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Abstract

Genome-wide studies of post-transcriptional mRNA regulation in model organisms indicate a ‘‘post-transcriptional RNA
regulon’’ model, in which a set of functionally related genes is regulated by mRNA–binding RNAs or proteins. One well-
studied post-transcriptional regulon by Puf3p functions in mitochondrial biogenesis in budding yeast. The evolution of the
Puf3p regulon remains unclear because previous studies have shown functional divergence of Puf3p regulon targets among
yeast, fruit fly, and humans. By analyzing evolutionary patterns of Puf3p and its targeted genes in forty-two sequenced
fungi, we demonstrated that, although the Puf3p regulon is conserved among all of the studied fungi, the dedicated
regulation of mitochondrial biogenesis by Puf3p emerged only in the Saccharomycotina clade. Moreover, the evolution of
the Puf3p regulon was coupled with evolution of codon usage bias in down-regulating expression of genes that function in
mitochondria in yeast species after genome duplication. Our results provide a scenario for how evolution like a tinker
exploits pre-existing materials of a conserved post-transcriptional regulon to regulate gene expression for novel functional
roles.
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Introduction

Evolution of gene expression may account for significant

phenotypic diversity among species [1–6]. Gene expression is

regulated at various levels. Many studies have demonstrated gene

expression changes caused by mutations in transcription [7,8].

Post-transcriptional regulation is also crucial for splicing, transla-

tion, localization and degeneration of mRNAs in eukaryotes, and

thus is important in determining the abundance of gene expression

[9,10]. It is likely that changes in post-transcriptional regulons are

also important in the evolution of gene expression [11].

The control of post-transcriptional regulation is mediated by

regulons such as mRNA-binding proteins (RBP) or RNAs (e.g.,

microRNAs) which usually bind to elements in the 39 untranslated

regions (UTR) and determine the fate of their targeted mRNAs.

Evolution of microRNA post-transcriptional regulons has been well

studied due to recent improvement in understanding their functions.

It was shown that novel microRNAs can turn over rapidly during

evolution [12], and for those that are highly conserved over long

evolutionary distances, their targets can change dramatically even

within populations [13]. Studies on microRNAs have revealed

interesting information on evolution of this particular type of post-

transcriptional regulon, whereas evolution of RBP regulons remains

poorly understood. Furthermore, RBP regulons play major post-

transcriptional roles in budding yeast because the species lost the

microRNA regulatory machine [14].

One of the best-characterized RBP families is PUF (Pumilio and

FBF, FBF represents for fem-3 binding factor), which is conserved

in a wide variety of eukaryotes from yeast to humans [15–19]. The

PUF post-transcriptional regulon regulates diverse gene sets in

various model organisms. For example, in the budding yeast,

Saccharomyces cerevisiae, genes most commonly targeted by Puf3p are

in the mitochondria and play essential roles in mitochondrial

biogenesis [17,20]. In the fruit fly, Drosophila melanogaster, Pumilio (a

PUF protein), which binds with the same element as Puf3p in the

budding yeast, is necessary for early embryogenesis and develop-

ment of primordial germ cells [21,22]. Genome-wide identification

of the Pumilio targets in fruit flies uncovered genes involved

particularly in nucleotide metabolism, transcriptional regulation

and synthesis of membrane proteins [18]. In humans, two

paralogous PUF proteins (Pum1p and Pum2p), which interact

with the microRNA system in post-transcriptional regulation,

share the same binding-element with yeast Puf3p and bind to

mRNAs from genes that function in transcriptional regulation and

cell proliferation [19,23].

Previous studies have reported that the binding site of Puf3p is

highly conserved in sensu stricto yeasts [24–26]. Taking advantage

of a large number of genomic sequences, in this study we

investigated the evolution of the Puf3p post-transcriptional regulon

in fungi. Our results show continuous steps of functional

innovation in the Puf3p regulon despite its ultra conservation in

these fungal species. First, the regulation of mitochondrial

biogenesis by the Puf3p regulon originated in the Saccharomycotina

subdivision; second, the Puf3p regulon was coupled with codon

usage bias to modulate expression of genes that function in

mitochondria in yeasts after whole genome duplication (WGD).
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Our work and reports from other labs show that mitochondria

underwent significant functional changes during the origin of an

efficient aerobic fermentation system in the yeast species that went

through WGD [27–30]. This current report provides evidence

suggesting that the Puf3p post-transcriptional regulon was

involved in the evolution of this novel life history in yeasts.

