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Abstract

Although it has been known for many years that B-cyclin/CDK complexes regulate the assembly of the mitotic spindle and
entry into mitosis, the full complement of relevant CDK targets has not been identified. It has previously been shown in a
variety of model systems that B-type cyclin/CDK complexes, kinesin-5 motors, and the SCFCdc4 ubiquitin ligase are required
for the separation of spindle poles and assembly of a bipolar spindle. It has been suggested that, in budding yeast, B-type
cyclin/CDK (Clb/Cdc28) complexes promote spindle pole separation by inhibiting the degradation of the kinesins-5 Kip1 and
Cin8 by the anaphase-promoting complex (APCCdh1). We have determined, however, that the Kip1 and Cin8 proteins are
present at wild-type levels in the absence of Clb/Cdc28 kinase activity. Here, we show that Kip1 and Cin8 are in vitro targets
of Clb2/Cdc28 and that the mutation of conserved CDK phosphorylation sites on Kip1 inhibits spindle pole separation
without affecting the protein’s in vivo localization or abundance. Mass spectrometry analysis confirms that two CDK sites in
the tail domain of Kip1 are phosphorylated in vivo. In addition, we have determined that Sic1, a Clb/Cdc28-specific inhibitor,
is the SCFCdc4 target that inhibits spindle pole separation in cells lacking functional Cdc4. Based on these findings, we
propose that Clb/Cdc28 drives spindle pole separation by direct phosphorylation of kinesin-5 motors.
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Introduction

Cyclin-dependent kinases (CDKs) complexed with various

cyclins coordinate many duplication and segregation events during

the eukaryotic cell division cycle [1,2]. The duplication of the cell’s

microtubule organizing center, the centrosome, and the subse-

quent separation of the duplicated centrosomes is one such event

[3,4]. Timely separation of the duplicated centrosomes is required

for the assembly of the bipolar spindle at metaphase which, in

turn, is necessary for the equal segregation of sister chromatids

during anaphase and the preservation of genome stability.

The budding yeast centrosome, called the spindle pole body

(SPB), is functionally equivalent to the metazoan centrosome.

Although structurally dissimilar [5], they appear to be regulated by

similar mechanisms [3,6]. Thus, the budding yeast SPB is a

powerful model for understanding the metazoan centrosome, as

demonstrated by genetic studies that have identified many

components of the eukaryotic cellular machinery critical to both

SPB and centrosome separation (reviewed in [5–9]).

Three classes of mutations that cause cells to arrest with

duplicated but unseparated SPBs have been identified in

Saccharomyces cerevisiae. The first class includes mutations in the

genes encoding Cdc28, the yeast Cdk1, and the B-cyclins which

bind to Cdc28. Cells lacking all six B-type cyclin genes (CLB1,

CLB2, CLB3, CLB4, CLB5, and CLB6) are unable to separate SPBs

[4]. The mutation of tyrosine 19 in Cdc28 to mimic an inhibitory

phosphorylation (cdc28Y19E) [10,11] has also been reported to

result in a SPB separation defect [12]. This phosphomimetic

mutation is thought to specifically inhibit Clb1,2,3,4/Cdc28

complexes, but likely not Clb5,6/Cdc28 [11]. Not surprisingly,

Dclb1,2,3,4 mutants also appear to have a diminished capacity to

separate SPBs [13,14], although separation can occur after

extended time periods [4,13].

The second class of SPB separation mutations affects genes

encoding components of the SCFCdc4 E3 ubiquitin ligase complex

(CDC4, CDC53 and SKP1 [15–17]) as well as CDC34 [18], the E2

ubiquitin protein-conjugating enzyme that is associated with

SCFCdc4. Temperature-sensitive cdc4, cdc53, and cdc34 mutants

arrest with multiple elongated buds and unreplicated DNA, as well

as duplicated but unseparated SPBs [15–19]. The arrest

phenotype of these mutants is likely to be identical to that of

Dclb1,2,3,4,5,6 [4,20] mutants due to a buildup of Sic1 [15,20].

Sic1 is a Clb/Cdc28-specific inhibitor whose degradation is

normally triggered by the SCFCdc4 complex in G1 to allow entry

into S phase [20–22]. However, it is possible that there is a

SCFCdc4 target that is directly involved in maintaining cohesion

between the duplicated SPBs and which must be destroyed before

separation can occur. Such a protein could be a component of the

proteinaceous bridge structure that physically joins newly

duplicated SPBs and would need to be overcome for separation

to occur [8,9]. Direct phosphorylation by CDK complexes is

generally required to trigger the ubiquitination of SCF targets

[23]; so Clb/Cdc28 complexes might work in concert with the

SCFCdc4 to destroy such a separation-inhibiting element.

The third class of mutations lies in the KIP1 and CIN8 genes

[24,25] which encode members of the kinesin-5 family of bipolar,
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microtubule-based motor proteins [26]. Kinesins-5 have been

shown to be important in both the establishment and maintenance

of the bipolar spindle in many fungal and metazoan systems [27–

30]. It is thought that kinesin-5 motors crosslink and move spindle

microtubules, which are also required for SPB separation [31,32],

in order to mechanically separate the spindle poles and establish

the spindle (reviewed in [33]). Accordingly, cells lacking both

functional Kip1 and Cin8, arrest with duplicated and unseparated

SPBs when released from a G1 arrest [24,25].

Together, these findings suggest that Clb/Cdc28 complexes

promote the timely separation of SPBs, and that kinesin-5 motors

may be subject to phosphoregulation by Clb/Cdc28 complexes

[14,34]. Although several of the genetic requirements for SPB

separation are now known, the molecular mechanisms that

regulate separation remain unclear. cyclin B/Cdk1 phosphoryla-

tion of the tail domain of the Homo sapiens [35,36], Xenopus laevis

[37,38], and Drosophila melanogaster [39,40] kinesin-5 orthologues

(HsEg5 or Kif11, XlEg5, and KLP61F, respectively) has been

shown to be required for their localization to the spindle. The

BimC box motif [28] where this phosphorylation occurs is not

found, however, in either Kip1 or Cin8, although other consensus

CDK phosphorylation sites exist in both proteins.

Two recent studies [41,42] suggest that Clb/Cdc28 complexes

regulate kinesin-5 protein stability indirectly by phosphorylating

Cdh1, a substrate-specific activator of the anaphase-promoting

complex (APC) [43]. The APCCdh1 is active in G1, and is thought

to be inactivated in S phase by B-cyclin/CDK-mediated

phosphorylation of Cdh1 [44,45]. The degradation of Kip1 and

Cin8 is dependent on the APC in complex with Cdc20 [46] or

with Cdh1 [47], respectively. Motor stability thus depends on APC

activity. The studies by Crasta et al., however, relied heavily on

two mutant alleles of CDC28, cdc28Y19E and cdc28-as1, which retain

some CDK activity under the experimental conditions employed

[41,48]. They therefore do not rule out the possibility that CDKs

also regulate kinesin-5 motors directly.

In this study, we asked if Clb/Cdc28 directly regulates kinesin-5

activity in order to trigger SPB separation and spindle assembly.

We first determined that the only target of SCFCdc4 involved in

regulating SPB separation is the Clb/Cdc28-specific inhibitor,

Sic1. Thus, SCF-mediated destruction of a bridge component is

likely not required for spindle assembly. We next determined that

Clb2/Cdc28 phosphorylates Kip1 and Cin8 in vitro, and also that

Clb/Cdc28 complexes do not regulate either the abundance or

localization of these kinesins-5 in vivo. Moreover, by genetic

mapping, we identified a CDK phosphorylation site in the motor

domain of Kip1 that is critical to SPB separation. We also

identified two non-conserved CDK sites in the tail domain of Kip1

that are important for timely SPB separation, and verified that

they are phosphorylated in vivo by mass spectrometry. As the site in

the motor domain is conserved across almost all of the kinesin-5

family, we propose that direct regulation of kinesin-5 motor

functions by B-cyclin/CDK may not be exclusive to S. cerevisiae.

Results

Deleting SIC1 is sufficient to permit SPB separation in
cells lacking functional Cdc4

Mutants lacking SCFCdc4 E3 ubiquitin ligase activity fail to

separate duplicated SPBs. This observation suggests that there is a

protein or proteins that must be ubiquitinated by the SCFCdc4 and

subsequently degraded in order for the SPBs to separate. A likely

candidate is the Clb/Cdc28-specific inhibitor Sic1, which

accumulates at the restrictive temperature in mutants with

temperature-sensitive alleles of the SCFCdc4 complex components

such as Cdc4, Cdc34, Cdc53, and Skp1 [15,20]. Sic1 inhibits Clb/

Cdc28 kinases essential for S-phase entry [15,20] as well as SPB

separation [4,13]. Moreover, cells that express a hyperstabilized

allele of Sic1 arrest with a phenotype identical to that of cells

which lack SCFCdc4 activity [49]. These findings do not, however,

rule out the possibility that the destruction of additional SCFCdc4

targets, such as components of the bridge structure which

physically joins newly duplicated SPBs, may be essential for SPB

separation.

