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Abstract

Functional inactivation of the Retinoblastoma (pRB) pathway is an early and obligatory event in tumorigenesis. The
importance of pRB is usually explained by its ability to promote cell cycle exit. Here, we demonstrate that, independently of
cell cycle exit control, in cooperation with the Hippo tumor suppressor pathway, pRB functions to maintain the terminally
differentiated state. We show that mutations in the Hippo signaling pathway, wts or hpo, trigger widespread
dedifferentiation of rbf mutant cells in the Drosophila eye. Initially, rbf wts or rbf hpo double mutant cells are
morphologically indistinguishable from their wild-type counterparts as they properly differentiate into photoreceptors, form
axonal projections, and express late neuronal markers. However, the double mutant cells cannot maintain their neuronal
identity, dedifferentiate, and thus become uncommitted eye specific cells. Surprisingly, this dedifferentiation is fully
independent of cell cycle exit defects and occurs even when inappropriate proliferation is fully blocked by a de2f1 mutation.
Thus, our results reveal the novel involvement of the pRB pathway during the maintenance of a differentiated state and
suggest that terminally differentiated Rb mutant cells are intrinsically prone to dedifferentiation, can be converted to
progenitor cells, and thus contribute to cancer advancement.
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Introduction

Almost all growth inhibitory signals ultimately act through the

Retinoblastoma tumor suppressor protein (pRB) family [1]. In its

active, hypophosphorylated form, pRB blocks cell proliferation by

limiting the activity of the family of E2F transcription factors that

control the expression of a large cohort of genes, including those

that are essential for the G1 to S transition [2]. E2F activity is rate-

limiting for S phase entry, as forced expression of E2F is sufficient

to overcome the growth-inhibitory signals and drive quiescent or

postmitotic cells into S phase [3–6]. Inactivation of pRB relieves

the critical constraint from E2F, thus, rendering cells insensitive to

antiproliferative signals, one of the acquired traits of a cancer cell.

Indeed, the functional inactivation of the pRB pathway is believed

to be an obligatory early step in the majority of human cancers [7].

Thus, the current paradigm posits that the tumor suppressive

function of pRB is defined by its ability to promote cell cycle exit.

The view that pRB operates primarily during cell cycle exit is

consistent with gene targeting studies in mice. Inactivation of the Rb

gene family in mice resulted in ectopic proliferation and apoptosis

[8,9]; while the loss of Rb in quiescent or even in terminally

differentiated cells led to inappropriate cell cycle re-entry [10,11].

Interestingly, Rb knockout mice also exhibit reduced differentiation

in multiple tissues suggesting that in addition to promoting cell cycle

exit pRB may possess more specialized functions. In support of this

idea, pRB was shown to directly interact with, and modulate activity

of, cell-type specific transcription factors. For example, pRB

interacts with the osteoblast transcription factor CBFA1/Runx2

and acts as a direct transcriptional co-activator of the CBFA1/

Runx2 target genes required for the later stages of terminal

differentiation [12]. This is particularly intriguing given the strong

correlation between Rb mutations and the occurrence of osteosar-

coma [13]. However, there is little support for the importance of

these types of interactions in vivo. Further complicating the issue,

several studies have demonstrated that some of the differentiation

defects in Rb knockout mice are an indirect consequence of ectopic

proliferation and apoptosis [14–16]. These results highlight the

necessity to determine the bona fide role of Rb in promoting

differentiation in vivo.

Drosophila represents a powerful alternative model system to

study the in vivo function of the pRB pathway, since the

homologous E2F and pRB (termed RBF) gene families are smaller

in flies than in mammals, yet their involvement in cell cycle control

is remarkably conserved [17]. Curiously, the consequences of the

loss of rbf in somatic tissues such as the larval eye imaginal disc are

rather subtle [18–20]. One possibility is that other pathways may

mask otherwise critical functions of rbf and thus compensate for its

loss. This is an important conceptual point, since in addition to the

inactivation of the pRB pathway, a cancer cell acquires mutations

in multiple tumor suppressors and oncogenes; and the collective

outcome of these alterations eventually determines the malignancy

of the cancer cell [7].
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The recently identified Hippo tumor suppressor pathway

represents an attractive candidate for such a role in compensation,

since like the pRB pathway it regulates cell cycle exit (for review

see: [21–23]). In the center of the Hippo pathway is a kinase

cascade that contains Hippo (Hpo) and Warts (Wts). Wts is the

most downstream kinase of the cascade; and additionally the Fat

pathway controls the level and activity of Wts. A well-known

function of Wts in both pathways is to negatively regulate the

transcriptional co-activator, Yorkie (Yki). Inactivation of the

Hippo kinase cascade by mutations of hpo or wts, or overexpression

of yki, increases the rate of cell duplication during the growth phase

of imaginal discs, protects cells from apoptosis, and delays the cell

cycle exit of the uncommitted interommatidial cells of the larval

eye imaginal disc. Although the Hippo pathway is best known for

its role in regulation of cell proliferation, there is increasing

evidence of its functions in postmitotic cells [24–26].

Classically, the Drosophila eye imaginal disc has been used to

study the results following the inactivation of the Hippo and pRB

pathways in vivo. A key reason is that in the eye disc cell

proliferation and differentiation occur in highly reproducible

patterns which are established through the developmentally

regulated movement of the morphogenetic furrow (MF) [27]. In

this model system even small perturbations in terminal cell cycle

exit or differentiation can dramatically alter eye development and

can therefore be unambiguously characterized.

The adult eye is composed of a regular array of identical units

termed ommatidia. Each individual ommatidium contains a

cluster of eight photoreceptors, termed R1 through R8. The

passage of the MF results in specification of the pre-R8

photoreceptors that act as the founder cell of each ommatidium

(Figure 1A). Once an R8 is selected, the recruitment and selection

of all other photoreceptors occurs in a strict procession through

reiterative use of the epidermal growth factor receptor (EGFR)

pathway [28]. As each R cell is specified it undergoes terminal

differentiation, develops an axonal projection, and through

expression of cell type specific factors eventually becomes a fully

mature photoreceptor. Since the selection, specification, and

ensuing maturation of all R cells occurs continuously with respect

to the position of the MF, then the photoreceptors that are in the

earliest stages of differentiation are always found within and

immediately posterior to the MF (Figure 1A). It then follows that

the very first photoreceptors to completely differentiate can be

found in the most posterior regions of the disc (Figure 1A). This

regimented developmental program provides a unique spatiotem-

poral model to visualize all steps of photoreceptor recruitment and

subsequent differentiation in the same eye disc.

