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Abstract

Although lactic acidosis is a prominent feature of solid tumors, we still have limited understanding of the mechanisms by
which lactic acidosis influences metabolic phenotypes of cancer cells. We compared global transcriptional responses of
breast cancer cells in response to three distinct tumor microenvironmental stresses: lactic acidosis, glucose deprivation, and
hypoxia. We found that lactic acidosis and glucose deprivation trigger highly similar transcriptional responses, each
inducing features of starvation response. In contrast to their comparable effects on gene expression, lactic acidosis and
glucose deprivation have opposing effects on glucose uptake. This divergence of metabolic responses in the context of
highly similar transcriptional responses allows the identification of a small subset of genes that are regulated in opposite
directions by these two conditions. Among these selected genes, TXNIP and its paralogue ARRDC4 are both induced under
lactic acidosis and repressed with glucose deprivation. This induction of TXNIP under lactic acidosis is caused by the
activation of the glucose-sensing helix-loop-helix transcriptional complex MondoA:Mlx, which is usually triggered upon
glucose exposure. Therefore, the upregulation of TXNIP significantly contributes to inhibition of tumor glycolytic
phenotypes under lactic acidosis. Expression levels of TXNIP and ARRDC4 in human cancers are also highly correlated with
predicted lactic acidosis pathway activities and associated with favorable clinical outcomes. Lactic acidosis triggers features
of starvation response while activating the glucose-sensing MondoA-TXNIP pathways and contributing to the ‘‘anti-
Warburg’’ metabolic effects and anti-tumor properties of cancer cells. These results stem from integrative analysis of
transcriptome and metabolic response data under various tumor microenvironmental stresses and open new paths to
explore how these stresses influence phenotypic and metabolic adaptations in human cancers.
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Introduction

Human cancers are extremely heterogeneous due to multiple

mutations in oncogenes and tumor suppressor genes, a range of

inherited germline variations and varying degrees of microenvi-

ronmental stresses. These tumor microenvironmental stresses

include tumor hypoxia, accumulation of lactic acid (lactic acidosis)

and depletion of glucose, glutamine and other nutrients [1]. These

stresses are largely caused by a combination of poor tissue

perfusion, abnormal tumor vasculature, uncontrolled proliferation

and dysregulated energy metabolism of cancer cells during tumor

development and progression. Importantly, these microenviron-

mental stresses also directly modulate physiological and metabolic

phenotypes of cancer cells and ultimately affect the clinical

outcomes of patients. With major variations known to exist among

different tumors, advances in the pretreatment assessment of the

influences of these stresses will aid in improved selection of

appropriate therapeutic strategies for individual patients. These

stresses and their downstream effects are also the targets of cancer

therapeutics, including anti-angiogenesis and hyperthermia treat-

ments. It is therefore important to fully understand the impact and

mechanism of how these stresses affect various tumor and non-

tumor cells in human cancers.

It is well known that cells resort to glycolysis instead of oxidative

phosphorylation to utilize glucose as energy source during

hypoxia. In addition, cancer cells have a preferential use of

glycolysis pathways for energy generation even in the presence of

oxygen – so called ‘‘aerobic glycolysis’’ as first proposed by Dr.

Otto Warburg [2]. These factors all likely contribute to high

glucose flux and form the basis of using glucose analog 18F-FDG to

detect tumor cells. Such dysregulated metabolisms in cancer cells

also lead to the accumulation of the metabolic product of glycolysis

– lactic acids in solid tumors. Many measurements have been

performed to determine the level of tumor lactate and significant

variations were found, with the medium range of 7–10 mM/g and

up to 25.9 mM/g [3–5]. These studies show that high tumor
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lactate levels are typically associated with more aggressive tumors

and resistance to treatment [3–5]. How lactic acidosis affects

tumor and non-tumor cells in human cancers has been the focus of

many elegant studies as summarized in several reviews [6–8]. The

exposure of cultured cells to lactic acidosis in vitro has been shown

to trigger calcium signaling [9], induce angiogensis gene

expression (e.g. VEGF, IL8) [10–12], HIF-1a stabilization [13]

and cell death [14]. Recent genomic analyses identify the

transcriptional responses of different cell types to acidosis and

high lactate [15–17]. These in vitro studies have clearly shown the

significant impact of lactic acidosis on the gene expression and

phenotypes of cancer cells.

However, it is often challenging to relate the influences of these

microenvironmental stresses in vitro to the complex cancer

phenotypes in vivo. We have previously overcome this challenge

by defining ‘‘gene signatures’’ based on sets of genes whose

expression levels are altered by lactic acidosis in vitro as quantitative

‘‘common phenotypes’’, and projecting them to the in vivo

microarray expression data of patients’ tumors [18]. We have

used this approach to successfully investigate the pathways of

hypoxia [19], vascular injury [20] and lactic acidosis [18] in

human cancers. This reciprocal flow of information between the in

vitro and in vivo systems demonstrate that lactic acidosis triggers

significant metabolic reprogramming by forcing cells to rely more

on oxidative phosphorylation as an energy source with the

suppression of glycolytic phenotypes [18]. Therefore, cellular

metabolism is critical in determining the impact of lactic acidosis

to tumor phenotypes and clinical outcomes.

In the use of microarrays to connect cultured cells with human

cancers, primary epithelial cells are often used to provide the

common and shared responses to the defined perturbations due to

their intact genetic materials and signaling circuitry [18–22].

However, given our intention to relate gene signatures to human

cancers, it is probably more relevant to assess signatures in cancer

cells. Cancer cell lines are also often easier to be transfected, thus

allowing genetic manipulations for mechanistic studies. In this

study, we used breast cancer cell line, MCF-7, to conduct a

detailed temporal analysis of lactic acidosis response and compare

the transcriptomic and metabolic responses of cancer cells to

hypoxia, lactic acidosis and glucose deprivation in parallel to gain

a further understanding of the underlying molecular mechanisms.

One important goal in understanding the cellular responses to

tumor microenvironmental stresses is to identify the key

regulator(s) responsible for these observed gene expression

response since such understanding will lead to important insights

into the development and progression of human cancers. For

example, the identification of hypoxia-inducible transcription

factors (HIFs) as central regulators in the hypoxia response and

its regulation at the level of protein stability has become crucial in

our understanding of tumor hypoxia [23–26]. HIF-1a protein

stabilization can also be seen in the development of multiple

neoplasms in patients with von Hippel-Lindau disease [27] or

mutations in several enzymes of the tricarboxylic acid (TCA) cycle,

such as succinate dehydrogenase (SDH) and fumarate hydratase

(FH) [28–30]. The glucose deprivation is another feature of tumor

microenvironmental stress caused by the imbalance between

supply and consumption [31]. Glucose deprivation triggers

‘‘starvation-like’’ signaling through the activation of AMPK and

LKB-1, which in turn activates TSC1/TSC2 and inhibits central

energy sensor mTOR activities to inhibit ribosomal biogenesis,

translation activities and proliferation [32]. The mutations in

LKB-1 and TSCs in the glucose sensing pathway lead to cancer

development in the Peutz-Jeghers Cancer Syndrome [33] and

Tuberous Sclerosis [34,35], respectively. In contrast, very little is

known about the transcriptional regulation of the lactic acidosis

gene response program. To uncover the molecular mechanisms by

which tumor cells respond to their microenvironment, we

conducted a detailed temporal transcriptional analysis of the

MCF7 breast cancer cell line under lactic acidosis and compared

this response to those elicited by glucose deprivation and hypoxia.

We identified a novel growth suppressive pathway (MondoA-

TXNIP) that portends better prognosis in breast cancer and

contribute to the anti-Warburg effects of lactic acidosis.

Results

The temporal transcriptional responses of MCF-7 under
lactic acidosis

We examined the temporal gene expression patterns of a breast

cancer cell line MCF-7 exposed to lactic acidosis (25 mM lactic

acid with pH 6.7) at various time points during the first 24 hours.