To determine if Sic1 is the only SCFCdc4 target important for

SPB separation, we deleted SIC1 in a strain carrying a

temperature-sensitive CDC4 allele, cdc4-3 [19,50,51], and express-

ing GFP-tagged Spc42, a SPB component. We then asked if the

ability of these mutant cells to separate SPBs at the restrictive

temperature was restored. In agreement with earlier studies

[20,51,52], we observed that an asynchronous culture of cdc4-3

cells arrests almost uniformly at the G1/S border with elongated

buds, unreplicated DNA, and duplicated but unseparated SPBs 2–

4 hours after being shifted to 37uC (Figure 1). In contrast, an

asynchronous culture of cdc4-3 sic1D arrests at 37uC with a

majority of cells in G2/M with large, round buds and replicated

DNA, as has been observed previously [20,52]. Most importantly,

for this study, duplicated and separated SPBs were observed in the

majority (.90%) of cdc4-3 sic1D cells within 4 hours of the shift to

the restrictive temperature (Figure 1). This finding indicates that

the failure to separate SPBs in the absence of SCFCdc4 activity is

due solely to the stabilization of Sic1 and the consequent inhibition

of Clb/Cdc28 kinase activity. These results are consistent with

observations made by Goh & Surana who observed the formation

of short spindles by immunofluorescence in asynchronous GAL-

CDC4 cdc4D sic1D cells shifted to glucose to inhibit Cdc4

expression [53]. Those results were, however, inconclusive because

the control cells (PGAL1-CDC4 cdc4) used in that particular study did

not arrest at the G1/S border, potentially due to the persistence of

a low level of Cdc4.

To address the possibility that the SCFCdc4 may still play a role

in bridge cleavage, meaning that duplicated SPBs might separate

aberrantly in cdc4-3 sic1 cells at the restrictive temperature, we

Author Summary

The assembly of a bipolar mitotic spindle is essential for
the accurate segregation of sister chromatids during
mitosis and, hence, for successful cell division. Spindle
assembly depends on the successful duplication of the
spindle poles, followed by their separation to opposing
ends of the cell. Although it has been known for many
years that B-cyclin/CDK complexes regulate the assembly
of the mitotic spindle, the relevant CDK targets have not
been identified. Motor proteins of the kinesin-5 family
generate movement on the microtubules that make up
the spindle and are believed to power spindle pole
separation. By employing the budding yeast Saccharomy-
ces cerevisiae as a model, we have found evidence that
cyclin/CDKs control spindle assembly by phosphorylating
the kinesins-5 Kip1 and Cin8. When phosphorylation at a
conserved CDK site in the motor domain of Kip1 is
blocked, spindle pole separation is greatly diminished but
neither protein abundance nor localization is affected. We
have also obtained direct evidence by mass spectrometry
that Kip1 and Cin8 are phosphorylated in vivo at consensus
CDK sites in their tail domains. Our findings suggest that B-
cyclin/CDKs regulate spindle assembly by regulating
kinesin-5 motor activity.

B-Cyclin/CDKs Phosphorylate Kip1 and Cin8
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examined the ability of cdc4-3 sic1 cells to resume proliferation at

permissive temperatures following prolonged arrest at 37uC.

Should aberrant SPB separation occur in cdc4-3 sic1 cells at the

restrictive temperature, the separated SPBs may either lack half-

bridges or have defective half-bridges, thus leading to subsequent

delays in proliferation. We collected cdc4-3 sic1 cells during the

temperature shift experiment (described above) at various times

after shifting to 37uC for spotting on solid media. Plates were

subsequently incubated at permissive temperature (22uC). We

found that although viability decreases as cdc4-3 sic1 cells are

maintained at 37uC over time, the colonies that do form show a

similar range of sizes, regardless of exposure to the restrictive

temperature (Figure S1A). There was also no evidence of SPB

separation defects when the cdc4-3 sic1 cells taken from these

colonies were observed by fluorescence microscopy (Figure S1B).

Kip1 and Cin8 are phosphorylated by Clb2/Cdc28 in vitro
Based on existing genetic evidence in S. cerevisiae, and the finding

that cyclin B/Cdk1 regulates centrosome separation in certain

metazoan systems by phosphorylating the tail domain of kinesin-5

[35–40], we hypothesized that Clb/Cdc28 promotes SPB

separation by regulating Kip1 and Cin8 function via direct

phosphorylation. There are, however, six consensus CDK

phosphorylation sites (S/T-P-X-X) in Kip1 and five in Cin8

(Figure 2A). Although a previous large-scale study by Ubersax et

al. identified a large number of yeast proteins that are

phosphorylated by Clb2/Cdc28, neither kinesin-5 was identified

as a substrate [54]. The BimC box motif found in most kinesin-5

motors is phosphorylated in several metazoan systems but the

motif is noticeably absent in both Kip1 and Cin8.

To determine if Kip1 and Cin8 can be phosphorylated by Clb/

Cdc28 complexes, we carried out an in vitro phosphorylation assay.

Kip1 and Cin8 tagged with 12 copies of the c-Myc epitope were

expressed from the GAL1 promoter in yeast cells expressing a

hyperstabilized SIC1 allele (SIC1D3P) [49] to inhibit phosphorylation

by Clb/Cdc28. We also expressed the mutants Kip16A and Cin85A, in

which the serine or threonine of every consensus CDK site is mutated

to non-phosphorylatable alanine. Wild-type and mutant kinesins were

immunoprecipitated separately with anti-c-Myc IgG-agarose beads

and then mixed with soluble Clb2/Cdc28 kinase and 32P-c-ATP.

Both Kip1-myc12 and Cin8-myc12 were phosphorylated in a

reproducible manner by Clb2/Cdc28 in vitro (Figure 2B). Fur-

thermore, Kip16A-myc12 was, on average, almost 2–3 fold less

phosphorylated compared with wild-type Kip1, whereas Cin85A-

myc12 was not phosphorylated above background levels. This

observation indicates that phosphorylation of Kip1 by Clb/Cdc28

can occur at sites other than the six consensus CDK sites. We also

determined that the observed phosphorylation is likely to be

specific to mitotic CDK complexes as a similarly prepared S-phase

CDK complex, Clb5/Cdc28, did not phosphorylate either Kip1-

myc12 or Cin8-myc12 to any significant extent under similar

reaction conditions (Figure S2).

Figure 2. Phosphorylation of Kip1 and Cin8 by Clb2/Cdc28 in vitro. (A) Schematic showing the domain structure of Kip1 and Cin8 and the
distribution of consensus CDK phosphorylation sites (S/T-P-X-X, indicated by dark lines) in each protein. The N-terminal motor domain is presented in
white, the neck linker in light gray, and the C-terminal stalk and tail in dark gray; asterisk indicates the site that is conserved in almost all known
kinesins-5 (Ser 388 in Kip1, Ser 455 in Cin8). (B) Wild-type Kip1 and Cin8, as well as their multiple consensus CDK site mutant forms (Kip16A, Cin85A)
were immunoprecipitated from yeast lysates and mixed with soluble Clb2/Cdc28, also prepared from yeast, and 32P-c-ATP. Soluble histone H1
(1.0 mg) was used as a control substrate. Proteins were subjected to SDS-PAGE after one hour at 30uC. PhosphorImages are shown on top and
corresponding Coomassie-stained bands below. Unmarked lanes either contain molecular weight standards or had no protein loaded.
doi:10.1371/journal.pgen.1000935.g002

Figure 1. SIC1 deletion allows SPB separation and DNA replication in cdc4-3(ts) cells at the restrictive temperature. (A) Spot assay
showing that cdc4-3 sic1D cells arrest at 37uC. Strains growing in log phase at permissive temperature were diluted to 26106 cells/ml, and further
diluted serially to 26104 cells/ml. An equal volume of cells from each dilution was spotted on YEPD, and plates were incubated at either ambient
temperature (,22uC) or 37uC. (B) Percentages of budded cells, cells with duplicated and separated SPBs, and cells with duplicated but unseparated
SPBs are shown for asynchronous log phase cultures shifted from permissive (24uC) to restrictive (37uC) temperature; each percentage shown is a
percentage of that cell type over the total number of cells counted. The experiment was done in triplicate and the mean percentages are plotted;
error bars indicate the standard deviation. Gray bars indicate cdc4-3 cells; spotted bars, cdc4-3 sic1D cells. Times after the shift to the restrictive
temperature are shown. (C) Flow cytometric analysis of cells at the indicated times after the shift to the restrictive temperature; histograms show DNA
content on the horizontal axis and the number of counts on the vertical axis. (D) Micrographs of arrested cdc4-3 and cdc4-3 sic1D cells showing bud
morphology, DAPI-stained DNA, and Spc42-GFP-labeled SPBs. Scale bar: 2 mm.
doi:10.1371/journal.pgen.1000935.g001

B-Cyclin/CDKs Phosphorylate Kip1 and Cin8

PLoS Genetics | www.plosgenetics.org 4 May 2010 | Volume 6 | Issue 5 | e1000935



Clb/Cdc28 kinase activity does not regulate Kip1 and
Cin8 protein abundance

Both Kip1 and Cin8 are thought to be targeted to the

proteasome by APC (anaphase promoting complex)-mediated

ubiquitination [46,47]. It has been proposed that Clb/Cdc28

controls SPB separation indirectly by regulating the in vivo stability

of the Kip1 and Cin8 proteins [42,55]. These findings were based

on strains carrying either of two mutant CDC28 alleles. The first

allele bears a mutation of tyrosine 19 to glutamate that mimics an

inhibitory phosphorylation (cdc28Y19E) [10,11] and the second is a

conditional mutant (cdc28-as1) which is inhibited by the ATP

analog, 1-NM-PP1 [48]. However, both cdc28Y19E strains, and

cdc28-as1 strains (at the concentration of analog used in these

studies) are still capable of DNA replication [12,41,48], indicating

that these alleles still retain some CDK activity.

