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Abstract

Fragile X syndrome (FXS), the most common form of inherited mental retardation, is caused by the loss of functional fragile
X mental retardation protein (FMRP). FMRP is an RNA–binding protein that can regulate the translation of specific mRNAs.
Adult neurogenesis, a process considered important for neuroplasticity and memory, is regulated at multiple molecular
levels. In this study, we investigated whether Fmrp deficiency affects adult neurogenesis. We show that in a mouse model of
fragile X syndrome, adult neurogenesis is indeed altered. The loss of Fmrp increases the proliferation and alters the fate
specification of adult neural progenitor/stem cells (aNPCs). We demonstrate that Fmrp regulates the protein expression of
several components critical for aNPC function, including CDK4 and GSK3b. Dysregulation of GSK3b led to reduced Wnt
signaling pathway activity, which altered the expression of neurogenin1 and the fate specification of aNPCs. These data
unveil a novel regulatory role for Fmrp and translational regulation in adult neurogenesis.
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Introduction

Fragile X syndrome, one of the most common forms of inherited

mental retardation, is caused by the functional loss of fragile X

mental retardation protein (FMRP/Fmrp) [1]. Patients with fragile

X syndrome show an array of deficits in motor control, cognition,

learning, and memory, although their overall brain morphology is

generally normal. Fmrp is a selective RNA-binding protein that

forms a messenger ribonucleoprotein (mRNP) complex that can

associate with polyribosomes. Evidence suggests that Fmrp is

involved in the post-transcriptional regulation of protein synthesis

[2–4]. Studies from both human patient brain tissues and Fmrp

mutant mice suggest that Fmrp is involved in synaptic plasticity

and dendritic development. Fmrp mutant mice are found to

perform poorly in highly challenging learning tests [5], particularly

the hippocampus-dependent trace learning test [6,7], suggesting

that Fmrp is necessary especially for complex learning that requires

an intact hippocampus. However, how the functional deficiency of

Fmrp results in learning and memory deficits remains unclear.

Neurogenesis persists throughout life in two germinal zones, the

subgranular zone (SGZ) in the dentate gyrus (DG) of the

hippocampus and the subventricular zone (SVZ) of the lateral

ventricles. The neurons produced in the DG during adulthood are

known to integrate into the existing circuitry of the hippocampus,

and young neurons show greater synaptic plasticity than mature

neurons under identical conditions [8,9]. Although the specific

purpose of adult neurogenesis is still being debated, mounting

evidence points to an important role in adult neuroplasticity

[9–11]. It has been suggested that new neurons in the DG are

critical for hippocampus-dependent learning [10,12,13]. Indeed,

blocking of adult neurogenesis using generic anti-proliferative

drugs or radiation can lead to deficits in learning and memory

[14–16]. More recent direct evidence has come from inducing the

death of new neurons in the hippocampus [17–19] and from

inhibiting the Wnt signaling pathway in the hippocampus using

retrovirus [20]. Adult neurogenesis is regulated at many levels by

both extrinsic factors, such as physiological and pathological

conditions, and intrinsic factors, such as genetic and epigenetic
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programs [21]. Although both adult hippocampal neurogenesis

and learning are altered in several pathological conditions, such as

stress, diabetes, neurological diseases, strokes, and traumatic

injuries, the link between adult neurogenesis and mental

retardation, a deficiency in learning and memory, remains elusive

[9–11].

The cellular basis of adult neurogenesis is adult neural

progenitor/stem cells (aNPCs). The maintenance and differen-

tiation of aNPCs are tightly controlled by intricate molecular

networks [22]. Despite exhaustive efforts devoted to under-

standing transcriptional regulation in adult neurogenesis, the

role of translational control by RNA-binding proteins, such as

Fmrp, has gone largely unexplored. Recently, Fmrp was found

to be required for the maintenance of Drosophila germline stem

cells [23]; however, its function in mammalian embryonic

neurogenesis is controversial [24,25]. Whether and how Fmrp

regulates neural stem cells in the adult mammalian brain and

the implications for learning and memory have not been

established.

Here we show that loss of Fmrp in vitro and in vivo led to altered

adult neurogenesis and impaired learning. Fmrp-deficient aNPCs

displayed increased proliferation and decreased neuronal differ-

entiation, but increased glial differentiation. We identified specific

mRNAs regulated by Fmrp in stem cell proliferation and

differentiation, including glycogen synthase kinase 3b (GSK3ß),

a negative regulator of ß-catenin and the canonical Wnt signaling

pathway that has been implicated in adult neurogenesis [26,27].

The loss of Fmrp resulted in reduced ß-catenin levels and a

defective Wnt signaling pathway, which in turn led to the

downregulation of neurogenin1 (Neurog1), which is an early

initiator of neuronal differentiation and an inhibitor of astrocyte

differentiation [28,29]. These data not only reveal a novel

regulatory role for Fmrp in adult neurogenesis, but also provide

direct evidence that adult neurogenesis could be a factor in the

pathogenesis of fragile X mental retardation.

Results

Loss of Fmrp alters the proliferation and fate
specification of aNPCs

To investigate the role of Fmrp in adult neurogenesis, we

determined the expression pattern of Fmrp in the dentate gyrus

(DG) of the adult hippocampus using cell type-specific markers.

Consistent with published literature [30,31], Fmrp was enriched in

a majority of the granule neurons in the DG (Figure S1A), but was

undetectable in either GFAP-positive or S100b-positive astrocytes

(Figure S1B and S1C). Using markers specific to immature neural

progenitors (NPCs) and young neurons, we discovered that Fmrp

was also expressed in Sox2 and Nestin double-positive NPCs

(Figure 1A), as well as in either NeuroD1-postive or doublecortin

(DCX)-positive newly generated neurons (Figure 1B and 1C). The

presence of Fmrp in these immature cells supports a potential

function of this protein in adult neurogenesis.

To determine the functions of Fmrp in aNPCs, we isolated

aNPCs from both the forebrain and the dentate gyrus (DG) of

adult Fmr1 knockout (KO) mice and wild-type (WT) controls. Due

to the difficulty of obtaining large numbers of the DG aNPCs, we

performed all functional assays first using forebrain aNPCs, and

then confirmed our findings using the DG aNPCs. As shown

below, we found that both the forebrain aNPCs and the DG

aNPCs yielded similar results. Nearly all cultured aNPCs were

positive for the progenitor markers Nestin and Sox2 (Figure 1D),

suggesting a relative homogeneity of these primary aNPCs. Fmrp

was expressed in WT aNPCs, but not in Fmr1 KO aNPCs

(Figure 1E). We pulsed the cells with BrdU for eight hours to assess

Figure 1. Fmrp is expressed in aNPCs and new neurons in the
adult DG, and the loss of Fmrp leads to increased aNPC
proliferation. (A) Fmrp is expressed in Sox2 (white) and Nestin (green)
double-positive NPCs (arrowheads) in the granule neurons of the adult
hippocampus. Arrowhead points to a positive cell located at the
subgranular zone adjacent to the hilar region. (B,C) Fmrp is expressed in
doublecortin (DCX)-positive (B, green) and NeuroD1-postive (C, green)
newly generated neurons. Asterisks identify positive cells located at the
subgranular zone adjacent to the hilar region. (A–C, Fmrp, red; Dapi,
blue; Scale bars = 10 mm;). (D) aNPCs cultured under proliferating
conditions expressed the neural progenitor markers Nestin (cytoplasmic,
red) and Sox2 (nuclear, green; Dapi in blue). (E) Proliferating WT aNPCs,
but not Fmr1 KO aNPCs, expressed Fmrp. (F) Both WT and KO aNPCs
incorporate the thymidine analog, BrdU, under proliferating conditions
(BrdU, red; Dapi, blue; (D,F), Scale bars = 50 mm). (G) Quantitative
analysis showing that a higher percentage of Fmr1 KO aNPCs
incorporated BrdU. (*, p,0.05; n = 3; Student’s t-test; mean 6 SEM).
doi:10.1371/journal.pgen.1000898.g001

Author Summary

Fragile X syndrome, the most common cause of inherited
mental retardation, results from the loss of functional
Fragile X mental retardation protein (FMRP). FMRP is an
RNA–binding protein and is known to bind to specific
mRNAs and to regulate their translation both in vitro and
in vivo. Adult neurogenesis, a process considered impor-
tant for neuroplasticity and memory, is regulated at
multiple molecular levels. Here we show that Fmrp could
regulate the proliferation and fate specification of adult
neural progenitor/stem cells (aNPCs). These data unveil a
novel regulatory role for Fmrp in adult neurogenesis.