Results

The binding element of the Puf3p regulon is conserved
in fungi

The RNA-binding domain of Puf3p, called the PUF homology

domain (PUF-HD), consists of eight repeated peptide motifs [31–

33]. In order to study the evolution of the RNA-binding domain,

orthologous genes of PUF3 were identified from the forty-two

sequenced fungal species (Table S1). Domain alignments in

SMART [34,35] indicate that almost all Puf3p orthologs contain

the eight repeated motifs even though some repeats are not highly

conserved (Figure 1A). Puf3p in Lodderomyces elongisporus and

Rhizopus oryzae lost one repeat which may have resulted from

insufficient genome sequencing or assembly because both

orthologs are located at the end of the assembled contigs. This

result demonstrates that the binding domain of Puf3p is conserved

among all studied fungi.

The evolutionary trajectory of the Puf3p-binding element in its

target genes was further investigated. Because the 8nt-core motif of

P3E is conserved from yeast to human, we used the 8nt-core P3E

profiling in the budding yeast as a reference to identify all possible

puf3p targeted genes that contain at least one P3E at their 39

downstream sequences (Figure 1B) [19]. Because GC content is

very low in the P3E, the genomic GC content would inevitably

affect the frequency of P3E in each species. Indeed, as shown in

Figure 1C, at the genome level, the number of genes with P3E is

negatively correlated with the genomic GC content among the

studied species.

In order to exclude the impact of genomic GC content on our

results, we generated 10,000 random sequences for each species

based on the average GC content of 1,000 bp downstream

sequences of all the annotated genes in this species. Using the

occurrence of P3E in these random sequences as background in

each species, we estimated the probability of having the observed

P3E frequency in the 39 downstream sequences of all the

annotated genes in the same species. The probability was

calculated in each sliding window of 50 bp in the 39 downstream

sequences of each species. As shown in Figure 1D, all studied

species exhibited significant enrichment of P3E in the first several

sliding windows in the 39 downstream regions. As the 39 UTR in

yeast is usually shorter than 250 bp [36], our results indicate that

the enrichment of P3E in the studied fungi results from P3E

conservation in the 39 UTR sequences. When we used the GC

contents in the 250 bp regions after the stop codon or in each

50 bp sliding window to calculate the background P3E motif

distribution, similar enrichment of P3E motif in the 39UTR

regions are still observed in most fungi species (Figure S1).

The Puf3p target genes are significantly enriched for
mitochondrial functions only in the Saccharomycotina
subdivision

Previous reports showed that Puf3p plays an essential role in

mitochondrial biogenesis in S. cerevisiae [17,37,38]. This observa-

tion prompted us to investigate whether the functional profile of

the Puf3p regulon is also conserved among fungi species.

Accordingly, we identified all of orthologous genes between each

studied fungal species and budding yeast. Genes in each species

are classified into categories based on the sub-cellular localization

of their orthologs in the budding yeast [39]. We then estimated the

enrichment of genes with P3E in each localization category. As

shown in Figure 2A, we discovered that all of the studied species in

the Saccharomycotina subdivision show significant enrichment of P3E

in genes that function in mitochondria. Other clades of the studied

fungi did not have this pattern. Indeed, close to 50% of genes that

function in mitochondria have P3E in the Saccharomycotina

subdivision, which is significantly higher than that of species in

other clades (Figure 2B, P-value = 6610222). A similar pattern was

observed when a slightly different P3E motif profile [17] was used

to calculate the motif frequency (Figure S2).

Because regulation of the mitochondrial translational machine is

essential for mitochondrial biogenesis [40], we further investigated

conservation of P3E among the orthologous genes with this

particular function in the Saccharomycotina subdivision. Our results

showed that ,80% of genes with highly conserved P3E were

involved in mitochondrial translation, whereas this number is only

,4% for genes with little P3E conservation, indicating that the

Puf3p regulation of genes that are involved in the mitochondrial

translational machine is highly conserved in these Saccharomycotina

species (Figure 2C).