We therefore utilized the Drosophila eye imaginal disc to examine

the impact of the combined inactivation of the pRB and Hippo

pathways. We found that rbf wts or rbf hpo double mutant cells

initiate and progress through the neuronal differentiation

program. However, double mutant cells failed to maintain their

neuronal identity, dedifferentiated, and became uncommitted eye

specific cells. Dedifferentiation of rbf wts double mutant photore-

ceptors was accompanied by widespread inappropriate prolifera-

tion. Yet, the two defects were independent of each other as rbf wts

mutant photoreceptors dedifferentiated even when inappropriate

proliferation was fully blocked by a de2f1 mutation. Thus, our

findings suggest that the pRB pathway in cooperation with the

Hippo pathway plays a specific role in maintenance of the

differentiated state that is distinct from the pRB function to

promote cell cycle exit.

Results

Inactivation of the Hippo pathway results in progressive
loss of neuronal markers in differentiating rbf mutant
cells

As described above, the Drosophila eye provides a unique

experimental system in which differentiation and proliferation

during development can be readily studied (Figure 1A). We took

advantage of this well-characterized spatiotemporal model and

carefully examined the properties of rbf mutant cells following

inactivation of the Hippo pathway.

We began our analysis by examining neuronal differentiation of

R8 photoreceptors. Because R8 is the founder cell for each

ommatidium, its recruitment is independent of the correct

specification of the remaining photoreceptors in the ommatidium.

In contrast, other photoreceptor recruitment occurs progressively

in a stepwise manner (R2/R5 followed by R3/R4, R1/R6 and

finally R7) and is dependent upon the presence of the previously

recruited pair of R cells [28].

R8 photoreceptors can be uniquely identified by the expression

of the transcription factor Senseless (Sens) [29] (Figure 1B) that is

first detected immediately posterior to the MF. As photoreceptors

progressively differentiate, they begin to express a late neuronal

marker, Elav, several columns posterior to the onset of Sens

expression (Figure 1B). Unlike Sens, Elav is expressed in all R cells.

Therefore in a wild-type disc, each cluster of Elav positive cells

contains a single Sens positive cell (Figure 1B).

As previously reported [19], the pattern of Sens and Elav

expression was relatively normal in an rbf mutant disc, although

there were slight abnormalities of Sens expression within cells

immediately adjacent to the MF (Figure 1C). To examine the

expression of these differentiation markers in Hippo pathway

mutant cells, we employed the FLP-FRT technique to generate

clones of homozygous wts mutant cells. In this technique,

homozygous wild-type cells are marked with GFP, while

homozygous wts mutant cells are distinguished by the lack of

GFP. In spite of increased spacing between adjacent ommatidia in

wts mutant clones, each ommatidium (marked by Elav) still

contained a single R8 cell (marked by Sens) (Figure 1D). The

increased spacing between ommatidia is due to inappropriate

proliferation of non-neuronal, interommatidial cells that have

failed to exit the cell cycle. Thus, consistent with previous reports

(for example see: [18,19,30–32]), neither the loss of rbf nor the loss

of Hippo pathway signaling affected photoreceptor differentiation.

Author Summary

The inability to respond to growth inhibitory cues is one
acquired trait of a cancer cell. Almost all such signals are
eventually routed through the Retinoblastoma (pRB)
tumor suppressor pathway. Therefore, inactivation of the
pRB pathway is considered to be an early and obligatory
event during transformation of a normal cell into a
malignant cancer cell. In this study, we found that
inactivation of the Hippo pathway makes Rb mutant cells
prone to undergo morphological changes and to become
less differentiated, progenitor-like cells. Furthermore, we
show that this was independent of the failure of Rb mutant
cells to properly respond to cell cycle exit cues. These
results are significant since, in general, tumors containing
progenitor-like cells have a higher potential to progress
through later stages of tumorigenesis and to become
more aggressive and more deadly. Thus, the inactivation of
Rb not only renders cells insensitive to growth inhibitory
signals, but also sensitizes cells to revert to a progenitor-
like state.

pRB and Hippo Pathways Maintain Differentiation
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Figure 1. rbf wts double mutants have defects in differentiation. (A) Schematic of the spatiotemporal model of differentiation during larval
eye development. The morphogenetic furrow [(MF), dotted line] moves from the posterior (P) edge of the disc towards the anterior (A) compartment.
As it moves into contact with cells they begin to undergo a progressive differentiation that occurs in stages. The first being a progressive recruitment

pRB and Hippo Pathways Maintain Differentiation
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To determine the effect of inactivation of Hippo pathway

signaling in rbf mutant cells, we examined clones of wts mutant

cells generated in hemizygous rbf120a mutant eye discs. Expression

of Sens was properly initiated as rbf wts double mutant cells

emerged from the MF. However, the number of Sens positive cells

was severely decreased toward the posterior of the mutant clones

(Figure 1E). Additionally, we noted that approximately one third

of the ommatidial clusters, as visualized by Elav expression, were

missing Sens positive R8 cells (examples are pointed to by arrows

in Figure 1E and quantification is presented in Figure 1Ei). To

exclude the possibility of allele specific effects, we confirmed our

findings with a hpoMGH4 mutant allele (Figure S1) and with an rbf14

allele (Figure S2). We note, that the phenotype of the rbf14 wtsx1

double mutant cells was more severe than that in the rbf120a wtsx1

double mutant tissue. Since rbf14 is a null allele, while a small

amount of the RBF protein is produced from the rbf120a allele [19],

this suggests that the double mutant phenotype is highly sensitive

to the dosage of RBF. Thus, we concluded that following

specification mature R8 cells were gradually lost as neuronal

differentiation proceeded. Importantly, the progressive loss of Sens

expression in rbf mutant cells is specific to inactivation of Hippo

signaling since a mutation in another tumor suppressor, tsc1 [33],

has no effect on R8 differentiation in rbf tsc1 double mutant cells

(Figure 1F and 1G and data not shown). Consistently with the

larval eye disc analysis, in the adult eye, the rbf wts mutant clones

had a characteristic glossy appearance that is indicative of a lack of

differentiated photoreceptors (Figure 1H).

The loss of Sens expression in rbf wts double mutant tissue could

be due to a failure to properly specify R8 cells. Therefore we

examined expression of the proneural gene atonal (ato) since its

expression pattern defines the pre-R8 cell recruitment and early

specification of a mature R8 cell. In a wild-type disc, Ato is initially

expressed in all cells of the MF. Later, Ato expression is resolved to a

single pre-R8 cell via proneural enhancement and lateral inhibition

[34] (Figure 1I). In clones of rbf wts double mutant cells, Ato

expression is initiated and refined to a single cell properly indicating

that specification of R8 cells occurs normally (Figure 1J). To further

support this conclusion, we examined expression of the fibrinogen-

related protein Scabrous (Sca), another useful marker of R8 cell

development. Sca is required for the restriction of Ato expression

during the process of lateral inhibition that occurs in the resolution

of a mature R8 cell [35]. As shown in Figure 1K and 1L, the pattern

of Sca expression remains largely unaffected in the rbf wts double

mutant tissue. We concluded that following developmental

specification and refinement, mature R8 cells are progressively lost

in rbf wts double mutant tissue. This is in striking contrast to the

phenotypes of rbf, hpo, or wts single mutants, in which following

specification and refinement, differentiation of photoreceptors

remains normal.