Cells were first brought to replicative arrest by serum withdrawal

for 24 hours before exposure to either control or lactic acidosis

conditions composed of pH 6.7 and 25mM lactic acid in the

presence of high levels of glucose (4.5 g/L) in triplicate of different

time points at 1, 4, 12 and 24 hrs to characterize the temporal

changes of gene expression patterns. The RNA samples harvested

from these MCF-7 cells were interrogated with Affymetrix

GeneChip U133 plus 2.0 arrays (,54,000 probe sets on

,47,000 transcripts and variants) with results deposited in Gene

Expression Omnibus (GSE19123).

Gene expression profiles of all MCF-7 cells were normalized by

RMA, zero-transformed against the average expression levels of

the same probe sets of the time-matched control samples as

performed previously [19,20]. 1761 probes sets showing with at

least two fold changes in at least two samples were selected and

arranged by hierarchical clustering according to similarities in

expression patterns (Figure 1A). This analysis showed that lactic

acidosis induced a dramatic change in the gene expression with

significant temporal patterns (Figure 1A and 1B).

Among the genes induced in MCF-7 by lactic acidosis, we found

PLAU, major histocompatility complex (MHC) type I and CD44,

and REDD1 (Figure 1B), a p53 transcriptional target following

Author Summary

Solid tumors usually have many differences in their
chemical environments, such as low oxygen, depletion of
glucose, high acidity (low pH), and accumulation of lactate,
from normal tissues. These changes are usually called
tumor microenvironmental stresses. In this study, we have
used microarrays to compare the transcriptional response
and metabolic adaptation in response to these different
stresses seen in the tumor microenvironments. Through
these comparisons, we have found that lactic acidosis
triggers a starvation response, highly similar to glucose
deprivation, even in the presence of abundant nutrients
and oxygen. Even the cells seem to be starved; cells under
lactic acidosis have decreased glucose uptake. We found
this unexpected biological behavior was due to the
paradoxical induction of a glucose-sensing Mondo-TXNIP
pathway. The activation of this novel anti-tumor pathway
under lactic acidosis contributes to the anti-Warburg effect
and the restriction of cell growth in tumorigenesis by
limiting nutrient availability and its inactivation may be
required for tumor progression under these microenviron-
mental stresses.

Lactic Acidosis Triggers TXNIP through MondoA
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Figure 1. Overview of the time course of lactic acidosis response in MCF-7. (A) The gene expression response of MCF-7 is shown when
exposed to lactic acidosis conditions at indicated time points. 1761 probes sets were selected by the criteria of at least two observations with at least
two fold changes and arranged by hierarchical clustering. Clusters of genes induced by different time points and repressed by lactic acidosis are
marked and further expanded in (B), and (C) with the names of selected genes shown. (D) The prognostic significance of the lactic acidosis pathway
activity in MCF-7 at 12 and 24 hours were assessed in the Miller breast cancer expression dataset. The tumors, stratified by the imputed signature
scores associated with the LA response, were used to generate Kaplan-Meier survival curves linking clinical outcomes with the indicated responses.

Lactic Acidosis Triggers TXNIP through MondoA
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DNA damage [36]. The expression of CD44 has been reported to

be induced by lactosis in cancer cells [37]. Tumor necrosis factor

(TNF), Fas and connective tissue growth factors (CTGF) were only

induced in earlier time points and returned to baseline in the later

time points (Figure 1B). Among clusters of genes repressed by

lactic acidosis in the later time points is a large group whose

expression is closely linked to cell proliferation (cyclin D, PCNA,

CCRK, E2F3, and E2F6) (Figure 1C). These lactic acidosis-

repressed genes may reflect a physiological alteration that halts cell

proliferation as the cells try to preserve energy consumption under

metabolic stress [31,32].

To define the lactic acidosis response in MCF-7 at a pathway

level, we performed Gene Set Enrichment Analysis (GSEA) [38] to

compare the pathway composition in the gene expression of all

control vs. lactic acidosis samples of MCF-7 cells. We found that

samples exposed to lactic acidosis were enriched in gene sets

representing nutrient deprivation [39], the treatment of histone

deacetylase inhibitor trichostatin A (TSA) in cancer cells, breast

cancer good prognosis [40] and exposure of DNA damaging agent

(bleomycin) (Table S1). The gene expression of MCF-7 which has

been exposed to lactic acidosis was depleted in gene sets

representing E2F1 target genes, DNA replication, breast cancer

poor prognosis [40], mitotic cycles and RNA processing (Table

S1).

We previously showed that the hypoxia and lactic acidosis

response signatures elicited in cultured primary non-cancerous

cells HMECs could provide a molecular gauge of hypoxia and

lactic acidosis response for cancerous human tissues in vivo, and

also predict clinical outcomes. To test robustness of this gene

signature approach based now on cancerous cells, the lactic

acidosis gene signatures generated in MCF-7 were projected to the

Miller breast cancer data to evaluate a tumor-specific numerical

score representing the predicted signature of lactic acidosis – i.e.,

quantifying lactic acidosis pathway activity across tumors [41]; see

Materials and Methods section below and the detailed statistical

supplemental materials from a previous study [18]. Statistical

survival analysis then indicates that patients with tumors showing

higher levels of lactic acidosis pathway activity – defined by

projected signatures of 12 and 24 hours exposure in MCF-7 – had

significantly better clinical outcomes (Figure 1D), consistent with

our previous studies using HMEC [18]. The lactic acidosis gene

signature at 12 hour time point had the most consistent prognostic

significance across different tumor datasets, including three other

breast cancer expression studies with different stages of diseases

(Figure S1). These datasets include a study of 286 lymph node

negative early breast cancers from NKI (Wang) [42], and two

studies of invasive breast carcinomas (Sotiriou, Pawitan) [43,44].

We also measured the reproducibility and consistency of the

predicted lactic acidosis pathway activities in each tumor using

gene signatures generated in both MCF-7 and HMECs. We found

that the two variants of the lactic acidosis signature resulted in

highly similar predicted lactic acidosis activity, evidenced by

strongly correlated signature scores in Miller and other tumor

datasets (Figure 1E and Figure S2). This result suggests that

although there are differences between the lactic acidosis responses

at the gene level, the pathway level predictions based on the gene

signatures are similar and reproducible in both normal primary

and breast cancer cells.

Lactic acidosis triggers ‘‘starvation’’ response
In the GSEA analysis for the MCF-7 cells exposed to lactic

acidosis, we found enrichment in the starvation pathways caused

by the deprivation of glucose and glutamine obtained in an

independent study [39]. Such association between lactic acidosis

and nutrient deprivation was consistent with the reduced ATP

production under lactic acidosis [18]. To test for such association,

we directly compared the gene expression of MCF-7 cells of lactic

acidosis with cellular starvation stress caused by glucose depriva-

tion. We performed parallel global transcriptional analysis on the

MCF7 cells in quintuplicate which had been exposed to lactic

acidosis and 1% oxygen (hypoxia) in the media with high glucose

(4.5g/L) and glucose deprivation (using media 0g/L glucose) for

4 hours. Similar parallel analysis was performed for subsets of

genes involved in metastasis and invasive capacity [45,46]. RNAs

from these MCF-7 cells were extracted and hybridized to

Affymetrix GeneChip U133 plus 2.0 arrays, normalized by

RMA and zero-transformed by deducting the mean expression

values for samples under control condition. 3903 probe sets were

selected by the criteria of at least two observations with at least two

fold changes and arranged by hierarchically clustering (Figure 2A

and 2B). Unexpectedly, we noted a highly similar transcriptional

response to lactic acidosis and glucose deprivation which is distinct

from the hypoxia response (Figure 2A). The similarity of the lactic

acidosis and glucose deprivation response was observed in both

induction and repression of a large number of common sets of

genes, including major histocompatility complex (MHC) type I &

II, DNA repair gene, alkB (alkyation repair homolog 7), and

CTGF, Jun and TNF (Figure 2B), which were also seen in our

previous time course experiment (Figure 1B). In contrast, hypoxia

elicited a very distinct transcriptional response with the upregula-

tion of many known hypoxia-inducible genes such as EGLN3,

CA9, stanniocalcin1 (STC1), BNIP3 and genes involved in

glycolysis, including pyruvate kinase (PKM2) (Figure 2B) [19]. In

a previous microarray study of the stress response in yeast

Saccharomyces cerevisiae, the induction of a share set of ‘‘common

stress genes’’ was a prominent feature [47]. In contrast, there was

only a small cluster of genes which were induced by lactic acidosis,

glucose deprivation and hypoxia, which may represent ‘‘common

stress genes’’ in MCF-7 cells (Figure 2B). These genes include

HIG-2 (hypoxia-inducible gene) and REDD, both genes reported

to be induced by hypoxia (Figure 2B).

