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Abstract

Although tumor size and lymph node involvement are the current cornerstones of breast cancer prognosis, they have not
been extensively explored in relation to tumor methylation attributes in conjunction with other tumor and patient dietary
and hormonal characteristics. Using primary breast tumors from 162 (AJCC stage I–IV) women from the Kaiser Division of
Research Pathways Study and the Illumina GoldenGate methylation bead-array platform, we measured 1,413 autosomal
CpG loci associated with 773 cancer-related genes and validated select CpG loci with Sequenom EpiTYPER. Tumor grade,
size, estrogen and progesterone receptor status, and triple negative status were significantly (Q-values ,0.05) associated
with altered methylation of 209, 74, 183, 69, and 130 loci, respectively. Unsupervised clustering, using a recursively
partitioned mixture model (RPMM), of all autosomal CpG loci revealed eight distinct methylation classes. Methylation class
membership was significantly associated with patient race (P,0.02) and tumor size (P,0.001) in univariate tests. Using
multinomial logistic regression to adjust for potential confounders, patient age and tumor size, as well as known disease risk
factors of alcohol intake and total dietary folate, were all significantly (P,0.0001) associated with methylation class
membership. Breast cancer prognostic characteristics and risk-related exposures appear to be associated with gene-specific
tumor methylation, as well as overall methylation patterns.
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Introduction

Breast cancer is the most common non-skin cancer among

American women. The American Cancer Society’s estimates

indicate approximately 1.3 million new cases of invasive breast

cancer were diagnosed globally in 2007; and nearly 500,000

women died from the disease [1]. Currently, there are over 2.5

million breast cancer survivors in the US, and an estimated $8.1

billion dollars is spent each year on treatment of breast cancer [2].

The principal prognostic indicator currently in clinical use for

breast cancer is the tumor-node-metastasis (TNM) stage [3,4].

Morphological attributes of malignant tumors that influence

disease prognosis are the size of the primary tumor (T), presence

and extent of regional lymph node involvement (N) and presence

of distant metastases (M). Molecular attributes of tumors are also

considered in clinical decision-making; loss of hormone receptor

expression [5] and increased expression of ERBB2 [6] have each

been associated with poor prognosis. Although numerous recent

studies have demonstrated that alterations of DNA methylation

in breast cancers are common and may be important etiologic

and prognostic markers [7-14], large gaps in our knowledge

remain. There is a notable lack of studies examining tumor DNA

methylation in relation to breast cancer risk factors such as diet

or reproductive factors in conjunction with other important

tumor markers. Patient exposures such as alcohol and folate

intake have potentially strong mechanistic links to epigenetic

dysregulation [15]. In addition, recent work in-vitro and in

animal models suggest that long term exposure to estrogen may

lead to epigenetic effects and altered profiles of DNA

methylation [16,17]. To explore associations of tumor methyl-

ation with important tumor and patient characteristics, we

analyzed tumors from breast cancer patients in the Kaiser

Permanente Division of Research Pathways Study using a large

scale methylation array.
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Results

Unsupervised clustering and locus-by-locus analysis
Table 1 shows the patient demographic, hormonal, dietary and

tumor characteristics for the 162 women overall (and stratified by

menopausal status in Table S1). Results of unsupervised

hierarchical clustering of the 750 most variable CpG loci indicate

the epigenetic heterogeneity of these tumors (Figure 1).

In array-wide locus-by-locus analysis the strongest associations

of methylation of individual loci (Q-values ,0.05) were observed

for tumor grade (loci n = 209), tumor size (loci n = 74), estrogen

receptor status (loci n = 183), progesterone receptor status (loci

n = 69), and triple negative status (tumors negative for both

estrogen and progesterone receptors as well as ERBB2; loci

n = 130; Table S2). Together with tumor size, patient lymph node

status is used in tumor staging. Among five CpG loci whose

methylation was significantly associated (Q,0.05) with lymph

node status, four (two in COL1A2, and one each in LOX and

P2RX7) were also associated with tumor size (Q,0.05). Addition-

ally, there was a trend of increased methylation associated with

increased tumor size: for all 74 CpG loci that were significantly

associated with tumor size (Q,0.05) methylation increased with

larger tumor size. Similarly, all five CpGs associated with disease-

positive lymph nodes had increased methylation in tumors in

women with disease-positive lymph nodes. Details of locus-by-

locus analyses for tumor grade, size, hormone receptor, and triple

negative status (loci with Q,0.05) are given in Table S3.

Array validation
Methylation array validation was performed at CpGs with

highly ranked associations from locus-by-locus analysis. The array

CpG whose methylation was most significantly increased with

increasing tumor stage was in the FES gene (Table S3) and array

methylation was significantly correlated with Sequenom methyl-

ation (rho = 0.68, P = 1.1E-12, n = 85; Figure 2A). Promoter CpGs

in P2RX7 and HSD17B12 had significantly increased methylation

(Q,0.0001, and Q = 0.01 respectively) with increasing tumor size

(Table S3) and array methylation at these CpGs were significantly

correlated with Sequenom methylation (P2RX7; rho = 0.65,

P = 8.6E-12, n = 88; HSD17B12; rho = 0.34, P = 5.4E-05,

n = 137; Figure 2B and 2C). A promoter CpG in GSTM2 had

significantly increased methylation with increasing tumor grade

Table 1. Patient demographic, hormonal, dietary, and tumor
characteristics.

