth.

tmc.edu/hgc/faculty/xiong/index.htm.

Methods

A case-control study design for detection of interaction between

two loci (SNPs) where two loci can be either linked or unlinked

Author Summary

It is expected that genome-wide interaction analysis can
be a possible source of finding heritability unexplained by
current GWAS. However, the existing statistics for testing
interaction have low power for genome-wide interaction
analysis. To meet challenges raised by genome-wide
interactional analysis, we develop a novel statistic for
testing interaction between two loci (either linked or
unlinked) and validate the null distribution and the type I
error rates of the new statistic through simulations. By
extensive power studies we show that the developed
novel statistic has much higher power to detect interaction
than the classical logistic regression. To provide evidence
of gene–gene interactions as a possible source of the
missing heritability unexplained by the current GWAS, we
performed the genome-wide interaction analysis of
psoriasis in two independent studies. The preliminary
results identified 44 and 211 pairs of SNPs showing
significant evidence of interactions with FDR,0.001 and
0.001,FDR,0.003, respectively, which were common in
two independent studies. These included five interacting
pairs of SNPs, some of which were located in the target
sites: LST1/NCR3, CXCR5/BCL9L and GLS2 of miR-324-3p,
miR-433, and miR-382, and 15 pairs of interacting SNPs
that had nonsynonymous substitutions.

Genome-Wide Interaction Analysis
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were considered. The statistics for testing interaction are usually

motivated by the measure of interaction. The widely used logistic

regression methods for detection of gene-gene interaction are

based on then odds-ratio measure of interaction. Traditional

additive and multiplicative odds ratio measures of interaction are

defined in terms of genotypes at two loci. In this report, a novel

statistic for testing interaction between two loci is based on

multiplicative odds-ratio measures defined in terms of pseudoha-

plotypes. For the convenience of presentation, we first briefly

introduce the odds ratio interaction measure in terms of

genotypes, alleles, and then present the odds ratio measure in

terms of pseudohaplotypes.

Genotype-Based Odds Ratio Multiplicative Interaction
Measure

Consider two loci: G and H. Assume that the codes

G~1(G~0) and H~1(H~0) denote whether an individual is

a carrier (non-carrier) of the susceptible genotypes at the loci G

and H, respectively. Let D denote disease status where

D~1(D~0) indicates an affected (unaffected) individual. Con-

sider the following logistic model:

P D~1DG,Hð Þ~ eazbGGzbH HzbGH GH

1zeazbGGzbH HzbGH GH
: ð1Þ

The odds-ratio associated with G for nonsusceptible genotype at

the locus H (H~0) is defined as

ORG~
P(D~1DG~1,H~0)=P(D~0DG~1,H~0)

P(D~1DG~0,H~0)=P(D~0DG~0,H~0)
:

Similarly, the odds-ratio associated with H for nonsusceptible

genotype at the locus G (G~0) is defined as

ORH~
P(D~1DG~0,H~1)=P(D~0DG~0,H~1)

P(D~1DG~0,H~0)=P(D~0DG~0,H~0)
:

The odds-ratio associated with susceptibility at G and H compared

to the baseline category G~0 and H~0 is then computed as

ORGH~
P(D~1DG~1,H~1)=P(D~0DG~1,H~1)

P(D~1DG~0,H~0)=P(D~0DG~0,H~0)
:

The odds for baseline category G~0 and H~0 are determined as

ORb~
P(D~1DG~0,H~0)

P(D~0DG~0,H~0)
:

From equation (1), we clearly have

ORb~ea,ORG~ebG ,ORH~ebH and ORGH~ORGORH ebGH :

Define a multiplicative interaction measure between two loci G

and H as

IGH~log
ORGH

ORGORH

: ð2�AÞ

It is clear that

bGH~IGH : ð2� BÞ

If ORGH~ORGORH , i.e., there is no interaction between loci G

and H, then IGH~0. This shows that the logistic regression

coefficient for interaction term bGH is equivalent to the interaction

measure defined as log odds-ratio. The interaction measure IGH

can also be written as

IGH~log
P(G~1,H~1jD~1)P(G~0,H~0jD~1)

P(G~1,H~0jD~1)P(G~0,H~1jD~1)
{

log
P(G~1,H~1jD~0)P(G~0,H~0jD~0)

P(G~1,H~0jD~0)P(G~0,H~1jD~0)
:

The values of odds-ratio defined in terms of genotypes depends on

how to code indicator variables G and H. Suppose that alleles G1

and H1 are alleles that increase disease risk. For a recessive model,

G is coded as 1 if the genotype is G1G1, otherwise, G is coded as 0.

For a dominant model, G is coded as 1 if the genotypes are either

G1G1 or G1G2, otherwise G is coded as 0. The indicator variable

H can be similarly coded. However, in real data analysis, the

disease models are unknown. Especially, the types of two-locus

disease models are large [25]. We may have a large number of

possible coding, and many of them may have larger numbers of

degrees of freedom than the allelic model.

Allele-Based Odds Ratio Multiplicative Interaction
Measure

Similar to the odds ratio for genotypes, we can define odds-ratio

in terms of alleles. Let P(D~1DGi,Hj) be the probability that an

individual becomes affected given they have genotype Gi=Gk at

locus G and Hj=HI at locus H, where Gk is either G1 or G2 (i.e. Gk

is a member of the set {G1,G2}) and HI is either H1 or H2 (i.e. HI

is a member of the set {H1,H2}). We can similarly define

P(D~0DGi,Hj). We then can determine the odds-ratio associated

with the allele G1 at the G locus and allele H1 at the H locus

compared to the baseline G2=H2 as

ORG1=H1
~

P(D~1DG1,H1)
P(D~0DG1,H1)
P(D~1DG2,H2)
P(D~0DG2,H2)

:

Similarly, we measure the odds-ratio associated with the alleles

G1=H2 and G2=H1, respectively as

ORG1=H2
~

P(D~1DG1,H2)
P(D~0DG1,H2)
P(D~1DG2,H2)

P(D~0DG2,H2)

and ORG2=H1
~

P(D~1DG2,H1)

P(D~0DG2,H1)
P(D~1DG2,H2)

P(D~0DG2,H2)

:

Similar to genotype, we can define a multiplicative interaction

measure in terms of log odds-ratio for allele as

IG=H~log
ORG1=H1

ORG1=H2
ORG2=H1

which is equivalent to

IG=H~log(R){log(S), where

R~
P(G1,H1jD~1)P(G2,H2jD~1)

P(G1,H2jD~1)P(G2,H1jD~1)
and

S~
P(G1,H1jD~0)P(G2,H2jD~0)

P(G1,H2jD~0)P(G2,H1jD~0)
:

Genome-Wide Interaction Analysis
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The ‘‘fast-epistasis’’ test statistic in PLINK (http://pngu.mgh.

harvard.edu/,purcell/plink/index.shtml) is defined as

Z~
log(R){log(S)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE(R)zSE(S)

p ,

where SE(R) and SE(S) denote the standard deviation of R and S,

respectively. Absence of interaction is implied if and only if

P(G1,H1DD~1)P(G2,H2DD~1)

P(G1,H2DD~1)P(G2,H1DD~1)
~

P(G1,H1DD~0)P(G2,H2DD~0)

P(G1,H2DD~0)P(G2,H1DD~0)
:

This is the basis of the ‘‘fast-epistasis’’ test in PLINK.