FMRP in Adult Neurogenesis
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the proliferation of these aNPCs (Figure 1F) and found that Fmr1

KO aNPCs exhibited twice as much BrdU incorporation as WT

aNPCs (Figure 1G). We further analyzed the cell cycle profiles of

aNPCs and found that more Fmr1 KO cells were in mitotic (G2/

M) phase compared with WT controls (Figure S2, 11% higher;

n = 3, p,0.02). Hence a lack of functional Fmrp led to a rise in the

proliferative capability of aNPCs.

To assess the effect of Fmrp on aNPC differentiation, both WT

and Fmr1 KO forebrain aNPCs were differentiated for three days,

and the phenotypes of differentiated cells were determined using

several independent assays. First, differentiated cells were stained

using cell lineage-specific antibodies, b-III tubulin (Tuj1) for

neurons and glial fibrillary acidic protein (GFAP) for astroglia

[32,33]. Both WT and Fmr1 KO aNPCs could be induced to

differentiate into neurons and astrocytes (Figure 2A and 2B);

however, Fmr1 KO aNPCs exhibited a 60.4% decrease in

neuronal differentiation (Figure 2C) and a 74.9% increase in

astrocyte differentiation (Figure 2D) compared with WT aNPCs.

Under our culture conditions, only differentiated astrocytes, not

proliferating aNPCs, expressed GFAP (data not shown). To

validate our immunocytochemical data, we then assessed the

neuronal differentiation of aNPCs by measuring the promoter

activity of a pan-neuronal transcription factor, neurogenic

differentiation 1 (NeuroD1), and astrocyte differentiation by

measuring the promoter activity of GFAP using two well-

characterized promoter constructs [34–37]. We found that in

Fmr1 KO aNPCs, NeuroD1 promoter activity decreased by 31.4%

(Figure 2E), whereas GFAP promoter activity increased by 73.4%

(Figure 2F), which is consistent with our immunocytochemistry

results. Finally, using real-time quantitative PCR, we further

demonstrated that differentiating Fmr1 KO aNPCs had 17.8%

reduced NeuroD1 mRNA (Figure 2G, n = 3, p,0.05), but 1.56-fold

increased GFAP mRNA (Figure 2H; n = 3, p,0.05) levels. Since

the above three methods, immunostaining, promoter activity

assay, and real-time PCR, yielded consistent results, we used these

assays as interchangeable methods for assessing aNPC differenti-

ation in subsequent experiments. The increased proportion of

astrocytes in differentiating Fmr1 KO aNPCs was not due to an

increased proliferation of newly differentiated astrocytes, because

GFAP+ astrocytes differentiated from Fmr1 KO aNPCs did not

incorporate more BrdU compared with those from WT aNPCs

(data not shown). The differentiation to oligodendrocytes was no

different between Fmr1 KO and WT aNPCs (data not shown).

To confirm that the altered fate specification of Fmr1 KO

aNPCs was due to the loss of functional Fmrp, we used siRNA

(Fmr1-siRNA, Figure S3) to knock down Fmrp expression in WT

aNPCs. We found that acute knockdown of Fmrp expression in

WT aNPCs led to both reduced NeuroD1 (Figure 2I, left, n = 4,

p,0.05) and Tuj1 (Figure 2I, middle, n = 4, p,0.001) mRNA

levels, as well as diminished NeuroD1 promoter activity

(Figure 2I, right, n = 6, p,0.05) compared with aNPCs

transfected with a nonsilencing control siRNA (NC-siRNA).

On the other hand, acute knockdown of Fmrp resulted in

increased mRNA levels of both GFAP (Figure 2J, left; n = 4

p,0.01) and another astrocyte marker aquaporin4 [38,39]

(Figure 2J, middle, n = 4, p,0.001), as well as enhanced GFAP

promoter activity (Figure 2J, right, n = 6, p,0.05). Furthermore,

exogenously expressed WT Fmrp, but not mutant (I304N)

Fmrp, which is unable to bind polyribosomes [40], rescued both

the neuronal (Figure 2K) and the astrocyte (Figure 2L)

differentiation deficits associated with Fmr1 KO cells.

We then confirmed that aNPCs isolated from Fmr1 KO DG had

similar reductions in neuronal differentiation and increases in

astrocyte differentiation (Figure S4A, S4B, S4C, S4D) as Fmr1 KO

aNPCs derived from forebrain. In addition, acute knockdown of

Fmrp in the WT DG aNPCs resulted in phenotypes in neuronal

and astrocyte differentiation (Figure S4E, S4F, S4G, S4H) similar

to those we observed in forebrain aNPCs. Together, these results

suggest that the loss of Fmrp alters both the proliferation and fate

specification of aNPCs.

Loss of Fmrp alters adult neurogenesis in vivo
To investigate the role of Fmrp in adult neurogenesis in vivo, we

assessed the proliferation, survival, and differentiation of endog-

enous aNPCs in both WT and Fmr1 KO mice. Newborn cells were

distinguished by the incorporation of BrdU administered through

intraperitoneal injections into adult mice using two cohorts of mice

(Figure 3A). Cohort 1 animals (Figure 3C) had the same injection

paradigm as those mice used for the differentiation assay (Figure 4);

therefore, they were used to assess new cell survival. Cohort 2

animals were used to evaluate cell proliferation in the DG.

Quantitative histological analysis at one day following a seven-day

regimen of daily BrdU injection (Cohort 1) showed that Fmr1 KO

mice had 52.0% more BrdU-positive cells compared with WT

mice (Figure 3C). To further assess the proliferation of aNPCs

without the confound of cell survival in Fmr1 KO mice, we gave

mice six doses of BrdU injection within 24 hours to label the entire

proliferating population in the DG based on a published paradigm

[41] and analyzed the mice at four hours after the last BrdU

injection (Figure 3D, Cohort 2). We found that Fmr1 KO mice had

53.2% more BrdU-positive cells compared with WT mice

(Figure 3D, p,0.001). Since the volume of the DG is also

increased in Fmr1 KO mice (Figure 3E, p,0.05) and the above

data were normalized to the DG volume, the total number of

BrdU-positive cells was even higher in KO mice compared with

WT controls. It has been shown that the adult DG contains at least

two types of proliferating immature cells that can be labeled by

BrdU: one type is GFAP+ and Nestin+ (Figure 3F lower panel)

and might be stem cells, whereas the other type is GFAP2 and

Nestin+ (Figure 3F upper panel) and more likely to be progenitor

cells [10,42]. To determine which types of cells exhibited increased

BrdU incorporation in Fmr1 KO mice, we stained the brain

sections with antibodies against BrdU, GFAP, and Nestin

(Figure 3F). We found that the Fmr1 KO DG had increased

BrdU incorporation in both the Nestin+/GFAP2 cell population

(Figure 3G, 40.8% increase, p,0.05) and the Nestin+/GFAP+ cell

population (Figure 3H, p,0.001, 1.2-fold increase). The prolifer-

ation of astrocytes (BrdU+, GFAP+, Nestin2 cells) was no

different between WT and Fmr1 KO mice (data not shown). Cell

proliferation in the SVZ was also 1.1-fold higher in Fmr1 KO mice

(p,0.05). Thus Fmrp deficiency may lead to increased prolifer-

ation of both stem and progenitor cells.