All cases

Covariate n = 162 missing

Age Range (median) 30–91 1

Median 59

Mean (sd) 59.2 (11.6)

Race Caucasian, n (%) 117 (72.7) 1

African American 13 (8.1)

Hispanic 10 (6.2)

Asian 10 (6.2)

Other 11 (6.8)

Alcohol (g/day) Range (median) 0–83.2 (1.8) 8

Mean (sd) 9.1 (15.4)

Dietary folate (ug/day) Range (median) 43.5–1610 (427) 7

Mean (sd) 459 (213)

Body mass index Range (median) 18.5–56.1 (27.4) 2

Mean (sd) 29.0 (6.7)

Parity Nulliparous, n (%) 30 (18.8) 2

1–2 children 77 (48.1)

3–4 children 45 (28.1)

5+ children 8 (5.0)

Histology Ductal, n (%) 94 (59.1) 3

Lobular 56 (35.2)

Adenocarcinoma 9 (5.7)

Estrogen receptor Positive, n (%) 141 (87.6) 1

Negative 20 (12.4)

Progesterone receptor Positive, n (%) 119 (73.4) 1

Negative 42 (26.6)

ERBB2 Negative, n (%) 134 (85.9) 3

Positive 22 (14.1)

Triple negative No, n (%) 145 (91.2) 3

Yes 14 (8.8)

AJCC stage I, n (%) 95 (59.0) 1

II 47 (29.2)

III 15 (9.3)

IV 4 (2.5)

Tumor Grade Well differentiated, n (%) 48 (30.0)

Moderately differentiated 79 (49.4) 2

Poorly differentiated 32 (20.0)

Undifferentiated 1 (0.6)

Lymph node status Positive, n (%) 48 (30.8) 6

Negative 108 (69.2)

Tumor Size (mm) Range (median) 0–135 (14.0) 0

Mean (sd) 17.4 (15.0)

doi:10.1371/journal.pgen.1001043.t001

Author Summary

The current standard prognostic indicator for breast cancer
is tumor-node-metastasis staging; though, as population-
based studies and clinical trials are conducted, molecular
characterization of disease is beginning to allow improved
markers of prognosis and assist clinicians in choosing the
most appropriate therapies. We investigated DNA meth-
ylation profiles in over 160 well annotated breast tumor
samples and found significant relationships with standard
and other known predictors of prognosis, as well as
established risk factors for disease: alcohol intake and
dietary folate. Recently the United States National Cancer
Institute Cancer Biomarkers Research Group articulated a
need for a ‘‘Strategic Approach to Validating Methylated
Genes as Biomarkers for Breast Cancer,’’ and our work is
extremely responsive to this call for a national strategy.
Recognizing the increasing use of pre-operative chemo-
therapy for patients with operable, early-stage disease,
there is added complexity in breast cancer staging. Since
chemotherapy can considerably decrease tumor size, it is
still unclear whether pre-operative or post-operative stage
best informs prognosis and treatment decisions for
patients electing pre-operative chemotherapy. However,
our data clearly illustrate the promise of tumor DNA
methylation for augmenting tumor staging and can be
attained with minimal tissue in a pre-operative context.

Breast Tumor DNA Methylation Profiles
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(Table S3) and array methylation was significantly correlated with

Sequenom methylation (rho = 0.83, P,2.2E-16, n = 140;

Figure 2D). Additionally, in all cases, Sequenom methylation

values were significantly associated with respective covariates;

tumor stage with FES methylation (P = 0.05), tumor size with

P2RX7 (P,0.005) and HSD17B12 methylation (P,0.02), and

tumor grade with GSTM2 methylation (P,0.001). Furthermore,

relative mRNA expression of GSTM2 was significantly decreased

among tumors with high array methylation at both CpGs

associated with tumor grade (P,0.001 and P,0.03, Figure S1).

Clustering of DNA methylation patterns with RPMM
In order to explore overall methylation profiles of these tumors

and their potential relationships with patient demographic, tumor

and exposure characteristics we applied a modified model-based

form of unsupervised clustering known as recursively partitioned

mixture modeling (RPMM) [18]. The RPMM resulted in the eight

methylation classes (average methylation profiles shown in

Figure 3). Patient race was significantly associated with methyl-

ation class membership (P = 0.015, Table 2), with the majority of

African Americans (54%) residing in class 2, and 40% of Hispanic

cases residing in class 4. An association between methylation class

membership and alcohol consumption approached statistical

significance (P = 0.07, ever vs. never drinker, Table 2). Both

supplemental folic acid intake (mg/day) and total dietary folate

(mg/day) had associations with methylation class membership that

approached statistical significance (P = 0.06 and P = 0.08 respec-

tively; Table 2). For both folate variables, cases in methylation

class 4 had the lowest intake and cases in methylation class 6 had

the highest intake. Of the tumor characteristic variables, only

tumor size was significantly associated with overall methylation

profile (P = 0.0006, Table 2).