Since glucose deprivation is known to trigger cellular starvation

response, this similarity in the transcriptional responses suggests

that lactic acidosis may also trigger a ‘‘starvation’’ response seen

for nutrient deprivation. To test this possibility, we measured the

effects of lactic acidosis on several biochemical markers of

starvation response in MCF-7 (Figure 2C). AMP-activated protein

kinase (AMPK) is a highly conserved energy-sensing heterotri-

meric complex that plays a key role in the regulation of energy

homeostasis; it becomes phosphorylated at Thr172 of AMPK a by

an elevated AMP/ATP ratio due to various stress indicating

energy stress and starvation. We find that lactic acidosis

significantly increased Thr172 phosphorylation of AMPK, even

in the presence of high levels of glucose and amino acids in the

media (Figure 2C). The Mammalian Target of Rapamcyin

(mTOR) is another crucial cellular sensor for energy status and

a crucial downstream target of AMPK [48,49]. We examined how

(E) Scatter plots showing the relationship between the estimated lactic acidosis pathway activities using the pathway signature obtained in HMEC (Y-
axis) vs. the signature obtained in MCF-7 (X-axis) at 12 and 24 hours. Each point in the scatter plot represents a single tumor from the indicated breast
cancer data set. The overall correlation (R) and statistical significance/p-value (p) between the lactic acidosis signature scores elicited in MCF-7 and
HMECs across all samples is shown the data set.
doi:10.1371/journal.pgen.1001093.g001

Lactic Acidosis Triggers TXNIP through MondoA
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Figure 2. The lactic acidosis triggers starvation response. (A) The transcriptional response of MCF-7 to the lactic acidosis, glucose deprivation
and hypoxia at four hours. Selected gene clusters which were induced commonly by lactic acidosis and glucose deprivation and hypoxia, by lactic
acidosis and glucose deprivation, or by hypoxia alone were highlighted and expanded in (B) with selected names shown. (C) Lactic acidosis triggers
the activation of AMPK (phosphorylation at Thr 172) and the inhibition of mTORC1 as manifested by the reduction of S6K phosphorylation at Thr 398.
doi:10.1371/journal.pgen.1001093.g002

Lactic Acidosis Triggers TXNIP through MondoA
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lactic acidosis affected mTORC1 activities through the phosphor-

ylation of its downstream target S6 kinase (S6K) and found it

dramatically reduced the S6K phophorylation (Figure 2C). Taken

together, these data supported the notion that lactic acidosis

triggers a cellular starvation response similar to that of glucose

starvation, with AMPK activation and mTOR inhibition. These

biochemical changes are likely to contribute to reduced cell growth

and proliferation under lactic acidosis as evidenced by gene

expression (Figure 1C).

The distinct metabolic effects of lactic acidosis and
glucose deprivation

Knowing that lactic acidosis can inhibit tumor glycolysis [18],

we evaluated how lactic acidosis and glucose deprivation affect

glucose uptake using 2-deoxy-D-[2,6-3H]-glucose. While glucose

deprivation increased the uptake of the glucose by 84%, lactic

acidosis significantly reduced the glucose uptake by 67%

(Figure 3A). The inhibition of glucose uptake by lactic acidosis

was consistent with the reduced glucose consumption and

decreased lactate production we have reported previously.

However, this result was not consistent with the expected

increased uptake of glucose to increase energy generation

associated with AMPK activation and cellular starvation, as seen

in glucose deprivation [50]. Therefore, in spite of the shared

AMPK activation, mTORC1 inhibition and similar transcription-

al responses, lactic acidosis and glucose starvation triggered

opposite effects on glucose uptake.

To identify transcriptionally regulated genes that may contrib-

ute to these opposite metabolic responses, we used the discordance

to select genes with significant but opposite expression changes

under lactic acidosis and glucose deprivation. This analysis

identified 115 probe sets (Table S2); 49 were induced by lactic

acidosis and repressed by glucose deprivation while 66 were

repressed by lactic acidosis and induced by glucose deprivation

(Figure 3B). The three probe sets with the largest induction levels

under lactic acidosis were all associated with thioredoxin

interacting protein (TXNIP or Vitamin D3-upregulated protein

1, VDUP1) (Figure 3B). TXNIP was strongly induced by lactic

acidosis, and suppressed by glucose deprivation. While hypoxia

was reported to trigger TXNIP expression [51], we only noted a

modest increase (,40%) in our experiment. We tested for the

prognostic significance of this differentially expressed signature by

projecting the 115 gene signature into the Miller breast tumor data

set. Due to different arrays used in that data set, this results in 109

of the 115 signature probes present in the Miller data set. We find

that higher levels of this signature also indicate favorable outcomes

(Figure S3A). The three TXNIP probe sets alone in fact have

prognostic significance comparable with that of the signature

(Figure S3B); on re-evaluating the signature after removal of these

three TXNIP probe sets, we find that the reduced signature

maintains prognostic significance albeit at a slightly reduced level

(Figure S3C).

When we examined expression of MCF-7 and HMEC under

lactic acidosis at different time points, we also noted significant

induction of TXNIP and its parralogue alpha-arrestin domain

containing 4 (ARRDC4) (Figure S4). Real-time RT-PCR further

confirmed the induction of TXNIP (up to 4–5 fold) and ARRDC4

transcripts (up to 3.4 fold) in MCF-7 (Figure 3C and Figure S5). In

addition, lactic acidosis also induced TXNIP expression in other

cancer cell lines, including WiDr (colon cancer cell) and SiHa

(cervical cancer cell) (Figure S6).

TXNIP expression is known to be induced by glucose exposure

[52,53]. Since there were high levels of glucose (4.5g/dL) in both

control and lactic acidosis media, we further clarified the role of

glucose vs. lactic acidosis in the TXNIP induction using real-time

PCR to determine the level of TXNIP in MCF-7 cultured under

different glucose and lactic acidosis conditions (Figure 3D).

Glucose (4.5g/dL) or lactic acidosis alone increased TXNIP levels

by approximately 4–5 fold (Figure 3D). In the presence of both

high glucose levels and lactic acidosis, TXNIP was induced up to

18 fold (Figure 3D). Thus lactic acidosis and glucose exposure are

both potent inducers of TXNIP with synergistic induction

potential, suggesting distinct mechanisms of TXNIP induction

by these two stimuli.

To define the individual contribution of lactosis vs. acidosis, we

tested the level of TXNIP induction under different degrees of

lactosis (12.5 or 25 mM lactate) and acidosis (pH 6.7) (Figure 3E

and 3F). We found that acidosis alone, but not lactosis alone, led to

the TXNIP induction, consistent with our previous study [18]

(Figure 3E). Although lactosis alone did not induce TXNIP, the

addition of lactate to the acidosis conditions led to a dose-

dependent augmentation of the TXNIP induction (Figure 3E).

Importantly, this effect on TXNIP induction was present even

under 10 or 12.5 mM lactate, a level seen in many human tumors

(Figure 3E and 3F). We also measured how lactosis and acidosis

affected glucose uptake, and found that acidosis, but not lactosis,

led to a reduction in glucose uptake, a pattern consistent with

TXNIP induction (Figure 3G).