Relaxation of codon usages in Puf3p-regulated
mitochondrial genes

Gene expression is regulated at multiple levels. Biased usage of

preferred codons can result in enhanced accuracy and speed of

protein synthesis in highly expressed genes [41,42]. Previous studies

reported that codon usage bias in mitochondrial genes is relaxed,

possibly due to a relaxed function of the organelle with the origin of

an efficient aerobic fermentation system in the fungal lineage with

WGD [27,28]. We predicted that Puf3p-regulated mitochondrial

genes, due to their importance in mitochondrial biogenesis and

functions, would experience more relaxation of codon usage bias than

other mitochondrial genes in the post-WGD yeast species. In order to

test this, we calculated the average codon bias adaptation index (CAI)

for the mitochondrial genes, with and without P3E, for each species.

As shown in Figure 3A, the mitochondrial genes with P3E in the post-

WGD species show significantly smaller CAI than those genes in the

fungal species that diverged from the common ancestor before the

WGD event (student t-test, P = 361028), whereas mitochondrial

genes without P3E did not show such a pattern (Figure 3B, student t-

test, P = 0.1).

Author Summary

It is well known that the evolution of gene expression can
account for significant phenotypic diversity among spe-
cies. Gene expression is regulated at various levels. Many
studies have demonstrated gene expression changes
caused by mutations in transcription. Post-transcriptional
regulation is also crucial for splicing, translation, localiza-
tion, and degeneration of mRNAs in eukaryotes and, thus,
is important in determining the abundance of gene
expression. Changes in post-transcriptional regulons are
also important in the evolution of gene expression. In this
study we investigated the evolution of a particular post-
transcriptional regulon, Puf3p, in fungal species. Our
results illustrated an important evolutionary mode for
evolution of post-transcriptional regulon, i.e., pre-existing
materials of conserved post-transcriptional regulons can
be recruited to regulate gene expression for novel
functional roles.

Evolution of Post-Transcriptional RNA Regulons
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Puf3p regulon in mitochondrial gene regulation
Due to the importance of Puf3p regulation in mitochondrial

gene degradation, we further investigated expression of its target

mitochondrial genes under the fermentative condition. Using

gene-expression profiling measured by microarray data [43], we

discovered that significantly more mitochondrial genes with P3E

were down-regulated in the fermentative medium (YPD) than

those without P3E (Figure 4A, Fisher’s exact test, P = 1.261024).

Furthermore, we found that mitochondrial genes with P3E tend to

be co-regulated because the average correlation coefficients of

gene expression among mitochondrial genes with P3E in different

conditions is significantly higher than that of genes without P3E

(Figure 4B, student t test, P = 0). Therefore Puf3p regulon plays an

important role in regulating mitochondrial genes in different

conditions.

Discussion

Function of the Puf3p regulon under various
environmental conditions

PUF protein was first characterized in Drosophila as an mRNA-

binding factor that recruits other proteins to inhibit the translation

of the bound mRNA [21]. Subsequently, many studies in yeast

revealed that the PUF family regulates specific mRNA degener-

ation by their RNA-binding domains [17,31,44,45]. It was shown

that the function of targeting mRNA for degeneration by Puf3p is

much more efficient in 2% glucose (YPD, fermentative) than in

3% ethanol (YPE, non-fermentative) [17,46]. Furthermore, it was

shown that Puf3p is crucial for mitochondrial biogenesis and

motility under non-fermentative conditions in budding yeast [43].

Saint-Georges and his colleagues reported that Puf3p can transfer

its target mRNAs to the peripheral mitochondria in the non-

fermentative growth medium [37]. The expression of PUF3 gene

is significantly higher in yeast growing in YPE than in YPD

(Figure 5A, P-value,0.05). We speculate that this is true because

the positive regulation of mitochondrial biogenesis might not be as

important for Puf3p in fermentative conditions as that in

respiratory conditions: First, based on gene deletion data, the

mitochondrial genes with P3E are significantly more important

(having more severe growth defects after gene deletion) than those

genes without P3E (P = 461026) under non-fermentative condi-

tions, but these two gene groups do not show obvious difference in

deletion phenotype under fermentative conditions (Figure 5B).