Figure 2. Array methylation is validated by Sequenom EpiTYPER. Results from GoldenGate array methylation values are plotted versus
Sequenom EpiTYPER quantitative methylation values. (A) Sequenom FES methylation is significantly correlated with GoldenGate methylation average
b at the coordinate array CpG (Spearman correlation rho = 0.68, P = 1.1E-12, n = 85). (B) Sequenom P2RX7 methylation is significantly correlated with
GoldenGate methylation average b at the coordinate array CpG (rho = 0.65, P = 8.6E-12, n = 88). (C) Sequenom HSD17B12 methylation is significantly
correlated with GoldenGate methylation average b at the coordinate array CpG (rho = 0.34, P = 5.4E-05, n = 137). (D) Sequenom GSTM2 methylation is
significantly correlated with GoldenGate methylation average b at the coordinate array CpG (rho = 0.83, P,2.2E-16, n = 140).
doi:10.1371/journal.pgen.1001043.g002

Figure 1. Unsupervised clustering heatmap of CpG methyla-
tion in breast carcinomas. Unsupervised hierarchical clustering heat
map based on Manhattan distance and average linkage of the 750
autosomal CpG loci with the highest variance. Samples are in rows
(n = 162), and CpG loci are in columns. Blue indicates methylated and
yellow indicates unmethylated.
doi:10.1371/journal.pgen.1001043.g001

Breast Tumor DNA Methylation Profiles
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Trends of DNA methylation related to alcohol and folate
intake

Associations between alcohol intake and dietary folate and

methylation class membership approached statistical significance.

While methylation of only one CpG locus (in IL17RB) was

significantly associated with folate intake in locus-by-locus tests

(Q,0.05), regression coefficients from univariate locus-by-locus

analysis plotted against their respective P-values revealed trends in

the pattern of methylation for both alcohol and folate intake.

Figure 4A illustrates the strong trend for patients with increasing

alcohol intake to have negative regression coefficients, indicative of

decreased methylation. In contrast, the trend for patients with

increasing total dietary folate shows a strong shift to positive

regression coefficients, indicative of increased methylation

(Figure 4B).

Multivariate modeling of RPMM classes
The relationships between methylation classes and several

covariates of interest were then modeled together using multino-

mial logistic regression in order to adjust for other factors in the

model. Patient age, alcohol consumption, total dietary folate, and

tumor size were each strongly associated with methylation class

membership when controlling for all modeled variables (all Wald

P-values ,0.0001) and complete model details are given in Table

S4. Figure 5 displays an illustration of the model results for

covariates significantly associated with methylation classes. As

alcohol consumption increased, there was an increased probability

of cases residing in methylation classes 3 and 8, and a concomitant

decrease in the probability of cases residing in classes 2 and 4

(Figure 5B). Increasing total dietary folate intake imparted a

striking increase in the probability of membership in class 6, and a

decreased probability of class membership in classes 1, 3, 4, and 7

(Figure 5C). The strong association between tumor size and

methylation class membership remained after controlling for

potential confounders, with the probability of patients being in

class 2 increasing from about 20% to about 60% across the span of

tumor size from 0 mm to 80+mm (Figure 5D). Accompanying this

trend for tumor size were simultaneous decreases in the probability

of cases with increasingly large tumors residing in classes 1 and 5–

8, while tumor size had less influence on the probability for

residing in classes 3 or 4 (Figure 5D).

Hormone receptor status among postmenopausal cases
Although neither estrogen nor progesterone receptor status

were significantly associated with RPMM methylation profiles,

large numbers of specific CpG loci had significant methylation

associations with these tumor characteristics in locus-by-locus

analysis (Table S2 and Table S3). Compared to the overall

population of women diagnosed with breast cancer in the Kiaser

Permanente Northern California cancer registry from 200–2009,

this surgical cohort has a higher prevalence of hormone receptor

positivity (78% overall vs. 88% here), particularly among pre-

menopausal women’s tumors (74% overall vs. 95% here). We

therefore stratified on menopausal status, running RPMM on

methylation data from post menopausal patients’ tumors only

(n = 117). This model resulted in eleven methylation classes (Figure

S2) and methylation class membership was significantly associated

with estrogen receptor status (P,0.03), and the association for

triple negative tumors approached significance (P = 0.07) detailed

results available in Table S5.