The long-term survival and differentiation of BrdU-labeled cells

was evaluated by analyzing the labeled cells at four weeks after

BrdU injections (Figure 4A–4C). The number of BrdU+ cells at

four weeks post-injection was no different between WT and Fmr1

KO mice (Figure 4D); therefore, the percentage of BrdU+ cells

that survived from one day to four weeks post-BrdU administra-

tion is significantly lower in Fmr1 KO mice compared with WT

mice (Figure 4E, p,0.05). Hence Fmrp deficiency may also lead to

reduced survival of young neurons.

Since we observed altered neuronal and astrocyte differen-

tiation of Fmr1 KO aNPCs in vitro (Figure 2), we then used

triple fluorescence immunostaining with antibodies for mature

neurons (NeuN) and astrocytes (S100b) to further determine

the fate of differentiated aNPCs in vivo (Figure 4B and 4C).

Consistent with our in vitro observation, we found that in Fmr1

KO mice, the percentage of BrdU+ cells that are NeuN+

FMRP in Adult Neurogenesis
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neurons was 10.4% lower (Figure 3F, p,0.05), whereas the

percentage of BrdU-positive cells that are S100b+ astrocytes

was 75.7% higher compared with WT mice (Figure 4G,

p,0.05). In addition, the expression levels of NeuroD1 and

Neurog1, two transcription factors expressed in new neurons,

were also reduced in the hippocampus of Fmr1 KO mice

(Figure S5, n = 3, p,0.05). Therefore, the loss of Fmrp leads to

reduced neuronal differentiation but greater glial differentia-

tion in aNPCs residing in the DG. These in vivo data along with

our in vitro results suggest that Fmrp indeed plays important

Figure 2. Loss of Fmrp leads to decreased neuronal differentiation but increased astrocyte differentiation. (A,B) Sample
immunostained cells using cell lineage markers for quantitative cell fate determination shown in (C,D). Both WT (A) and Fmr1 KO (B) aNPCs could
differentiate into Tuj1+ (red) neurons and GFAP+ (green) astrocytes. (Scale bar = 50 mm; DAPI, nuclear staining, blue). (C,D) Quantitative analyses of
differentiated aNPCs demonstrate that Fmr1 KO aNPCs differentiated into fewer Tuj1+ neurons (C, n = 4; p,0.01) but more GFAP+ astrocytes (D, n = 6,
p,0.05). Quantification was performed using an unbiased stereology method. (E,F), Luciferase reporter assay showing that differentiating Fmr1 KO
aNPCs had decreased NeuroD1 (E; n = 4, p,0.01), but increased GFAP (F, n = 3, p,0.05) promoter activities compared with WT aNPCs. A co-
transfected Renilla luciferase (R-Luc) plasmid was used as a transfection control. (G,H), Real-time PCR assays showing that Fmr1 KO aNPCs had
decreased NeuroD1 mRNA levels (G; n = 3, p,0.05), but increased GFAP mRNA levels (H, n = 3, p,0.05) upon differentiation. The relative mRNA levels
were in comparison with GAPDH mRNA. (I,J), Acute knockdown of Fmrp expression in WT aNPCs using siRNA led to decreased neuronal
differentiation (I; left NeuroD1; middle, Tuj1; right, NeuroD1-promoter), but increased astrocyte differentiation (J; left GFAP; middle, aquaporin4; right,
GFAP-promoter); (K,L), Exogenously expressed WT Fmrp, but not mutant (I304N) Fmrp, could enhance neuronal differentiation (K) and repress
astrocyte differentiation (L) in Fmr1 KO aNPCs. GAPDH mRNA levels were used as internal controls for real-time PCR analyses. Data are presented as
mean 6 SEM; *, p,0.05, **, p,0.01, ***, p,0.01, Student’s t-test.
doi:10.1371/journal.pgen.1000898.g002
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roles in regulating the differentiation and proliferation of

aNPCs.

Fmrp regulates the mRNAs of critical factors involved in
aNPC proliferation and differentiation

As an RNA-binding protein, Fmrp is known to bind to a

subset of specific mRNAs and suppress their translation [43].

To identify the mRNAs that are regulated by Fmrp in aNPCs,

we employed the strategy of specifically immunoprecipitating

Fmrp-containing mRNP particles and identifying the copur-

ified mRNAs by probing expression microarrays, which we

established previously [44]. Due to the large quantity of

cells needed, we only used forebrain aNPCs derived from WT

and Fmr1 KO mice for immunoprecipitation with an antibody

that could specifically precipitate Fmrp (Figure 5A). Both

immunoprecipitated and input RNAs were used to probe

Affymetrix arrays (data not shown). The mRNAs of interest

were further confirmed to be associated with Fmrp by

independent IP and real-time PCR (Figure 5B). Among these

mRNAs, we found several already known to be regulated

by Fmrp, such as MAP1B [2] and EF1a [3], confirming the

specificity of our assay (Figure 5B and 5C). Also among the

identified mRNAs, we found two key factors well established as

enhancers of cell cycle progression, cyclin-dependent kinase 4

(CDK4) and cyclin D1. Their specific association with Fmrp

was further confirmed by additional IP and RT-PCR

(Figure 5B). We therefore examined the expression levels of

CDK4 and cyclin D1 in both WT and Fmr1 KO aNPCs.

Though there was no significant change in the mRNA levels

(Figure S6B), the loss of Fmrp led to higher protein levels of

both genes (Figure 5C, Figure S6). Both CDK4 and cyclin D1

expression levels are important for the proliferation of neural

Figure 3. Loss of Fmrp alters the proliferation of neural stem and progenitor cells in vivo. (A) Experimental scheme for assessing cell
proliferation in the adult hippocampus. Cohort 1 animals had the same injection paradigm as Figure 4 and were therefore used to assess new
cell survival. Cohort 2 animals were used to evaluate cell proliferation in the DG. (B) Examples of WT and Fmr1 KO brain sections stained with
an antibody against BrdU (red) and DAPI (blue) for in vivo neurogenesis analyses (scale bar = 100 mm). (C) The dentate gyrus (DG) of Fmr1 KO
mice exhibited increased BrdU+ cells analyzed at one day after a 7-day regimen of daily BrdU injections, suggesting increased proliferation
(Cohort 1: n = 3 WT; n = 4 KO). (D) At 4 hours post-BrdU injection (6 injections within 24 hours), the number of BrdU+ cells normalized to
volume of the DG was also higher in Fmr1 KO mice (p,0.05). (D–I, Cohort 2: n = 7 WT; n = 6 KO). (E) Fmr1 KO mice also had increased DG
volume (size) (p,0.05). (F) Single intensity projection confocal z-series showing two different types of BrdU+ cells in the DG of the
hippocampus. Upper panel, BrdU+ (red), Nestin+ (green), and GFAP2 (blue) progenitor cells; Lower panel, BrdU+ (red), Nestin+ (green), and
GFAP+ (blue) stem-like cells. (G) The DG of Fmr1 KO mice exhibited increased proliferation of progenitor (BrdU+ Nestin+, GFAP2) cells analyzed
at 4 hours following 6 BrdU injections within a 24-hour period. (H) The DG of Fmr1 KO mice exhibited increased proliferation of stem (BrdU+

Nestin+, GFAP+) cells analyzed at 4 hours after 6 BrdU injections within a 24-hour period. (n = 7 WT; n = 6 KO). Data are presented as mean 6
SEM; *, p,0.05, **, p,0.01, ***, p,0.01, Student’s t-test.
doi:10.1371/journal.pgen.1000898.g003
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progenitors [45,46,47,48]. We found that a chemical inhibitor

of CDK4 could partially rescue the proliferation phenotype

of Fmr1 KO aNPCs (Figure S6C). Hence increased expression

of CDK4 and cyclin D1 as a result of Fmrp deficiency could be

responsible for the increased proliferation of Fmr1 KO aNPCs.