Hence, we determined the levels of Kip1 and Cin8 protein in

strains deleted for all the B-type cyclin genes, as well as in a

separate set of strains that overexpress the hyperstabilized SIC1

allele, SIC1D3P [49]. Phenotypic data indicate that these strains

lack all Clb/Cdc28 activity as the cells are unable to either initiate

DNA replication or enter mitosis [4,20,49,56]. Cells were arrested

in G1 with a-factor, and subsequently released into the

appropriate medium to eliminate Clb/Cdc28 kinase activity. We

observed that Kip1 (Figure 3A) and Cin8 (Figure 3B) protein levels

were stable over time in the absence of Clb/Cdc28 kinase activity.

In order to verify that our findings are not strain-specific, we

repeated our GAL-SIC1D3P experiment in a W303a strain

background. Just as we had observed in our own strain

background, Kip1 and Cin8 protein levels did not change

significantly in W303a cells lacking Clb/Cdc28 kinase activity

(Figure 3). We verified that BF264-15DU and W303a GAL-

SIC1D3P strains both arrested with unreplicated DNA and

unseparated SPBs (Figure S3). Furthermore, persistent levels of

Kip1 and Cin8 do not reflect de-regulated transcription, as KIP1

and CIN8 mRNAs accumulate periodically in Dclb1,2,3,4,5,6

mutant cells [56] (Figure 3C).

Clb/Cdc28 kinase activity does not regulate the
localization of Kip1 and Cin8 to the spindle

In certain metazoan systems, the phosphorylation of a

consensus CDK site located on the tail domain is required for

the localization of kinesin-5 motors to the spindle [35–40].

Although this site is absent from the tails of both S. cerevisiae

kinesins-5, regions of the Kip1 and Cin8 tail domains have been

found to be important to their localization to the nucleus

[46,47,57]. Moreover, there are two consensus CDK sites (Ser

1037 and Thr 1040) found within the smallest defined nuclear

localization sequence (NLS) on the Kip1 tail [46], and one (Ser

972) just N-terminal to the reported Cin8 NLS [47]. Thus, it is

possible that Kip1 and Cin8 localization is regulated by Clb/

Cdc28-mediated phosphorylation of these residues.

To address this possibility, C-terminal mCherry [58] tags were fused

to Kip1 and Cin8 expressed from their respective native promoters,

and their localization was determined by fluorescence microscopy

(Figure 4). We determined that Kip1-mCherry and Cin8-mCherry are

both functional as they both supported growth in a kip1D cin8D
background (Figure 5). We observed that wild-type Kip1 and Cin8, as

well as the non-phosphorylatable mutants, Kip16A and Cin85A,

localized to the spindle poles and spindle microtubules (Fig 4A). These

findings suggest that phosphorylation of Kip1 and Cin8 at their

consensus CDK sites is not required for spindle localization.

Clb/Cdc28 has been shown, however, to phosphorylate serine

and threonine residues that do not match the consensus Ser/Thr-

Pro motif [49,59,60]. In order to determine if Clb/Cdc28 kinase

activity is necessary for the spindle localization of Kip1 and Cin8,

we examined localization both in Dclb1,2,3,4,5,6 and in separate

GAL1-SIC1D3P strains. Cells were arrested in G1 with a-factor,

and then released into medium containing either dextrose

(Dclb1,2,3,4,5,6 strains) or galactose (PGAL1-SIC1D3P strains) in

order to eliminate Clb/Cdc28 kinase activity. The KIP1 and CIN8

genes were fused at their native loci to mCherry and localization of

the tagged proteins was monitored by fluorescence microscopy

(Figure 4B and 4C). Both Kip1-mCherry and Cin8-mCherry still

localized to the SPBs, even in the absence of active Clb/Cdc28

kinase. Taken together, these findings suggest that Clb/Cdc28

complexes do not control SPB separation by regulating the

localization of Kip1 and Cin8 to the spindle.

Mutation of consensus CDK sites in Kip1 and Cin8 impairs
cell proliferation

To determine if Clb/Cdc28 phosphorylation of Kip1 and Cin8

may regulate other motor functions essential to cell division, we

examined the proliferation of cells bearing the non-phosphoryla-

table kip16A and cin85A alleles using a spot assay (Figure 5). As Kip1

and Cin8 are partially redundant [24,25], we examined the motor

mutants in a strain background where the other motor was

deleted. Proliferation was assayed at both ambient temperature

(,22uC) and at 37uC as strains deleted for the CIN8 gene have

been reported to exhibit temperature-sensitive growth [24,25]. We

observed that although kip16A-mCherry cin8D cells proliferated at a

rate similar to that of KIP1-mCherry cin8D cells at ambient

temperature, they failed to form colonies at 37uC (Figure 5A). In

contrast, although cin85A-mCherry kip1D cells also proliferated more

slowly compared to CIN8-mCherry kip1D cells, this defect was not a

temperature-sensitive one (Figure 5B). We verified that the

observed defects were not caused by the mCherry tag by

examining strains expressing untagged Kip16A and Cin85A as

their sole kinesin-5 (Figure S4).

To determine which of the CDK consensus site mutations

contributed to the proliferation defect, we assayed the proliferation

of cells containing individual mutations in each of the six

consensus CDK phosphorylation sites in Kip1. The substitution

of Ser 388 with alanine alone was sufficient to cause temperature-

sensitive lethality in the absence of Cin8 (Figure 5A); no other

single CDK site when similarly mutated caused temperature-

sensitive lethality (data not shown).

Mutating the homologous serine residue in Cin8, Ser 455, to

alanine was sufficient to cause the proliferation defect associated

with Cin85A in the absence of Kip1 (Figure 5B). Similarly to Kip1,

mutating any other single CDK site on Cin8 to alanine did not

cause the Cin85A growth defect. As a control, we also verified that

the mCherry tag was not responsible for causing the proliferation

defect associated with either Kip1S388A or Cin8S455A (Figure S4).

Although we were unable to test all the effects of mutating all

possible combinations of the individual consensus CDK sites on

Kip1 and Cin8, we did test tandem mutations of CDK sites

located in close proximity to each other in the primary structure of

the two proteins. In doing so, we found that, kip1S1037A, T1040A

cin8D cells proliferated at a significantly slower rate than cells

bearing a wild-type copy of KIP1 (Figure 5A and S4A). Unlike

kip1S388A cin8D cells, however, kip1S1037A, T1040A cin8D cells were

not fully arrested at 37uC.

The role of kinesin-5 phosphorylation in SPB separation
To determine if the proliferation defects associated with the

kip1S388A and kip1S1037A, T1040A alleles are related to a defect in SPB

separation, we arrested cells in G1 with a-factor at 25uC. Cells

B-Cyclin/CDKs Phosphorylate Kip1 and Cin8
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were subsequently released at either 25uC or 37uC (restrictive

temperature) and SPB separation was monitored over time by

fluorescence microscopy. While kip1S388A cin8D cells budded at a

rate similar to KIP1 cin8D cells at both temperatures tested, most

kip1S388A cin8D cells were unable to separate SPBs at 37uC
(Figure 6A). Even more than two hours after being released from

a-factor arrest, less than 10% of kip1S388A cin8D cells had separated

their SPBs at 37uC, compared to more than 40% of KIP1 cin8D
cells. A clear SPB separation defect was also observed for

kip1S1037A, T1040A cin8D cells at 37uC (Figure 6B). At 25uC, cin8D
cells expressing Kip1S388A appear to be impaired to a greater

extent in SPB separation than cells expressing Kip1S1037A, T1040A

compared with cin8D cells expressing wild-type Kip1, which is

consistent with the more severe proliferation defect observed for

kip1S388A cin8D cells (Figure 5A and Figure S4A).

Although unlikely [61], the single S388A and tandem S1037A,

T1040A mutations may cause the loss of Kip1 function by

perturbing the protein’s in vivo stability. To address this possi-

bility, we compared the levels of Kip1S388A-mCherry and

Kip1S1037A, T1040A-mCherry in separate time courses with that

of Kip1-mCherry using cells synchronized in a-factor and released

at 37uC by western blotting (Figure S5A). In doing so, we verified

that both mutant and wild-type protein levels were similar at the

restrictive temperature. In addition, as expected from the observed

localization of Kip16A, both Kip1S388A and Kip1S1037A, T0140A

continued to localize to the SPBs and spindle microtubules even at

37uC (Figure S5B). Taken together, our findings suggest that the

phosphorylation of Ser 388 by Clb/Cdc28 is critical for Kip1-

mediated separation of SPBs, while the phosphorylation of Ser

1037 and Thr 1040 also contributes to the function of Kip1.

Similar analyses of non-phosphorylatable cin8 alleles were

performed, although we were unable to determine conclusively if

there is a SPB separation defect in cin85A kip1D and cin8S455A kip1D
cells. Although cin8S455A kip1D cells showed a delay in SPB

separation (Figure 6C) after release from a-factor, they also

appeared to have an uncharacterized defect in progression

through G1 as the initiation of both bud emergence (Figure 6C)

and DNA replication (data not shown) were both significantly

delayed after release from a-factor. Hence, we cannot confirm that

Cin8 phosphorylation at Ser 455 plays a role in controlling SPB

separation due to the potential confounding effects of the apparent

G1/S phase delay.