The progressive loss of differentiation markers is not due
to the elimination of cells by apoptosis

A simple explanation for the progressive reduction in the

number of Sens positive cells within the rbf wts double mutant

tissue is that these cells are eliminated through apoptosis. To test

this idea, we used an antibody that recognizes a cleaved form of

caspase 3 (C3) to visualize apoptotic cells. The loss of rbf leads to a

significant level of apoptosis immediately posterior to the MF

(Figure 2A) [19]. Strikingly, a wts mutation protects rbf deficient

cells from apoptosis as no C3 positive cells were found within rbf

wts double mutant tissue including the region posterior to the MF,

where differentiation occurs (Figure 2B). The lack of apoptotic

cells in rbf wts double mutant tissue is consistent with the known

ability of mutations in the Hippo pathway to protect cells from

several types of apoptosis [31,32,36].

To further confirm that apoptosis does not contribute to the loss

of Sens expressing rbf wts mutant cells we overexpressed the

baculovirus protein p35 in all cells posterior to the MF. p35 is a

caspase inhibitor that potently blocks most cell death in Drosophila

[37]. As shown in Figure 2C, the number of R8 cells, visualized by

the expression of Sens, were progressively lost in the posterior region

of the rbf wts double mutant clone even when p35 was

overexpressed. We therefore concluded that a progressive reduction

in the number of Sens positive cells is because rbf wts double mutant

cells failed to maintain the neuronal differentiated state.

rbf wts double mutant photoreceptors stochastically
dedifferentiate

Because defects in R8 differentiation are known to prevent

development of other photoreceptors, we examined the differen-

tiation of other R cells in rbf wts double mutant tissue. R2/R5 are

period to develop cell identity (marked by bar); the second stage being a cell autonomous program to complete terminal neuronal differentiation
and maintain mature neuronal identity. Therefore, the cells in the most posterior regions of the disc have been fully differentiated the longest time
and those cells nearest to the MF are at the earliest stages of differentiation. (B–L) The position of the MF is shown by a white arrowhead and the
posterior compartment is to the right in all images. All images of larval discs are projection images. Clones of mutant cells were induced with the FLP-
FRT system and distinguished by the lack of GFP (green). (B–G) Eye discs were labeled for the Senseless (Sens) protein in red and the Elav protein in
blue. (I,J) Eye discs were labeled for the Senseless (Sens) protein in blue and the Atonal (Ato) protein in red. (K,L) Eye discs were labeled for the
Senseless (Sens) protein in blue and the Scabrous (Sca) protein in red. (B) A wild-type disc. (C,D) Photoreceptors differentiate normally in the eye disc
hemizygous for the rbf120a mutant allele (C) and in clones of wtsx1 mutant cells (D). (E) The number of Sens positive cells is reduced in the posterior of
the rbf120a wtsx1 mutant clones. White arrows point to Elav positive clusters of cells that lack any Sens positive cell. Elav expression reveals an
incomplete complement of photoreceptors in the posterior of the double mutant tissue. (Ei) Quantification of Sens positive cells present in rbf120a

wtsx1 mutant clones (see Materials and Methods for details). A Student’s t-test revealed that the differences between the rbf120a wtsx1 double mutant
cells and the wild-type population of Elav positive cells with zero or two Senseless positive cells were statistically significant with a p-value ,0.05.
(F,G) The loss of differentiation is specific to a genetic interaction between the pRB and Hippo pathways as photoreceptors differentiate normally in
(F) tscf01910 and (G) rbf120a tscf01910 mutant clones. Loss of tsc results in larger than normal cells, thus leading to increased spacing between adjacent
ommatidia marked by Sens and Elav. (H) wtsx1 single mutant and rbf120a wtsx1 double clones were generated at a low frequency with hs-FLP and
examined in the adult eye. Arrows highlight the differences between the two tissue samples shown. The wtsx1 single mutant tissue is well
differentiated and contains a high number of bristles (black dots). In contrast, the surface of the rbf120a wtsx1 double mutant tissue is glossy and lacks
bristles. (I) A wild-type eye disc. Senseless expression in pre-R8 cells requires that Atonal expression be initiated first. After the expression of Senseless
has been able to define the R8 cell and to begin recruitment of the ensuing R cells, Atonal expression is lost. (J) Atonal expression is normal in the
rbf120a wtsx1 double mutant tissue suggesting that mature R8 cells expressing Senseless can develop normally. (K) A wild-type eye disc. Ommatidial
cluster formation relies upon proper spacing to be present between clusters. This spacing is defined early in the recruitment and refinement stage of
differentiation of the R8 cell when a Senseless positive cell expresses the glycoprotein Scabrous. (L) Scabrous expression appears normal in rbf120a

wtsx1 double mutant tissue. Therefore, rbf120a wtsx1 mutant R8 cells can successfully be refined and can establish proper spacing for further
recruitment of the ensuing R cells to take place.
doi:10.1371/journal.pgen.1000918.g001

pRB and Hippo Pathways Maintain Differentiation
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recruited following R8 specification and can be identified by the

high level of expression of the transcription factor Rough (Ro); that

is also expressed at a lower level in R3/R4, which develop

following R2/R5 (Figure 3A and 3Ai). Despite the stochastic

disappearance of R8 cells in rbf wts double mutant tissue, one could

find mutant ommatidia containing the correct number of two cells

per cluster highly expressing Ro, thus indicating that recruitment

of R2/R5 cells can occur properly (pointed to by arrows in

Figure 3Bi). However, there were ommatidia that had either only a

single or no Ro expressing cells. Furthermore, the number of Ro

positive cells was generally reduced in the posterior region of the

clone (Figure 3B and 3Bi and Figure S3). These results suggested

that R2/R5 development could occur normally, but that like the

defects seen in R8 cells, following specification could not always be

maintained as mature photoreceptors.

Consistent with the notion that mature R cells were being lost

we found that the total number of photoreceptors per ommatid-

ium was highly variable in the rbf wts double mutant tissue as

revealed by expression of Elav, which visualizes all photoreceptors

in the ommatidium (Figure 3B and 3C). Quantification supported

the conclusion that there was not a stage in recruitment and

specification of R cells that appeared to be completely inhibited

(Figure 3D) suggesting that the defects seen were not directly due

to developmental signaling being affected.

In spite of the stochastic loss of neuronal markers, the cellular

program of terminal neuronal differentiation was not blocked, as

rbf wts double mutant photoreceptors retained the ability to

complete neuronal differentiation. In wild-type discs, as photore-

ceptors differentiate they begin to express the neuron specific form

of neuroglian (Nrg) along axonal projections which can be

detected with the BP104 antibody (Figure 3E) [38]. These axonal

projections migrate to connect with the optic lobe to form

functional light sensory cells. We observed that rbf wts double

mutant cells express Nrg in the anterior region of mutant clones

(Figure 3F); indicating that as rbf wts mutant photoreceptors

differentiate they exhibit characteristic morphological features of

normal photoreceptors at this stage of development. However,

similar to the expression of Elav, Ro, and Sens, expression of Nrg

largely disappeared in the posterior region of the mutant clone.