We also noticed that the mRNA of GSK3ß, known to be

involved in the Wnt signaling pathway, could be coimmunopre-

cipitated with Fmrp from aNPCs. We confirmed the specific

association between Fmrp and the mRNA of GSK3ß using

additional Fmrp IP coupled to real-time PCR (Figure 5B).

Furthermore, we confirmed that the loss of Fmrp led to increased

protein levels of GSK3b (Figure 5C) and reduced protein levels of

ß-catenin (Figure S7), a downstream target of GSK3b in

proliferating Fmr1 KO aNPCs.

Loss of Fmrp alters the activity of the Wnt signaling
pathway in adult neurogenesis

To determine whether Fmrp could regulate the translation of

GSK3b protein, we cloned the 39 untranslated region (39UTR) of

GSK3b and inserted it into the 39 region of the Renilla luciferase

coding sequence, such that the translation of Renilla luciferase

could be regulated by the 39UTR of GSK3b. Upon transfection of

Figure 4. Loss of Fmrp alters the differentiation of neural stem and progenitor cells in vivo. (A) Experimental scheme for assessing new
cell survival and differentiation in the adult hippocampus. (B,C) Sample confocal images showing newborn cells that had differentiated into NeuN+

neurons (B, asterisk) or S100b+ astrocytes (C, asterisk). Asterisks, but not arrowheads, indicate BrdU+ cells that have differentiated into either a neuron
(H) or an astrocyte (E). (D) At 4 weeks post-labeling, BrdU+ cells in the Fmr1 KO DG were no different from WT mice (n = 7 WT; n = 9 KO). (E) At 4 weeks
post-BrdU injection, brains were analyzed for survival of newborn cells in the DG. The ratio of BrdU+ cells at 4 weeks post-injection (numbers used for
D) over 1 day post-injection (average of BrdU+ cells shown in Figure 3D) indicated that Fmr1 KO mice had fewer surviving newborn cells in the DG.
(F,G) Quantitative analysis indicated that newborn cells in Fmr1 KO mice differentiated into a lower percentage of neurons (F) but a higher
percentage of astrocytes (G) compared with WT mice (n = 9 WT; n = 9 KO). All data are shown as mean 6 SEM, and Student’s t-test was used for all the
analyses. *, p,0.05, **, p,0.01 ***, p,0.001.
doi:10.1371/journal.pgen.1000898.g004

FMRP in Adult Neurogenesis
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this construct into Fmr1 KO and WT aNPCs, we observed

significantly higher Renilla luciferase activity in Fmr1 KO aNPCs

compared with WT aNPCs, suggesting that the 39UTR of GSK3ß

leads to increased translational activity in Fmr1 KO cells (Figure

S7A). To further ensure that this increased protein level was due to

increased translation rather than reduced protein stability of

GSK3b in Fmr1 KO cells, we treated Fmr1 KO and WT aNPCs

with the protein synthesis inhibitor cycloheximide over a 24-hour

period. We found that, even though the GSK3b protein level was

higher in the KO cells (time 0 h), there was no significant

difference in the rate of GSK3b protein degradation between WT

and KO aNPCs (Figure S7B). Therefore, these data suggest that

Fmrp regulates the protein translation of GSK3b.

The canonical Wnt pathway is known to be critical for adult

neurogenesis, but the downstream effectors have been a mystery

[20,26]. Since Fmrp was able to regulate the translation of

GSK3b, we further investigated whether the activity of the Wnt

pathway was altered in Fmr1 KO aNPCs. GSK3b is known to

phosphorylate and promote the proteasome degradation of ß-

catenin, a central player in the Wnt signaling pathway. We

therefore chose to examine the expression of ß-catenin in aNPCs.

In both proliferating and differentiating aNPCs, we observed

increased GSK3b protein levels (Figure 5C) and decreased

expression of ß-catenin (Figure 6A and Figure S7C). Hence Fmrp

may promote adult neurogenesis by regulating the expression of

GSK3b and subsequently ß-catenin.

In the absence of Wnt, ß-catenin is known to be held in

cytosol and degraded by a collection of regulatory factors, such

as GSK3b [27]. The activation of Frizzled by Wnt leads to

stabilization and nuclear translocation of ß-catenin, which forms

a complex with TCF/LEF transcription factors and induces the

expression of downstream target genes [27]. To confirm that

loss of Fmrp led to the deficit in the Wnt signaling pathway, we

used a well-characterized luciferase reporter system for moni-

toring the activity of the Wnt signaling pathway [26,49]. Upon

growth factor withdrawal and activation by cotransfected

Wnt3a expression vector, Fmr1 KO aNPCs exhibited signifi-

cantly reduced luciferase activity compared with WT aNPCs

(Figure 6B). In addition, expression of Axin2, a downstream

effector of the Wnt signaling pathway, was reduced in the

hippocampus of Fmr1 KO mice (Figure S8). Therefore, the Wnt

signaling pathway is indeed defective in the absence of Fmrp. In

addition, treatment of Fmr1 KO aNPCs with a well-established

GSK3b inhibitor SB216763 [50] could enhance the Wnt

Figure 5. Identification of the mRNAs regulated by Fmrp in aNPCs. (A) Western blotting shows the amount of Fmrp in both input and
immunoprecipitated Fmrp-containing mRNP complexes from both WT and Fmr1 KO aNPCs. (B) The RNAs from Input and from Fmrp-IP of WT and KO
cells were isolated and subjected to cDNA synthesis and real-time PCR quantification. The results confirmed that Fmrp binds to the mRNAs of MAP1B,
EF1a, CDK4, cyclin D1, and GSK3b in WT aNPCs. KO aNPCs and ß-Actin mRNA analyses were used as negative controls. (C) Representative western
blotting image showing the protein expression levels of the target genes of Fmrp in both WT and Fmr1 KO aNPCs. EIF5 was used as a loading control for
MAP1B, and ß-actin was used as a loading control for the others in western blots. Quantification of western blot band intensities is shown in Figure S6A.
doi:10.1371/journal.pgen.1000898.g005
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signaling pathway (Figure S9A) and partially rescue the

neuronal (Figure 6C and 6D) and astrocyte (Figure 6E and

6F) differentiation deficits in aNPCs. Similar results were also

obtained using the DG aNPCs (Figure S9B and S9C).

Interestingly, SB216763 also repressed aNPC proliferation

without affecting cyclin D1 expression levels (Figure S10).

Therefore, Fmrp deficiency leads to reduced Wnt signaling,

which could be responsible for altered aNPC differentiation.