As expected, flow cytometric analyses of DNA content

demonstrated that at 37uC, asynchronous populations of cin8D
cells expressing either Kip16A or Kip1S388A were enriched for cells

with replicated DNA (Figure S6A), supporting the observation that

these cells have a defect in mitotic spindle assembly. However,

asynchronous log phase populations of kip1D cells expressing either

Cin85A or Cin8S455A were clearly enriched for cells with

unreplicated DNA compared to kip1D cells expressing wild-type

Cin8 at 37uC (Figure S6B). These analyses confirm that putative

CDK phosphorylation site mutations in Cin8 give rise to a defect

in the G1/S phase transition. The nature of this defect is

unknown.

Kip1 and Cin8 are phosphorylated in vivo in a Clb/Cdc28-
dependent manner

Given the genetic and in vitro biochemical evidence we had

garnered, we sought to determine if Kip1 and Cin8 are indeed

phosphorylated by Clb/Cdc28 complexes in vivo using mass

spectrometry. Kip1-myc12 and Cin8-myc12 expressed from the

GAL1 promoter in yeast cells for subsequent immunopurification.

Additionally, we also expressed the two kinesins-5 in yeast that also

expressed either Sic1D3P to inhibit Clb/Cdc28 kinases or Clb2-

HA3 to promote phosphorylation of Clb/Cdc28 substrates.

Immunopurified Kip1-myc12 and Cin8-myc12 were subject to

SDS-PAGE followed by protein phosphorylation analysis using

microcapillary LC/MS/MS techniques.

Kip1 and Cin8 were determined to both be phosphorylated in

vivo at multiple residues in all the samples. A total of eight

phosphorylation sites were assigned with high confidence for Kip1

and four were assigned for Cin8 (Table 1; Sequest Xcorr values

are available upon request). Although not all of the phosphory-

lated residues were observed in all the samples, many of the

phosphopeptides generated had phosphate(s) assigned to the same

residue. Of particular interest to us were the phosphorylations

assigned to consensus CDK sites located in the tail domains of the

two kinesin-5 motors, namely residues Ser 1037 and Thr 1040 in

Kip1, and Ser 972 in Cin8. For Kip1, these sites are particularly

relevant since we observed proliferation and SPB separation

defects when both Ser 1037 and Thr 1040 were mutated in

tandem to Ala (Figure 5 and 6).

In addition, the LC/MS/MS analysis yielded peak intensities

(Table S1) which enabled us to compare the relative abundance of

phosphopeptides common to all three samples submitted for each

protein with that of their unphosphorylated forms. In doing so, we

determined that the extent of phosphorylation of TCIPNLST-

NENFPLSQFSPK (containing Ser 1037, underlined) from Kip1

and LSNINSNSVQSVISPK (containing Ser 972, underlined)

from Cin8 were both greatly reduced in the presence of

overexpressed Sic1D3P but noticeably increased in the presence

of overexpressed Clb2 (Figure 7A), lending support to our

hypothesis that Kip1 and Cin8 are both phosphorylated by Clb/

Cdc28. As a control, we examined the relative phosphorylation of

a non-CDK substrate, the c-Myc epitope tag of both Kip1-myc12

and Cin8-myc12 which was determined to be phosphorylated on

the serine residue of each LISEED motif. We verified that the

phosphorylation of the c-Myc tag was not CDK-dependent as the

c-Myc epitope was the least phosphorylated in cells overexpressing

Clb2 (Figure 7B).

Although we were unable to identify phosphopeptides contain-

ing Ser 388 from Kip1 or Ser 455 from Cin8, it is often difficult to

capture the full extent of protein phosphorylation during mass

spectrometry analysis due to both technical and biological

limitations [62,63]. In addition to the phosphopeptides which

contain consensus CDK sites, other phosphopeptides were

generated from Kip1 and Cin8 that did not include consensus

CDK phosphorylation motifs (Table 1; kinases predicted to

phosphorylate these non-CDK sites are listed in Table S1 and

Figure 3. Kip1 and Cin8 protein and mRNA levels in the presence and the absence of active Clb/Cdc28 kinase. Kip1 and Cin8 protein
levels were determined by immunoblotting (see text) in three different sets of strains that were first synchronized with a-factor: BF264-15DU PGAL1-
CLB1 Dclb1, 2, 3, 4, 5, 6 cells released into YEPG versus YEPD (top panels); wild-type BF264-15DU cells and mutants overexpressing Sic1D3P (GAL-
SIC1D3P) to specifically inhibit Clb/Cdc28 (middle panels); wild-type W303a cells and mutants overexpressing Sic1D3P (bottom panels). Budding
kinetics and corresponding immunoblots for strains with c-Myc-tagged Kip1 (A) and Cin8 (B) are shown; anti-PSTAIR was used as a loading control.
Key: budding data for strains with active Clb/Cdc28 kinase (¤); lacking Clb/Cdc28 kinase activity (&). (C) Transcript levels for KIP1 (red), CIN8 (black),
and ACT1 (light blue) determined in wild-type and Dclb1-6 BF264-15DU cells synchronized in early G1 using centrifugal elutriation as reported in
Orlando et al. (2008) [56].
doi:10.1371/journal.pgen.1000935.g003
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details of the prediction method are in Text S1). Thus, the results

of our mass spectrometry analysis do not rule out the possibility

that Kip1 and Cin8 are also phosphorylated at other sites by Clb/

Cdc28 complexes.

Homology modeling of Kip1 and Cin8 motor domains
Ser 388 in Kip1 and Ser 455 in Cin8 are found in the N-

terminal motor domain of the respective kinesins-5. Hence, in

order to understand how phosphorylation at these residues on

Kip1 and Cin8 might regulate their functions, we constructed

homology models of their motor domains (Figure 8A). Homology

modeling was performed using SWISS-MODEL and Swiss PDB

Viewer [64–66] with X-ray crystal structures of the motor

domains of human kinesin-5 HsEg5 [67] and the budding yeast

kinesin-14 Kar3 [68] serving as templates. Consistent with the idea

that phosphorylation of Ser 388 could regulate motor function,

our model of the Kip1 motor domain showed that Ser 388 is

solvent-accessible and located at the C-terminal end of strand b8.

Here, Ser 388 appears to form part of the core which enables the

motor to distinguish between ATP and ADP bound to the

nucleotide-binding pocket [69]. The residue itself, however, is not

predicted to form essential hydrogen bonds, and does not itself

form part of the nucleotide binding pocket. Additional modeling

(see Materials & Methods) showed that replacing Ser 388 with an

alanine residue has no predicted effects on the backbone structure.

The Cin8 motor domain was modeled on the same template

structures as for Kip1. Ser 455 in Cin8 is found in a similar

environment to Ser 388 in Kip1, as expected. Closer scrutiny of its

neighboring amino acids, however, revealed critical differences

(Figure 8B). These differences include the residue at the second

position of the P-loop, which is glutamine in Kip1 and Eg5 but

methionine in Cin8, and also the two residues on helix a6 (C-

terminal to strand b8) closest to Ser 455 (Val 459, Thr 460) and

Ser 388 (Ile 392, Ser 393).

Discussion

Previous genetic studies indicate that kinesin-5 motors, Clb/

Cdc28 complexes, and the SCF complex are all required for SPB

separation and assembly of a mitotic spindle. We have shown that

the only important target for SCFCdc4 in SPB separation is the

Clb-specific CDK inhibitor, Sic1 (Figure 1). This finding indicates

that SCF-mediated destruction of other regulatory proteins or SPB

components is not required for SPB separation, and also supports

the idea that Clb/Cdc28 complexes promote SPB separation and

spindle assembly via regulation of kinesin-5 motors. We have, in

fact, determined that kinesin-5 motors are phosphorylated directly

by Clb/Cdc28 complexes (Figure 2 and Table 1) and that this

phosphorylation plays a role in promoting SPB separation and

spindle assembly (Figure 6).

Although certain metazoan kinesin-5 orthologues have been

shown to be phosphorylated on their tail domains by cyclin B/

Cdk1 [35,37,39], the threonine residue at which this phosphor-

ylation occurs is absent from both Kip1 and Cin8. We have

shown, however, that Kip1 and Cin8 are both phosphorylated by

Clb2/Cdc28 in vitro, and that mutation of their consensus CDK

sites significantly reduces the extent of phosphorylation (Figure 2).

By genetic mapping, we have identified a solvent-accessible

consensus CDK site (Ser 388) in the motor domain of Kip1 that

is crucial to its role in SPB separation. Additionally, using a

combination of mass spectrometry and genetic analysis, we have

found that the phosphorylation of two consensus CDK sites in the

tail domain of Kip1 is also important for timely SPB separation.