Haplotype-Based Odds Ratio Multiplicative Interaction
Measure

Suppose that the locus G has two alleles G1 and G2 and the

locus H has two alleles H1 and H2. Let PA
G1

,PA
G2

,PA
H1

,PA
H2

and

PN
G1

,PN
G2

,PN
H1

,PN
H2

be the frequencies of the alleles G1,G2,H1,H2 in

the cases and controls, respectively. For the discussion of

convenience, we introduce a terminology of ‘‘pseudohaplotype’’.

When two loci are linked, a pseudohaplotype is defined as the

regular haplotype. When two loci are unlinked, a pseudohaplotype

is defined as a set of alleles that are located in the same paternal or

maternal chromosomes. The frequencies of a pseudohaplotype

can be estimated by the classical methods for estimation of

haplotype frequencies such as Expectation Maximization (EM)

Algorithms. For simplicity, hereafter we will not make distinction

between the haplotype and pseudohaplotype. When two loci are

unlinked, a haplotype is understood as a pseudohaplotype. Let

PA
11,PA

12,PA
21, PA

22 and PN
11,PN

12,PN
21, PN

22 denote the frequencies of

haplotypes G1H1,G1H2,G2H1 and G2H2 in the cases and controls,

respectively. We define a penetrance of the haplotype GiHj as the

probability that an individual becomes affected given they have

phased genotype GiHj=GkHl ,k~1,2,l~1,2. Let fijkl be the

penetrance of an individual with the genotype GiHj=GkHl ,

h11,h12,h21 and h22 be the penetrance of the haplotypes

G1H1,G1H2,G2H1 and G2H2, respectively. The penetrance of

the haplotype GiHj can be mathematically defined as

hij~P11fij11zP12fij12zP21fij21zP22fij22,

where P11,P12,P21 and P22 are the population frequencies of the

haplotypes G1H1,G1H2,G2H1 and G2H2, respectively.

G~i and H~j represent a genotype coding scheme. Their

represented genotypes depend on the specific genotype coding

scheme. It should be noted that the haplotype GiHj and G~i and

H~j have different meanings. By the same idea in defining

genotype-based odds ratio in terms of penetrance of combinations

of genotypes, we can determine the odds-ratio associated with the

haplotypes G1H1 compared to the baseline haplotype G2H2 in

terms of penetrance of the haplotypes as

ORG1H1
~

h11=(1{h11)

h22=(1{h22)
:

Similarly, we calculate the odds-ratio associated with the

haplotypes G1H2 and G2H1, respectively, as

ORG1H2
~

h12=(1{h12)

h22=(1{h22)
and

ORG2H1
~

h21=(1{h21)

h22=(1{h22)
:

It is noted that replacing G~i and H~j in the definition of odds-

ratio in terms of genotypes by GiHj leads to the definition of odds-

ratio based on the haplotypes. However, the values and biological

meanings of these two types of odds-ratios are different.

Similar to genotypes, we can compute a multiplicative inter-

action measure in terms of log odds-ratio for haplotypes as

IH
GH~log

ORG1H1

ORG1H2
ORG2H1

: ð3Þ

In the absence of interaction, we have

ORG1H1
~ORG1H2

ORG2H1
or

P(D~1DG1H1)P(D~1DG2H2)

P(D~1DG1H2)P(D~1DG2H1)
~

P(D~0DG1H1)P(D~0DG2H2)

P(D~0DG1H2)P(D~0DG2H1)
:

The multiplicative odds-ratio interaction measure in equation (3) is

defined by the penetrance of the haplotypes. From case-control

data it is difficult to calculate the penetrance of the haplotypes.

However, we can show that the multiplicative odds-ratio

interaction measure in equation (3) can be reduced to (Text S1,

Appendix A)

IH
GH~log

PA
11PA

22

PA
12PA

21

{log
PN

11PN
22

PN
12PN

21

: ð4Þ

There are many algorithms and software to infer the haplotype

frequencies in cases and controls. Therefore, we can easily

calculate the multiplicative odds-ratio interaction measure by

equation (4). It can be seen from equation (4) that the absence of

interaction between two loci occurs if and only if the ratio of

haplotypes frequencies
PA

11PA
22

PA
12PA

21

in the cases and the ratio of

haplotypes frequencies
PN

11PN
22

PN
12PN

21

in the controls are equal.

To gain understanding the multiplicative odds-ratio interaction

measure, we study several special cases.

Case 1. One of two loci is a marker. If we assume that the

locus H is a marker and is not associated with disease, then we

have

PA
ij ~P(Gi DD~1)P(Hj DGi) and PN

ij ~P(Gi DD~0)P(Hj DGi),

which implies that

PA
11PA

22

PA
12PA

21

~
P(G1DD~1)P(G2DD~1)P(H1DG1)P(H2DG2)

P(G1DD~1)P(G2DD~1)P(H2DG1)P(H1DG2)

~
PN

11PN
22

PN
12PN

21

:

Thus, we obtain IH
GH~0. In other words, if the locus H is a

marker, there is no interaction between two loci G and H. The

Genome-Wide Interaction Analysis
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interaction measure IH
GH between two loci should be equal to zero.

Hence, our multiplicative odds-ratio interaction measure correctly

characterizes the marker case.

Case 2. Logistic regression interpretation.

We define two indicator variables:

G~
1 G1

0 G2

�
and H~

1 H1

0 H2

�
: ð5Þ

Then four haplotypes at two loci can be coded as follows:

It follows from the logistic regression model in equation (1) that

ORG1H2
~ebG ~ORG

ORG2H1
~ebH ~ORH

ORG1H1
~ebGzbH zbGH ~ORGORH ebGH ,

where odds-ratios ORG and ORH are defined in terms of alleles,

i.e.

ORG~
P(D~1jG1)=P(D~0jG1)

P(D~1jG2)=P(D~0jG2)
and

ORH~
P(D~1jH1)=P(D~0jH1)

P(D~1jH2)=P(D~0jH2)

Therefore, the haplotype multiplicative odds-ratio interaction

measure IH
GH is equal to IH

GH~bGH , which has the same form as

that in equation (2-B). This indicates that if the coding for the

genotypes in the genotype multiplicative odds-ratio interaction

measure IGH is replaced by the coding for the haplotypes in

equation (5) then we can obtain the haplotype multiplicative odds-

ratio interaction measure.

Test Statistics
In the previous section we defined the haplotype multiplicative

odds-ratio interaction measure, which can be estimated by

haplotype frequencies in cases and controls. By the delta method,

we can obtain the variance of the estimator of the haplotype odds-

ratio interaction measure [26]:

Var(ÎIH
GH )~

1

2nA

1

P̂PA
11

z
1

P̂PA
12

z
1

P̂PA
21

z
1

P̂PA
22

" #
z

1

2nG

1

P̂PN
11

z
1

P̂PN
12

z
1

P̂PN
21

z
1

P̂PN
22

" #
,

where nA and nG are the number of sampled individuals in cases

and controls. By the standard asymptotic theory we can define the

haplotype odds-ratio interaction measure-based statistic for testing

interaction between two loci:

TIH~
ÎIH

GH

� �2

V ÎIH
GH

� �~

log
P̂PA

11P̂PA
22

P̂PA
12P̂PA

21

{log
P̂PN

11P̂PN
22

P̂PN
12P̂PN

21

" #2

1

2nA

1

P̂PA
11

z
1

P̂PA
12

z
1

P̂PA
21

z
1

P̂PA
22

" #
z

1

2nG

1

P̂PN
11

z
1

P̂PN
12

z
1

P̂PN
21

z
1

P̂PN
22

" #
ð6Þ

where P̂PA
11,P̂PA

12,P̂PA
21,P̂PA

22 and P̂PN
11,P̂PN

12,P̂PN
21,P̂PN

22 are the estimators of

the corresponding haplotype frequencies in cases and controls,

respectively. When sample sizes are large enough to ensure

application of large sample theory, TIH is asymptotically

distributed as a central x2
(1) distribution under the null hypothesis

of no interaction between two loci. Under an alternative

hypothesis of of interaction between two loci being present, the

statistic TIH is asymptotically distributed as a noncentral x2
(1)

distribution with noncentrality parameter proportional to the

haplotype multiplicative odds-ratio interaction measure. This

statistic can be applied to both linked and unlinked loci. As we

explained in Text S1, Appendix B, the proposed statistic TIH is

different from the ‘‘fast-epistasis’’ test in PLINK.