Discussion

It is becoming increasingly common to include data on

molecular alterations from patient tumor samples into routine

clinical practice as a means of improving prognosis and evaluating

the predictive power of alterations of interest. As technology

improves and population-based studies and clinical trials are

conducted, medicine is being ushered into a new era of molecular

characterization of disease. Tumor-node-metastasis (TNM) stage is

the current prognostic indicator for breast cancer, though several

clinical trials are currently under way to investigate the utility of

molecular markers [19], and as more patients elect neoadjuvant

therapy (specifically pre-operative chemotherapy), improved

clinical staging and additional staging tools are poised to have

great impact. Most current studies and one commercially available

tool (Oncotype DX) are focused on gene expression markers,

though the inherent instability of mRNA may make implemen-

tation of these strategies challenging outside of major surgical

centers or centralized commercial laboratories. In contrast, DNA

methylation is a stable mechanism of control of transcription, and

the stability of DNA makes it an attractive target for accurate and

reproducible assessment. Here we reported that tumor size, a

cornerstone of breast cancer prognosis, is associated with tumor

DNA methylation profile. In addition, we found that alcohol and

folate intake, exposures related to disease risk, are independently

associated with tumor DNA methylation profiles. This work sheds

light on the relationship between important etiologic exposures

Figure 3. Recursively partitioned mixture model of CpG
methylation in breast carcinomas. The figure depicts the results
of RPMM. Columns represent CpG sites and rows represent methylation
classes. The height of each row is proportional to the number of
observations residing in the class, total n = 162. Blue indicates
methylated and yellow indicates unmethylated. Methylation classes
are numbered one through eight on the left. The color of the columns
within each class represents the average methylation of the CpG for
that class.
doi:10.1371/journal.pgen.1001043.g003

Breast Tumor DNA Methylation Profiles
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and molecular subclasses of disease, extends the evidence for the

utility of molecular characterization in tumor staging, and can be

accomplished with minimal tissue in a pre-operative context.

The recently updated American Joint Committee on Cancer

(AJCC) staging manual for breast cancer does not include

additional molecular markers, though the committee acknowl-

edged their consideration of markers such as hormone receptor

status and stated that TNM staging ‘‘may play increasingly less

important roles than understanding the biology of the cancer’’

[4]. Examining TNM variables we found that overall DNA

methylation profile and methylation alterations in dozens of

individual CpG loci were significantly associated with tumor size

(all increased methylation). In contrast, methylation alterations of

only five CpG loci (two in COL1A2, and one each in FAS, LOX,

and P2RX7) were significantly associated with disease-positive

lymph nodes. However, methylation of four of five lymph-node-

positive associated CpGs (excepting FAS) were also significantly

associated with tumor size, suggesting that these phenotypes are

mechanistically related, and at least in part manifest via

epigenetic alterations. As FAS encodes a TNF-receptor involved

in regulating apoptosis it is not surprising that methylation-

induced silencing of this receptor is associated with disease-

positive lymph node status. In addition, hypermethylation of

COL1A2 (collagen type I, alpha 2) has been associated with both

proliferation and migration activity in bladder cancer [20], LOX

Table 2. RPMM methylation calss membership by patient demographic and tumor characteristic covariates.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Permutation

Covariate n = 68 n = 39 n = 23 n = 14 n = 5 n = 4 n = 4 n = 5 test P*

Age (years) Mean (sd) 60.8 (11.7) 56.6 (10.4) 61.3 (13.4) 61.4 (10.2) 61.0 (9.0) 57.5 (15.5) 53.8 (10.8) 49.6 (8.0) 0.23

Race Caucasian, n (%) 53 (79.1) 29 (74.4) 17 (73.9) 7 (50.0) 3 (60.0) 3 (75.0) 2 (50.0) 3 (60.0) 0.015

Hispanic 6 (9.0) 0 2 (7.4) 0 0 1 (25.0) 0 1 (20.0)

African American 1 (1.5) 7 (18.0) 2 (7.4) 2 (14.3) 0 0 1 (25.0) 0

Asian 3 (4.5) 3 (7.7) 0 4 (28.6) 0 0 0 0

Other 4 (6.0) 0 2 (7.4) 1 (7.1) 2 (40.0) 1 (25.0) 1 (25.0) 1 (20.0)

Alcohol Never drinker, n (%)16 (24.6) 13 (36.1) 6 (27.2) 6 (42.9) 0 (0) 3 (75.0) 0 (0) 0 (0) 0.07

Ever drinker 49 (75.4) 23 (63.9) 16 (72.7) 8 (57.1) 5 (100) 1 (25.0) 4 (100) 5 (100)

Alcohol (g/day) Mean (sd) 10.2 (16.5) 6.3 (10.0) 11.4 (16.0) 2.3 (4.5) 6.8 (4.0) 8.9 (17.8) 9.1 (11.9) 27.9 (37.9) 0.27

Folic acid (ı̀g/day) Mean (sd) 90.2 (68.8) 118 (133) 91.1 (60.2) 55.6 (30.6) 92.9 (37.5) 159 (7.1) 97.7 (52.8) 100 (44.6) 0.06

Dietary folate (ı̀g/day) Mean (sd) 457 (209) 497 (284) 405 (145) 378 (138) 522 (114) 648 (109) 386 (145) 538 (170) 0.08