Cells dependent on Kip1S388A or Kip1S1037A, T1040A as their only

Figure 4. Kip1 and Cin8 localization in the presence and the
absence of phosphorylation by Clb/Cdc28. Kip1 and Cin8 were
visualized by fusion to a C-terminal mCherry tag and imaging with
fluorescence microscopy. SPBs in the strains shown are marked with
Spc42-GFP, and microtubules with CFP-Tub1. (A) Localization of wild-
type Kip1 (top) and Cin8 (bottom), compared with that of Kip16A and
Cin85A mutants, in live yeast cells. All consensus CDK sites in the mutant
kinesins-5 have been mutated to non-phosphorylatable alanine. (B)
Kip1 and Cin8 localization in PGAL1-CLB1 Dclb1, 2, 3, 4, 5, 6 cells
90 minutes after being released from a-factor arrest into medium
containing either galactose (top panel; to induce Clb1 expression) or
dextrose (bottom panel; to inhibit Clb1 expression). (C) Kip1 and Cin8
localization in wild-type cells versus cells with PGAL1-SIC1D3P integrated,
90 minutes after being released from a-factor arrest into galactose
medium. Scale bar: 2 mm.
doi:10.1371/journal.pgen.1000935.g004
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source of kinesin-5 are severely impaired in their ability to separate

duplicated SPBs (Figure 6). Both Kip1 mutants have similar in vivo

protein levels to wild-type Kip1 at 37uC and still localize to the

SPBs in arrested cells (Figure S5). Hence, we propose that Clb/

Cdc28-mediated phosphorylation of Ser 388, Ser 1037, and Thr

1040, regulates some aspect of Kip1 motor activity.

Cells with the homologous serine in Cin8 (Ser 455) substituted

with alanine exhibit a severe proliferation defect in the absence of

Kip1 which appears to reflect a delay in the transition from G1

into S phase (Figure 6 and S6). Although we do observe an SPB

separation defect in cin8S455A kip1D mutants, the observed G1/S

delay confounds our ability to determine if the separation defect is

directly related to the loss of Cin8 motor function. The mechanism

underlying this delay has yet to be determined, and the basis for

the phenotypic differences between the homologous mutations in

Kip1 and Cin8 remains unclear; however, homology modeling

suggests that there are important structural differences between

the two motors in the vicinity of this consensus phosphorylation

site that might contribute to the different phenotypes observed.

Ser 388/Ser 455 forms part of the core of the motor domain,

which includes the nucleotide-sensing elements switch I and switch

II, and the c-phosphate-sensing P-loop [69]. Due to the fact that

Ser 388/Ser 455 lies near the junction of strand b8, helix a6, and

the neck linker (Figure 8), this residue appears to be in a position to

Figure 5. Impaired proliferation of strains with CDK site point mutants (Ser/ThrRAla) of either (A) Kip1 or (B) Cin8 as their only
kinesin-5. Strains growing in log phase at permissive temperature were diluted to 26106 cells/ml, and then further diluted serially to 26104 cells/ml.
An equal volume of cells from each dilution was spotted on YEPD, and plates were incubated at either ambient temperature (,22uC) or 37uC. The
number above each column of spots indicates the cell density (cells/ml). All alleles compared were tagged with mCherry at their C-terminus.
doi:10.1371/journal.pgen.1000935.g005
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influence the transmission of structural changes in the motor core

to the neck should it be phosphorylated. We have also noticed that

although switch I and switch II are identical in Kip1 and Cin8,

Cin8 has a methionine residue (Met 129) in the 2nd position of its

P-loop whereas Kip1, like almost all other known kinesins-5, has a

glutamine (Gln 142) at this position. The residues on a6 closest to

Ser 455 in Cin8 (Val 459, Thr 460) also differ from those closest to

Ser 388 in Kip1 (Ile 392, Ser 393). All of these differences are

potentially important because these residues are close enough in

space to interact; additionally, communication between the

respective secondary structural elements to which they belong is

essential to the generation of motility.

The Cin8 motor domain has a number of other notable

structural differences compared with Kip1 and other kinesins-5.

Loop L2 and, in particular, loop L8, are substantially longer in

Cin8, while other loops such as L5 and L10 are shorter; the

functional significance of these differences in length are still

unclear. We do know, however, that L2 and L8 form part of the

microtubule-binding surface of kinesins [70,71] while the structure

of L5 is thought to be important in determining ADP-release

kinetics during the ATP hydrolysis cycle of Eg5 [72]. In addition

to these differences in the structure of their motor domains, CIN8,

but not KIP1, has been reported to be involved in a myriad of

genetic and physical interactions [73–78], suggesting that Cin8 has

several cellular functions. The dissection of these multiple

functions in future studies may reveal a mechanistic role for

direct phosphorylation in spindle assembly.

Additionally, although we were able to determine that Cin8 is

phosphorylated at a CDK site in its tail domain, we have yet to

observe a phenotype for cin8S972A kip1D cells. Previous studies have

also been unable to determine a phenotypic consequence for the

same mutation [47,57]. The distinct structure of the tails of Kip1

and Cin8 and their different responses to Clb/Cdc28 phosphor-

ylation may also help explain the existence of two kinesins-5 in S.

cerevisiae when many other eukaryotes appear to only have one.

It has been proposed that Clb/Cdc28 kinase activity regulates

SPB separation indirectly by inhibiting the activity of the ubiquitin

ligase, APCCdh1, thus preventing the ubiquitination of Kip1 and

Cin8 and their subsequent degradation [41,42]. The proposal for

Clb/Cdc28 regulation of Kip1 and Cin8 stability was based,

however, on observations made with strains bearing the cdc28Y19E

allele, and with strains carrying the analog-sensitive cdc28-as1 allele

treated with 500 nM 1-NM-PP1. In both cases, a sufficient level of

Clb/Cdc28 activity remains to drive DNA replication [12,41,48].

By using more stringent means of inhibiting Clb/Cdc28

Figure 6. Impaired SPB separation in cells dependent on either
Kip1 or Cin8 CDK site mutants as their only kinesin-5. Cells were
first synchronized in G1 with a-factor, and then released at either 25uC
(permissive temperature, left column) or 37uC (restrictive temperature,
right column). Time course experiments were carried out in triplicate,
and both the percentage of budded cells (top panels for each group of
strains) and the percentage of cells with duplicated and separated SPBs
(bottom panels) from representative experiments are shown. The time
elapsed following release from a-factor is indicated in minutes on the
horizontal axis of each graph. (A) Cells expressing wild-type Kip1 and
Cin8 (¤), cells expressing only Kip1 (%, dotted line) cells, and cells
expressing only Kip1S388A (n, dashed line); (B) cells expressing wild-type
Kip1 and Cin8 (¤), cells expressing only Kip1 (%, dotted line) cells, and
cells expressing only Kip1S1037A, T1040A (n, dashed line); (C) cells
expressing wild-type Cin8 and Kip1 (¤), cells expressing only Cin8 (%,
dotted line), and cells expressing only Cin8S455A (n, dashed line). (D)
Fluorescence images of representative KIP1 cin8D and kip1S388A cin8D
cells at 37uC 100 min after being released from a-factor arrest during
the timecourse described in (A). Scale bar: 2 mm.
doi:10.1371/journal.pgen.1000935.g006

B-Cyclin/CDKs Phosphorylate Kip1 and Cin8

PLoS Genetics | www.plosgenetics.org 10 May 2010 | Volume 6 | Issue 5 | e1000935



complexes, we have not observed evidence suggesting that the loss

of Clb/Cdc28 activity leads to a decreased abundance of Kip1 and

Cin8. Inhibiting Clb/Cdc28 activity by overexpressing a stabilized

allele of Sic1 [49] in a W303 strain background similar to that used

by Crasta et al. [41,42] did not affect the abundance of either Kip1

or Cin8. Our observations suggest that the alterations in motor

stability observed by Crasta et al. may reflect partially deregulated

CDK activity rather than a loss of Clb/Cdc28 activity.

A new study by Robbins & Cross [79] found that most cells whose

endogenous CDH1 gene has been replaced with a non-Cdk1-

phosphorylatable allele, CDH1-m11 arrest with monopolar spindles,

and that Cin8 levels are reduced about fourfold compared with

CDH1 cells. However, expressing non-degradable Cin8 at endog-

enous levels in CDH1-m11 cells failed to drive SPB separation and

bipolar spindle assembly. Instead, by expressing non-degradable

Clb2, which is also an APCCdh1 target, the authors observed the

restoration of SPB separation in CDH1-m11 cells. This observation

led Robbins & Cross to conclude that the mitotic cyclins alone are

the APCCdh1 targets important for SPB separation.

Regardless of whether Clb/Cdc28 is capable of controlling

some aspect of Kip1 and Cin8 stability by regulating APCCdh1

activity, our findings clearly indicate that wild-type Kip1 and Cin8

levels are not sufficient for SPB separation in the absence of Clb/

Cdc28 kinase activity (Figure 3 and S2) and are in agreement with

those of Robbins & Cross. Thus, we have identified an additional

layer of control whereby the direct phosphorylation of kinesin-5

motors is essential for the efficient separation of SPBs and

assembly of a short spindle.

It is not fully understood how direct phosphorylation of kinesin-

5 motors affects their function in spindle assembly. Although the

localization of kinesin-5 motors to the spindle is regulated by cyclin

B/Cdk1 phosphorylation in certain metazoan systems

[35,37,39,40], we have determined that the localization of Kip1

and Cin8 to the spindle is not dependent on Clb/Cdc28 in

budding yeast. Instead, our observations suggest that Clb/Cdc28

phosphorylation regulates some aspect of kinesin-5 motor activity.