For the unlinked loci, we can use case only design [27,28] to

study interaction between two loci in which equation is reduced to

TIH~

log
PA
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Results

Null Distribution of Test Statistics
In the previous sections, we have shown that when the sample

size is large enough to apply large sample theory, the distribution

of the statistic TIH for testing the interaction between two loci

under the null hypothesis of no interaction between them is

asymptotically a central x2
(1) distribution. To examine the validity

of this statement, we performed a series of simulation studies.

MATLAB was used to generate two-locus genotype data of the

sample individuals. A total of 100,000 individuals from a general

population with an allele frequency P(G1)~0:4, P(H1)~0:3,

haplotype frequency P(G1H1)~0:1 and disequilibrium coefficient

d~P(G1H1){P(G1)P(H1)~{0:02 were generated. A total of

10,000 simulations were repeated. Type I error rates were

calculated by random sampling 500–1,000 individuals as cases

and controls from the general population. Table 1 and Table 2

show that the estimated type I error rates of the statistic TIH for

testing interaction between two loci, assuming ORG~ORH~1
and ORG~ORH~2, were not appreciably different from the

nominal levels a~0:05, a~0:01 and a~0:001. To further

examine the validity of the test statistic, we constructed

Quantile-quantile (Q-Q) plots of the test statistic in datasets 1

and 2 shown in Figures 1A and 1B, where the P-values of the tests

were plotted (as 2log10 values) as a function of p values from the

expected null distribution. Since the total number of all possible

pair-wise tests for interaction between SNPs is too large to store all

the results in computer we only stored P-values ,1:00|10{4.

G H

G1H1 1 1

G1H2 1 0

G2H1 0 1

G2H2 0 0
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Consequently, Q-Q plots started with 4. Figures 1A and 1B

showed good agreement with the null distribution.

Power Evaluation
To evaluate the performance of the statistic TIH for detection of

interaction between two loci, we compared the power of the

statistic TIH to that of the logistic model and the ‘‘fast epistasis’’

test in PLINK. Power was calculated by simulation. A total of

1,000,000 individuals from a general population with allele

frequencies P(G1)~0:2, P(H1)~0:3 and P(G1H1)~0:1 and

disequilibrium coefficient d~P(G1H1){P(G1)P(H1)~0:04 were

generated. Two-locus disease models were used to generate cases

and controls, and summarized in Table 3 where odds-ratio was

defined in terms of genotypes. We considered three types of

genotype coding. For a recessive model, homozygous wild type,

heterozygous, and homozygous risk increasing genotypes were

coded as 0, 0, 1, respectively. For a dominant model, homozygous

wild type, heterozygous, and homozygous risk increasing geno-

types were coded as 0, 1, and 1, respectively. For an additive

model, they were coded as 0, 1, and 2, respectively. The genotype

coding for the logistic regression matched the simulation model.

The statistic TIH in equation (6) for the case-control version was

used to evaluate the power. In the power simulations, we also

assumed that ORG~1 and ORH~1. An individual who is

randomly sampled from the general population was assigned to

case or control status depending on the two-locus disease models in

Table 3. The process was repeated until a sample of 1,000 cases

and 1,000 controls for the dominant and additive models, or a

sample of 2,000 cases and 2,000 controls for the recessive model

was obtained. A total of 10,000 simulations were repeated. In

Figures 2A–2C, power comparisons among the logistic regression

model, the ‘‘fast-epistasis’’ in PLINK and the statistic TIH under

two-locus recessive|recessive disease model for significance levels

a~0:05, a~0:01 and a~0:001, respectively are presented. In

Figures 3A–3C, power comparisons among the logistic regression

model, the ‘‘fast-epistasis’’ in PLINK and the statistic TIH under

two-locus dominant|dominant disease model for significance

levels a~0:05, a~0:01 and a~0:001, respectively are shown. In

Figures 4A–4C, power comparisons between the logistic regression

model and the statistic TIH under two-locus additive|additive

disease model for significance levels a~0:05, a~0:01 and

a~0:001, respectively are demonstrated. Several remarkable

features emerge from these Figures. First, these power Figures

indeed demonstrate that the power increases as the measure of the

interaction between two loci increases. The power curves were

plotted as a function of the traditional genotype odds ratio ORGH .

We observed that the power curves were a monotonic increasing

function of the genotype odds ratio ORGH . Therefore, the test

statistic TIH can detect the strength of the interaction between two

loci. Second, the test statistic TIH had much higher power to

detect interaction between two loci than the logistic regression and

the ‘‘fast-epistasis’’ test in PLINK. Third, the more complex the

disease models were, the larger the differences in power between

the test statistic TIH , the ‘‘fast-epistasis’’ test in PLINK and logistic

regression that were observed.

When two loci are unlinked where we do not observe the allelic

association between two loci in the population as a whole, our

results also hold. We assumed the following allele and haplotype

frequencies in the population: P(G1)~0:2, P(H1)~0:3 and

P(G1H1)~0:06. Other parameters were defined as before. A

total of 10,000 simulations were repeated to simulate the power of

three statistics under three disease models with the significance

level a~0:001. Figures 5A, 5B and 5C showed the power of three

statistics for testing interaction between two unlinked loci under

two-locus recessive|recessive, dominant|dominant, and additive

|additive disease models, respectively. These Figures again

demonstrated that the power of the test statistic TIH was still much

higher than that of the logistic regression and the ‘‘fast-epistasis’’ test

in PLINK. The conclusions still hold for the significance levels

a~0:05 and a~0:01 (Data were not shown).

Application to Pathway-Based Genome-Wide Interaction
Analysis of Psoriasis

To evaluate its performance for detection of interaction between

two loci, the proposed test statistic TIH was applied to interaction

analysis of two independent GWAS datasets of psoriasis which

were downloaded from dbGaP. Psoriasis is a common chronic

inflammatory skin disease affecting 2%–3% of the world

population. Originally, the first study included 955 individuals

with psoriasis and 693 controls, which is considered as dataset 1.

The second replication study included 466 individuals with

psoriasis and 732 controls, which is designated dataset 2. All cases

and controls are of European origin [29–31]. After using PLINK

[20] to check for contamination, cryptic family relationship and

non-Caucasian ancestry, 123 samples were excluded. Subsequent-

ly we retained for analysis 915 cases and 675 controls from the first

study and 431 cases and 702 controls from the second study. All

2,723 samples had been genotyped with the Perlegen 500K array.

In the initial dataset, 451,724 SNPs passed quality control (call

Table 2. Type I error rates of the statistic TIH to test for
interaction between two loci, assuming ORG~ORH~2.