To determine if the defects in larval eye differentiation could be

corrected later in development, we examined mosaic pupal eye

discs at a stage when all cells of a mature ommatidium (including

pigment, cone, and bristle cells) have developed. We found that

there were fewer ommatidia, as revealed by Elav expression, in the

rbf wts double mutant tissue than in the adjacent wild-type tissue

and that mutant ommatidia contained a reduced number of

photoreceptors (Figure 3G and 3H). We concluded that the failure

of rbf wts double mutant cells to maintain a differentiated state was

not limited to R8 cells, appeared to occur stochastically, and

therefore reflects a general requirement of the pRB and Hippo

pathways in maintenance of neuronal differentiation.

To further characterize the progressive loss of differentiated cells in

the rbf wts double mutant tissue we examined the expression of the eye

determination gene eyes absent (eya). Eya promotes differentiation and

plays a major role in the transcription factor network that controls eye

development [39]. In wild-type eye discs, Eya is expressed at a high

level in differentiating photoreceptors while uncommitted interom-

matidial cells express Eya at a lower level (Figure 4A and 4Ai) [39].

This difference in the levels of Eya is especially evident in clones of

wts mutant cells in which the population of interommatidial cells

is expanded (Figure 4B and 4Bi). Eya remains to be expressed

throughout the rbf wts double mutant tissue even in the most posterior

regions, where loss of differentiation markers was most often observed

(Figure 4C and 4Ci). As shown in Figure 4Ci, Eya was highly

expressed in rbf wts double mutant photoreceptors while interomma-

tidial cells had a low level of Eya. Interestingly, we observed

numerous examples of Elav negative rbf wts double mutant cells with a

high level of Eya (pointed to by arrows in Figure 4Ci). Since these cells

were found immediately adjacent to ommatidial clusters it is

attractive to speculate that these cells are undergoing dedifferentia-

tion. However, this could not be directly tested due to the lack of

markers of dedifferentiated cells. Nevertheless, given that the eye

determination gene Eya was expressed in all cells within the rbf wts

double mutant tissue we concluded that cells no longer expressing

Figure 2. Loss of differentiation markers is not due to apoptosis. Apoptosis does not contribute to the reduction in the number of Sens
positive cells. Clones of mutant cells were induced with the FLP-FRT technique and distinguished by the lack of GFP (green). (A) Apoptosis, as
detected by the cleaved caspase-3 (C3) antibody (magenta), in the MF of a disc hemizygous for rbf120a but not in the posterior compartment. (B) Lack
of cleaved caspase-3 positive cells, as detected by the C3 antibody (magenta), in clones of rbf120a wtsx1 double mutant cells within and posterior to
the MF. (C) Overexpression of p35 within and posterior to the MF does not rescue the reduced number of Sens positive cells in the posterior of rbf120a

wtsx1 mutant clones.
doi:10.1371/journal.pgen.1000918.g002

pRB and Hippo Pathways Maintain Differentiation
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Figure 3. Dedifferentiation of rbf wts double mutant cells. Clones of mutant cells were induced with the FLP-FRT technique and distinguished by the
lack of GFP (green). In all merged images Elav is blue, and when shown on a single channel it is on the gray scale. All images are projection images. (A–Ai)
Expression of the protein Rough (Ro) (red) is detected at high levels in R2/5 and at lower levels in R3/4 cells in a wild-type disc. Elav expression is found in all
mature R cells. Rough positive cells are developed and recruited by the proper refinement and resolution of R8 cells. Once developed, Rough positive cells
take on a cell autonomous program to maintain cell identity. (B–Bi) The correct numbers (shown by white arrows in Bi) of Ro (red) positive cells are resolved
in rbf120a wtsx1 double mutant ommatidial clusters marked by Elav nearest the MF. However, a stochastic pattern of ommatidial cluster appearance begins
further posterior from the MF, seen by the loss of both Ro and Elav expression in the rbf120a wtsx1 double mutant clones. (C) This is in contrast to the
ommatidial cluster development and the ability of the ommatidial cells to maintain proper identity (shown by Elav expression in wtsx1 single mutant clones).
(D) Quantification of the number of Elav positive cells within a mature photoreceptor cluster in four genotypes (wild-type, rbf1120a, wtsx1 and rbf1120a wtsx1)
(see Materials and Methods for details). Counting was done from the third Elav positive column behind the MF to the posterior edge, an area in a wild-type
eye disc that will have developed a range of either 5–7 detectable Elav positive cells per cluster. Error bars are standard deviations from the mean of each
category per genotype. A Student’s t-test between each mutant genotype and the wild-type population revealed that no statistical difference between the
rbf mutant and wild-type tissue existed. A p-value ,0.05 existed between the wts mutant and wild-type tissue for the number of ommatidial clusters with 7
Elav positive cells. A p-value ,0.05 existed between the rbf wts double mutant an wild-type for the number of ommatidial clusters with 1, 2, or 3 Elav
positive cells and a p-value ,0.01 for the number of ommatidial clusters with 5, 6, or 7 Elav positive cells. We note that the distribution of the defects in
differentiation are not directly due to developmental recruitment as we can find complete and incomplete ommatidial clusters in the rbf wts double mutant
eye disc (see distribution of percentages). (E,F) Expression of the late neuronal marker Neuroglian (Nrg) (red) in a wild-type disc (E). rbf120a wtsx1 double
mutant cells initially express the late neuronal marker Neuroglian (Nrg) (red), but then lose expression of Nrg in the posterior regions of the disc (F). (G,H)
Wild-type expression of Elav in pupal retinas (44–48hr APF) reveals that Elav expression is not recovered later in development of rbf120a wtsx1 double mutant

pRB and Hippo Pathways Maintain Differentiation
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differentiation specific proteins did not change their identity and

remained eye specific cells.

To determine whether dedifferentiated rbf wts double mutant

photoreceptors eventually differentiate into different cell types

such as cone cells we examined expression of the cone cell marker

Cut in mosaic pupal eye discs. At 48 hr after puparium formation,

four cone cells per ommatidium were present in wild-type tissue

(Figure 4D). In contrast, the number of cone cells per ommatidium

was reduced in rbf wts double mutant tissue. In general, we

observed one to three cone cells, although one could also find

ommatidia containing precisely four cone cells per ommatidium

(Figure 4D). However, we did not find any indication that cone

cells overpopulate the mutant tissue suggesting that rbf wts double

mutant cells do not transdifferentiate into cone cells.

Taken together these data suggest that once recruited and

specified rbf wts double mutant photoreceptors properly initiate

and progress through the neuronal differentiation program.

However, over time rbf wts double mutant photoreceptors

stochastically lose their morphological features and become

undifferentiated, eye specific cells. Therefore, we concluded that

rbf wts double mutant photoreceptors undergo dedifferentiation.

rbf wts double mutant cells bypass terminal cell cycle exit
signals

In normal cells proliferation and differentiation are tightly

coordinated and are generally incompatible with each other.