Although TXNIP was initially identified as a protein interacting

with thioredoxin and modulating cellular responses to oxidative

stresses, it has the ability to inhibit glucose uptake and is being

recognized as an important regulator of dysregulated metabolism

in diabetes [54,55]. Therefore, the upregulation of TXNIP under

lactic acidosis make it an attractive candidate contributing to the

anti-Warburg effects and inhibition of tumor glycolysis under

lactic acidosis [18]. To investigate this, we silenced the TXNIP

transcripts with two independent siRNAs and confirmed the

successful reduction of the TXNIP protein (Figure 4A). Consistent

with the previously known role of TXNIP to inhibit glucose uptake

[55], the silencing of TXNIP by siRNAs led to significant decrease

in the reduction of glucose uptake under lactic acidosis culture

condition (Figure 4B). Lactic acidosis caused 52% repression of

glucose uptake in MCF7 cells transfected with non-targeting

siRNAs (-). In cells transfected with two different siTXNIPs (T1,

T2), glucose uptake was increased while the repressing effect of

lactic acidosis was decreased to 39% and 44% respectively

(Figure 4B). In addition, we found the silencing of TXNIP in

MCF-7 increased both the glucose consumption and lactate

productions under normal media, but lactic acidosis significantly

reduced both the glucose consumption and lactate production in

all treated cells (Figure S7).

Although the TXNIP gene silencing reduced the glycolysis

inhibition under lactic acidosis, the effects were modest, which

may be due to the remaining level of TXNIP. We further tested

the effect of TXNIP knocking out in the TXNIP deficient MEF

cells [56]. Lactic acidosis caused 68% reduction in glucose uptake

in the wild-type (WT) MEF cells. In contrasts, lactic acidosis only

reduced the glucose uptake by 28% in TXNIP knockout (TKO)

MEF cells (Figure 4C). To further test for the role of TXNIP

upregulation in the lactic acidosis response, we exposed the wild

type and TXNIP deficient MEF cells to the lactic acidosis

conditions (10 mM lactate, pH 6.7) and performed gene expres-

sion analysis using the Affymetrix mouse 430A2 GeneChip and

normalized the expression data by RMA. We first examined the

effects of the disruption of TXNIP on the gene expression of MEF

cells by performing zero transformation of TXNIP deficient

against the average expression in the wild type MEF cells (Figure

S8). We found 798 probe sets whose expression was altered at least

Lactic Acidosis Triggers TXNIP through MondoA
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Figure 3. The induction of TXNIP under lactic acidosis. (A) The amount of glucose uptake of the MCF-7 under control, lactic acidosis and
glucose deprivation conditions. (B) Heat map shows expression of the 115 selected probe sets in MCF-7 placed in control, lactic acidosis, glucose
deprivation and hypoxia for four hours with the probe sets for TXNIP highlighted. (C) The level of TXNIP transcripts determined by real-time PCR in
the MCF-7 under indicated conditions. (D) The level of TXNIP transcripts determined by real-time PCR in the MCF-7 under the four indicated

Lactic Acidosis Triggers TXNIP through MondoA
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1.7 fold in at least two samples (Figure S8). Among the genes

repressed in the TXNIP KO MEF cells were TXNIP, COX2,

collagens and many other genes in the HOX genes involved in

pattern specification (Figure S8). Among the induced in the

TXNIP KO MEF cells were genes in the complement activation,

AP2, and Notch3 (Figure S8).

To define the role of TXNIP in the lactic acidosis gene

expression, we compared the respective lactic acidosis response of

the wild type and TXNIP deficient MEF cells by zero-

transformation against the corresponding cells cultured in the

control conditions. 1327 probe sets showing with at least 1.7 fold

changes in at least two samples were selected and arranged by

hierarchical clustering according to similarities in expression

patterns (Figure 4D). This analysis showed that the loss of TXNIP

reduced the induction and repression of a significant number of

genes as shown in the three gene clusters (Figure 4D), including the

repression of many cell-cycle related genes under lactic acidosis. In

addition, the loss of TXNIP led to a statistically significant

reduction in the overall degrees of induction and repression

(p,0.0001) for the average expression of the 1049 repressed and

278 induced genes (Figure S9A and Figure 9B). We also tested the

ability of lactic acidosis to repress the proliferation of MEF cells

and found that the proliferation of the wild type, but not TXNIP

deficient MEF cells, were repressed by lactic acidosis (Figure 4E).

This observation is consistent with the reduced repression of cell

cycle genes under lactic acidosis seen for the TXNIP deficient

MEF cells (Figure 4D). Taken together, these data showed that

TXNIP induction contributes to the inhibition of glycolysis

phenotypes, metabolic reprogramming, and cell cycle arrest and

gene expression under lactic acidosis.

The role of the MondoA:Mlx complex in the activation of
TXNIP by lactic acidosis

Glucose-induced TXNIP transcription depends on a short

proximal region of the TXNIP promoter. Specifically, this region

includes a well conserved Carbohydrate Response Elements

(ChoRE) consisting of two E-boxes [53]. We first tested the

influence of lactic acidosis on the reporter constructs driven by the

promoters of TXNIP and ARRDC4 and found that lactic acidosis

could induce the reporter activities of both constructs by more

than 6 folds (Figure 5A). Importantly this induction of reporter

activity under lactic acidosis was reduced by 61% with mutation in

the ChoRE of the TXNIP promoter (Figure 5A), indicating the

importance of the ChoRE regions to the transcriptional activation

of TXNIP under lactic acidosis.

The transcriptional activation through two E-boxes in the

promoters of TXNIP upon glucose exposure has been reported to

be caused by the binding MondoA:Mlx [57] or Carbohydrate

Response Elements-binding protein (ChREBP) [58]. MondoA is

likely to be more relevant in the observed lactic acidosis response

of MCF-7 given its higher expression levels in MCF-7 and the

simultaneous upregulation of both TXNIP and ARRDC4 under

lactic acidosis [57]. MondoA:Mlx complexes are held latently at

the outer mitochondrial membrane (OMM), yet shuttle between

the OMM and the nucleus suggesting that they facilitate

communication between these two essential organelles. Mon-

doA:Mlx complexes are sensors of intracellular glucose concen-

tration and accumulate in the nucleus following increases in

glucose-6 phosphate to occupy the E-box-containing promoters of

targets such as TXNIP and ARRDC4 [57]. To directly test the

inducible physical binding of MondoA to the promoter regions of

TXNIP and ARRDC4 under lactic acidosis, chromatin-immuno-

precipitation (CHIP) was performed with the antibody against

MondoA in MCF-7 cells which have been exposed to lactic

acidosis conditions of different acidity. We detected increased

specific binding of MondoA to the promoter regions of TXNIP

and ARRDC4 with more acidic lactic acidosis environments

(Figure 5B). These results indicated that the MonoA became

activated to occupy the promoters of TXNIP and ARRDC4 under

lactic acidosis and these binding sites were important for their

transcriptional inductions.

To further determine the role of MondoA in the induction of

TXNIP under lactic acidosis, we used two different sets of siRNAs

to knock down MondoA by gene silencing (Figure 5C). During

lactic acidosis, the level of MondoA protein did not change, while

TXNIP was induced significantly (Figure 5C). This induction of

TXNIP was significantly reduced at both levels when MondoA

was reduced by both sets of siRNAs targeting MondoA (Figure 5C).

The silencing of MondoA also led to increased glucose uptake

under both control and lactic acidosis condition (Figure 5D), a

result similar to the silencing of TXNIP (Figure 3F and 3H). While

lactic acidosis caused 57% repression in MCF7 cells transfected

with non-targeting siRNA, such repression was reduced to 44%

and 40% with MCF7 cells transfected with two different siRNAs

targeting MondoA (M1 and M2). The degree of the lactic acidosis-

induced repression of the glucose uptake was lower after the

silencing of MondoA by two independent siRNAs (Figure S10).