Sample Size Nominal levels

a~~0:05 a~~0:01 a~~0:001

300 0.04990 0.00945 0.00120

400 0.04995 0.01030 0.00085

500 0.05170 0.01065 0.00080

600 0.05070 0.00980 0.00100

700 0.04725 0.00965 0.00113

800 0.04945 0.00895 0.00075

900 0.04830 0.00950 0.00080

1000 0.04920 0.00975 0.00110

doi:10.1371/journal.pgen.1001131.t002

Table 1. Type I error rates of the statistic TIH to test for
interaction between two loci, assuming ORG~ORH~1.

Sample Size Nominal levels

a~~0:05 a~~0:01 a~~0:001

300 0.04790 0.00995 0.00080

400 0.04815 0.00820 0.00080

500 0.04745 0.00930 0.00085

600 0.04880 0.00850 0.00095

700 0.05060 0.00920 0.00075

800 0.05120 0.01015 0.00100

900 0.04935 0.00805 0.00090

1000 0.04860 0.00880 0.00090

doi:10.1371/journal.pgen.1001131.t001
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rate.95%). To further ensure the quality of the typed SNPs, we

used PLINK software to remove the SNPs with .5% missing

genotypes, Hardy-Weinberg disequilibrium (P-values ,0.0001),

MAF,0.01 and duplicated markers. In this application, we only

considered common SNPs with MAF.0.01. After quality control

filtering, a total of 451,724 SNPs were pruned to 443,018 and

439,201 SNPs with the average genotyping rate 99.3% in the first

and second studies, respectively.

Since testing for all possible two-locus interactions across the

genome in genome-wide interaction analysis requires extremely

large computation, we conducted pathway-based genome-wide

interaction analysis. We assembled 501 pathways from KEGG

[24] and Biocarta (http://www.biocarta.com). The assignment of

SNPs to a gene was obtained from NCBI human9606 database

(version b129). We used the statistic TIH to test interactions of all

possible pairs of SNPs located in genes within the assembled 501

pathways. The total number of SNPs in dataset 1 and dataset 2

being tested was 50,327 and 49,876, respectively. The serious

problem in genome-wide interaction analysis is multiple testing.

We used two strategies to tackle this problem. One is to use false

discovery rate (FDR) [32] to declare significance of interaction.

Another is replication of the findings in two independent studies,

which enhances confidence in interaction tests [22]. We looked for

consistent results across the two independent studies.

In total, 44 pairs of SNPs showed significant evidence of

interactions with FDR,0.001, which roughly corresponds to the

P-value ,1:0|10{7, in two independent studies (Table S1). These

44 pairs of SNPs were derived from 71 distinct SNPs located in 60

genes, including HLA-C, HLA-DRA, HLA-DPA1, LST1, MICB

and NOTCH4. Of 44 pairs of SNPs, only one pair of interacting

SNPs: rs2395471 and rs2853950 showed significant marginal

association in two independent studies. An additional 211 pairs of

SNPs with FDR less than 0.003 in the two studies is listed in Table

S2. These interacting SNPs were mainly located in 19 pathways,

including a number of signaling pathways, and immune-related

antigen processing and presentation as well as natural killer cell

mediated cytotoxicity pathways (Figure 6). Several remarkable

features emerge from these results. First, although we can observe a

few interactions between SNPs within a gene, the majority of

Figure 1. Quantile-quantile plots for the test statistic TIH . (A) Quantile-quantile plots for the test statistic TIH in dataset 1. The P-values
(,1:0|10{4) for the test are plotted (as 2log10 values) as a function of its expected p values. (B) Quantile-quantile plots for the test statistic TIH in
dataset 2. The P-values (,1:0|10{4) for the test are plotted (as 2log10 values) as a function of its expected p values.
doi:10.1371/journal.pgen.1001131.g001

Table 3. Two-locus disease models.

Recessive||Recessive

Locus 1\2 D2D2 D2d2 d2d2

D1D1 eaORGORH ORGH

1zeaORGORH ORGH

eaORG

1zeaORG

eaORG

1zeaORG

D1d1 eaORH

1zeaORH

ea

1zea

ea

1zea

d1d1 eaORH

1zeaORH

ea

1zea

ea

1zea

Dominant||Dominant

Locus 1\2 D2D2 D2d2 d2d2

D1D1 eaORGORH ORGH

1zeaORGORH ORGH

eaORGORH ORGH

1zeaORGORH ORGH

eaORG

1zeaORG

D1d1 eaORGORH ORGH

1zeaORGORH ORGH

eaORGORH ORGH

1zeaORGORH ORGH

eaORG

1zeaORG

d1d1 eaORH

1zeaORH

eaORH

1zeaORH

ea

1zea

Additive||Additive

Locus 1\2 D2D2 D2d2 d2d2

D1D1 eaORG
2ORH

2ORGH
4

1zeaORG
2ORH

2ORGH
4

eaORG
2ORH ORGH

2

1zeaORG
2ORH ORGH

2

eaORG
2

1zeaORG
2

D1d1 eaORGORH
2ORGH

2

1zeaORGORH
2ORGH

2

eaORGORH ORGH

1zeaORGORH ORGH

eaORG

1zeaORG

d1d1 eaORH
2

1zeaORH
2

eaORH

1zeaORH

ea

1zea

ea~
p0

1{p0

, p0 is the prevalence of the disease in the population.

The elements in the Table are the penetrance as a function of the joint
genotype at loci 1 and 2 with rows indexing genotype at locus 1 and columns
indexing genotype at locus 2.
doi:10.1371/journal.pgen.1001131.t003
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interactions occurred between genes that are often in different

pathways. Since the number of SNPs typed within each gene was

limited, it is unknown whether this is a general rule or just a special

case. Second, a SNP in one gene might interact with multiple

SNPs in multiple genes. For example, SNP rs3131636 in the gene

MICB interacting with the SNPs rs915895, rs443198, rs3134929 in

the gene NOTCH4, the SNP rs1052248 in the gene LAST1/

Natural cytotoxicity triggering receptor 3 (NCR3) and the SNP

rs1799964 in the gene LTA/TNF. SNP rs1799964 in the gene

LTA/TNF interacting with SNPs rs3131636, rs3132468 in the

gene MICB, SNPs rs9268658 and rs3135392 in the gene HLA-

DRA, SNP rs2227956 in the gene HSPA1L. However, this does

not imply that multiple causal SNPs within a gene will interact with

multiple causal SNPs within another gene. It is quite likely that this

is due to LD between the SNPs within a gene. Third, although

interacting SNPs did not form large connected networks, the

interacting SNPs connected pathways into a large complicated

network. This may imply that many genes and pathways are

involved in the development of psoriasis. Fourth, upstream of many

pathways included genes with interacting SNPs. For example,

Figure 3. Power of the statistics for testing interaction between two linked loci under dominant disease model. (A) The power of the
test statistic TIH , the ‘‘fast-epistasis’’ in PLINK and logistic regression analysis for testing interaction between two linked loci as a function of
traditional odds-ratio ORGH under a two-locus dominant|dominant disease model, where the number of individuals in both the case and control
groups is 1,000, the significance level is 0.05, and the odds-ratios at two loci were ORG~ORH~1. (B) The power of the test statistic TIH , the ‘‘fast-
epistasis’’ in PLINK and logistic regression analysis for testing interaction between two linked loci as a function of traditional odds-ratio ORGH under a
two-locus dominant|dominant disease model, where the number of individuals in both the case and control groups is 1,000, the significance level is
0.01, and the odds-ratios at two loci were ORG~ORH~1. (C) The power of the test statistic TIH , the ‘‘fast-epistasis’’ in PLINK and logistic regression
analysis for testing interaction between two linked loci as a function of traditional odds-ratio ORGH under a two-locus dominant|dominant disease
model, where the number of individuals in both the case and control groups is 1,000, the significance level is 0.001, and the odds-ratios at two loci
were ORG~ORH~1.
doi:10.1371/journal.pgen.1001131.g003