Stage Low (1 or 2), n (%) 44 (65.7) 16 (41.0) 12 (52.1) 10 (71.4) 4 (80.0) 2 (50.0) 3 (75.0) 4 (80.0) 0.18

High (3 or 4) 23 (44.3) 23 (59.0) 11 (47.9) 4 (28.6) 1 (20.0) 2 (50.0) 1 (25.0) 1 (20.0)

Lymph Node status Negative 48 (73.8) 22 (57.9) 12 (54.5) 10 (76.9) 5 (100) 4 (100) 3 (75) 4 (80) 0.19

Positive 17 (26.2) 16 (42.1) 10 (45.5) 2 (23.1) 0 0 1 (25) 1 (20)

Tumor Size (mm) Mean (sd) 14.7 (8.9) 24.2 (21.5) 18.3 (12.7) 18.0 (20.0) 13.0 (12.6) 15.3 (13.0) 8.5 (4.9) 9 (9.2) 0.0006

Estrogen receptor Positive, n (%) 60 (89.6) 35 (89.7) 19 (82.6) 11 (78.6) 4 (80.0) 4 (100) 3 (75.0) 5 (100) 0.75

Negative 7 (10.4) 4 (10.3) 4 (17.4) 3 (21.4) 1 (20.0) 0 1 (25.0) 0

Parity Nulliparous, n (%) 13 (19.4) 7 (17.9) 3 (13.6) 2 (14.3) 1 (20.0) 1 (25.0) 1 (25.0) 2 (40.0) 0.95

1–2 children 29 (43.3) 20 (51.3) 13 (59.1) 5 (35.7) 3 (60.0) 1 (25.0) 3 (75.0) 3 (60.0)

3–4 children 22 (32.8) 9 (23.1) 5 (22.7) 6 (42.9) 1 (20.0) 2 (50.0) 0 0

$5 children 3 (4.5) 3 (7.7) 1 (4.5) 1 (7.1) 0 0 0 0

Oral contraceptive No, n (%) 21 (31.3) 5 (13.5) 7 (31.8) 6 (42.9) 1 (20.0) 1 (25.0) 0 1 (20.0) 0.35

Yes 46 (68.7) 32 (86.5) 15 (62.2) 8 (57.1) 4 (80.0) 3 (75.0) 4 (100) 4 (80.0)

*Running 10,000 permutations.
Tumor grade, histology, and menopausal status were not significantly associated with methylation class.
doi:10.1371/journal.pgen.1001043.t002

Figure 4. There is an opposite trend for direction of association
between breast carcinoma CpG methylation and alcohol intake
compared to folate intake. P-values for alcohol intake (g/day) and
total dietary folate (mg/day) are plotted versus regression coefficients
from locus-by-locus analysis of CpG methylation. Horizontal blue dotted
line intercepts the y-axis at 0.05 to illustrate significance (before
correction for multiple comparisons). The vertical solid black like
intercepts the x-axis at zero to illustrate the contrasting trends. (A)
There is a trend toward decreased methylation with increasing alcohol
intake. (B) There is a trend toward increased methylation with
increasing dietary folate.
doi:10.1371/journal.pgen.1001043.g004
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is involved in the control of normal collagen deposition [21], and

P2RX7 loss has been linked to morphologic changes in stroma

related to altered collagen fibril alignment [22]. Collectively these

data suggest that perturbations in collagen and collagen-related

genes promote tumor growth and invasion, perhaps by altering

the architecture of connective tissues in the tumor microenviron-

ment. In support of this hypothesis, recent work in a mouse

model has shown that altered mammary stromal tissue collagen

expression significantly increases tumor formation and invasive-

ness potential [23]. Additionally, Chernov et al. showned that

epigenetic alterations in collagen and collagen-related genes

allows the deposition of an invasion-promoting collagen matrix in

both breast and brain tumor cell lines [24].

The primary objective of TNM staging is to provide a standard

prognosis nomenclature for patient care [4], and our results

suggest that methylation markers may be a robust proxy for tumor

size. Importantly, broader application of neoadjuvant therapy

complicates breast cancer staging since chemotherapy can

considerably decrease tumor size prior to surgical treatment, and

it is still unclear whether clinical or pathologic stage best informs

prognosis and treatment decisions [19]. The AJCC has added

methodology (yc or ypTNM) for differentiating clinical and

pathologic staging; in part, this is from recognition of the

increasing use of neoadjuvant therapy for patients with operable,

early stage disease [4,25,26]. Our data illustrate the promise of

tumor DNA methylation for augmenting tumor staging. However,

additional study of the relationship between tumor methylation

and size in both pretreatment and postoperative samples is

necessary. Specifically, the value of methylation to act as an

additional marker of size in the neoadjuvant setting should be

evaluated in future studies that compare both imaging and

pathologically based size determination.