Dedifferentiation in rbf wts double mutant tissue prompted us to

examine the impact of the combined loss of rbf and wts during cell

cycle exit. We used BrdU labeling to mark cells in S phase. In the

larval eye disc, the pattern of cell proliferation is linked to the MF,

where cells are arrested in G1 and therefore do not incorporate

BrdU (Figure 5A). Directly posterior to the MF, uncommitted cells

undergo a synchronous round of the cell cycle called the second

mitotic wave (SMW). No proliferation occurs posterior to the SMW

as all cells withdraw from the cell cycle. rbf mutant eye discs exhibit

only minor perturbations in cell cycle exit (for example: [19] and

data not shown). Inactivation of the Hippo pathway leads to

inappropriate proliferation of interommatidial cells posterior to the

SMW while photoreceptors exit the cell cycle properly ([31,32,36]

and data not shown). Not surprisingly, the precise pattern of cell

proliferation was completely lost in rbf wts double mutant tissue. rbf14

wtsx1 double mutant cells were found to be inappropriately

undergoing S phases and subsequent mitoses within the MF and

posterior to the SMW (Figure 5B–5D). Unexpectedly, we found that

in addition to interommatidial cells, these inappropriate cell

divisions were taking place in fully differentiated cells, marked by

Elav and Sens expression (Figure 5C and 5D), a phenotype that is

distinct from either the loss of rbf or wts alone [19,31,32,36]. At least

some of these differentiated cells continued to proliferate during

early pupal development as revealed by the occurrence of lone Elav

positive cells which expressed the mitotic marker phosphorylated

histone H3 (pH 3) in confocal images (Figure 5E). In summary,

these results show widespread inappropriate proliferation of

differentiated rbf wts double mutant photoreceptors.

Inappropriate proliferation does not induce
dedifferentiation of rbf wts double mutant cells

In several experimental systems, when a differentiated cell

reenters the cell cycle it undergoes dedifferentiation. Thus,

dedifferentiation in rbf wts double mutant clones could be induced

by inappropriate reentry into the cell cycle. To test this idea, we

examined the procession of differentiation in rbf wts double

mutant tissue when inappropriate proliferation of these cells was

blocked by a de2f1 mutation. In agreement with our previous

findings that de2f1 is specifically required during inappropriate

proliferation wts mutant cells [40], rbf wts de2f1 triple mutant cells

failed to incorporate BrdU posterior to the SMW, but not in the

anterior compartment when cells are normally cycling asynchro-

nously (Figure 6A). However, even in the complete absence of

inappropriate proliferation we observed a widespread dediffer-

entiation in the rbf wts de2f1 triple mutant tissue as evidenced by

the progressive loss of Sens positive cells in the posterior region

(Figure 6B). As in the rbf wts double mutant clones, cell death that

might account for the loss of Sens positive cells was not detected

in rbf wts de2f1 triple mutant tissue posterior to the MF (Figure

S4). Additionally, wts mutant cells are intrinsically protected from

apoptosis due to Yki induced upregulation of the Drosophila

inhibitor of apoptosis, diap1; indeed, diap1 remained induced in the

triple mutant cells (Figure S4). Thus, inappropriate proliferation

of rbf wts double mutant photoreceptors does not induce their

dedifferentiation. Furthermore, since the loss of de2f1 had no

effect on the rbf wts mutant phenotype this suggests that

dedifferentiation occurs in a dE2F1 independent manner and,

thus, reflects a dE2F1 independent function of RBF.

yki is insufficient to induce dedifferentiation in rbf
mutant photoreceptors

Yki represents a critical effector of the Hippo pathway and

mediates its growth output. In wts or hpo mutants, Yki

inappropriately translocates to the nucleus and activates Hippo

pathway target genes that promote cell proliferation and block

apoptosis [41]. Therefore we examined the subcellular localization

of Yki in rbf wts double mutant cells. Yki is mostly cytoplasmic in

wild-type cells, while it becomes more nuclear in wts mutant cells

[42,43]. In the posterior region of developing larval eye imaginal

disc, Yki was largely present in interommatidial cells and was

undetected in differentiated photoreceptors (Figure 7A). In

contrast, Yki was localized to both the cytoplasm and nucleus in

rbf wts double mutant cells (Figure 7B). This was not a result of

inappropriate proliferation, since Yki remained primarily nuclear

in rbf wts de2f1 triple mutant cells (Figure 7C) that did not

proliferate posterior to the SMW (Figure 6A). Thus, we concluded

that Yki is inappropriately localized to the nucleus in both rbf wts

double mutant cells and in rbf wts de2f1 triple mutant cells, which

along with dIAP1 upregulation (Figure S4), is a hallmark of Yki

activation.

Next, we tested whether activation of Yki is sufficient to trigger

dedifferentiation of rbf mutant photoreceptors. We overexpressed a

hyperactive form of YkiS168A using a GMR-Gal4 driver in cells

posterior to the MF in the rbf120a mutant eye disc and analyzed the

expression of Sens and Elav. The GMR-Gal4 driver has been

previously validated in experiments to assess the function of Yki

and its mammalian homolog YAP (for example see: [44]). YkiS168A

is resistant to an inhibitory phosphorylation by the Wts kinase and

therefore more efficiently translocates to the nucleus [42,43].

Overexpression of Yki resulted in excessive proliferation in the

posterior part of both the wild-type and rbf mutant eye disc

(Figure 7D and 7E). This led to an increased spacing between

adjacent ommatidial clusters. Surprisingly, in contrast to rbf wts or

photoreceptor cells (mutant tissue is separated from wild-type tissue by green outline on gray scale). A variable number of Elav positive cells, from normal
(yellow arrow) to highly reduced (red arrows), can be found amongst each rbf wts double mutant ommatidium in (H).
doi:10.1371/journal.pgen.1000918.g003
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Figure 4. Expression of the eye specification factor Eyes Absent (Eya) in dedifferentiating rbf wts double mutant photoreceptors.
Clones of mutant cells were induced with the FLP-FRT system and distinguished by the lack of GFP (green). (A–Ai) Expression of the eye specification
factor Eyes Absent (Eya) (red) and the neuronal specific protein Elav (blue) in a wild-type disc. Eya expression is highest in mature, differentiated cells,
marked by Elav (blue). (B–Bi) Loss of wts does not affect the expression pattern of Eya. The reduced expression of Eya (red) in population of the
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rbf hpo double mutant cells, overexpression of Yki did not induce

dedifferentiation of rbf mutant cells, as there was no reduction in

the number of Elav and Sens positive cells even in the most

posterior region (Figure 7E). We note however that there is a

spatial difference in Yki activation in these two settings. In rbf wts

and in rbf hpo double mutant clones activation of Yki occurred

prior to the MF while the GMR-Gal4 driver induced Yki

expression in cells within and posterior to the MF. Nevertheless,

it seems highly unlikely that this spatial difference accounts for the

inability of Yki to induce dedifferentiation in rbf mutant cells since

photoreceptor recruitment and specification within the MF is not

affected in rbf wts double mutant tissue. Therefore, we concluded

that although overexpression of Yki recapitulates the tissue

overgrowth phenotype of the Hippo pathway mutants, it is

insufficient to mimic the dedifferentiation defects of rbf wts mutant

photoreceptors.