Figure 2. Power of the statistics for testing interaction between two linked loci under recessive disease model. (A) The power of the
test statistic TIH , the ‘‘fast-epistasis’’ in PLINK and logistic regression analysis for testing interaction between two linked loci as a function of
traditional odds-ratio ORGH under a two-locus recessive|recessive disease model, where the number of individuals in both the case and control
groups is 2,000, the significance level is 0.05, and the odds-ratios at two loci were ORG~ORH~1. (B) The power of the test statistic TIH , the ‘‘fast-
epistasis’’ in PLINK and logistic regression analysis for testing interaction between two linked loci as a function of traditional odds-ratio ORGH under a
two-locus recessive|recessive disease model, where the number of individuals in both the case and control groups is 2,000, the significance level is
0.01, and the odds-ratios at two loci were ORG~ORH~1. (C) The power of the test statistic TIH , the ‘‘fast-epistasis’’ in PLINK and logistic regression
analysis for testing interaction between two linked loci as a function of traditional odds-ratio ORGH under a two-locus recessive|recessive disease
model, where the number of individuals in both the case and control groups is 2,000, the significance level is 0.001, and the odds-ratios at two loci
were ORG~ORH~1.
doi:10.1371/journal.pgen.1001131.g002
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genes MICB, CHRM3, HLA-DRA and CIITA, EPHB1 and

EPHB2, LAMA1 and LANA5, ITGA1, LTBP1, TNF, and FGF20

that contain interacting SNPs are in the upstream of natural killer

cell mediated cytotoxicity, calcium signaling pathway, antigen

processing and presentation, axon guidance, ECM-receptor

interaction pathway, focal adhesion, TGFB pathway, MAPK

pathway and regulation of acting cytoskeleton, respectively. Fifth,

most interacting SNPs are in introns and accounted for 77% of total

interacting SNPs.

Table 4 listed 15 pairs of interacting SNPs that have non-

synonymous substitutions. It is unknown how these nonsynon-

ymous mutations are involved in the pathogenesis of psoriasis.

From the literature we know that Plexin C1 receptor is a tumor

suppressor gene for melanoma [33], NOTCH4 is involved in

schizophrenia [34], Phosphodiesterase 4D (PDE4D) is associated

with ischemic stroke [35], HLA-DRA is one of the HLA class II

alpha chain genes that plays a central role in antigen processing,

and neuregulin 1 (NRG1) has been implicated in diseases such as

cancer, schizophrenia and bipolar disorder [36].

Table 5 includes five interacting pairs of SNPs, one of which

falls in the microRNA (MiRNA) binding region. miRNAs, which

are 22 nucleotide small RNAs and regulate gene expressions by

Figure 5. Power of the statistics for testing interaction between two unlinked loci. (A) The power of the test statistic TIH , the ‘‘fast-
epistasis’’ in PLINK and logistic regression analysis for testing interaction between two unlinked loci as a function of traditional odds-ratio ORGH

under a two-locus recessive|recessive disease model, where the number of individuals in both the case and control groups is 2,000, the significance
level is 0.001, and the odds-ratios at two loci were ORG~ORH~1. (B) The power of the test statistic TIH , the ‘‘fast-epistasis’’ in PLINK and logistic
regression analysis for testing interaction between two unlinked loci as a function of traditional odds-ratio ORGH under a two-locus
dominant|dominant disease model, where the number of individuals in both the case and control groups is 1,000, the significance level is 0.001,
and the odds-ratios at two loci were ORG~ORH~1. (C) The power of the test statistic TIH , the ‘‘fast-epistasis’’ in PLINK and logistic regression
analysis for testing interaction between two unlinked loci as a function of traditional odds-ratio ORGH under a two-locus additive|additive disease
model, where the number of individuals in both the case and control groups is 1,000, the significance level is 0.001, and the odds-ratios at two loci
were ORG~ORH~1.
doi:10.1371/journal.pgen.1001131.g005

Figure 4. Power of the statistics for testing interaction between two linked loci under additive disease model. (A) The power of the test
statistic TIH , the ‘‘fast-epistasis’’ in PLINK and logistic regression for testing interaction between two linked loci analysis as a function of traditional
odds-ratio ORGH under a two-locus additive|additive disease model, where the number of individuals in both the case and control groups is 1,000,
the significance level is 0.05, and the odds-ratios at two loci were ORG~ORH~1. (B) The power of the test statistic TIH , the ‘‘fast-epistasis’’ in PLINK
and logistic regression for testing interaction between two linked loci analysis as a function of traditional odds-ratio ORGH under a two-locus
additive|additive disease model, where the number of individuals in both the case and control groups is 1,000, the significance level is 0.01, and the
odds-ratios at two loci were ORG~ORH~1. (C) The power of the test statistic TIH , the ‘‘fast-epistasis’’ in PLINK and logistic regression for testing
interaction between two linked loci analysis as a function of traditional odds-ratio ORGH under a two-locus additive|additive disease model, where
the number of individuals in both the case and control groups is 1,000, the significance level is 0.001, and the odds-ratios at two loci were
ORG~ORH~1.
doi:10.1371/journal.pgen.1001131.g004
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pairing the miRNA seed region with the target sites, have been

implicated in many biological processes including the immune

response, biogenesis and tumorigenesis [37]. Mutations in the

target sites will affect miRNA activity. A number of studies have

identified polymorphisms in the miRNA target sites associated

with the diseases [37]. Interestingly, we identified four SNPs in the

miRNA (miR-324-3p, miR-433, and miR-382) target sites which

interact with five SNPs to contribute to psoriasis. In previous

studies, miR-382 has been associated with dermatomyositis,

Duchenne muscular dystrophy and Miyoshi myopathy [38],

miR-433 and miR-324 with lupus nephritis [39] and miR-433

with Parkinson’s disease [40].

Some researchers suggest that in genome-wide interaction

analysis only SNPs with large or mild marginal genetic effects

should be tested for interaction. To examine whether this strategy

will miss detection of interacting SNPs, we showed in Table 6 the

20 top pairs of interacting SNPs and in Table S3 all pairs of

interacting SNPs with FDR less than 0.003. Surprisingly, 75% of

SNPs with P-values (in dataset 1) larger than 0.2 and 44% of SNPs

with P-values larger than 0.5 in two studies were observed in Table

S3. Table 6 and Table S3 strongly demonstrated that while both

SNPs did not demonstrate significant evidence of marginal

association, they did show significant evidence of interaction.

To further evaluate the performance of the proposed statistic

TIH , in Table 7 and Table S4 we list P-values for testing

interaction calculated by the statistic TIH , the ‘‘fast-epistasis’’ in

PLINK and logistic regression using genotype coding. In Table 7

the 20 top pairs of interacting SNPs and in Table S4 the results of

233 pairs of interacting SNPs are presented. The P-values for

interaction calculated by the statistic TIH are much smaller than

those from the ‘‘fast-epistasis’’ in PLINK and the logistic

regression using genotype coding (Table 7 and Table S4).