Ser 388, the critical consensus CDK site (S/T-P-X-X) we

identified in Kip1 is conserved in most known kinesins-5, except

for Schizosaccharomyces pombe Cut7 in which the orthologous serine is

followed by a serine. This site is also the only one conserved

between metazoan and fungal kinesins-5. Moreover, sequence

comparison and homology modeling both indicate that the

structures of the HsEg5 and XlEg5 motor domains bear a greater

resemblance to that of Kip1 than that of Cin8. Thus, it is possible

that CDK-phosphorylation at the serine orthologous to Ser 388 in

Kip1 may be a common regulatory mechanism for spindle

assembly in other eukaryotic organisms.

We have also determined that the phosphorylation of Kip1 at

two other CDK sites in its C-terminal globular tail domain is also

important to its function in promoting SPB separation. It has been

reported that the phosphorylation of the BimC box in Xenopus Eg5

by cyclin B/Cdk1 enhances binding to microtubules both in vitro

and in Xenopus egg extract [80]. The tail domains of the kinesins-5

are, however, quite divergent, as they are in other kinesin

subfamilies [26]. Hence, it remains to be determined if the

phosphorylation of the Kip1 tail domain will have the same effect.

Table 1. List of phosphopeptides generated from Kip1 and Cin8 and identified during LC/MS/MS analysis.

Sequence of Identified Peptide Phosphorylation site(s) assigned Co-overexpression

+Sic1D3P None (wild-type) +Clb2

Kip1

ISFLELYNENLKDLLS*DSEDDDPAVNDPK Ser 213 2 2 +

SFLELYNENLKDLLS*DSEDDDPAVNDPK Ser 213 + 2 2

DLLS*DSEDDDPAVNDPK Ser 213 + + 2

IHSDS*IASLAHNAENTLK Ser 802 2 + 2

TQDEVLS*EHCEK Ser 952 2 + 2

TCIPNLSTNENFPLSQFS*PK Ser 1037 + + +

T*PVPVPDQPLPK Thr 1040 2 + 2

TCIPNLSTNENFPLSQFS*PKTPVPVPDQPLPK Ser 1037 2 2 +

TCIPNLSTNENFPLSQFSPKT*PVPVPDQPLPK Thr 1040 + 2 2

TCIPNLSTNENFPLSQFS*PKT*PVPVPDQPLPK Ser 1037, T1040 + + +

SINS*AK Ser 1060 + 2 +

SKT*LPNTEGTGR Thr 1068 + + 2

RFT*TEPILK Thr 1088 + + +

Cin8

IFDSSTANNTTSNS*ASSSR Ser 227 + 2 2

TKS*LPNTIK Ser 261 + 2 +

KS*LPNTIK Ser 261 2 + 2

S*LPNTIK Ser 261 2 + 2

LSNINSNSVQSVIS*PK Ser 972 + + +

KHAIEDENKS*SENVDNEGSR Ser 984 + + 2

Kip1-myc12 and Cin8-myc12 were overexpressed either alone in yeast cells (wild-type), co-overexpressed with Sic1D3P to inhibit Clb/Cdc28 complexes (+Sic1D3P) or co-
overexpressed with Clb2 (+Clb2). The assigned phosphoresidues are shown in bold and indicated with an asterisk (*); CDK sites are indicated with bold italics. A plus (+)
indicates that the phosphopeptide was observed while a minus (2) indicates that it was not observed.
doi:10.1371/journal.pgen.1000935.t001
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Kinesin-5 motors exhibit a variety of functions that could be

regulated, including microtubule binding, microtubule crosslink-

ing, ATP binding and hydrolysis, microtubule-based motility or

influencing microtubule dynamics [80–84]. Furthermore, there

have been several reported examples of different aspects of kinesin

motor function being regulated through phosphorylation of either

their motor or tail domains, including cases where cyclin B/Cdk1

is the kinase involved [80,85–88]. Detailed biochemical studies will

be required to dissect the specific kinesin-5 functions controlled by

Clb/Cdc28-mediated phosphorylation. Such studies may also

reveal a mechanism linking phosphorylation of the kinesin-5

motor domain to that of its tail domain.

Materials and Methods

Plasmids and DNA manipulation
Standard methods of DNA manipulation were employed in

plasmid construction and PCR. Whenever PCR was involved in

gene manipulation, the product was sequenced in full to determine

the occurrence of PCR errors. More information on plasmid

construction can be found in Text S1.

Yeast strains and media
All strains are derivatives of BF264-15DU unless otherwise

indicated (Table S2). Strains were constructed by standard yeast

methods (detailed in Text S1). Yeast cultures were grown in

standard YEP medium (1% yeast extract, 2% peptone, 0.012%

adenine, 0.006% uracil supplemented with 2% sugar) unless

indicated. For synchrony experiments, bar1 strains were arrested

with 25 ng/ml a mating pheromone, also known as a-factor

(BioVectra). For experiments involving fluorescence microscopy

that used liquid cultures, YEP medium was supplemented with an

additional 0.003% adenine (0.015% final).

Asynchronous temperature shift time course
experiments

For experiments involving cdc4-3 strains, cells were grown in

YEP-dextrose (YEPD) medium overnight at 24uC (permissive

Figure 7. Relative abundance of specific phosphopeptides generated from Kip1-myc12 and Cin8-myc12 purified from yeast as
measured by LC/MS/MS. (A) Ratio of the intensity levels of the peaks corresponding to phosphopeptides with phosphates assigned to consensus
CDK phosphorylation sites to that of their respective unphosphorylated forms. TCIPNLSTNENFPLSQFS*PK (asterisk denotes Ser 1037) was derived
from Kip1 (gray bars), and LSNINSNSVQSVIS*PK (asterisk denotes Ser 972) from Cin8 (black bars). Kip1-myc12 and Cin8-myc12 were expressed from
the GAL1 promoter in yeast (wild-type) for mass spectrometry analysis, and were also expressed in strains that simultaneously expressed either
Sic1D3P (+Sic1D3P) or Clb2-HA3 (+Clb2) from the GAL1 promoter. (B) Relative intensity levels of peaks corresponding to phosphorylated and
unphosphorylated forms of the peptide LIS*EEDLNGEQK, derived from the c-Myc epitope tags of Kip1-myc12 (gray bars) and Cin8-myc12 (black bars).
doi:10.1371/journal.pgen.1000935.g007
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temperature). Cells were subsequently diluted to a density of

16107 cells/ml, and then incubated at 24uC for 90 min. Cultures

were subsequently shifted to 37uC (restrictive temperature) to

inactivate the temperature-sensitive Cdc4-3. Details of the

subsequent return to permissive temperature experiment can be

found in Text S1.

Synchronized sugar shift time course experiments
For experiments involving Dclb1,2,3,4,5,6 strains, cells were

grown in YEP-galactose (YEPG) medium overnight, and then

diluted before being allowed to reach a density of 16107 cells/ml.

They were subsequently arrested with a-factor before adding

either 20% dextrose to a final concentration of 2% dextrose in

order to inhibit the expression of Clb1 in these strains or an equal

volume of water to the control. Fifteen minutes after the addition

of dextrose/water, cells were released into pre-warmed (30uC)

YEPG.

For experiments involving strains with PGAL1-SIC1D3P derived

from BF264-15DU, cells were grown in non-inducing YEP-

sucrose (YEPS) medium overnight and then diluted before being

allowed to reach a density of 16107 cells/ml. They were

subsequently arrested with a-factor, then released into pre-

Figure 8. Homology models of Kip1 and Cin8 motor domains bound to MgADP. (A) Ribbon structure overlay illustrating gross differences
in the predicted structures of Kip1 (peach) and Cin8 (light blue), particularly in the length of the various loop regions. The human Eg5 (also known as
Kif11) template structure (ExPDB 1ii6B) is shown in gray. The position of Ser 388 on Kip1 and Ser 455 on Cin8 is highlighted in red, while the location
of the microtubule binding face and nucleotide binding pocket are indicated. (B) Close-up view of the surroundings of Ser 388 in Kip1 and Ser 455 in
Cin8; both the serine residues are colored red. Residues with side chains lying within a 2.5 Å radius of the serine residue are colored light green for
Kip1 and hot pink for Cin8; residues have also been labeled to highlight significant differences between the two model structures.
doi:10.1371/journal.pgen.1000935.g008
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warmed (30uC) YEPG. Unlike BF264-15DU strains [89], W303a-

derived strains express invertase and can thus hydrolyze sucrose to

yield glucose and fructose. Therefore, we determined that YEPS is

not a suitable non-inducing medium for W303a-derived strains

since they can break sucrose down to form glucose which represses

the GAL1-10 promoter. Instead, these strains had to first be

inoculated into filter-sterilized YEPS and grown for a few hours

before being shifted to YEP-raffinose (YEPR) for subsequent

overnight growth. The cells were arrested with a-factor in YEPR

before induction with YEPG.

Synchronized temperature shift time courses
Cells were grown in YEPD medium overnight at 25uC

(permissive temperature) and then diluted and allowed to reach

a density of 7.56106 cells/ml. They were subsequently arrested

with a-factor. Arrested cultures were divided in two halves and one

half was moved to 37uC for 15 min (restrictive temperature) while

the other half remained at 25uC. Cells were then released into

YEPD pre-warmed to the respective temperatures.