Loss of Fmrp alters the expression of Neurog1 in aNPCs
The basic helix-loop-helix family transcription factor neurogenin1

(Neurog1) can be regulated by Wnt signaling, and its promoter

contains one single classic TCF/LEF binding element [51]. We

therefore assessed the mRNA levels of Neurog1 in Fmr1 KO

proliferating and differentiating aNPCs. Neurog1 was transiently

expressed in differentiating WT aNPCs (Figure 6G), as shown

previously [51]. We found that Neurog1 mRNA levels indeed

Figure 6. Loss of Fmrp leads to a deficit in the Wnt signaling pathway and reduced Neurog1 expression in aNPCs. (A) In differentiating
Fmr1 KO aNPCs (24 hours after initiation of differentiation), the GSK3b protein level was higher and b-catenin protein level was lower compared with
differentiating WT aNPCs. (B) Differentiating Fmr1 KO aNPCs have defective Wnt signaling, as indicated by the level of TCF/LEF-luciferase activity. A
mutant promoter with the TCF/LEF site mutated was used as a negative control (n = 3). (C–F) The GSK3b inhibitor SB216763 (SB) could partially rescue
the reduced neuronal (C,D) and increased astrocyte (E,F) differentiation deficits of Fmr1 KO aNPCs. SB (dissolved in DMSO) was added at initiation of
differentiation at 4 mM. An equal amount of DMSO was added to WT and KO control aNPCs. Cell differentiation was assessed by the relative mRNA
levels of NeuroD1 (C), Tuj1 (D), GFAP (E), and aquporin4 (F). GAPDH mRNA levels were used as an internal control. (G) Real-time quantitative PCR results
show that early differentiating (24 hours) WT aNPCs transiently express high levels of Neurog1 (,10-fold induction compared with 0 hour; n = 4). This
Neurog1 induction is drastically impaired in differentiating (24 hours) Fmr1 KO aNPCs (,26-fold; n = 4). Proliferating aNPCs (0 hour), and later
differentiating (48 hours) cells, expressed a minimal level of Neurog1. Inset, similar results obtained by regular RT-PCR. (H) The Wnt receptor ligand,
Wnt3a, is required for activating the Neurog1 promoter during differentiation. In the presence of Wnt3a, Neurog1 promoter activity was significantly
lower in Fmr1 KO aNPCs compared with WT cells. Neurog1 promoter activity was undetectable in the absence of Wnt3a (n = 3). (I) Exogenously
expressed wild-type Fmr1, but not mutant Fmr1, could promote the Neurog1 transcription as assessed by Neurog1 promoter activities in both Fmr1
KO and WT aNPCs (n = 3). All data are shown as mean 6 SEM, and Student’s t-test was used for all the analyses. *, p,0.05, **, p,0.01***, p,0.001.
doi:10.1371/journal.pgen.1000898.g006
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decreased in Fmr1 KO differentiating aNPCs (Figure 6G). To

determine whether the altered Neurog1 expression resulted from a

Wnt signaling deficit in Fmr1 KO aNPCs, we created a reporter

construct that has a mouse native Neurog1 promoter driving the

expression of luciferase. When transfected into Fmr1 WT and KO

aNPCs that were subjected to differentiation, the Neurog1-luciferase

reporter yielded detectable luciferase activity only in the presence of

Wnt3a (Figure 6H), indicating that this promoter is activated by

Wnt signaling. As expected, we found that Neurog1 promoter activity

was significantly reduced in differentiating Fmr1 KO aNPCs

compared with WT cells (Figure 6H). Furthermore, we could

rescue the Neurog1 promoter activity by expressing the wild-type but

not the mutant Fmr1 in Fmr1 KO aNPCs (Figure 6I). Taken

together, these data suggest that the expression of Neurog1 is

controlled by Fmrp through the Wnt signaling pathway in aNPCs.

Since Neurog1 is an early initiator of neuronal differentiation

and an inhibitor of glial differentiation [28], its downregulation

could be responsible for the reduced neuronal differentiation and

increased glial differentiation seen in Fmr1 KO aNPCs. To test this

possibility, we expressed exogenous Neurog1 in Fmr1 KO

forebrain aNPCs and found that exogenously expressed Neurog1

could rescue the altered fate specification of Fmr1 KO aNPCs, as

assessed by the mRNA levels of neuronal genes (Figure 7A,

NeuroD1 and Tuj1) and astrocytic genes (Figure 7B, GFAP and

aquqporin4), as well as the promoter activity of NeuroD1 and GFAP

(data not shown) in differentiating cells. To further validate the

role of Neurog1 in aNPC differentiation, we acutely knocked

down Neurog1 expression in aNPCs using siRNA (Figure 7C) and

found that acute knockdown of Neurog1 in aNPCs led to

decreased neuronal differentiation (Figure 7D), but increased

astrocyte differentiation (Figure 7E), reminiscent of what we found

in Fmr1 KO aNPCs. Similar results were also obtained using the

DG aNPCs (Figure S11). Therefore, our findings suggest that

Fmrp regulates aNPC fate specification by modulating the activity

of the Wnt/b-catenin signaling pathway and subsequently its

downstream effector, Neurog1 (Figure 7F).

Discussion

In this study we demonstrate that the loss of functional Fmrp in

aNPCs leads to reduced neurogenesis both in vitro and in vivo. We

show that Fmrp regulates the translation of several factors involved

in stem cell proliferation and differentiation, including CDK4,

cyclin D1, and GSK3b. As a result of dysregulation of GSK3b and

the Wnt signaling pathway, the expression level of Neurog1, one of

the Wnt-regulated genes, is reduced, which is likely responsible for

the reduced neuronal differentiation and increased astrocyte

differentiation seen in Fmr1 KO aNPCs. Our data demonstrate

that Fmrp plays profound regulatory roles in adult neurogenesis.

Despite exhaustive efforts devoted to understanding transcrip-

tional regulation in adult neurogenesis, the role of translational

control in adult neurogenesis has gone largely unexplored; yet our

results indicate that translational control is just as important, if not

more so, in the regulation of aNPC functions. We have identified

the molecular pathways by which Fmrp regulates aNPC

proliferation and fate specification. Both a previous study from

another group [52] and our current study found that the mRNAs

of both CDK4 and cyclin D1 could be bound by Fmrp. CDK4

and cyclin D1 are well-characterized cell-cycle regulators in many

cell types [53]. In mammalian neural progenitor cells, increased

cyclin D1 expression is positively correlated with their proliferation

[54], and reduced cyclin D1 levels result in decreased proliferation

[48]. CDK4 has been shown to regulate the proliferation of neural

progenitors in adult brains [47], and inhibition of CDK4 activity

leads to growth arrest in neural progenitors [46]. The fact that we

could rescue the proliferation deficits of Fmr1 KO aNPCs using a

chemical inhibitor of CDK4 supports our model that Fmrp

regulates aNPC proliferation in part through CDK4.

We also found here that Fmrp could bind and regulate the

translation of GSK3b mRNA. As a negative regulator of the Wnt

signaling pathway, GSK3b promotes the degradation of b-catenin

and inhibits the activity of the canonical Wnt signaling pathway

[27]. The Wnt signaling pathway has been shown to promote the

proliferation of a number of cell types, including hematopoietic

stem cells [55]. Although one study suggests that Wnt signaling

can also promote cell proliferation in the DG [56], other

publications clearly point out the function of the Wnt signaling

pathway in activating neuronal differentiation during adult

neurogenesis, and inhibiting this pathway results in hippocam-

pus-dependent learning deficits [20,26,57]. Our data show Fmr1

KO aNPCs had reduced Wnt signaling, and we identified

Neurog1 as one of the downstream targets of Fmrp and Wnt.