Second, severe growth defect after PUF3 gene deletion was

observed in YPE, but not in YPD (Figure 5C). Therefore in non-

fermentative condition Puf3p regulates both mitochondrial

Figure 1. Conservation of the Puf3p regulon in fungi. (A) Conservation of the pumilio domain. R1–R8 represents the repeat domains. Different
colors indicate the P values of domain identification by SMART alignment. The two missing domains were depicted in grey. The full name for each
species was listed in Table S1. (B) The motif of P3E in the budding yeast. 39 UTR from mitochondrial ribosomal proteins were used to reconstruct the
P3E profile by MEME [58]. The multiple sequence alignment of P3E from the MEME output was used to get the P3E logo in enoLOGOS [59]. (C)
Genome-wide GC content and the P3E frequency. Linear regression line was shown on the figure with R2 and P values. (D) The occurrences of the P3E
at the downstream of all annotated genes in each species. Different colors show the P values of having the observed frequencies in each sliding
window of studied species.
doi:10.1371/journal.pgen.1001030.g001

Evolution of Post-Transcriptional RNA Regulons
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biogenesis and mRNA degradation, but in fermentative condition,

it might only regulate mRNA degradation, albeit more efficiently

in this condition. The expression difference of PUF3 in two growth

conditions can also be explained by the fact that mitochondrial

biogenesis in non-fermentative conditions is extremely important

for yeast because the organism relies on respiration, and therefore

mitochondria, to generate cellular energy in these conditions. In

contrast, the function of mRNA degradation might not be as

essential to the organism under fermentative conditions.

Although loss of a functional PUF3 gene shows a negligible

effect on organism growth in YPD (Figure 5C), our results in this

study indicate that Puf3p regulation of mitochondrial gene

degradation might be important for yeast fermentative growth

during evolution. After whole genome duplication, the post-WGD

species (including budding yeast) evolved efficient fermentative

ability [47]. Mitochondrial function became relaxed in these

species [27,28]. Most post-WGD yeast species can live even

without a functional mitochondrial genome [47]. A large number

of mitochondrial genes are down-regulated in yeast fermentative

growth [48]. Degradation of mRNA by Puf3p may accelerate this

gene-expression regulation process during environmental switches.

Interestingly, our results showed that mitochondrial genes having

P3E had significantly relaxed codon usage bias in the post-WGD

species, which is not true for other mitochondrial genes.

Evolution of the Puf3p post-transcriptional regulon and
reuse of extant modules for novel functional roles

Understanding the origin of genetic novelties is a challenging

issue in evolutionary biology. One of the prominent models

proposed by Francois Jacob for evolution of genetic novelties in

gene regulatory network is tinkering evolution, in which evolution

reorganizes pre-existing networks to produce novelties [6,49–52].

Our results provide an interesting paradigm for the evolution of

post-transcriptional regulons that is consistent with this model.

Figure 2. The evolution of the puf3p regulon and mitochondrial biogenesis. (A) Enrichment of P3E in different categories in yeast species.
Red color denotes significant enrichment of P3E after multiple test correction (P-value,0.01). Black and green denote P-value = 0.01 and P-
value.0.01 respectively. (B) The occurrence of P3E for genes functioning in mitochondria in yeast species. The y axis represents the percentage of
P3E conservation in mitochondrial genes for each studied species. (C) Conservation of P3E for genes involved in mitochondrial translation. Each row
represents a mitochondrial gene and each column represents a species in the clade Saccharomycotina (S. pombe and its sister species, S. japonicus,
which do not have P3E enrichment in mitochondrial genes, were also shown for comparison). The presence and absence of P3E in the downstream of
a mitochondrial gene is shown in red and black, respectively. The grey denotes the absence of the corresponding orthologous gene in that species.
Genes were sorted by the percentage of having P3E among all orthologs for each gene in the Saccharomycotina species (decreasing from top to
bottom). The percentages of genes that are involved in mitochondrial translation, which were defined based on the Gene Ontology annotation (GO:
0006412), were calculated in a 50 gene sliding window from top to bottom, and the values were listed at the left of the figure.
doi:10.1371/journal.pgen.1001030.g002

Evolution of Post-Transcriptional RNA Regulons
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The Puf3p post-transcriptional regulon might have changed

significantly at least twice in fungal evolution. First, although it

is conserved in all the studied fungal species, the dedicated

function of the Puf3p post-transcriptional regulon in mitochon-

drial biogenesis independently evolved in the Saccharomycotina

subdivision. Second, although the regulation of mitochondrial

mRNAs by Puf3p is conserved across the Saccharomycotina

subdivision, the Puf3p target genes evolved a reduced codon

usage bias in the post-WGD species, which might be consistent

with the functional relaxation of mitochondrial genes in the post-

WGD species due to the emergence of their fermentative life-style

during evolution.