Immunoblotting
Cell samples collected during time courses were spun down,

washed with ice cold PBS, then frozen in liquid nitrogen. Lysates

were prepared by vortexing cells with acid-washed glass beads

(Sigma-Aldrich) in modified RIPA buffer (50 mM Tris-HCl

pH 7.5, 20 mM Na4P2O7, 250 mM NaCl, 50 mM NaF, 1%

NP-40, 2 mM EDTA, 1 mM Na3VO4, 1 mM DTT, 1.25 mM

benzamidine hydrochloride, 0.1 mg/ml PMSF, 1 mg/ml each

leupeptin, aprotinin, and pepstatin A). Lysates were cleared by

centrifugation at 4uC, and the protein content of the cleared

lysates was determined by measuring A280 with a Biophotometer

(Eppendorf).

Proteins were separated by SDS-PAGE on 8.5% Tris-HCl gels

using the Laemmli method and then transferred to Immobilon-P

(Millipore) PVDF membranes for antibody probing. Proteins

tagged with c-Myc were detected with mouse anti-c-Myc clone

9E10 (Santa Cruz Biotechnology), while mCherry fusions were

detected with rabbit anti-DsRed/RFP (MBL). Cdc28 and Pho85

were detected with mouse anti-PSTAIR (Abcam) for use as

loading controls. The secondary antibodies used were horseradish

peroxidase-conjugated goat anti-mouse (Pierce Thermo-Scientific)

and goat anti-rabbit (Abcam). Blots were visualized with Super-

signal West Pico chemiluminescent substrate (Pierce Thermo-

Scientific).

Kinase purification for in vitro phosphorylation assay
Soluble Clb2/Cdc28 kinase was prepared, using an abbreviated

form of the TAP protocol described by Puig and colleagues which

excludes the CaM-binding and elution steps [90]. Clb2-TAP was

overexpressed from an episomal plasmid, pGAL-CLB2-TAP [54],

together with Cdc28 in a swe1D yeast strain (SBY684, a gift from

Daniel Lew) to ensure that the purified kinase is not inhibited by

Swe1 phosphorylation of Tyr 19 [10]. To provide a negative

control, a wild-type strain (SBY1286) carrying a URA3-marked

episomal plasmid with the GAL1-10 promoter (YEpUGAL) was

used. Both strains were first grown to log phase in synthetic

complete dropout medium lacking uracil (SC-Ura) with 2%

sucrose, then switched to SC-Ura with 2% galactose. Soluble

Clb5/Cdc28 kinase was prepared in a similar manner (see Text

S1).

After induction, cells were lysed in modified RIPA buffer by

vortexing with glass beads. Clb2/Cdc28 was isolated by binding to

IgG-Sepharose beads (Amersham BioSciences/GE Healthcare)

followed by overnight cleavage at 4uC with AcTEV protease

(Invitrogen) to remove the Protein A portion of the TAP tag. The

concentration of Cdc28 was estimated by quantitative western

blotting with anti-PSTAIR antibody, using purified GST-Cdk1

(Cell Signaling Technology) as a standard. Densitometric analysis

was performed with ImageJ (Wayne Rasband, National Institutes

of Health).

Substrate purification for in vitro phosphorylation assay
Kip1-myc12, Cin8-myc12, and their respective CDK site

mutants were overexpressed from episomal plasmids under the

control of the GAL1 promoter in PGAL1-SIC1D3P cells. To avoid

the formation of tetramers containing the respective endogenous

kinesin-5, Kip1-myc12 and Kip16A-myc12 were overexpressed in

kip1D strains (SBY1274, 1276), while Cin8-myc12 and Cin85A-

myc12 were overexpressed in cin8D strains (SBY1280, 1282).

Control strains were included that carry the empty vector alone

(SBY1278, 1284). Strains were grown to log phase in synthetic

complete dropout medium lacking leucine (SC-Leu) with 2%

sucrose, arrested with a-factor, and then released into YEPG.

Cells were lysed in modified RIPA buffer. Immunoprecipitation

was carried out by diluting lysate in IP buffer (50 mM Tris-HCl

pH 7.5, 300 mM NaCl, 0.1% NP-40, 1 mM EDTA, 0.1 mM

DTT, 2.5 mM benzamidine hydrochloride, 0.2 mg/ml PMSF,

2 mg/ml each leupeptin, aprotinin, and pepstatin A) before adding

anti-c-Myc IgG agarose beads (Sigma-Aldrich). Binding to the

beads was carried out at 4uC for 2 h. Beads were then washed

twice with modified RIPA buffer with 500 mM NaCl (instead of

250 mM NaCl), and 0.1 mM DTT added, and twice more with

modified RIPA buffer with 0.1% SDS, 0.25% DOC and 0.1 mM

DTT added. Finally, beads were washed with 50 mM Tris-HCl,

pH 7.5 and divided into smaller portions for the phosphorylation

reaction described below. Substrate yield was estimated to be

about 0.4 mg of Kip1-myc12/Cin8-myc12 by performing identical

immunoprecipitations for densitometric comparison against BSA

(Sigma-Aldrich) standards after SDS-PAGE and staining with

Coomassie Brilliant Blue R250.

In vitro phosphorylation assay
Kinesins (,0.4 mg) immobilized on IgG-agarose beads were

washed with kinase reaction buffer (50 mM Tris-HCl pH 7.5,

10 mM MgCl2, 25 mM b-glycerophosphate, 1 mM DTT).

Subsequently, the beads were mixed with ,12 ng Clb2/Cdc28

in kinase reaction buffer containing 0.2 mM ATP and 0.5 mCi/ml
32P-c-ATP. One microgram of histone H1 (Roche) was used as a

control substrate in a separate reaction. Reactions were incubated

at 30uC for 1 h and then halted by adding SDS-PAGE sample

buffer before boiling for 5 min. Proteins were separated by

electrophoresis on 10% Express PAGE gels (GenScript) and

visualized by staining with Coomassie Brilliant Blue R250 (Bio-

Rad). Gels were dried and radiolabelling was subsequently

detected by autoradiography using a Phosphor Imager and Storm

scanner (Molecular Dynamics, GE Healthcare).

Spot assays for proliferation
Strains were grown overnight at room temperature in YEPD

and then diluted to allow resumption of log phase growth at room

temperature for at least two hours. A 26106 cells/ml suspension of

each strain was then prepared in YEPD and diluted serially to

make 26105 and 26104 cells/ml suspensions. Three microliters of

each suspension was spotted on YEPD plates and the plates were

subsequently incubated at either ambient room temperature

(,22uC) or 37uC, as indicated. Plates were imaged using a Bio-

Rad GelDoc and the software QuantityOne (Bio-Rad).
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Flow cytometry
Cells were prepared for flow cytometric analysis of DNA

content using SYTOX Green (Invitrogen) as previously described

[91]. Graphs used in figures were generated using WinMDI 2.9

(Scripps Research Institute).

Fluorescence microscopy
For fluorescence microscopy, cells growing in liquid medium

were sonicated, then spun down and fixed in 2.0–2.5%

paraformaldehyde at room temperature for 5 min, then washed

twice with PBS. Cells growing on fresh plates no more than two

days old were simply resuspended in water on glass slides before

imaging. All fluorescence microscopy was performed on a Zeiss

Axio Imager widefield fluorescence microscope controlled with

MetaMorph 7.5 (Molecular Devices, MDS Analytical Technolo-

gies). Images were captured with a Hamamatsu Orca ER

monochrome cooled-CCD camera and analyzed with both

MetaMorph 7.5 and Adobe Photoshop 7.0 (Adobe Labs).

Mass spectrometry analysis of protein phosphorylation
Kip1-myc12 and Cin8-myc12 were overexpressed in yeast in a

similar manner to that described above. Additionally, the two

kinesins-5 were overexpressed in strains that also overexpress

either Sic1D3P to inhibit Clb/Cdc28 kinase activity or Clb2-HA3

to increase the in vivo phosphorylation of Clb/Cdc28 substrates.

Cells were lysed and the myc-tagged proteins were immunopur-

ified as described above, except using different buffers that

contained a high concentration of phosphatase inhibitors to better

preserve phosphorylated amino acid residues. The anti-phospha-

tase lysis buffer used had the following composition: 50 mM Tris-

HCl pH 7.5, 500 mM NaCl, 20 mM Na4P2O7, 150 mM NaF,

150 mM b-glycerophosphate, 2mM Na3VO4, 1 mM EDTA,

1 mM EGTA, 1% NP-40, 1 mM DTT, 1.25 mM benzamidine

hydrochloride, 1 mM PMSF, 1 mg/ml each leupeptin, aprotinin,

and pepstatin A. The anti-phosphatase IP buffer used had the

following composition: 50 mM Tris-HCl pH 7.5, 300 mM NaCl,

200 mM NaF, 200 mM b-glycerophosphate, 2mM Na3VO4,

1 mM EDTA, 0.1% NP-40, 0.1 mM DTT, 2 mM PMSF,

2 mg/ml each leupeptin, aprotinin, and pepstatin A. Following

immunoprecipitation, the anti-c-Myc IgG agarose beads were

boiled in SDS-PAGE sample buffer and the liberated proteins

separated by SDS-PAGE. Gels were fixed and then stained with

Coomassie Brilliant Blue R250. Bands corresponding to Kip1-

myc12 and Cin8-myc12 were excised and sent to the Taplin Mass

Spectrometry Facility at Harvard University for analysis.