Neurog1 is a transcription factor expressed only at the early stage

of differentiation, and it promotes neuronal differentiation while

inhibiting astrocyte differentiation [28,29]. Neurog1 contains a

conserved Tcf/Lef binging site in its promoter, allowing it to sense

the levels of Wnt signaling. Although the Wnt signaling pathway

has been found to enhance cyclin D1 transcription in HeLa cells

and several other cell types [58], we saw no such activation in

aNPCs. Interestingly, enhancing Wnt signaling via a Gsk3b
inhibitor repressed proliferation of Fmr1 KO aNPCs, possibly due

to the neuronal differentiation effect of Wnt signaling. It is likely

that in aNPCs, Wnt signaling and cyclin D1 act independently on

cell proliferation, and they are both also regulated by Fmrp.

Several studies have examined embryonic and early postnatal

neurogenesis in mice [25] and humans [24]. One study found that

the loss of Fmrp led to increased neuronal differentiation and

reduced glial differentiation in mice [25]. Due to the large scale of

embryonic neurogenesis, factors affecting aNPCs would also be

expected to affect both the overall number of neurons, as well as

brain size. However, neither adult fragile X patients nor adult

Fmr1 KO mice show any differences in the number of neurons and

glia compared with controls [59], raising questions about the

potential significance of increased early neurogenesis to the

pathogenesis of fragile X syndrome. Another study found no

alteration in the differentiation of embryonic NPCs (eNPCs)

isolated from one human embryo diagnosed with a fragile X

mutation [24]. While the discrepancies between human and

mouse studies require further confirmation using additional

human tissues, the different phenotypes observed in Fmrp-

deficient eNPCs versus aNPCs support the idea that adult

neurogenesis is subjected to regulatory mechanisms distinct from

those in embryonic neurogenesis [22]. First, during adult

neurogenesis, multipotent aNPCs are in intimate contact with

the surrounding mature neurons and glia, and the fate of aNPCs

can be affected by their microenvironment [8,9,22,60]. Mice that

lack Sonic hedgehog [61], Tlx [62], Bmi1 [63,64], and Mbd1 [33]

have all exhibited profound deficits in postnatal neurogenesis, but

not in their embryonic neural development. In fact, in prenatal

and early postnatal developing brains, Fmrp is widely expressed in

neural cells, including glia and glial precursors, with the levels of

Fmrp decreasing during oligodendrocyte differentiation [65,66],

whereas in adult brains, Fmrp is expressed predominantly in

neurons, with negligible expression in mature glia [30,31]. Further

studies into the role of Fmrp in both embryonic and adult

neurogenesis would facilitate our understanding of the unique

molecular networks that regulate eNPCs and aNPCs at the level of

translational control.
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Hippocampal neurogenesis has been associated with hippo-

campus-dependent learning [8,9], and blocking neurogenesis using

methods nonexclusive to adult NPCs or new neurons has

supported this model [14–17,20]. Altered adult hippocampal

neurogenesis and impaired learning have been found in several

pathological conditions [9,21]; however, the possibility of a link

between adult neurogenesis and human mental retardation

disorders, though recently put forward [67], has not been studied

well. Although there is a low level of DG neurogenesis in adults,

mounting evidence points to its potentially important role in

neuroplasticity, emotional behavior, and the higher cognitive

functions of adult brains. It has been proposed that adult

neurogenesis enables the lifelong adaptation of the hippocampal

network to the levels of novelty and complexity a person

Figure 7. Neurog1 regulates the fate specification of aNPCs. (A,B) Exogenously expressed Neurog1 could rescue the neuronal and astrocyte
differentiation deficits of Fmr1 KO aNPCs, as assessed by real-time PCR of neuron (NeuroD1 and Tuj1) and astrocyte (GFAP and aquaporin4)-specific
gene expression (n = 3; Control, pCDNA3 empty vector) (C) Neurog1-siRNA could specifically reduce the Neurog1 protein expression from a co-
transfected Neurog1 expression vector. siRNA-2 was more effective at reducing Neurog1 protein expression, and was therefore used in all functional
tests. NC-siRNA: Nonsilencing Control siRNA. (D,E) Acute knockdown of Neurog1 expression in aNPCs led to reduced neuronal differentiation (D), but
increased astrocyte differentiation (E) in WT aNPCs, as assessed by real-time PCR of cell lineage-specific genes (n = 3). Cell differentiation was assessed
by the relative mRNA levels of NeuroD1 (A and D, left), Tuj1 (A and D, right), GFAP (B and E, left), and aquporin4 (B and E, right). GAPDH mRNA levels
were used as an internal control for all real-time PCR analyses, unless stated otherwise. (F) Model of Fmrp functions in adult neurogenesis. By
regulating the translation of cyclin D1 and CDK4, Fmrp controls the proliferation of aNPCs. By controlling the translation of GSK3b, Fmrp maintains
the proper intracellular levels of b-catenin and Wnt signaling. Upon differentiation, b-catenin positively regulates the expression of Neurog1, which
promotes neuronal differentiation and represses glial differentiation. All data are shown as mean 6 SEM, and Student’s t-test was used for all the
analyses. *, p,0.05; ***, p,0.001.
doi:10.1371/journal.pgen.1000898.g007
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experiences [11]. Using precise and unbiased stereological

methods coupled with confocal microscopy, we observed a mild

but significant reduction in the number of new neurons in Fmr1

KO mice, which could easily have been missed by others who

employed non-stereology quantification methods [68]. Due to the

restricted nature and low level of adult neurogenesis, a lack of

Fmrp may not affect the total number of neurons in adult brains,

but it can contribute to pathological conditions linked to higher

cognitive functions and learning abilities [9,67]. The learning

deficits of the Fmr1 KO mice may be the result of both reduced

neurogenesis and defective neuronal maturation. Consistent with

the literature [69], we have observed that Fmr1 KO aNPC-

differentiated neurons had reduced dendritic complexity and

length (data not shown), which could also contribute to behavioral

deficits. In addition, although Fmr1 KO mice have increased

proliferation, at four weeks post-BrdU labeling, both KO and WT

mice had similar numbers of surviving new cells, possibly due to

the decreased survival of new cells in KO mice. How Fmrp

regulates the survival of young neurons is another interesting

question that is currently being pursued as an independent study.

One mystery that remains to be cleared up is why the size of the

DG in the adult Fmr1 KO mice is bigger than in controls. Since

the new cells generated in the adult DG account for only a small

portion of the total DG cells, increased proliferation of these new

cells may not contribute much to the increased size of the DG.

Castren et al. [25] have shown that Fmr1 KO mice exhibit

increased cell proliferation in the subventricular zone during

embryonic development (E13). The mammalian DG is formed

during the postnatal period, with P7 as the peak of cell genesis. It is

possible that increased cell proliferation during DG formation

results in an increased DG volume that persists into adulthood. In

addition to its function in the initial stage of neurogenesis, Fmrp-

deficient neurons are known to have reduced dendritic complexity

[25,70]; therefore, it is possible that new neurons generated in the

adult DG also have reduced dendritic complexity. Hence deficits

in several stages of adult neurogenesis could contribute to the

higher brain functions, such as the learning and emotional

disabilities associated with fragile X patients, without significantly

affecting the gross brain structure of human patients.

Our results suggest that translational regulation by Fmrp in

aNPCs and young neurons is essential for learning and memory,

and the reduced number of new neurons together with defective

maturation of these new neurons may contribute to the cognitive

deficiency seen in fragile X patients. This is a facet of the etiology

of fragile X syndrome that has not been recognized before.

Materials and Methods

Fmr1 KO mice
All animal procedures were performed according to protocols

approved by the University of New Mexico Animal Care and Use

Committee. The Fmr1 KO mice bred onto the C57B/L6 genetic

background were as described previously [71].

Isolation and cultivation of adult NPCs
Adult aNPCs used in this study were isolated from 8- to 10-

week-old male Fmr1 KO mice and wild-type (WT) controls based

on published methods: for the forebrain aNPCs [33] and for the

DG aNPCs [72]. (See Text S1 for details.)