Moreover, the ‘‘fast-epistasis’’ in PLINK and the logistic regression

coded by genotype detect very few interactions that can be

replicated in two independent studies (Table 7 and Table S4). In

fact, our results for all tested SNPs in 501 pathways showed that

the ‘‘fast-epistasis’’ in PLINK and logistic regression coded by

genotypes detected very few interactions that can be replicated in

two studies (data not shown).

Eighteen significantly interacting SNPs identified by Bonferroni

correction were listed in Table 8. In dataset1, the total number of

SNPs for testing interaction was 50,327. The P-values for

declaring interaction between SNPs after Bonferroni correction

was 3:95|10{11. We found that there were 2,210 significant

interactions with P-values less than 3:51|10{11 in the dataset 1.

Then, interaction for all these 2,210 pairs of SNPs in the dataset 2

Figure 6. Interacting SNPs that were located in 19 pathways formed a network. Each pathway was represented by an ellipse with the
number. The SNPs were represented by nodes and placed insight their located pathways. Nearby each SNP there was its RS number and the name of
its located gene. The pathway and its harbored SNPs were labeled by the same color. The interacting SNPs were connected by the solid light green
lines.
doi:10.1371/journal.pgen.1001131.g006
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was examined. The P-values for declaring interaction between

SNPs after Bonferroni correction in dataset 2 was 2:26|10{5. We

identified eight significant interactions that were replicated in

dataset 2. Similarly, if we started with dataset 2, the total number

of SNPs for testing interaction was 49,876. The P-values for

declaring interaction between SNPs after Bonferroni correction

was 4:02|10{11. Significant interactions with the P-values less

than 3:87|10{11 in dataset 2 were seen between 1,913 pairs of

SNPs. Then, we tested for interaction for all these 1,913 pairs of

SNPs in the dataset 1. The P-values for declaring interaction

between SNPs after Bonferroni correction in dataset 1 was

2:61|10{5, and 10 significant interactions were detected that

were replicated in the dataset 1. A total of 9 interactions were

common in Table 8 and Table S1 and Table S2.

Discussion

The development of most diseases is a dynamic process of gene-

gene and gene-environment interactions within a complex

biological system. We expect that genome-wide interaction

analysis will provide a possible source of finding missing

heritability unexplained by current GWAS that test association

individually. But, in practice, very few genome-wide interaction

analyses have been conducted and few significant interaction

results have been reported. Our aim is to develop statistical

methods and computational algorithms for genome-wide interac-

tion analysis which can be implemented in practice and provide

evidence of gene-gene interaction. The purpose of this report is to

address several issues to achieve this goal.

The first issue is how to define and measure interaction. Odds-

ratio is a widely used measure of interaction for case-control

design. The odds-ratio based measure of interaction between two

loci is often defined as a departure from additive or multiplicative

odds-ratios of both loci defined by genotypes. The genotype-based

odds-ratio does not explore allelic association information between

two loci generated by interaction between them in the cases. Any

statistics that are based on genotype defined odds-ratio will often

have low power to detect interaction. To overcome this limitation,

we extended genotype definition of odds-ratio to haplotypes and

revealed relationships between haplotype-defined odds-ratio and

haplotype formulation of logistic regression. To further examine

the validity of this concept, we studied the distribution of the test

statistic under the null hypothesis of no interaction between two

either linked or unlinked loci. Through extensive simulation

Table 5. Five pairs of interacting SNPs, one of which falls in the microRNA binding region.

SNP1(rs) Gene 1 SNP2(rs) Gene 2 Dataset 1 Dataset 2 MicroRNA Binding Site

P-Value FDR P-Value FDR

1052248 LST1/NCR3 2227956 HSPA1L 8.24E-07 2.17E-03 1.87E-08 4.40E-04 rs1052248 (miR-324-3p)

1052248 LST1/NCR3 3131636 MICB 5.56E-13 3.03E-06 7.76E-10 1.04E-04 rs1052248 (miR-324-3p)

676925 CXCR5/BCL9L 999890 PIP5K3 3.07E-07 1.38E-03 2.93E-07 1.51E-03 rs676925 (miR-382)

163274 ACSM1 2638315 GLS2 8.16E-07 2.16E-03 9.14E-07 2.51E-03 rs2638315 (miR-433)

2072619 MYH11 3822711 GALNT10 1.83E-07 1.09E-03 3.77E-08 6.03E-04 rs3822711 (miR-324-3p)

doi:10.1371/journal.pgen.1001131.t005

Table 4. Interacting SNPs with non-synonymous mutation.

SNP1(rs) Gene1 SNP2(rs) Gene2 Dataset 1 Dataset 2
Nonsynonymous
mutation

Protein
Residue

P-Value FDR P-Value FDR

10837771 OR51B4 16973321 RYR3 1.20E-07 9.00E-04 2.28E-07 1.34E-03 rs10837771 T

7671095 GRID2 10839659 OR2D3 2.00E-08 3.97E-04 2.82E-08 5.29E-04 rs10839659 S

1545133 POLR1B 8064077 MYH11 6.71E-07 1.97E-03 5.88E-07 2.06E-03 rs1545133 L

1958715 OR4L1 3844750 EFNA5 2.15E-08 4.10E-04 1.25E-07 1.03E-03 rs1958715 N

1958716 OR4L1 3844750 EFNA5 4.48E-08 5.73E-04 1.22E-07 1.02E-03 rs1958716 V

2227956 HSPA1L 3135392 HLA-DRA 3.20E-10 6.02E-05 7.82E-10 1.05E-04 rs2227956 M

2227956 HSPA1L 3134929 NOTCH4 7.76E-09 2.57E-04 2.36E-11 2.07E-05 rs2227956 M

1799964 LTA/TNF 2227956 HSPA1L 7.52E-09 2.53E-04 2.98E-08 5.42E-04 rs2227956 M

1052248 LST1/NCR3 2227956 HSPA1L 8.24E-07 2.17E-03 1.87E-08 4.40E-04 rs2227956 M

35258 PDE4D 2230793 IKBKAP 7.50E-08 7.24E-04 7.85E-07 2.34E-03 rs2230793 L

2254524 LSS 10860869 IGF1 8.58E-08 7.70E-04 6.35E-09 2.71E-04 rs2254524 V

327325 NRG1 3742290 UTP14C 7.47E-07 2.07E-03 5.90E-07 2.06E-03 rs3742290 A

4253211 ERCC6 10435892 GABBR2 5.60E-07 1.81E-03 1.11E-09 1.23E-04 rs4253211 P

940389 STON1 10745676 PLXNC1 2.20E-08 4.14E-04 7.02E-07 2.23E-03 rs940389 T

676925 CXCR5 999890 PIP5K3 3.07E-07 1.38E-03 2.93E-07 1.51E-03 rs999890 A

doi:10.1371/journal.pgen.1001131.t004
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(assuming allelic association in the controls), we show that the

distribution of the haplotype odds-ratio-based statistic is close to a

central x2
(1) distribution even for small sample size and that type I

error rates were close to the nominal significance levels.