Excised gel bands were cut into approximately 1 mm3 pieces.

The samples were reduced with 1 mM DTT for 30 minutes at

60uC and then alkylated with 5mM iodoacetamide for 15 minutes

in the dark at room temperature. Gel pieces were then subjected to

a modified in-gel trypsin digestion procedure [92]. Gel pieces were

washed and dehydrated with acetonitrile for 10 min followed by

the removal of acetonitrile. Pieces were then completely dried in a

speed-vac before rehydration with 50 mM ammonium bicarbon-

ate solution containing 12.5 ng/ml modified sequencing-grade

trypsin (Promega, Madison, WI) at 4uC. Samples were then placed

in a 37uC room overnight. Peptides were later extracted by

removing the ammonium bicarbonate solution, followed by one

wash with a solution containing 50% acetonitrile and 5% acetic

acid. The extracts were then dried in a speed-vac (,1 h). The

samples were then stored at 4uC until analysis.

On the day of analysis, the samples were reconstituted in 5 ml of

HPLC solvent A (2.5% acetonitrile, 0.1% formic acid). A nano-

scale reverse-phase HPLC capillary column was created by

packing 5 mm C18 spherical silica beads into a fused silica

capillary (100 mm inner diameter612 cm length) with a flame-

drawn tip [93]. After equilibrating the column, each sample was

pressure-loaded off-line onto the column. The column was then

reattached to the HPLC system. A gradient was formed and

peptides were eluted with increasing concentrations of solvent B

(97.5% acetonitrile, 0.1% formic acid).

As each peptide was eluted, it was subjected to electrospray

ionization, and the resulting ions entered a LTQ-Orbitrap mass

spectrometer (ThermoFinnigan, San Jose, CA). Eluting peptides

were detected, isolated, and fragmented to produce a tandem mass

spectrum of specific fragment ions for each peptide. Peptide

sequences were determined by matching protein or translated

nucleotide databases with the acquired fragmentation pattern by

the software program, Sequest (ThermoFinnigan, San Jose, CA)

[94]. The modification of 79.9663 mass units to serine, threonine,

and tyrosine was included in the database searches to determine

phosphopeptides. Each phosphopeptide that was determined by

the Sequest program was also manually inspected to ensure

confidence.

Homology modeling
Homology models were constructed using DeepView Swiss PDB

Viewer (v4.0) and the Swiss MODEL web server [64–66]. Initial

amino acid sequence alignments for the Kip1 and Cin8 motor

domains were performed using CLUSTALW through the software

BioEdit (Tom Hall, Ibis BioSciences) against the primary sequences

of the HsEg5/Kif11 and Kar3 motor domains. Initial model

construction was then done in DeepView against a solved crystal

structure for the HsEg5 motor domain (ExPDB 1ii6B, the base

template). Additional template structures (ExPDB 1ii6A for HsEg5

and 3kar_ for Kar3) were subsequently aligned against the base

template and the project submitted to Swiss MODEL. The initial

models were examined for structural errors, particularly in loop

placement. The errors identified were used to adjust the sequence

alignments and repeat the modeling process until stable structures

with a negative total energy mostly free of backbone problems were

obtained. Model quality was evaluated with What Check [95] and

DeepView was used to fix side chain errors identified. Residue

swaps were performed using the ‘‘Mutate’’ function and the rotamer

library included in Swiss PDB Viewer [96]. Images were rendered

with Swiss PDB Viewer and Persistence of Vision Raytracer v3.6

(Persistence of Vision Pty. Ltd.).

Supporting Information

Figure S1 Proliferation of cdc4-3(ts) sic1D cells at permissive

temperature following arrest at the restrictive temperature. (A)

Spot assay comparing the proliferation of cdc4-3 sic1D cells that

were previously grown in liquid culture at 37uC for the indicated

amount of time (2, 4 or 6 h). For comparison, cdc4-3 SIC1 and

cdc4-3 sic1D cells that were not exposed to the restrictive

temperature (0 h) were also spotted. Prior to spotting, strains

were grown in liquid culture to log phase at 24uC before being

shifted to 37uC (see text, Figure 1). For spotting, strains were

diluted to 26106 cells/ml, and then further diluted serially to

26104 cells/ml. An equal volume of cells from each dilution was

spotted on YEPD, and plates were incubated at ambient

temperature (,22uC); plates were imaged 50 and 61h after

spotting. (B) Micrographs showing the morphology and SPBs

(marked with Spc42-GFP) of live cdc4-3 sic1D cells growing on

plate media following their return to the permissive temperature.

Scale bar: 2 mm.

Found at: doi:10.1371/journal.pgen.1000935.s001 (0.96 MB

TIF)
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Figure S2 Phosphorylation of Kip1 and Cin8 by Clb5/Cdc28 in

vitro. Wild-type Kip1 and Cin8, as well as their multiple consensus

CDK site mutant forms (Kip16A, Cin85A) were immunoprecipi-

tated from yeast lysates and mixed with soluble Clb5/Cdc28, also

prepared from yeast, and 32P-c-ATP. Soluble histone H1 (1.0 mg)

was used as a control substrate. Proteins were subjected to SDS-

PAGE after one hour at 30uC. PhosphorImages are shown on top

and corresponding Coomassie-stained bands below. Unmarked

lanes either contain molecular weight standards or had no protein

loaded.

Found at: doi:10.1371/journal.pgen.1000935.s002 (0.17 MB TIF)

Figure S3 DNA replication and SPB separation. In (A) KIP1-

12MYC and (B) CIN8-12MYC strains in the presence and the

absence of active Clb/Cdc28 kinase. Data were collected from

cultures used in the experiments detailed in Figure 3. Strains that

carry the PGAL1-SIC1D3P transgene are indicated and control

strains that do not are indicated as ‘‘wild-type’’. Cells were first

synchronized in G1 with a-factor before being released into

galactose medium; cells were fixed at the indicated times for flow

cytometric analysis and SPB counts. Histograms derived from flow

cytometry show DNA content on the horizontal axis and number

of counts on the vertical axis. SPB counts are presented as white

bars for PGAL1-SIC1D3P strains and black bars for control strains.

Found at: doi:10.1371/journal.pgen.1000935.s003 (0.33 MB TIF)

Figure S4 Impaired proliferation of strains with CDK site point

mutants (Ser/ThrRAla) of either (A) Kip1 or (B) Cin8 as their

only kinesin-5. Strains growing in log phase at permissive

temperature were diluted to 26106 cells/ml, and then further

diluted serially to 26104 cells/ml. An equal volume of cells from

each dilution was spotted on YEPD, and plates were incubated at

either ambient temperature (,22uC) or 37uC. The number above

each column of spots indicates the cell density (cells/ml). All alleles

compared were untagged to control for the effects of the mCherry

fusion in the strains shown in Figure 5.

Found at: doi:10.1371/journal.pgen.1000935.s004 (1.12 MB TIF)

Figure S5 Abundance and localization of Kip1S388A and

Kip1S1037A, T1040A compared with that of wild-type Kip1 at

37uC. (A) CIN8 kip1D cells expressing either Kip1-mCherry (¤),

Kip1S388A-mCherry or Kip1S1037A, T1040A-mCherry (#) integrated

under the control of the KIP1 promoter were arrested with a-

factor, and then released at 37uC. The abundance of each

mCherry fusion protein was determined by western blotting with

anti-RFP/DsRed. Anti-PSTAIR was used as a loading control. (B)

Fluorescence images of the same CIN8 kip1D strains at 37uC,

60 min after being released from a-factor arrest. Scale bar: 2 mm.

Found at: doi:10.1371/journal.pgen.1000935.s005 (0.70 MB TIF)

Figure S6 Flow cytometric analysis of asynchronous populations

of yeast strains bearing Kip1 or Cin8 CDK mutant alleles as their

only source of kinesin-5. Cells were grown in liquid culture to log

phase at ambient room temperature (,22uC) before being shifted

to 37uC for 3 h. Histograms show DNA content on the horizontal

axis and counts on the vertical axis. KIP1 (A) and CIN8 (B) allele

combinations are indicated. Bar graphs are shown at the bottom

indicating the relative proportions of cells having 1C (M1, spotted

bars) and 2C DNA (M2, black bars) for each strain.

Found at: doi:10.1371/journal.pgen.1000935.s006 (0.11 MB TIF)

Table S1 Peak intensities measured for phosphopeptides and

their corresponding unphosphorylated forms identified during

LC/MS/MS analysis of Kip1-myc12 and Cin8-myc12. Confidently

assigned phosphorylation sites are indicated with an asterisk (*)

while phosphorylation site assigned with less confidence are

indicated with a number sign/hash (#); the latter are the most

likely sites on the respective phosphopeptides and were verified

through repeated observation and confident assignments in other

phosphopeptides or in other strains. Candidate kinases for each

assigned phosphorylation site are also listed.

Found at: doi:10.1371/journal.pgen.1000935.s007 (0.02 MB

XLS)

Table S2 Yeast strains used in this study. All strains are

derivatives of BF264-15DU unless otherwise indicated.

Found at: doi:10.1371/journal.pgen.1000935.s008 (0.12 MB

DOC)

Text S1 Supporting materials and methods.

Found at: doi:10.1371/journal.pgen.1000935.s009 (0.06 MB

DOC)
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