Proliferation, differentiation, cell death analyses, and
chemical treatment of cultured aNPCs

These analyses were carried out using our established method

[32,34]. (See Text S1 for details.)

In vivo neurogenesis studies
In vivo neurogenesis analyses were performed essentially as

described previously [32,33]. These experiments have been

performed using 3 different batches of animals, with n = 4–6/

genotype each batch. For the first two batches, BrdU (50mg/kg)

was injected into 8-week-old mice daily for 7 consecutive days to

increase the amount of labeling. Mice were then euthanized 1 day

post-injection to assess the in vivo proliferation (and early survival)

of labeled cells. For cell survival analysis, another group of mice

was injected with BrdU at 8 weeks of age and euthanized 4 weeks

post-injection. The third batch of mice, on the other hand, were

given 6 injections of BrdU (50 mg/kg) within 24 hours to label all

dividing cells in the DG within this time period and sacrificed at

4 hours post-last injection based on a published protocol [41].

Mice were euthanized by intraperitoneal injection of sodium

pentobarbital, and then transcardially perfused with saline

followed by 4% PFA. Brains were dissected out, post-fixed

overnight in 4% PFA, and then equilibrated in 30% sucrose.

Forty-mm brain sections were generated using a sliding microtone

and stored in a 220uC freezer as floating sections in 96-well plates

filled with cryoprotectant solution (glycerol, ethylene glycol, and

0.1 M phosphate buffer, pH 7.4, 1:1:2 by volume). We performed

immunohistological analysis on 1-in-6 serial floating brain sections

(240 mm apart) based on the published method [33]. (Please see

Text S1 for more details.)

DNA plasmids
The DNA plasmids carrying 2.5 kb of glial fibrillary acidic

protein (GFAP) promoter-firefly luciferase reporter gene (GF1L-

pGL3) or its mutant version, with the STAT3 binding site

mutated (GF1L-S-pGL3), and an internal control plasmid

containing sea pansy luciferase driven by human elongation

factor 1a promoter (EF1a-Luc) were as described previously

[34,73]. NeuroD1-luciferase, a gift from Dr. F.H. Gage, was then

cloned into pGL3 plasmid. Fmr1-siRNA, control-siRNA, and

mouse Neurog1 expression vector were purchased from Open

Biosystems (www.openbiosystems.com). Neurog1 siRNA was

purchased from SABiosciences (Frederick, MD). Wild-type Wnt

reporter construct pTOPFLASH containing 8 TCF/LEF binding

sites and mutant reporter construct pFOPFLASH were gifts from

R.T. Moon (University of Washington) as described [26]. Wnt3a

expression plasmid was a gift from Dr. D.C. Lie (Institute of

Developmental Genetics, Germany) as described [26]. Wild-type

FLAG-Fmrp was cloned into pDEST-27 vector, and mutant

FLAG-I304N was generated by site-directed mutagenesis (Stra-

tagene) [40]. All the constructs were verified by DNA sequencing.

Myelin basic protein (MBP) promoter was cloned from mouse

genomic DNA based on published information [74] and cloned

into pGL3 plasmid. The mouse Neurog1 promoter, containing its

native TCF/LEF binding site ‘‘cctttgaa,’’ was cloned by PCR

based on the GenBank sequence (GenBank ID #18014) using the

following primers: 59-GTCTGACTCTGAAGCCATCTCTGA-

39 (forward) and 59 -ACGCGCCGGGCTGGTCTCCT-39

(reverse). The PCR product was then subcloned into the

pCRII-TOPO plasmid, sequenced, and inserted into the KpnI-

XhoI site of the pGL2 basic vector to yield Neurog1-luciferase

reporter construct. The full-length 39-UTR of GSK-3ß mRNA

was PCR-amplified directly from proliferating aNPC first-strand

cDNA generated from 5 mg TRIZOL-isolated total RNA using

oligo-dT SuperScript III reverse transcription according to the

manufacturer’s protocol (Invitrogen, Cat. #1808-093). It was

cloned into pIS2 Renilla luciferase vector, and pIS0 firefly

luciferase was used as a transfection control [75].
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Electroporation, transfection, and luciferase assay
Electroporation of plasmid DNA into aNPCs and the luciferase

assay were carried out using an Amaxa Nucleofector electro-

porator based on the manufacturer’s protocol (Amaxa, #VPG-

1004) with modifications [34]. Briefly, 26106 cells were

trypsinized, resuspended in Nucleofector solution, mixed with

DNA, and electroporated using a preset program for mouse

NPCs (#A033). The cells were then plated onto polyornithin/

laminin-coated 24-well plates in proliferation medium. After

24 h, cells were changed into differentiation medium for 48 h.

Transfection of aNPCs was carried out using Stemfect (Stemgent,

San Diego, CA) based on the manufacturer’s protocol with

modifications. Briefly, aNPCs were plated into 24-well P/L-

coated plate for 24 hours. Then 3 mg DNA and 0.9 ml Stemgent

reagent were mixed, incubated for 10 minutes, and then added to

the cells. Sixteen hours later, the transfected cells were changed

into differentiation medium for 48 hours. The cells were then

collected and luciferase activity was detected using the Dual-

Luciferase Reporter 1000 System (Promega, Cat# E1980) based

on the manufacturer’s protocol. Briefly, collected cells were lysed

in 100 ml of 16 passive lysis buffer at room temperature for

15 minutes. Then 20 mL of the lysate was added to 100 ml of

Luciferase Assay Buffer II and mixed briefly. Firefly luciferase (F-

luc) activity was immediately read using a SpectraMax M2E plate

reader (Molecular Devices Corp.). Next, 100 ml of Stop & Glo

Buffer with Stop & Glo substrate was added and mixed briefly.

Renilla luciferase (R-luc) activity was immediately read. F-luc

activity was normalized to R-luc activity to account for variation

in transfection efficiencies. Each experiment was independently

repeated 3 times. For each electroporation, 3 mg (NeuroD12 or

GFAP2) luciferase DNA, 5 mg Neurog1-luciferase DNA, 0.2 mg R-

Luc, and 0.004–2 mg Fmr1, Neurog1, or control expression

plasmids were used.

RNA immunoprecipitation, microarray assay, and real-
time PCR

These procedures were carried out as described [43]. (Please see

Text S1 for details.)

Western blots
Twenty-mg protein samples were separated on SDS-PAGE gels

and then transferred to PVDF membranes (Millipore). Mem-

branes were processed following the ECL western blotting

protocol (GE Healthcare). anti-MAP1B (a gift from I. Fischer,

Drexel University, Philadelphia), anti-Nestin (Millipore), anti-

Fmrp (7G1-1), anti-Fmrp (John Louis), anti-b-catenin (Millipore),

anti-CDK4 (Millipore), anti-Cyclin D1 (Upstate), anti-TCF4

(Abcam), GSK3ß (Abcam), anti-EF1a (ATCC), anti-Neurog1

(Millipore), anti-NeuroD1 (Santa Cruz), anti-Axin2 (Cell Signal-

ing) and anti-b-Actin (Abcam) were used as primary antibodies at

the concentrations recommended by the manufacturers. HRP-

conjugated secondary antibodies were obtained from Sigma. For

loading controls, membranes were stripped and reprobed with the

antibody against eIF5a (Santa Cruz Biotechnology), anti-GAPDH

(Ambion), or eIF4E (Transduction Laboratories). To test the

efficiency of Fmr1-siRNA, Fmrp expression plasmid and siRNA

expression plasmid were cotransfected into HEK293 cells, and the

mRNA and protein expression levels of Fmrp were analyzed using

PCR and western blot, respectively.