Discussion

The normal process of differentiation is accompanied by a

declining plasticity of cells that commit to lineage-specific fates. In

non-pathological conditions, this eventually culminates in an

irreversible state of terminal differentiation. We found that in rbf

wts double mutant cells this irreversibility is lost. It is widely

acknowledged that inactivation of the pRB pathway is an

obligatory early event in tumorigenesis, while the tumor

suppressive function of pRB is usually attributed to its role in

promoting cell cycle exit [7]. Surprisingly, we found that

dedifferentiation of rbf wts double mutant cells is not due to a

failure to exit the cell cycle. Thus, our results illuminate a novel

function of pRB, guarding the differentiated state of a cell, and

suggest that it is separable and distinct from the cell cycle exit

control. Dedifferentiation is an important topic in cancer biology.

It is well known that tumors containing cells with the

morphological features of progenitor cells are generally more

malignant than those resembling differentiated cells. Thus, tumor

aggressiveness often correlates inversely with the extent of

differentiation within a tumor. One implication of this work is

that the loss of Rb may sensitize cells to dedifferentiation. More

broadly, our results suggest that the concomitant loss of both the

pRB and Hippo pathways allows cells to revert back to a

progenitor-like state and therefore to have an increased potential

to contribute to tumor growth.

In this work we employed the Drosophila retina to study the role

of the pRB and Hippo pathways in differentiation. In the

Drosophila retina, the developmental specification and recruitment

of uncommitted cells is required for terminal neuronal differen-

tiation. We found that both cell type specific (Sen and Ro) and

more general (Elav and Nrg) neuronal markers are continuously

lost over time in the rbf wts mutant tissue. Since improper

unspecified interommatidial cells between ommatidial clusters (marked by Elav (blue)) can be seen more easily in a wts single mutant background
(Bi). (C) Eya is expressed in rbf120a wtsx1 double mutant cells. (Ci) Examples of rbf120a wtsx1 double mutant cells adjacent to ommatidial clusters can
frequently be found where cells no longer express Elav but have a high level of Eya (pointed by arrows). (D) rbf120a wtsx1 double mutant cells do not
transdifferentiate into cone cells (Cut expression is in red) later in development (44–48 hr APF).
doi:10.1371/journal.pgen.1000918.g004

Figure 5. rbf wts double mutant cells fail to exit the cell cycle while undergoing photoreceptor differentiation. S phase cells in the eye
disc were revealed by BrdU labeling. (A) No BrdU positive cells were found posterior to the second mitotic wave (SMW) in a wild-type disc. (B)
Inappropriate S phases posterior to the SMW in the rbf14 wtsx1 double mutant tissue. (C) Differentiated rbf14 wtsx1 double mutant cells (Elav) (blue)
were undergoing S phases (pointed by arrows). (D) rbf14 wtsx1 double mutant cells expressed the R8 marker Sens (blue) even during mitosis (marked
by pH3) (red). Examples are pointed by arrows. (E) rbf14 wtsx1 double mutant photoreceptors (Elav) (blue) continued to undergo mitosis (marked by
pH3) (red) in pupal eye discs.
doi:10.1371/journal.pgen.1000918.g005
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recruitment impacts terminal differentiation then the loss of

neuronal markers could be an indirect consequence of defects in

recruitment. However, our analysis of R8 cell recruitment in rbf

wts double mutant clones strongly argues against such an

explanation. Specifically the expression of Atonal, a pro-neural

gene that determines specification of the pre-R8 cell, and

Scabrous, a secreted protein required for proper pattern

formation of ommatidia to occur [35], were initiated and correctly

resolved in rbf wts double mutant clones. Additionally, our data

are distinct from previously reported R8 specific differentiation

defects. For example, a reduction in the number of Sens positive

cells towards the posterior has been previously described in egfr

mutant clones. However, the egfr mutant phenotype can be

rescued by overexpression of p35 suggesting that in this setting R8

cells are eliminated by apoptosis [45]. In contrast, there is no

apoptosis in rbf wts double mutant tissue and the loss of R8 cells

occurred even in the presence of p35. In another example, a pre-

R8 cell forms in sens mutant ommatidia, but never a mature R8

cell. As a result, the pre-R8 cell switches fate to become an R2/

R5 cell [46]. This is clearly not the case in rbf wts double mutant

clones as mature R8 cells expressing the late neuronal marker

Elav were present. This previous work further suggested that R-

cell type specific signaling events are mutually exclusive from R-

cell recruitment and resolution [46]. Our work expands upon this

idea to suggest that following R-cell recruitment the pRB and

Hippo pathways play a key role in maintaining the pro-neural

program innate to each cell type in order to prevent the cell from

dedifferentiating.

The fact that an rbf mutation leads to the loss of differentiation

markers itself is not unexpected, since, for instance, Rb-/- mouse

embryos display a variety of differentiation defects [47–49].

However, what constitutes a novel finding is that a progressive

loss of differentiation markers as seen in rbf wts double mutant cells

has not been previously reported in Rb-/- mouse knockouts.

Similarly, tissue specific ablation of Rb in terminally differentiated

cells in vivo is not accompanied by dedifferentiation. For example,

during mouse inner ear development, Rb-/- hair cells undergo

inappropriate cell divisions while remaining fully differentiated

[11]. In Drosophila, cells that are double mutant for rbf and dacapo, a

p21 homolog, differentiate into photoreceptors and, at the same

time, undergo further cell divisions without the loss of the late

neuronal marker Elav [18]. Even in tumorigenic settings Rb-/- cells

do not undergo dedifferentiation, as has been demonstrated by

analysis of Rb-/- p130-/- p107+/- horizontal interneurons. These

cells inappropriately re-enter the cell cycle, clonally expand, and

form metastatic retinoblastoma in mice, yet they remain highly

differentiated cells [50]. These studies concluded that pRB

operates in vivo at the point of terminal cell cycle exit. Our results

suggest that, additionally, the pRB pathway, in cooperation with

the Hippo pathway, has an important function in maintenance of

a differentiated state.

One question that particularly interested us was whether the

inappropriate proliferation of rbf wts double mutant photorecep-

tors triggers dedifferentiation. Earlier studies showed that

inappropriate proliferation interferes with differentiation in

cultured cells; and that the majority of differentiation defects in

Rb-/- mouse knockouts appear to be an indirect consequence of

defects in cell cycle exit and apoptosis or are a reflection of an

extraembryonic function of Rb [14–16,51,52]. Therefore it was

surprising that the rbf wts double mutant photoreceptors

dedifferentiate in the complete absence of cell proliferation

indicating that inappropriate cell cycle re-entry by itself is not

sufficient to cause dedifferentiation. Consistently, driving rbf

mutant photoreceptors into the cell cycle by overexpression of

yki (this study) or by a concomitant loss of dacapo [18] does not

cause dedifferentiation. Thus, the function of rbf in the

maintenance of a differentiated state is unrelated and independent

of the role of rbf during the cell cycle exit.