Figure 5. Probability of methylation class membership is significantly associated with tumor size, patient age, alcohol intake, and
dietary folate when controlling for potential confounders in a multinomial logistic regression model. Results from a multinomial
logistic regression plot the probability of methylation class membership versus covariates controlled for age, race, alcohol consumption, total dietary
folate, tumor stage (low vs. high), tumor grade, tumor size, estrogen receptor status, and histology. The referent class (methylation class 3) is on the
bottom of the plot in blue-green, remaining classes are plotted in numeric order from bottom to top as shown in the legend. (A) Patient age is
significantly associated with methylation class membership (Overall Wald P,0.0001), and all methylation classes except class 4 are individually
significantly associated with patient age. (B) Alcohol consumption is significantly associated with methylation class membership (Wald P,0.0001),
and methylation classes 2, 4, 5, and 8 are individually significantly associated with alcohol intake. (C) !Total dietary folate intake is significantly
associated with methylation class membership (Wald P,0.0001), and all methylation classes are individually significantly associated with total dietary
folate. (D) Tumor size is significantly associated with methylation class membership (Wald P,0.0001), and all methylation classes except class 4 are
individually significantly associated with tumor size.
doi:10.1371/journal.pgen.1001043.g005

Breast Tumor DNA Methylation Profiles

PLoS Genetics | www.plosgenetics.org 6 July 2010 | Volume 6 | Issue 7 | e1001043



In order to evaluate the predictive power of DNA methylation

profiles and individual loci for disease prognosis and recurrence,

these patients continue to be followed for these events.

Associations between DNA methylation and patient survival have

been reported for individual genes such as GSTP1 and PITX

[7,8,10], though overall DNA methylation profiles, or patterns of

methylation at selected CpG loci or genes, may improve predictive

power. Well recognized molecular subtypes of breast cancer such

as hormone receptor negative and ERBB2 over-expressing tumors

are known to be associated with reduced survival [27], and it will

be necessary to extensively examine methylation markers stratified

by commonly used molecular tumor markers. However, we did

not find significant associations between ERBB2 status and CpG

methylation in our analysis. Nonetheless, other well recognized

molecular subtype markers; estrogen receptor, progesterone

receptor, and triple negative status were among the covariates

with the highest number of significant CpGs from array-wide

locus-by-locus analysis. However, hormone receptor status and

triple negativity were not associated with methylation profile when

modeling all cases. Premenopausal patients’ tumors in our surgical

cohort had a higher prevalence of hormone receptor positivity

compared to the overall population of premenopausal patients

diagnosed with breast cancer. In order to address the potential bias

this introduced we modeled the methylation profiles of postmen-

opausal patients’ tumors separately and found a significant

association between estrogen receptor status and methylation

class. Additional study will be needed to better understand the role

of hormone receptor and growth factor receptor expression in

these tumors as they relate to methylation profile in the context of

a patient’s menopausal status.

We found significant, independent associations between both

alcohol and folate intake and overall tumor DNA methylation

profiles when controlling for potential confounders. Folate is a B

vitamin that donates its methyl group for homocysteine remethy-

lation to methionine as part of one-carbon metabolism. In turn,

methionine is the methyl donor for DNA methylation via S-

adenosyl methionine. However, alcohol is known to interfere with

folate absorption in the intestine and hepatic release of folate, and

hence, supply to tissues [28]. In fact, strong evidence of an

etiologic role for alcohol in breast cancer has been reported in

multiple meta-analyses of prospective and case-control studies with

an excess risk for each alcoholic drink per day of about 10%

[29,30]. In contrast, meta-analysis of prospective studies has not

provided clear support for an overall protective association

between folate intake and breast cancer risk [31]. Yet, meta-

analysis of case control studies of dietary folate, including results

from the Shanghai Breast Cancer Study (whose participants are

not regular alcohol drinkers) generally support a protective role for

folate [31,32].

While there have been numerous studies of alcohol and folate in

relation to risk of breast cancer, investigations of the relationship

between these exposures and epigenetic alterations in tumors

themselves are scarce. Tao et al. reported that the prevalence of

breast tumor methylation at CDKN2A, CDH1, and RARB did not

differ by folate intake or lifetime alcohol consumption in genotype

strata of one-carbon metabolism enzymes methylenetetrahydrofo-

late reductase (MTHFR) and methionine synthase (MTR) [33].

Consistent with these findings (and perhaps the lack of similar null

results in the literature), we too did not find associations between

alcohol or folate and methylation of CpG loci in CDKN2A, CDH1,

and RARB. Further, after correcting for multiple comparisons, no

CpG loci had significant alcohol-related methylation, and only one

CpG locus (in the IL17RB promoter) was associated with folate

intake. Alone, these results suggested that folate and alcohol intake

do not influence tumor DNA methylation. However, plots of

regression coefficients indicated strong independent trends for

increased folate and reduced alcohol intake associations with

increased CpG methylation. Since global, low-level effects of

alcohol and folate intake on CpG methylation may not be

detectable at individual CpGs in a genome-wide context, we

examined the global relationships between alcohol or folate intake

and DNA methylation using RPMM methylation classes.