It was shown that although some microRNAs are highly

conserved, their target networks can change dramatically during

evolution [13]. Our results, together with those from previous

studies, indicate that post-transcriptional regulons by RBP and

microRNAs might share similar evolutionary patterns: i.e., the

interaction mechanisms between the regulators and their target

genes are conserved, whereas the target network is plastic during

evolution. As post-transcriptional regulation plays an important

role in regulating gene expression, this evolutionary scenario

involving post-transcriptional regulons could lead to significant

gene-expression divergence among species.

Materials and Methods

Sequence data
Sequences for the forty-two sequenced fungal species were

downloaded from the Fungal Comparative Genomics database

[53] and the National Center for Biotechnology Information

(http://www.ncbi.nlm.nih.gov/).

Orthologous gene definition and motif detection
Using the InParanoid software package [54], orthologs between

budding yeast and other fungal species were identified. The PUF3

orthologs in other species of fungi were identified manually based

on the best alignment. Eight repeated motifs of PUF protein were

detected by the SMART sequence analysis (http://smart.embl-

heidelberg.de/).

Because the Puf3p binding motif in its target genes (P3E) is

conserved between yeast and humans, based on the profile of P3E

in budding yeast, we used a Perl script to detect the target locus of

Puf3p by fixing all seven invariable sites and allowing flexibility in

the fifth site (Figure 1B). For each species, we scanned 1,000 bp of

DNA sequence downstream of all annotated genes to discern the

Figure 3. The codon adaptation index (CAI) of mitochondrial
genes in species in the clade Saccharomycotina. The grey and black
bars denote the post and pre-WGD fungi species, respectively. The
average CAI values of the mitochondrial genes with P3E (A) and without
P3E (B) were shown. The student t-test was used to compare CAI values
between pre- and post-WGD fungi species.
doi:10.1371/journal.pgen.1001030.g003

Figure 4. Regulation of mitochondrial genes by Puf3p regulon.
(A) Expression change of mitochondrial genes in fermentative
conditions. The ratio for the number of down- to up-regulated (1.5
fold difference) gene from the reference to the fermentative condition
was shown. P-value was obtained by the Fisher’s exact test where the
numbers of down- and up-regulated genes with P3E were compared to
those genes without P3E. (B) The distribution for the pair-wise
correlation coefficients of gene expression. The grey line denotes the
distribution for the mitochondrial genes with P3E. The dashed line
denotes the distribution for the mitochondrial genes without P3E. The
black line denotes the distribution between mitochondrial gene pairs
one of which has P3E and the other does not have P3E. The student t-
test was used to compare different distributions.
doi:10.1371/journal.pgen.1001030.g004

Figure 5. Function of the Puf3p regulon under different
conditions. (A) The expression level of PUF3 gene in the fermentative
(YPD) and respiratory (YPE) growth conditions. The ACT1 gene was used
as a control in the real-time PCR experiments. (B) The average growth
rate of gene deletion mutants for the mitochondrial genes with and
without P3E in the two conditions. The student t-test was used to
compare gene expression (in A) and average growth rate of gene
deletion mutants (in B). (C) The growth of PUF3 gene deletion mutant
and the wide-type (WT) strains in the two conditions.
doi:10.1371/journal.pgen.1001030.g005

Evolution of Post-Transcriptional RNA Regulons
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occurrence of the P3E motif. The percentage of motif occurrences

in each 50-bp window among all genes in each species was

calculated. Multiple occurrences of the motif in the same sliding

window were regarded as independent events. To see whether the

motif occurrences in a species are different from random

expectation, we calculated GC content of the 1,000bp downstream

sequences for all genes in each species. Based on the observed GC

content, 10,000 random sequences of 1,000bp were generated by a

perl script and the occurrences of PUF3 motif were calculated.

The significance of PUF3 motif occurrences in each sliding

window was calculated by comparing its motif frequency against

the frequencies of P3E in these random sequences by Fisher’s

exact test (more focused tests were also conducted in Figure S1).

The Bonferroni correction was used to correct for multiple

comparisons. Genes with P3E in their 250bp 39 downstream

regions were defined as the target of Puf3p.