Why combined inactivation of the Hippo and pRB pathways

causes dedifferentiation is not known. We disfavor an explanation

that this is merely a cumulative effect of inactivation of two

negative regulators of cell proliferation. Although we haven’t

extensively tested other tumor suppressor genes, at least the loss of

tsc1 failed to induce dedifferentiation of rbf mutant cells.

Intriguingly, it has been previously shown that hpo and wts

function in differentiated photoreceptors to regulate stable fate

choice of the R8 cell subtypes [24]. Thus, dedifferentiation of rbf

wts double mutant cells may reflect a specific functional overlap

between pRB and Hippo pathways in neuronal cells.

The idea that the Hippo pathway has a postmitotic function is

further supported by the fact that while yki expression readily

drives differentiated rbf mutant cells into the cell cycle, the

presence of a functional Warts kinase in these cells protects them

from dedifferentiating. One implication of this result is that other

effector(s) of the Hippo pathway may cause dedifferentiation of rbf

mutant cells. Several studies have described Yki independent

functions of Wts, such as the regulation of dendritic tiling and

maintenance [25] and control of autophagic cell death in salivary

glands [26]. It is worth noting that in contrast to rbf wts double

mutants, photoreceptor differentiation occurs normally in wts de2f1

de2f2 triple mutants [40]. This suggests that the differentiation

phenotype observed in rbf wts double mutants is likely to reflect an

E2F independent function of rbf. Although the analysis of

differentiation in rbf wts de2f1 de2f2 quadruple mutant cells will

be needed to confirm this point, our data raise an intriguing

possibility that the convergence of the pRB and Hippo pathways

in maintaining a differentiated state lies outside of their

conventional roles to restrain the activities of E2F and Yki

respectively.

The process of cell-specific lineage commitment and terminal

differentiation is accompanied by stabilization and main-

tenance of each cell-type specific transcription program. This is

achieved by a progressive restriction of chromatin accessibility to

genes that promote proliferation and, conversely, increasing

chromatin accessibility to tissue-specific genes. It is well

established that the Polycomb group (PcG) genes play key roles

in ‘‘locking’’ the chromatin state during cell specification and

differentiation [53,54]. Intriguingly, both the pRB and Hippo

pathways were linked to the regulation of chromatin structure in

Drosophila. For example, RBF was shown to directly regulate

chromatin condensation [55], while the Hpo and Wts kinases

Figure 6. Cells lacking rbf and wts fail to maintain the
differentiated state even in the absence of inappropriate
proliferation. (A) rbf120a wtsx1 de2f1729 triple mutant cells failed to
proliferate posterior to the SMW as revealed by BrdU labeling. (B) The
number of Sens positive cells remained reduced in the posterior of the
rbf120a wtsx1 de2f1729 triple mutant tissue.
doi:10.1371/journal.pgen.1000918.g006
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genetically and physically interact with Polycomb Group proteins

(PcG) [25]. Thus, it is tempting to speculate that the

dedifferentiation of photoreceptors in rbf wts double mutants

could be the result of alterations in gene expression due to

aberrant epigenetic changes in cells lacking functional pRB and

Hippo pathways.

Figure 7. Aberrant Yki activity is not sufficient to trigger dedifferentiation of rbf mutant cells. (A) In the posterior of the wild-type eye
imaginal disc, Yki (magenta) is mainly present in interommatidial cells and excluded from differentiating photoreceptors (marked by Senseless
(green)). (B,C) Yki is localized in the nuclei (marked by DAPI (blue)) of rbf120a wtsX1 double mutant cells (B) and rbf120a e2f1729 wtsX1 triple mutant cells
(C). Clones of mutant cells are marked by the lack of GFP and outlined. (D,E) Expression of a constitutively active YkiS168A in the posterior
compartment of a wild-type eye disc using a GMR-Gal4 driver drives inappropriate cell divisions of interommatidial cells (pH3 (green)), but has no
effect upon differentiated ommatidial cells (Elav (blue), Senseless (red)) (D). In contrast, expression of a constitutively active YkiS168A in the posterior
compartment of a rbf120a hemizygous disc using a GMR-Gal4 does drive postmitotic photoreceptors into the cell cycle, as seen by co-localization of
pH3 with Sens and Elav positive cells (white). However, this does not cause dedifferentiation of rbf mutant cells since cells still retain expression of
both Sens and Elav in the most posterior regions (E).
doi:10.1371/journal.pgen.1000918.g007
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Materials and Methods

Fly stocks
All crosses were done at room temperature unless otherwise

stated.

rbf1120a ey-FLP / Y; 82BFRT de2f1729 wtsX1 / 82B FRT [Ubi-

GFP]

rbf1120a ey-FLP / Y; 82BFRT wtsX1 / 82B FRT [Ubi-GFP]

rbf1120a ey-FLP / Y; 42DFRT hpoMGH4 / 42DFRT [Ubi-GFP]

rbf1120a ey-FLP / Y; GMR-Gal4,UAS-p35 / UAS-YkiS168A

rbf1120a ey-FLP / +; GMR-Gal4,UAS-p35 / UAS-YkiS168A

rbf1120a ey-FLP / Y; GMR-Gal4,UAS-p35 / +; 82BFRT wtsX1 / 82B

FRT [Ubi-GFP]

rbf114 FRT19A / [Ubi-GFP] FRT 19A; ey-FLP / +; 82BFRT wtsX1

/ 82B FRT [Ubi-GFP]

rbf114 FRT19A / [Ubi-GFP] FRT 19A; ey-FLP / +
ey-FLP / +; 82BFRT wtsX1 / 82B FRT [Ubi-GFP]

rbf1120a hs-FLP / Y; 82BFRT wtsX1 / 82B FRT [Ubi-GFP]

rbf1120a hs-FLP / Y; 82BFRT tscf01910 / 82B FRT [Ubi-GFP]

rbf1120a hs-FLP / Y; 82BFRT tsc3 / 82B FRT [Ubi-GFP]

hs-FLP / Y; 82BFRT tscf01910 / 82B FRT [Ubi-GFP]

hs-FLP / Y; 82BFRT tsc3 / 82B FRT [Ubi-GFP]

hs-FLP / Y; 82BFRT wtsX1 / 82B FRT [Ubi-GFP]

Heatshock treatment
To generate adult and larval rbf wts and rbf tsc double mutant

tissue, and wts or tsc single mutant tissue, clones were induced

48 hr AED for 20 minutes at 37uC, and then larvae were grown at

25uC.