The second issue is the power of the test statistic for genome-

wide interaction analysis. The genome-wide interaction analysis

requires testing billions of pairs of SNPs for interactions. The P-

values for ensuring genome-wide significance level should be very

small. Therefore, developing statistics with high power to detect

interaction is an essential issue for the success of genome-wide

interaction analysis. As an alternative to the logistic regression and

the ‘‘fast-epistasis’’ in PLINK, we presented a haplotype odds-

ratio-based statistic for detection of interaction between two loci

and illustrated its power by extensive simulations. The power of

the haplotype odds-ratio-based statistic ended up being a function

of the measure of interaction and had much higher power to

detect interaction than the ‘‘fast-epistasis’’ in PLINK and logistic

regression.

The third issue is whether the interactions exist with no

marginal association and how often they might occur in practice.

Our data demonstrated that the majority of the significantly

interacting SNPs showed no marginal association. Surprisingly,

75% of interacting SNPs with P-values (for testing marginal

association) larger than 0.2 and 44% of interacting SNPs with P-

values (for testing marginal association) larger than 0.5 in two

studies were observed in our analysis. This strongly suggested that

testing interaction for only SNPs with strong or mild marginal

association will miss the majority of interactions.

The fourth issue is that of replication of the results. Genome-

wide interaction analysis involves testing billions of pairs of SNPs.

Even if after correction of multiple tests, the false positive results

might be still high. To increase confidence in interaction test

results, replication of interaction findings in independent studies is

often sought. To date, very few results of genome-wide interaction

analysis have been replicated. This begs the question whether the

significant interaction can be replicated in independent studies. In

this report, we show that interaction findings can be replicated in

two independent studies.

The fifth issue is correction for multiple testing. Genome-wide

interaction analysis often involves billions of tests, which would

require an extremely small Bonferroni-corrected P-value to ensure

a genome-wide significance level of 0.05. Replication of finding at

such small P-values in independent studies is often extremely

difficult. However, Bonferroni correction assumes that the tests are

independent, yet many interaction tests are highly correlated.

Correlations in the interaction tests come from two levels [23].

First, two pairs of SNPs may share a common SNP. Second, SNPs

in the interaction tests may be dependent due to allelic association.

The Bonferroni correction assuming independent tests will be

overly conservative due to high correlations among the interaction

tests. In this report, two strategies were used to tackle the multiple

testing issues. The first is to use FDR to control type I error. The

second is to replicate interaction finding. Replication allows us to

detect the interactions that are frequent and consistent [22]. This

approach still has the limitation that we still make independent

assumption of the tests in calculation of FDR. Recently, Emily et

al. (2009) [23] proposed to develop a Bonferroni-like correction for

multiple tests based on the concept of the effective number of SNP

pairs. The concept of the effective number of tests takes correlation

among the tests into account and can be applied to both P-value

Table 6. Top 20 pairs of interacting SNPs.

Association of SNP Interaction

P-value P-value Dataset 1 Dataset 2

SNP1(rs) Dataset 1 Dataset 2 Gene 1 SNP2(rs) Dataset 1 Dataset 2 Gene 2 P-Value FDR P-Value FDR

626072 0.227074 0.053394 LAMA1 6121989 0.862496 0.311346 LAMA5 1.11E-15 1.41E-07 5.67E-07 2.03E-03

626072 0.227074 0.053394 LAMA1 4925386 0.935809 0.264641 LAMA5 1.47E-13 1.73E-06 9.81E-07 2.59E-03

1052248 1.28E-05 0.002907 LST1/NCR3 3131636 0.012961 0.0006472 MICB 5.56E-13 3.03E-06 7.76E-10 1.04E-04

1052248 1.28E-05 0.002907 LST1/NCR3 3132468 0.014008 0.0005969 MICB 8.41E-13 3.70E-06 8.96E-10 1.12E-04

443198 0.000703 2.35E-11 NOTCH4 3131636 0.012961 0.0006472 MICB 1.13E-11 1.24E-05 3.98E-08 6.18E-04

443198 0.000703 2.35E-11 NOTCH4 3132468 0.014008 0.0005969 MICB 1.19E-10 3.76E-05 6.55E-08 7.72E-04

1799964 0.001104 0.009606 LTA/TNF 3131636 0.012961 0.0006472 MICB 1.62E-10 4.35E-05 1.36E-09 1.34E-04

1799964 0.001104 0.009606 LTA/TNF 3132468 0.014008 0.0005969 MICB 2.94E-10 5.80E-05 2.51E-09 1.78E-04

4766587 0.813376 0.391864 ACACB 4807055 0.530091 0.0742653 NDUFA11 3.07E-10 5.90E-05 6.61E-07 2.17E-03

2227956 0.001216 0.000149 HSPA1L 3135392 0.581239 0.75373 HLA-DRA 3.20E-10 6.02E-05 7.82E-10 1.05E-04

1060856 0.824965 0.751351 ALDH7A1 2711288 0.258241 0.0910624 PRKCE 3.57E-10 6.33E-05 2.56E-07 1.42E-03

326346 0.979881 0.212752 CD47 11081513 0.229512 0.79174 VAPA 4.24E-10 6.84E-05 2.81E-07 1.48E-03

1932067 0.043627 0.970441 PAFAH2 13203100 0.208767 0.598145 TIAM2 5.64E-10 7.81E-05 3.04E-08 5.47E-04

2012359 0.369854 0.40799 PARP4 10823333 0.614239 0.882698 HK1 5.65E-10 7.82E-05 7.20E-07 2.25E-03

9311951 0.131357 0.719726 MAGI1 11195879 0.361463 0.072601 NRG3 8.53E-10 9.50E-05 8.25E-07 2.40E-03

3768650 0.318227 0.611621 STAM2 11993811 0.732675 0.862927 FGF20 9.20E-10 9.81E-05 3.25E-08 5.64E-04

785915 0.290127 0.406203 GCNT1 11713331 0.752161 0.621571 PRICKLE2 1.30E-09 1.15E-04 2.95E-07 1.51E-03

785916 0.274961 0.307539 GCNT1 11713331 0.752161 0.621571 PRICKLE2 1.37E-09 1.17E-04 5.51E-07 2.00E-03

1202674 0.254783 0.978976 RPS6KA2 6061796 0.952187 0.932697 CDH4 2.46E-09 1.52E-04 1.63E-08 4.14E-04

1048471 0.414631 0.566854 ST3GAL1 2830096 0.754145 0.728396 APP 2.95E-09 1.65E-04 9.63E-07 2.57E-03

doi:10.1371/journal.pgen.1001131.t006
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Table 7. P-values of 20 pairs of interacting SNPs calculated by the statistic TIH, PLINK, and logistic regression coded by genotypes.