Although gene silencing led to significant reduction of MondoA,

the remaining MondoA level may still account for the slight

induction of TXNIP under lactic acidosis. To further examine the

effects in the absence of MondoA, we tested the MondoA

knockout MEF (mouse embryonic fibroblasts) cells created by the

cre-loxP system (CWP and DEA, manuscript submitted). In the

complete absence of MondoA, both the basal and inducible level

of TXNIP under 2-DG or lactic acidosis was completed abolished

(Figure 5E). Importantly, the re-introduction of full length

MondoA back to the MEF cells fully restored the induction of

TXNIP under lactic acidosis (Figure 5E). Taken together, these

results demonstrate the critical role of MondoA in regulating

TXNIP under both glucose exposure and lactic acidosis.

TXNIP expression and lactic acidosis pathways in human
cancers

To determine the prognostic significance of TXNIP expression

in human cancers, we performed survival analyses using TXNIP

expression as the sole predictor of survival time. Breast cancers in

the Miller dataset stratified based on TXNIP expression were

found to have significant differences in clinical phenotypes; tumors

with high TXNIP have better survival and clinical outcomes

(Figure 6A, p = 0.00115). Similar results were also obtained in the

three other breast cancer datasets. To test whether the in vitro

correlation of TXNIP induction with lactic acidosis pathway

activity persists in vivo, we compared the predicted lactic acidosis

pathway activity with the TXNIP expression levels in the breast

cancer data sets and found a positive correlation in all four data

sets; although the relationship is of limited predictive value with

low R values reflecting a noisy relationship, the positive

relationship is statistically significant and consistent across tumor

conditions for lactic acidosis and glucose level. (E, F) The level of TXNIP determined by real-time PCR (E) and Western blot (F) in the MCF-7 under five
indicated conditions with or without acidity (pH 6.7) and carrying levels of lactate (10, 12.5 or 25 mM). (G) The amount of glucose uptake of the MCF-
7 under control, acidosis, lactosis (25mM) and lactic acidosis (25mM) conditions.
doi:10.1371/journal.pgen.1001093.g003
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Figure 4. Identification of TXNIP as a regulator of lactic acidosis response. (A) The level of TXNIP proteins treated with control or siRNAs
against TXNIP under control or lactic acidosis conditions. (B) The level of glucose uptake in the MCF-7 treated with the indicated conditions. Lactic
acidosis caused 52% repression of glucose uptake in MCF7 cells transfected with non-targeting siRNAs (-) as negative control. In cells transfected with
two different siTXNIPs (T1, T2), glucose uptake was increased and the repressing effect of lactic acidosis was decreased to 39% and 44% respectively.
(C) Lactic acidosis caused 68% repression in wild-type (WT) MEF cells but only 28% repression in TXNIP knockout (TKO) MEF cells. (D) The gene
expression response of wild type and TXNIP deficient MEF cells was shown when exposed to 10mM lactic acidosis conditions. 1327 probes sets
showing with at least 1.7 fold changes in at least two samples were selected and arranged by hierarchical clustering according to similarities in
expression patterns. Clusters of genes whose induction and repression was most affected by TXNIP are marked and further expanded with the names
of selected genes shown. (E) The effect of the control and lactic acidosis (10mM LA and 25mM LA) on the cell growth in percentage of the wild type
and TXNIP deficient MEF cells.
doi:10.1371/journal.pgen.1001093.g004
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data sets (Figure 6B). Similar results were found for ARRDC4,

another paralouge of TXNIP and downstream target of MondoA.

When breast cancers were stratified by the level of ARRDC4,

tumors with higher levels of ARRDC4 had better prognosis and

clinical outcome in the both breast cancer data (Miller and

Pawitan) in which ARRDC4 was measured (Figure 6C). The

expression of ARRDC4 was also positively associated with the

predicted lactic acidosis pathway activity in these two breast

cancer datasets (Figure 6D). These observations demonstrate the

high degree of in vivo correlation between the expression of TXNIP

and ARRDC4 and the lactic acidosis pathway activity in human

cancers. It is also consistent with the known role of TXNIP as a

probable tumor suppressor in several cancer types where it has

been shown to suppress oncogenic phenotypes and its loss of

function linked with cancer development [59–61]. Therefore, the

expression of both TXNIP and ARRDC4 are potentially

important mediators of the lactic acidosis response and suggest

the important prognostic significance of molecular pathways

driven by Mondo-Mlx in human cancers.

Discussion

Hypoxia, glucose deprivation and lactic acidosis are all well-

recognized tumor microenvironmental stresses. Each of these

stresses has distinct features – either limited availability of energy

fuel (glucose), depletion of cofactor (oxygen) or accumulation of

metabolic byproducts (lactic acidosis). Previous studies in various

settings have shown that glucose deprivation causes metabolic

stress and induces adaptive responses —so-called ‘‘starvation

response’’ – manifest by AMPK activation, mTOR inhibition and

multiple other biochemical and metabolic changes in cancer cells.

Tumor hypoxia has also been reported to induce such metabolic

stresses [62]. Here, we have shown that lactic acidosis triggers a

‘‘starvation’’ response similar to glucose deprivation as evidenced

by the biochemical and transcriptional responses. Since this occurs

even in the presence of abundant oxygen and nutrients, this

response may represent ‘‘pseudo-starvation’’. This is especially

unexpected given the presence of high levels of lactate as an

additional potential energy source for cancer cells [63].

Adaptive changes during the starvation response often reflect a

need to preserve energy homeostasis during energy depletion by

switching off cell growth and proliferation and many anabolic

processes, such as protein, carbohydrate and lipid biosynthesis. In

addition, there is also a simultaneous increase in cellular

catabolism and breakdown of various energy sources to increase

energy production. Even with this shared energy need, different

tumor microenvironmental stresses employ different means to

accomplish such adaptations to preserve energy homesostasis.

During hypoxia, the essential cofactor (oxygen) required for

oxidative phosphorylation becomes limited. As a result, the

transcriptional factor HIF-1a activates genes encoding glucose

transporters and enzymes involved in the glycolytic process shift to

the use of glycolysis as the main source of energy generation. In

the setting of glucose deprivation, there is a lack of fuel required

for glycolysis as energy source. During these energy shortages,

AMPK become activated to modify many proteins controlling

energy flow to increase the energy generation in mitochondria

from other source of fuels, such as oxidative of fatty acid and

amino acids [64]. In addition, the inhibition of mTOR turns off

many energy-consumption processes (e.g., translation, cell growth

and proliferations) in an effort to restore energy homeostasis. The

lactic acidosis-induced cell cycle arrest may be caused by many

changes, including the induction of AMPK, mTOR inhibition,

TXNIP and cell cycle arrest caused by the induction p57, p21 and

other inhibitors of cellular proliferation. Moreover, the expression

of many genes involved in glycolysis is affected by changes in

histone acetylation of chromatin [65]. These responses triggered

by glucose deprivation may be also important for energy

maintenance and survival in acidosis-induced apoptosis [66,67].

For example, AMPK may help in re-directing cells to utilize non-

glucose energy sources (e.g., fatty acids and amino acids) and

increased mitochondria activities under lactic acidosis [18,68]. In

addition, since the AMPK activator AICAR reduces the

expression of lactate importer monocarboxylate transporter

(MCT)-1 but increases the expression of the lactate exporter in

MCT4 [69], AMPK activation under lactic acidosis may also

inhibit the uptake of excessive cellular lactate. These stress

environments are also likely to select for tumor cells that have

developed strategies to survive energy deprivation with better

energetic balance. The genetic mutations of many genes involved

in these processes of adaptation to hypoxia and glucose

deprivation are known to associate with tumor development.

These findings highlight the crucial role of biochemical, metabolic

control of energy homeostasis in tumor development.