Modeling both exposures together revealed highly significant,

independent associations between alcohol and folate and DNA

methylation profile. Another human cancer for which alcohol is an

important etiologic factor is head and neck squamous cell

carcinoma, and previous work from our group demonstrated a

similar relationship between DNA methylation profiles of these

tumors and alcohol consumption [34]. Taken together with the

weak mutagenic potential of alcohol [35], these results suggest that

a major carcinogenic mechanism of action of alcohol is

interference with epigenetic regulation through disruption of

one-carbon metabolism.

In summary, we found tumor DNA methylation associated with

tumor characteristics predictive of prognosis, and DNA methyl-

ation and patient exposures known to be related to disease risk.

Additional study is needed to determine the prognostic value of

DNA methylation markers. However, the potential clinical utility

of tumor-size-related DNA methylation is apparent.

Materials and Methods

Study population
The Pathways Study is a prospective cohort study of breast

cancer survival actively recruiting women diagnosed with invasive

breast cancer from the Kaiser Permanente Northern California

(KPNC) patient population since January 2006. Further study

details are provided elsewhere [36]. Written informed consent is

obtained from all participants before they are enrolled in the study.

The study was approved by the IRB of KPNC and all

collaborating sites.

Demographic, hormonal, and dietary factors
During the in-person baseline interview, participants were asked

detailed information on family history of cancer and reproductive

history, including: age at first full-term pregnancy, number of

biological children, breastfeeding, and menopausal status. Addi-

tional information was collected on smoking, alcohol use, hormone

use (oral contraceptives, hormone replacement therapy), and

demographics (age at breast cancer diagnosis, race/ethnicity,

household income, education). Self-reported height and weight

around diagnosis was obtained to calculate body mass index (BMI,

kg/m2). Any missing values were supplemented by concurrent

information from KPNC electronic medical records.

Tumor characteristics
Data on estrogen and progesterone receptor status and ERBB2

expression were obtained from the KPNC Cancer Registry [37].

Tumor size was measured in a uniform manner by participating

study pathologists. Data are collected, coded, and added to the

KPNC registry approximately four months post-diagnosis to allow

for the completion of treatment. For all breast surgical specimens,

hormone receptor status and ERBB2 expression is routinely

determined by IHC at the KPNC regional IHC lab, and if the

IHC staining for ERBB2 expression is equivocal (less than 30%

strong staining, but more than 10% weak staining), by fluorescence

in situ hybridization at the KPNC regional cytogenetics lab.
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Study samples
162 tumor specimens from the initial diagnostic biopsy were

obtained from the KPNC tumor biorepository for methylation

analysis. All tumor specimens were from patients who did not

receive neoadjuvant chemotherapy.

Methylation analysis
FFPE tissue DNA was extracted using the QIAamp DNA mini

kit according to the manufacturer’s protocol (Qiagen, Valencia,

CA). DNA was treated with sodium bisulfite to convert

unmethylated cytosines to uracil using the EZ DNA Methylation

Kit (Zymo Research, Orange, CA) according to the manufactur-

er’s protocol. Illumina GoldenGate methylation bead arrays were

used to simultaneously interrogate 1505 CpG loci associated with

803 cancer-related genes. Bead arrays have a similar sensitivity as

quantitative methylation-specific PCR and were run at the UCSF

Institute for Human Genetics, Genomics Core Facility according

to the manufacturer’s protocol and as described by Bibikova et al

[38]. GoldenGate array methylation data are publicly available on

the Gene Expression Omnibus archive, accession GSE22290.

Array methylation validation by Sequenom EpiTYPER
mass spectroscopy

Array methylation was validated with Sequenom EpiTYPER

base-specific cleavage and MALDI-TOF MS of bisulfite treated

DNA [39]. EpiTYPER assays were designed for CpG loci both

with significant associations between methylation and tumor

characteristic variables as well as a high standard deviation of

methylation values across samples. One assay (for COL1A2) failed

the design process. Samples were processed at the UCSF Institute

for Human Genetics, Genomics Core Facility. Briefly, PCR with

primers located on either side of the CpG sites of interest are

transcribed into an RNA transcript and cleaved base specifically.

The cleavage products are analyzed by MALDI-TOF MS, and a

characteristic mass signal pattern that distinguishes methyl-

cytosine from thymine is obtained.

Gene expression by RT–PCR
Messenger RNA expression was measured using RT-PCR with

preamplification using a validated approach [40]. RNA extraction

was performed using the RecoverAll (Ambion), with a 16 hour

tissue digestion and yields were determined using a Nanodrop

spectrophotometer. Samples were concentration-normalized and

reverse-transcribed with iScript cDNA synthesis kit (BioRad).

Following cDNA synthesis, we performed linear, gene specific

preamplification of samples and controls using the TaqMan

preamp protocol (Applied Biosystems). Relative expression was

measured using a HT7900 real time PCR instrument (Applied

Biosystems).