P-Value

Dataset1 Dataset2

TIH PLINK Logistic Regression TIH PLINK Logistic Regression

rs1 Gene 1 rs2 Gene 2 Recessive Additive Dominant Recessive Additive Dominant

626072 LAMA1 6121989 LAMA5 1.11E-15 1.63E-07 2.61E-02 7.82E-08 3.14E-06 5.67E-07 0.001854 3.65E-02 1.40E-03 1.10E-01

626072 LAMA1 4925386 LAMA5 1.47E-13 1.01E-06 7.64E-02 5.82E-07 1.05E-05 9.81E-07 0.002709 5.07E-02 1.88E-03 1.27E-01

1052248 LST1/NCR3 3131636 MICB 5.56E-13 2.86E-09 8.61E-03 1.14E-09 1.11E-05 7.76E-10 1.76E-05 4.47E-01 9.67E-06 9.75E-06

1052248 LST1/NCR3 3132468 MICB 8.41E-13 4.28E-09 1.16E-02 1.72E-09 1.10E-05 8.96E-10 2.03E-05 4.75E-01 9.97E-06 7.73E-06

443198 NOTCH4 3131636 MICB 1.13E-11 6.14E-08 3.29E-01 2.95E-08 4.53E-05 3.98E-08 6.33E-05 2.93E-02 3.63E-05 7.83E-04

443198 NOTCH4 3132468 MICB 1.19E-10 2.81E-07 3.21E-01 1.52E-07 1.57E-04 6.55E-08 6.32E-05 2.81E-02 4.65E-05 1.39E-03

1799964 LTA/TNF 3131636 MICB 1.62E-10 3.08E-07 7.09E-02 1.52E-07 3.68E-02 1.36E-09 7.26E-05 4.19E-01 3.25E-05 2.59E-06

1799964 LTA/TNF 3132468 MICB 2.94E-10 7.26E-07 9.57E-02 3.80E-07 3.80E-02 2.51E-09 8.30E-05 4.51E-01 4.33E-05 2.76E-06

4766587 ACACB 4807055 NDUFA11 3.07E-10 6.25E-05 3.13E-04 4.84E-05 4.51E-01 6.61E-07 0.000855 3.27E-03 7.74E-04 9.85E-01

2227956 HSPA1L 3135392 HLA-DRA 3.20E-10 2.46E-06 1.14E-04 1.49E-06 2.63E-02 7.82E-10 9.60E-06 7.29E-05 5.17E-06 2.14E-01

1060856 ALDH7A1 2711288 PRKCE 3.57E-10 3.01E-05 1.93E-07 1.71E-05 8.81E-01 2.56E-07 0.000292 7.50E-01 2.09E-04 2.26E-04

2012359 PARP4 10823333 HK1 5.65E-10 3.84E-05 1.26E-04 2.70E-05 1.37E-01 7.20E-07 0.000148 2.06E-04 7.68E-05 1.00E+00

9311951 MAGI1 11195879 NRG3 8.53E-10 6.22E-05 1.00E-03 3.29E-05 3.40E-03 8.25E-07 0.001808 3.81E-02 1.09E-03 1.71E-02

3768650 STAM2 11993811 FGF20 9.20E-10 4.53E-06 8.71E-05 2.52E-06 1.18E-01 3.25E-08 0.000115 1.25E-03 9.91E-05 8.50E-01

785915 GCNT1 11713331 PRICKLE2 1.30E-09 5.34E-05 5.01E-01 3.64E-05 3.37E-04 2.95E-07 3.82E-05 7.13E-05 4.26E-05 3.70E-02

785916 GCNT1 11713331 PRICKLE2 1.37E-09 6.08E-05 5.08E-01 4.21E-05 4.32E-04 5.51E-07 6.98E-05 1.31E-04 8.08E-05 6.61E-02

1202674 RPS6KA2 6061796 CDH4 2.46E-09 4.19E-05 3.78E-01 3.11E-05 1.12E-05 1.63E-08 0.000516 6.48E-03 3.18E-04 7.53E-04

1048471 ST3GAL1 2830096 APP 2.95E-09 2.43E-05 4.55E-04 1.84E-05 1.00E-01 9.63E-07 0.001105 1.11E-01 1.09E-03 3.65E-03

1025951 GALNT13 17568302 FMO2 3.40E-09 3.39E-05 3.16E-03 2.36E-05 2.26E-01 9.29E-07 0.002402 3.30E-03 1.94E-03 1.39E-02

6954 KIAA0467 4773873 ABCC4 3.67E-09 3.30E-06 1.24E-04 2.25E-06 3.11E-03 4.74E-07 0.003416 5.42E-01 1.59E-03 1.36E-02

doi:10.1371/journal.pgen.1001131.t007

Table 8. A total of 18 significantly interacting SNPs identified by Bonferroni Correction.

SNP1 (rs) Gene 1 Chrom 1 Position 1 SNP2 (rs) Gene 2 Chrom 2 Position 2 P-value

Dataset 1 Dataset 2

1052248 LST1/NCR3 6 31664560 3131636 MICB 6 31584073 5.56E-013 7.76E-010

1052248 LST1/NCR3 6 31664560 3132468 MICB 6 31583465 8.41E-013 8.96E-010

443198 NOTCH4 6 32298384 3131636 MICB 6 31584073 1.13E-011 3.98E-008

626072 LAMA1 18 6941189 6121989 LAMA5 20 60350108 1.11E-015 5.67E-007

626072 LAMA1 18 6941189 4925386 LAMA5 20 60354439 1.47E-013 9.81E-007

7113099 NCAM1 11 112409545 10025210 SCD5 4 83858485 2.05E-011 1.00E-005

802509 CNTNAP2 7 145603003 1462140 HPSE2 10 100355999 2.29E-011 1.96E-005

832504 PLXNC1 12 93197019 13222291 KDELR2 7 6483965 2.55E-012 2.19E-005

2227956 HSPA1L 6 31886251 3134929 NOTCH4 6 32300085 7.76E-009 2.36E-011

3129869 HLA-DRA 6 32513649 3177928 HLA-DRA 6 32520413 3.77E-008 5.65E-014

3177928 HLA-DRA 6 32520413 9269080 HLA-DRB4 6 32548947 1.96E-007 3.70E-011

3129882 HLA-DRA 6 32517508 3177928 HLA-DRA 6 32520413 6.96E-007 2.71E-014

2620452 CNTNAP2 7 146644926 16982241 FUT2 19 53894671 1.50E-006 3.48E-012

1479838 CNTNAP2 7 146638597 16982241 FUT2 19 53894671 1.85E-006 1.77E-012

3134929 NOTCH4 6 32300085 3177928 HLA-DRA 6 32520413 2.81E-006 ,1.00E-17

2856993 TAP2 6 32899381 9269080 HLA-DRB4 6 32548947 8.99E-006 1.71E-013

6498575 MYH11 16 15795817 9364864 RPS6KA2 6 166984655 1.14E-005 1.83E-012

935672 PRKCE 2 45899463 2744600 ALDH5A1 6 24641411 2.09E-005 1.88E-011

doi:10.1371/journal.pgen.1001131.t008
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and FDR correction [41]. This may be a promising approach to

multiple test corrections in the genome-wide interaction analysis.

Although our data show that interactions can partially find the

heritability of complex diseases missed by the current GWAS, they

are still preliminary. Due to extremely intensive computations

demanded by genome-wide interaction analysis we only tested

interactions of a small set of SNPs which were located in the genes

of 501 assembled pathways in a PC computer. The truly whole

genome interaction analysis in which we will test for interactions

between all possible pairs of SNPs across the genome has not been

conducted. Gene-gene interaction is an important, though

complex concept. The statistical interactions are scale dependent.

There are a number of ways to define gene-gene interaction. How

to define gene-gene interaction and develop efficient statistical

methods and computational algorithms for genome-wide interac-

tion analysis are still great challenges facing us. The main purpose

of this report is to stimulate discussion about what are the optimal

strategies for genome-wide interaction analysis. We expect that in

coming years, genome-wide interaction analysis will be one of

major tasks in searching for remaining heritability unexplained by

the current GWAS approach.
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Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson
disease by overexpression of alpha-synuclein. Am J Hum Genet 82: 283–289.

41. Li J, Ji L (2005) Adjusting multiple testing in multilocus analyses using the
eigenvalues of a correlation matrix. Heredity 95: 221–227.

Genome-Wide Interaction Analysis

PLoS Genetics | www.plosgenetics.org 15 September 2010 | Volume 6 | Issue 9 | e1001131