There are many possible explanations as to how lactic acidosis

leads to AMPK activation, mTOR inhibition and other features of

the starvation response. For example, lactic acidosis can reduce

ATP generation in cells [18] and thus lead to a high AMP/ATP

ratio to activate the AMPK. Extracellular acidosis also triggers an

increase in cytosolic Ca++ [9] which may activate CaMKK – an

alternative AMPK upstream kinase [70–72] – to phophorylate and

activate AMPK. Lactic acidosis may also cause intracellular

nutrient depletion with reduced uptake of glucose (this study) and

glutamine through the inhibition of acidosis-sensitive glutamine

pumps [73,74]. This depletion of intracellular pools of nutrients

may in turn repress the energy sensor mTOR, the translation

activities and ribosomal biogenesis required for cellular prolifer-

ation. In the future, it will be important to further dissect the

contribution of each factor and signaling components to the

induction of these starvation responses under lactic acidosis to

further our detailed understanding of their impact on the

metabolisms and phenotypes of cancer cells.

In both hypoxia and glucose deprivation, there is an increase in

glucose uptake and glycolysis to provide essential fuel through

induction (by HIFs), modification of glucose transporters (by

AMPK) [75,76] and histone acetylation via ATP-citrate lyase [65].

In contrast, lactic acidosis presents a different instance of

starvation with inhibition of glucose uptake and other glycolysis

Figure 5. MondoA is responsible for the TXNIP induction under lactic acidosis. (A) The fold of induction of normalized luciferase activities
under lactic acidosis for the indicated reporter constructs driven by wild type TXNIP promoter, TXNIP promoter with the ChoRE mutated and ARRDC4
promoters. (B) The physical binding of MondoA to the promoters of TXNIP and ARRDC4 was assessed by Chromatin-Immunoprecipitation for MCF-7
cells under lactic acidosis with different indicated pH. (C) The level of MondoA and TXNIP proteins in MCF-7 cells treated with control or two siRNAs
against MondoA under control or lactic acidosis conditions. (D) The level of glucose uptake in the MCF-7 treated with the indicated conditions. Lactic
acidosis caused 57% repression in MCF7 cells transfected with non-targeting siRNA (-). The repression effect of lactic acidosis was decreased to 44%
and 40% with MCF7 cells transfected with two different MondoA siRNAs (M1 and M2). (E) The level of MondoA and TXNIP proteins shown by Western
in the indicated mouse embryonic fibroblasts (MEF): lox/lox (MEF with wild type MondoA), 2/2 (lox/lox MEF with cre overexpression to delete
MondoA) and 2/2+MondoA FL = 2/2 reconstituted with FL human MondoA under control, 2-DG, pH 7 and lactic acidosis conditions.
doi:10.1371/journal.pgen.1001093.g005
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Figure 6. The expression of TXNIP, ARRDC4, and lactic acidosis pathways in human cancers. (A,C) The tumors in the indicated dataset
stratified by the expression of TXNIP (A) and ARRDC4 (B) were used to generate Kaplan-Meier survival curves for linking clinical outcomes with the
TXNIP expression levels. (B,D) Scatter plots showing the relationship between the expression of TXNIP (B) or ARRDC4 (D) (Y-axis) and predicted lactic
acidosis pathway activities based on the MCF-7 12 hour lactic acidosis gene signatures (X-axis) in the indicated tumor datasets. Each point in the
scatter plots represents a single tumor from the indicated breast cancer data sets. The overall correlation (R) and statistical significance/p-value (p)
across all samples is shown.
doi:10.1371/journal.pgen.1001093.g006
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activities in cancer cells [77]. Through these comparisons, we have

also dissected two distinct molecular pathways (AMPK-mTORC1,

MondoA-TXNIP) by which various microenvironmental stresses

influence cancer metabolic phenotypes. While the AMPK-mTOR

response is similar under lactic acidosis and glucose deprivation,

the MondoA-TXNIP is affected in opposite directions by these

two stresses. Given the continuous need for energy generation with

reduced ATP and metabolic substrate from the glycolysis

pathways under lactic acidosis, cells are likely to undergo extensive

metabolic reprogramming to utilize other nutrients as energy

sources. This idea is supported by the increased reliance on

mitochondria for ATP generation. Our analysis has highlighted

the potential roles of TXNIP and AMPK in this metabolic

reprogramming. The induction of TXNIP under lactic acidosis

and its ability to inhibit glucose uptake and reduce lactic acidosis

production from glycolysis form a negative feedback loop. In

addition, the loss of TXNIP leads to many features of Warburg

effects and glycolytic phenotypes of cancer cells, opposite to the

influences of lactic acidosis [18]. High TXNIP expression is

associated with favorable outcomes, consistent with its postulated

role as a tumor suppressor gene based on its growth-suppressing

activity and the increased occurrences of tumors with deficiency of

TXNIP [59,60,78,79]. These findings may provide important

insights into the regulatory mechanisms of TXNIP as well as the

phenotypic alterations under lactic acidosis. TXNIP may affect the

glucose uptake through the suppression of two important

regulators of glycolysis, Akt [56] and HIF-1a [80]. In addition,

TXNIP is known for other properties, which may explain its effect

on the gene expression during lactic acidosis. TXNIP is a negative

regulator of cellular oxidative tolerance by binding thioredoxin

[81–83] and as a feedback regulator of S-nitrosylation [84]

relevant in the cellular adaptive response to tumor microenviron-

mental stresses. For example, repression of TXNIP enhancing the

anti-oxidative capacity during glucose deprivation may be

required to cope with increased mitochondria oxidative stresses

[85]. 2-Deoxy-D-glucose (2-DG) can enhance the cytotoxicity of

cisplatin through mechanisms involving increased oxidative stress

[86]. Since 2-DG is a strong inducer of TXNIP [57], a lower anti-

oxidative capacity caused by 2-DG exposure may also involve

neutralization of the anti-oxidative capacity of thioredoxin by

TXNIP induction.

TXNIP and ARRDC4 are both transcriptionally regulated by

the MondoA:Mlx complex to coordinate the fuel status of cellular

metabolism and proliferation [57,87]. Our findings identify lactic

acidosis as a novel stimulus for the activation of MondoA and

induction of TXNIP/ARRDC4. Even though we have identified

the importance of MondoA-TXNIP of one component of the

lactic acidosis response, there are still many aspects of lactic

acidosis which remained unexplained, such as similarities to the

glucose deprivation response. At least two factors are likely to be

relevant for the shared gene expression response of glucose

deprivation and lactic acidosis. First, these changes may lead to

significant changes in the level of acetyl-CoA, which in turn

impacts on histone acetylation of the chromatin of many target

genes [65]. In addition, AMPK activation under both stresses may

also impact on several transcription factors and co-activators to

affect gene expression [88,89]. It is likely that the anti-tumor

activities of AMPK activators (e.g., metformin or AICAR) [90–93]

may involve similar pathways triggered by lactic acidosis.

Many studies on the lactate levels in human cancers have found

that tumors with high lactate levels are associated with poorer

clinical outcomes, tumor aggression and treatment failure [3–5].

How do our finding of the association of the lactic acidosis

response with favorable outcomes reconcile with these studies?

There are at least four different ways how our results can be

reconciled with the clinical observation. First, our studies mainly

focus on the cellular response of cancer cells to short term

exposure of lactic acidosis. This result may be different from the

long term selection in the high lactic acidosis environments of

human tumors. For example, glucose deprivation triggers

starvation response with AMPK activation, mTOR inhibition

and cell cycle arrest during short term exposure [48]. During the

long term exposure to these stresses in human cancers, these

undesirable conditions may select for tumor cells with the somatic

mutations (such as K-Ras mutation [94]) that confers ability to

adapt these stress conditions and strong metastasis potential.

Similar selection pressure has also been suggested for the lactic

acidosis [1,15,95]. In addition, the high level of lactate in the

tumors is the downstream effects of the preferential use of

glycolysis pathways due to tumor hypoxia, which may lead to

more aggressive tumor behaviors and worse clinical outcomes.