Functional enrichment analysis
The sub-localization information for genes in budding yeast

was downloaded from the Saccharomyces Genome Database

(http://www.yeastgenome.org/) [39]. Based on the identified

orthologous genes between each studied fungal species and

budding yeast, genes in each species are classified into different

localization categories based on the sub-cellular localization of

their orthologs in the budding yeast. The hypergeometric test was

used to test the enrichment of genes with P3E in each localization

category. The Bonferroni correction was used to correct for

multiple comparisons.

Codon usage bias calculation
According to the InParanoid results, we identified all the

orthologous clusters that contained the known cytoplasmic

ribosomal protein genes in S. cerevisiae, regardless of gene copy

number in each species. The ribosomal protein genes in each

species were used as references to calculate the codon adaptation

index (CAI) value for each individual gene in the same species by

CodonW (http://codonw.sourceforge.net/) [55]. In order to

compare codon usage bias between different species, CAI values

in each species were standardized so that the mean and standard

deviation were 0 and 1, respectively.

Microarray data analysis
Gene expression in fermentative conditions. Microarray

data were downloaded from (http://www-genome.stanford.edu/

yeast_stress). The expression profiles of mitochondrial genes

during cell growth in fermentative (YPD) media were used to do

the analysis. We counted the number of the up-regulated and

down-regulated genes (defined as their expression level was higher

or lower by 1.5 folds than the reference pool, respectively). Fisher’s

exact test was used to assess whether the number of up or down-

regulated genes were significantly different between mitochondrial

genes with P3E and without P3E.
Gene co-regulation analysis. The collected microarray

data under different experimental conditions were downloaded

from (http://www.weizmann.ac.il/home/barkai/Rewiring/) [29].

The dataset compiles microarray gene expression under multiple

conditions and contains 1,011 data points for each gene.

Correlation coefficients of gene expression among the studied

mitochondrial genes were calculated in R.

Quantitative real-time PCR
Cells were grown in the YPD and YPE media until optical

densities at 600 nm reaches 1. Total RNA was extracted using the

Trizol protocol [56] and cDNA was synthesized using an

Invitrogen kit (Cat. No.18080-051). Using the ACT1 gene as

reference, the expressional levels of PUF3 in fermentative and

non-fermentative conditions were measured by quantitative real-

time PCR.

Gene deletion analysis and growth measurement
The rate of growth for deletion mutants were downloaded from

[57]. Two-tails student t test was used to compare the average

fitness contribution of mitochondrial genes with and without P3E

in fermentative and non-fermentative growth conditions.

The deletion of the PUF3 gene was conducted in the BY4741

strain (Mata his3D1 leu2D0 met15D0 ura3D0) by homologous

recombination and ura- was used as the selection marker (the

primer sequences for gene deletion are available upon request).

The mutant and the wild type strains were grown overnight in

YPD (2% glucose) and YPE (3% ethanol) media. Cells were

then transferred into fresh media and grown until the optical

density (600 nm) reached 0.2. Then 4ul of growth media were

dotted onto the YPD and YPE plates with ten-fold dilutions.

YPD and YPE plates were incubated at 30uC for 48 and 72h,

respectively.

Supporting Information

Figure S1 The occurrences of the P3E at the downstream of all

annotated genes in each species. (A) The randomly generated

sequences based on the GC contents of 250 bp regions after the

stop codon were used as background to calculate motif

enrichment; (B) the randomly generated sequences based on the

GC contents in each sliding window were used as background to

calculate motif enrichment. Red denotes significant enrichment of

the observed P3E motif in the real sequences in comparison to the

random sequences.

Found at: doi:10.1371/journal.pgen.1001030.s001 (0.21 MB TIF)

Figure S2 The occurrence of P3E for genes functioning in

mitochondria in yeast species. The PUF3 motif profile from

Gerber et al, (2004) [17], which has two extra nucleotides at the

59 of the motif in the paper, was used. As shown in the figure,

species in Saccharomycotina subdivision have significantly higher

percentages of mitochondrial genes that have this motif than the

other species. The hypergeometric test was used to test the

enrichment of mitochondrial genes with P3E in each species. The

P value is smaller than 161028 for each species in the

Saccharomycotina subdivision, but larger than 0.2 in each of

the other species.

Found at: doi:10.1371/journal.pgen.1001030.s002 (0.74 MB TIF)

Table S1 The forty-two sequenced fungal species used in this

study.

Found at: doi:10.1371/journal.pgen.1001030.s003 (0.09 MB

DOC)
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