Statistical analysis
Data assembly. Data were assembled with BeadStudio

methylation software from Illumina (SanDiego, CA). All array

data points are represented by fluorescent signals from both

methylated (Cy5) and unmethylated (Cy3) alleles, and methylation

level is given by b= (max(Cy5, 0))/(|Cy3|+|Cy5|+100), the

average methylation (b) value is derived from the ,30 replicate

methylation measurements. Raw average b values were analyzed

without normalization as recommended by Illumina. At each locus

for each sample the detection P-value was used to determine

sample performance; all samples, had detection P-values ,1e-5 at

more than 75% of CpG loci and passed performance criteria.

CpG loci with a median detection P-value .0.05 (n = 8, 0.5%),

were eliminated from analysis. All CpG loci on the X chromosome

were excluded from analysis. The final dataset contained 1413

CpG loci associated with 773 genes.

Unsupervised clustering. Subsequent analyses were carried

out using the R software [41]. For exploratory and visualization

purposes, hierarchical clustering was performed using R function

hclust with Manhattan metric and average linkage. To discern and

describe the relationships between CpG methylation and patient

and tumor covariates a modified model-based form of

unsupervised clustering known as recursively partitioned mixture

modeling (RPMM) was used as described in [18] and as used in

[42]. Permutation tests (running 10,000 permutations) were used

to test for association with methylation class by generating a

distribution of the test statistic for the null distribution for

comparison to the observed distribution. For continuous

variables, the permutation test was run with the Kruskal-Wallis

test statistic. For categorical variables we used the standard chi-

square statistic for testing association between two categorical

variables.

Locus-by-locus analysis. Associations between covariates

and methylation at individual CpG loci were tested with a

generalized linear model. The b-distribution of average b values

was accounted for with a quasi-binomial logit link with an

estimated scale parameter constraining the mean between 0 and 1,

in a manner similar to that described by Hsuing et al. [43]. Array-

wide scanning for CpG loci associations with sample type or

covariate used false discovery rate estimation and Q-values

computed by the qvalue package in R [44].

Multinomial logistic regression. Multinomial logistic

regression was used to model methylation class while controlling

for potential confounders. Referent class selection does not affect

the underlying interpretation of the model and as class three was

neither the largest, nor the smallest class, and was relatively

hypomethylated it was chosen as the referent class. Because of the

potentially large number of methylation classes, logistic regression

coefficients were regularized using a ridge (L2) penalty, with

coefficients for a common (non-intercept) covariate across

outcome levels shrunk toward zero [34] the tuning parameter

was selected by minimizing Bayesian information criterion.

Sequenom EpiTYPER methylation and RT–PCR. Spear-

man correlation coefficients and test P-values are reported for

correlation between array and Sequenom methylation values.

Tests for association between methylation and mRNA expression

used relative mRNA expression versus array methylation average

b stratified into two groups around 0.5 with the Kruskal-Wallis test

statistic.

Supporting Information

Figure S1 GSTM2 expression is significantly reduced in tumors

with GSTM2 methylation. Relative mRNA expression values for

GSTM2 are plotted versus array methylation values for two CpGs

significantly associated with tumor grade stratified at 0.5. Each box

top and bottom edge represents the third and first quartile

expression values respectively; box center line represents the

median relative expression value. (A) A CpG 153 bases 39 of the

GSTM2 transcription start site has significantly reduced mRNA

expression when methylated (P,0.001). (B) A promoter-based CpG

109 bases 59 of the GSTM2 transcription start site has significantly

reduced mRNA expression when methylated (P,0.03).

Found at: doi:10.1371/journal.pgen.1001043.s001 (0.05 MB

DOC)

Figure S2 Recursively partitioned mixture model of CpG

methylation in breast tumors from post menopausal patients.
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The figure depicts the results of RPMM. Columns represent CpG

sites and rows represent methylation classes. The height of each

row is proportional to the number of observations residing in the

class (total n = 117). Blue indicates methylated and yellow indicates

unmethylated. The color of the columns within each class

represents the average methylation of the CpG for that class.

Found at: doi:10.1371/journal.pgen.1001043.s002 (0.06 MB

DOC)

Table S1 Patient demographic, hormonal, dietary, and tumor

characteristics stratified by menopausal status.

Found at: doi:10.1371/journal.pgen.1001043.s003 (0.04 MB

XLS)

Table S2 Summary of results from locus-by-locus CpG

methylation versus covariates.

Found at: doi:10.1371/journal.pgen.1001043.s004 (0.03 MB

XLS)

Table S3 Tumor size, grade, hormone receptor, and ERBB2

status are highly associated with CpG methylation in breast

carcinoma (n = 162).

Found at: doi:10.1371/journal.pgen.1001043.s005 (0.12 MB

XLS)

Table S4 Multinomial logistic regression of methylation class

membership (Class 3 is referent) by patient demographic and

tumor characteristics.

Found at: doi:10.1371/journal.pgen.1001043.s006 (0.04 MB

XLS)

Table S5 DNA methylation profiles of post-menopausal pa-

tients’ breast tumors are significantly associated with estrogen

receptor status.

Found at: doi:10.1371/journal.pgen.1001043.s007 (0.03 MB

XLS)
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