While lactic acidosis itself may exert some anti-tumor influences,

this may not be enough to counter the influence of these somatic

mutations and hypoxia in driving the tumor aggressiveness. It is

also important to point out that the experimental evidence suggests

that the lactic acidosis response is mainly due to acidosis instead of

lactosis. Although we have found that lactosis may further

augment the acidosis response, lactosis by itself have relatively

little effects on the gene expression. Although the degree of the

cellular response to these stresses (such as CA9) can reflect the

levels of stresses (low tumor pO2) and serve as ‘‘endogenous

markers’’ of such stresses in human cancers, such connection are

not absolute and direct [96]. Therefore, the degree of lactic

acidosis response in human cancers may or may not correlate

directly with the tumor lactate levels.

Through the dissection of individual stresses in vitro, we have

shown here that lactic acidosis simultaneously triggers two anti-

tumor pathways (AMPK-mTOR and MondoA-TXNIP). There-

fore, triggering such responses in cancer cells using small molecule

compounds may have therapeutic potentials. It is of interest to

investigate the mechanisms by which the lactic acidosis response is

sensed and triggered in cancer cells. Extracellular lactate enters the

cells through the lactate transporter proteins of monocarboxylate

transporter (MCT), which may be also important for the lactic

acidosis response. Lactate has also been recognized for its role as

an energy source [63] and a signaling molecule to affect tumor cell

phenotypes and target of cancer therapeutics [97]. Previous studies

have shown that lowering the extracellular pH from 7.4 to ,6.7

will lead to a slight lowering of intracellular pH (pHi) from 7.4 to

6.9–7.0 [98,99]. Since many surface or cytosolic molecules exhibit

high sensitivity to pH, this drop in pHe and the corresponding

slight decrease in pHi may induce conformational changes to

trigger signaling events [100,101]. For example, it has been

postulated that inhibition of the acidosis-sensing glutamine pumps

leads to amino acid depletion [73,74] and increases in the

proteosome activity [102] in muscle cells, also contributing to

muscle loss during metabolic acidosis. Low pHi has also been

shown to directly enhance both DNA-binding and the TBP-

interacting capacity of the transcriptional factor Sp1 [103].

Similarly, it is possible that this slight drop in pHi may destabilize

the hydrogen bonds in several histone residues in the basic regions

of MondoA to causes its transcriptional activation of target genes

[57]. Homeostasis of pHi is mainly regulated by the sodium/

hydrogen exchanger (NHE) family of proteins [104,105] and such

regulation is dysregulated in cancer cells [106]. TXNIP is known

to be transcriptionally regulated by a variety of stresses and stimuli

[84,87,107] and it is possible that some of these stimuli may act

through modulating pHi to affect MondoA. TXNIP has been
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proposed as an inhibitor of cell growth [107] and the inhibition of

the growth-inhibiting TXNIP expression under alkaline pHi may

help to explain its permissiveness for cellular proliferation in

response to growth factors [108,109]. In addition, evidence is

accumulating for the role of membrane acid-sensing receptors in

either GPR4 family of G-protein coupled receptors (GPCR) and

Acid-Sensing Ion Channels (ASICs) in many cell types. These

acid-sensing receptors may also be critical in the observed response

in both the AMPK-mTOR and MondoA-TXNIP under lactic

acidosis. Importantly, these acid-sensing receptors can be

modulated by small compounds pharmacologically [110,111]

and thus have potential as cancer therapeutics [112,113]. For

instance, several glycolipids are known natural ligands of these

acid-sensing GPCRs and can activate or inhibit receptor responses

to acidosis. Small compounds blocking the ASICs have been used

to improve the symptoms and severity of stroke after vascular

blockage [114]. Similarly, the use of compounds modulating the

lactic acidosis response may mimic the tumor suppressor activities

of lactic acidosis in novel cancer therapeutics. The definition of key

genes and pathways will allow the use of genetic and chemical

means to identify how to modulate cellular lactic acidosis for

therapeutic purposes and thus potentially improve outcomes for

cancer patients.

Materials and Methods

Cell culture and conditions modeling different tumor
microenvironmental stresses

MCF7 breast cancer cell lines were cultured in DMEM

(GIBCO11995) with 4.5 g/L glucose, supplemented with 10%

fetal bovine serum, 16 non-essential amino acid and 16
antibiotics (penicillin, 10000UI/ml; streptomycin, 10000UI/ml).

MEF cells were cultured in DMEM media supplemented with

15% FBS. Lactic acidosis conditions were created with the

addition of 25mM or 10mM lactic acid (Sigma) to respective

media and adjusted to the desired pHs with HCL or NaOH.

Glucose deprivation was created by using 0 glucose/L media

(GIBCO11966). Hypoxia was created by lowering the oxygen

level to 1% oxygen. To stabilize the pH of DMEM media better,

25mM HEPES was also added into the media.

RNA isolation and microarray analysis
RNAs from MCF7 cells exposed to control or lactic acidosis

culture conditions for 1, 4, 12, 24 hr were collected at respective

time points and extracted with miRVana kits (Ambion), followed

by hybridization to Affymetrix Hu133 plus2 gene chips with

standard protocols. RNAs from MCF7 cells exposed to lactic

acidosis, glucose deprivation and hypoxia were extracted after

4 hour exposure with miRVana kits (Ambion) and hybridized to

Affymetrix Hu133 plus2 gene chips in a similar fashion. CEL files

were normalized by RMA using Expression console (Affymetrix),

filtered by indicated criteria, clustered with cluster 3.0, and

displayed with treeview. All the microarray results have been

submitted into GEO with accession number GSE19123. The

RNA from the treated MEF cells were interrogated by

hybridization to Affymetrix mouse 430A2 GeneChip with

standard protocols and processed in a similar fashion.

Statistical analyses
Gene expression signatures associated with 1,4,12, and 24 hour

lactic acidosis treatments were derived from RMA expression

values using standard Bayesian sparse multivariate regression

techniques, full details of which appear in previous publications

[18,115–117] For each treatment group (i.e. 1-,4-,12-, and 24-hr

lactic acidosis treatment), this estimated the probability of

differential expression for each Affymetrix probe as well as the

fold change of the differentially expressed transcripts, as compared

to the control. These values define the in-vitro signature of the

treatment. Projection of these signatures into the primary tumor

data sets is derived from the weighted inner product of the vector

of tumor gene expression values and the vector of regression

coefficients associated with the signature, as described in [117]: the

score associated with signature k in sample i is defined as

sk,i~
Xp

g~1

pg,kbg,kxg,i

.
yg, where pg,k is the estimated probability

of differential expression of probe g in treatment k, bg,k is the estimated

fold change of the transcript, yg is the estimated residual variance of

probe g, and xg,i is the RMA normalized expression value of probe g in

sample i. The signature score thus provides a relative measure of the

extent to which the pattern of expression described by the signature is

present or reversed in a given vector of expression values.

P-values associated with the significance of Kaplan Meier curves

were derived from survival analyses conducted using a Cox

proportional hazards model in MATLAB. Kaplan Meier curves

show the optimal stratification of high-risk and low-risk groups as

determined by choosing the partition threshold that maximizes the

area between curves. Measures of correlation and the associated P-

values for the signature score scatter plots were calculated using

the Pearson coefficient.

Full details of statistical analysis, including data and computer

code to replicate the analyses, are available as Dataset S1.

Realtime RT–PCR
RNAs were reverse-transcribed to cDNAs with SuperScript II

reverse transcription kit following the manufacturer’s protocol

(Invitrogen). cDNAs were then used as the substrate for gene

expression level measured by qPCR with Power SYBRGreen PCR

Mix (Applied Biosystem) and primers specific for TXNIP

(Forward: CTGGCGTAAGCTTTTCAAGG, Reverse: AGTG-

CACAAAGGGGAAACAC), ARRDC4 (Forward: CCCCCT-

CCCACATGGTCACA, Reverse: TCCCTGGCTCCCTTCC-

ATGTGT), Actin-beta (Forward: CTCTTCCAGCCTTCCTT-

CCT, Reverse: AGCACTGTGTTGGCGTACAG) following the

manufacturer’s protocol.