Immunohistochemistry
Antibodies used were as follows: guinea pig anti-Senseless

1:2000 (from H. Bellen), rabbit anti-Yki 1:800 (from K. Irvine), rat

anti-ELAV 1:200 (DSHB), mouse anti-Nrg 1:100 (DSHB), mouse

anti-Eya 1:100 (DSHB), mouse anti-Scabrous 1:30 (DSHB), mouse

anti-Rough 1:100 (DSHB), mouse anti-Cut 1:200 (DSHB), rabbit

anti-Atonal 1:2000 (from Y. Jan), rabbit anti-C3 (Cleaved

Caspase3) 1:100 (Cell Signaling), mouse anti-BrdU 1:50 (Beckton

Dickinson), rabbit anti-phosH3 1:175 (Upstate), mouse anti-RBF1

1:20, and Cy3, Cy5 conjugated anti-mouse, anti-rabbit, anti-rat,

and anti-guinea pig secondary antibodies (Jackson Immunola-

boratories).

Larval and pupal tissues were fixed in 4% formaldehyde +1X

phosphate-buffered saline for 35 minutes on ice, washed in 1X

phosphate-buffered saline two times for 5 min on ice, then

permeabilized in 1X phosphate-buffered saline +0.3% Triton-

X100 three times for 5 minutes each, and then incubated with

antibodies overnight at 4uC in phosphate-buffered saline, 10%

normal goat serum, and 0.3% Triton-X100. After the overnight

incubation, samples were washed in 1X phosphate-buffered saline

+ 0.1% Triton-X100 three times for 5 minutes each at room

temperature. Samples were then incubated with appropriate

conjugated secondary antibodies for 1 hour at room temperature

in phosphate-buffered saline, 10% normal goat serum, and 0.3%

Triton-X100. Finally, samples were washed five times for 5

minutes each at room temperature in 1X phosphate-buffered

saline + 0.1% Triton-X100 before being stored in glycerol +
antifade reagents and then mounted on glass slides.

To detect S phases dissected larval eye discs were labeled with

BrdU for 2 hrs at room temperature and then the eye discs were

fixed overnight in 1.5% formaldehyde + 1X phosphate-buffered

saline + 0.2% Tween220 at 4uC. Samples were then digested with

DNAase (Promega) treatment for 30 minutes at 37uC. Samples

were then treated with primary and secondary antibodies as

described above. All immunoflourescence was done on a Zeis

Confocal microscope and images were prepared using Adobe

Photoshop CS4. All images are confocal single plane images unless

otherwise stated as projection images.

Quantification methods
Figure 1Ei. Percentages represent absolute values for each

category (0, 1, 2 Senseless) per genotype (100% being the

maximum combined for all three categories). Counting was

done in 8 individual discs and total numbers of mutant clusters

counted was 231 and 280 clusters for the wild-type. A cluster was

counted if it was within the area of the eye disc from 3 Elav

positive columns behind the morphogenetic furrow to the

posterior edge of the disc. In this position of a wild-type disc

refinement, resolution, and recruitment of the R8 cell has ceased.

A Student’s t-Test using the parameters of two samples, one-tail,

and unequal variance was used to determine statistical

significance.

Figure 3D. Percentages represent absolute value for each

category per genotype (100% being the total of the combined

values for all eight categories). Counting was done in 8 individual

discs for the rbf wts double mutant and 6 individual discs for each

other genotype. Total numbers of clusters counted was as follows:

rbf wts double mutant was 231

rbf single mutant 140

wts single mutant 90

wild-type 138

A cluster was counted if it was within the area of the eye disc

from 3 Elav positive columns behind the morphogenetic furrow to

the posterior edge of the disc. In this position of a wild-type disc

the recruitment of the first 5 R-cells has been achieved and the

ensuing R6, R1, and R7 cell will take place. So a range of cluster

size of will be between five and seven Elav positive cells. A

Student’s t-Test using the parameters of two samples, one-tail, and

unequal variance was used to determine statistical significance

between each mutant genotype and wild-type.

Supporting Information

Figure S1 rbf hpo double mutants have defects in differentiation.

All images are projection images. (A) Photoreceptors differentiate

normally in clones of hpoMHG4 mutant cells, as seen by Senseless

(Sens) (red) and Elav (blue) expression. (B) The number of Sens

positive cells is reduced in the posterior of the rbf120a hpoMHG4

mutant clones. White arrows point to Elav positive clusters of cells

that lack any Sens positive cell. Elav expression reveals an

incomplete complement of photoreceptors in the posterior of the

double mutant tissue.

Found at: doi:10.1371/journal.pgen.1000918.s001 (1.22 MB

TIF)

Figure S2 rbf wts double mutants have defects in differentiation.

All images are projection images. Reduced number of Elav (A) and

Sens (B) positive cells in the posterior of the rbf14 wtsx1 double

mutant tissue. RBF antibody was used to detect rbf mutant cells.

(A) Clones of four different genotypes generated by the FLP/FRT

system can be found: rbf+/+ wts+/+ is marked by the presence of

RBF (red) and GFP (green) and is outlined in white; rbf+/+ wts-/- is

marked by the presence of RBF and reduced level of GFP and is

outlined in yellow; rbf-/- wts+/+ is marked by the presence of GFP

and the absence of RBF and is outlined in magenta; rbf-/- wts-/- is

marked by both the absence of GFP and the absence of RBF. (B)

The eye disc is almost entirely comprised of rbf14 wtsx1 double

mutant tissue. The wild-type tissue can be identified in the upper
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portion of the image by the presence of GFP and a normal spacing

between Sens (red) positive cells.

Found at: doi:10.1371/journal.pgen.1000918.s002 (1.52 MB TIF)

Figure S3 rbf wts double mutant ommatidial cells can be refined

and recruited properly, but fail to maintain a differentiated state.

All images are projection images. R2/R5 photoreceptors differ-

entiate following differentiation of R8. Expression of the R8

marker Sens (blue) and the R2/R5 marker Ro (red) in a wild-type

eye disc (A) and in eye discs containing clones of rbf120a wtsx1 (B)

and rbf14 wtsx1 (C) double mutant cells. In a wild-type disc, a pair of

Ro positive cells can be found next to a single Sens positive cell.

The number of Ro positive cells is reduced in the posterior of the

double mutant clone. Multiple examples of a single Ro positive cell

in rbf14 wtsx1 double mutant tissue can be identified and are

pointed at by arrows in (C).

Found at: doi:10.1371/journal.pgen.1000918.s003 (1.99 MB TIF)

Figure S4 Lack of apoptosis in the posterior of rbf wts de2f1 triple

mutant tissue. (A) No apoptotic cells were detected in the posterior

of rbf120a wtsx1 de2f1729 triple mutant cells. (B) A known Hippo

pathway target dIAP1 remains elevated in rbf120a wtsx1 de2f1729

triple mutant cells.

Found at: doi:10.1371/journal.pgen.1000918.s004 (1.25 MB TIF)
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