Glucose uptake assays
MCF7 cells were plated in 6-well/12-well plates at the density of

800,000/200,000cells per well. Once cells were more than 75%

confluent, they were washed with 16 PBS twice, followed by

application of serum starvation media (0.1%FBS) for three hours.

Cells were then treated with respective conditions for the desired

time. For MEF cells, they were plated in 12-well plates at the

density of 100,000 cells per well. Once they reached more than

70% confluence, applying respective indicated conditions for four

hours. For glucose uptake measurement, cells would then be

washed with 37uC KRH buffer twice, followed by adding in

500ul/200ul KRH buffer containing 0.5uCi/0.2uCi 2-deoxy-D-

glucose (GE Healthcare) for one hour in 37uC incubator. 20uM

cytochalasin B was added for negative controls. After incubation,

cells would be washed three times with 1ml/400ul of ice-cold

KRH buffer containing 20mM glucose and 0.5mM phloretin

to quench the glucose uptake. Finally, cells were lysed with

1ml/400ul RIPA buffer and the lysates were subjected to liquid

scintillation counting. Protein concentrations were measured with

Bradford assay. To measure the glucose uptake of genetically-

manipulated cells, glucose uptake was measured 24 or 48 hours

after the transfections.
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RNA interference
MCF7 cells were plated in 12-well plates for the density of

200,000 cells per well. Once the cells reached 60% confluence,

100nM siRNAs were transfected by using lipofectamine. To verify

the successful knocking down of the intended transcripts, RNAs

were collected with miRVana kit 24 hours after the transfection,

whereas 48 hours after the transfection, proteins were collected by

lysing the cells with RIPA buffer.

Western blot analysis
Proteins were collected with RIPA buffer and their concentra-

tions were measured with Bradford assay. Equal amounts of

proteins were loaded for the protein analyses. Primary antibodies

of AMPK, S6K (cell signaling), TXNIP (MBL) and anti-MondoA

antibodies were applied following the manufacturers’ protocols or

as described previously [57].

Cell proliferation assay
Wild type mouse embryo fibroblast (MEF) and TXNIP null MEF

cells were plated at the density of 25,000 cells per ml. The multi-

channel pipette was used to plate 100ul of cell suspension evenly into

the 96-well cell culture plate. Respective conditions of 10mM or

25mM lactic acidosis were applied the next day and cell number was

estimation by using a standard MTS (3-(4,5-dimethylthiazol-2-

yl)-5-(3-carboxymethoxyphenyl)-2- (4-sulphophenyl)-2H-tetrazolium)

colorimetric assay (Promega) 48 hours after respective treatments.

Chromatin Immunoprecipitation
ChIP studies were performed as described previously [57] using

an off-target region located on chromosome 10 to calculate fold

enrichment. Primer sequences for the promoters of TXNIP,

ARRDC4, and the off target control of the CHIP analysis are

available upon request to D.E.A.

Glucose and lactate measurement in media
MCF cells were plated in six-well plates at a density of 500,000

cells per well. The next day, non-targeting siRNAs and siRNAs

against TXNIP were transfected as described previously. After

24 hours, fresh media for the respective conditions, including

control and 25mM lactic acidosis were applied to cells for 48 hrs

when media were collected for glucose (ACCU-CHECK Aviva,

Roche) and lactate (ARKRAY) measurements with respective

meters. The results were normalized by cell numbers to obtain the

glucose consumption and the lactate production amount per

million cells.

Supporting Information

Dataset S1 Statistical code and other supporting material

contains data, code, and information on the statistical analysis of

in vitro expression data to generate signatures, as well as of in vivo

projection of signatures into the sets of human breast cancer data.

Analysis uses the BFRM software previously described and used in

multiple related studies [115] and freely available, with tutorial

examples. Supplementary material contains a readme describing

the setup and running of the analyses.

Found at: doi:10.1371/journal.pgen.1001093.s001 (0.03 MB ZIP)

Figure S1 The prognostic values of gene signatures reflecting

lactic acidosis response at different time points among the patients

in different cancer expression datasets. The graphs show Kaplan-

Meier curves for two patient subsets stratified by the level of lactic

acidosis response. The p-values are for regression coefficients of

the signature in the survival model analysis.

Found at: doi:10.1371/journal.pgen.1001093.s002 (0.27 MB PDF)

Figure S2 Scatter plots showing the relationship between the

levels of lactic acidosis response as defined by HMEC (24hrs) (Y-

axis) and MCF-7 at different time points of lactic acidosis exposure

(X-axis). Each point in the scatter plots represents a single tumor

from the indicated breast cancer data sets. The overall correlation

(R) and statistical significance/p-value (p) between the predicted

lactic acidosis pathway activities using these two breast cancer cells

across all samples is shown for the indicated data set.

Found at: doi:10.1371/journal.pgen.1001093.s003 (0.55 MB PDF)

Figure S3 The prognostic significance of the 109 genes (assayed

in the Miller datasets out of the 115 genes) which are affected in

opposite directions by lactic acidosis and glucose deprivation (LA/

GD). (B) The prognostic significance of three TXNIP probsets in

the Miller datasets. (C) The prognostic significance of the signature

of the 106 genes after the removal of the three TXNIP probesets in

the Miller dataset.

Found at: doi:10.1371/journal.pgen.1001093.s004 (5.02 MB EPS)

Figure S4 Heatmap showing the upregulation of TXNIP and

ARRDC4 in MCF-7 and HMECs at different time points of

exposure to lactic acidosis from the microarray analysis.

Found at: doi:10.1371/journal.pgen.1001093.s005 (0.21 MB PDF)

Figure S5 Realtime RT-PCR results of ARRDC4 expression

normalized by b-actin under control, lactic acidosis, glucose

deprivation, and hypoxia.

Found at: doi:10.1371/journal.pgen.1001093.s006 (0.24 MB PDF)

Figure S6 The induction of TXNIP in WiDr and SiHa cells

under lactic acidosis.

Found at: doi:10.1371/journal.pgen.1001093.s007 (0.28 MB PDF)

Figure S7 The measured glucose consumption (A) and lactate

production (B) of the MCF-7 which has been transfected with

indicated siRNAs either non-targeting (-) and TXNIP (T) under

control and lactic acidosis conditions.

Found at: doi:10.1371/journal.pgen.1001093.s008 (0.31 MB PDF)

Figure S8 The effect of TXNIP disruption on the gene

expression under control and 10mM lactic acidosis conditions.

798 probes sets showing with at least 1.7-fold changes in at least

two samples were selected and arranged by hierarchical clustering

according to similarities in expression patterns with the names of

selected genes shown.

Found at: doi:10.1371/journal.pgen.1001093.s009 (0.29 MB PDF)

Figure S9 The pair-wise t-test and p value for the comparison of

the 1048 repressed genes (A) and 277 induced genes (B) between

the TXNIP deficient and wild-type littermate MEF cells based on

the lactic acidosis gene expression derived by zero-transformation.

Found at: doi:10.1371/journal.pgen.1001093.s010 (0.62 MB PDF)

Figure S10 The amount (%) of lactic acidosis-induced repres-

sion in glucose uptake of the MCF-7 which has been transfected

with indicated siRNAs either non-targeting (-), MondoA (M1,

M2).

Found at: doi:10.1371/journal.pgen.1001093.s011 (0.22 MB PDF)

Table S1 The pathway composition analyzed by GSEA in the

MCF-7 exposed to lactic acidosis versus normal conditions for

samples in all time points.

Found at: doi:10.1371/journal.pgen.1001093.s012 (0.02 MB

XLS)

Table S2 The probesets and average folds of change in affected

by indicated conditions are shown for the 115 probe sets which
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were affected in opposite direction by lactic acidosis and glucose

deprivation with the top 1% probability.

Found at: doi:10.1371/journal.pgen.1001093.s013 (0.01 MB

XLSX)
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