Statistical analysis
Statistical analysis was performed using ANOVA and Student’s

t-test, unless specified with the aid of SPSS v.17. All data were

shown as mean with standard error of mean (mean 6 SEM).

Probabilities of P,0.05 were considered significant.

Supporting Information

Figure S1 Fmrp is expressed in DG neurons but not astrocytes

in the adult hippocampus. (A) Fmrp staining is prominent in the

majority of the DG cells of WT mice but is absent in the KO mice.

(B,C) Fmrp expression was nearly undetectable in GFAP (B) or

S100b (C) expressing astrocytes. Arrows point to astrocyte that are

negative for Fmrp staining. Scale bars = 10 mm.

Found at: doi:10.1371/journal.pgen.1000898.s001 (1.47 MB PDF)

Figure S2 Adult brain-derived aNPCs from Fmr1 KO mice

exhibited altered proliferation. (A) Single plain Laser Scanning

Confocal image showing that adult brain-derived aNPCs cultured

under proliferating conditions expressed neural progenitor mark-

ers: Nestin (cytoplasmic, red) and Sox2 (nuclear, green). Dapi was

used to label nuclear DNA (blue). (B–E) Cell cycle profile of WT

and Fmr1 KO aNPCs indicating that Fmr1 KO aNPCs had more

cells in mitosis (G2/M phase) and fewer cells in S phase. N = 3

independent cell preparations. *, p,0.05, Student’s t-test. Data is

shown as mean 6 SEM.

Found at: doi:10.1371/journal.pgen.1000898.s002 (0.09 MB PDF)

Figure S3 Fmr1-siRNA could specifically reduce the mRNA

and protein expression of Fmrp as shown by real-time PCR (A)

and Western blotting (B).

Found at: doi:10.1371/journal.pgen.1000898.s003 (0.04 MB PDF)

Figure S4 aNPCs isolated from the DG of Fmr1 KO mice had

similar phenotypes as those found in aNPCs isolated from the

Fm1 KO forebrain. (A,B) Fmr1 KO DG aNPCs exhibited lower

NeuroD1 promoter (A) but higher GFAP promoter (B) activities.

(C,D) Fmr1 KO DG aNPCs had lower levels of endogenous

NeuroD1 mRNA (C) but higher levels of endogenous GFAP

mRNA (D). (E–H) Acute knockdown of Fmrp expression in

WT DG aNPCs using siRNA led to decreased neuronal

promoter activity (E; mean 6 SEM n = 6, p,0.05) and

decreased NeuroD1 mRNA levels (F), but increased GFAP

promoter activity (G; mean 6 SEM n = 6, p,0.05) and

increased GFAP mRNA levels (H; p,0.001). Therefore, Fmrp

has similar functions in DG aNPCs compared to aNPCs

derived from the forebrain. All data are shown as mean 6

SEM. Statistics was done using two tailed unpaired Student’s

t-test. *, p,0.05; **, p,0.01; ***, p,0.001. NC-siRNA,

nonsilencing control siRNA.

Found at: doi:10.1371/journal.pgen.1000898.s004 (0.10 MB PDF)

Figure S5 Reduced expression of NeuroD1 and Neurogenin1 in

Fmr1 KO mice (A,B). The protein levels of two transcription

factors specific to young neurons, NeuroD1 (A) and Neurog1 (B),

exhibited lowered expression levels in Fmr1 KO hippocampus, as

assessed by Western blot analysis. Sample images of Western blots

are shown in the upper panels and quantification of 3 blots are

shown in the lower panels. b-actin was used as a loading control.

(C) Immuno histological staining using shows reduced number of

NeuroD1-positive Cells (white arrows) in the subgranular zone of

the DG. All data are shown as mean 6 SEM. Statistics were done

using two tailed unpaired Student’s t-test. *,p,0.05; Scale

bar = 10 mm.

Found at: doi:10.1371/journal.pgen.1000898.s005 (0.38 MB PDF)

Figure S6 Expression analysis of proliferating Fmr1 KO aNPCs.

(A) Quantification of Western blot band intensities (as shown in

Figure 4C) normalized to ß-actin levels demonstrates increased

protein levels of EF1a, CyclinD1, CDK4, GSK3b, and MAP1b in
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Fmr1 KO aNPCs. Data is from n = 3 or 4 independent

measurements with KO levels normalized to the WT levels.

Student’s t-test was performed on data before normalization to

ensure accurate statistical analysis. (B) The mRNA levels of EF1a,

CyclinD1, CDK4, GSK3b, and MAP1b were not changed in

proliferating Fmr1 KO aNPCs. The steady-state mRNA level

determined by real-time PCR was normalized to18S. (C) CDK4

inhibitor was dissolved in DMSO (0 concentration). At 60 nM,

this inhibitor can reverse the proliferation of Fmr1 KO aNPCs and

bring it to the level of WT cells (n = 3), suggesting that increased

CDK4 activity might be a reason for increased proliferation of

Fmr1 KO aNPCs. Proliferation was assessed by BrdU pulse

labeling followed by immunostaining and stereological quantifica-

tion. All data are shown as mean 6 SEM. Statistics were done

using two tailed unpaired Student’s t-test. *, p,0.05.

Found at: doi:10.1371/journal.pgen.1000898.s006 (0.14 MB PDF)

Figure S7 Fmrp regulates translation of GSK3b. (A) A GSK3b
39untranslated region (39UTR) was cloned into a Renilla luciferase

(R-luc) expression vector (top panel) therefore the translation of R-

luc was regulated by the 39UTR of GSK3b. Transfection of this

construct into aNPCs resulted in higher R-Luc activity (normal-

ized to firefly luciferase internal control) in Fmr1 KO compared

with WT cells (Data is shown as mean 6 SEM; n = 3, p,0.001,

Student’s t-test), suggesting that elevated translational activity is

directed by GSK3b 39UTR in the absence of Fmrp. Data is shown

as mean 6 SEM. Statistics were done using two tailed unpaired

Student’s t-test. ***, p,0.001. (B) aNPCs were treated with a

protein synthesis inhibitor, cycloheximide, during a 24 hour

period. Gsk3b protein levels were determined using Western blot

(top panel) and quantified. The result indicates that the

degradation rate of GSK3b protein is not significantly different

between Fmr1 KO and WT aNPCs. (C) b-catenin protein

expression was decreased in proliferating Fmr1 KO aNPCs. PDF

(35KB)

Found at: doi:10.1371/journal.pgen.1000898.s007 (0.13 MB PDF)

Figure S8 Reduced expression of Axin2 protein in the

hippocampus of Fmr1 KO mice The protein levels of Axin2, a

downstream effecter of canonical Wnt signaling pathway,

exhibited lowered expression levels in Fmr1 KO hippocampus.

Sample images of Western blots (left) and quantification of 3 blots

(right) are shown. b-actin was used as a loading control. Data is

shown as mean 6 SEM. Statistics were done using two tailed

unpaired Student’s t-test. *, p,0.05.

Found at: doi:10.1371/journal.pgen.1000898.s008 (0.04 MB PDF)

Figure S9 Gsk3b inhibitor could rescue the neuronal and

astrocyte differentiation deficits of Fmr1 KO DG aNPCs. (A)

Gsk3b inhibitor SB216763 (SB) SB could enhance the Wnt

signaling in both WT and Fmr1 KO aNPCs. (B,C) SB could rescue

the reduced NeuroD1 (A) mRNA levels and increased GFAP mRNA

levels (B) in Fmr1 KO aNPCs. SB (dissolved in DMSO) was added

at initiation of differentiation at 4 mM. Equal amount of DMSO

was added to WT and KO control aNPCs. All data are shown as

mean 6 SEM. Statistics were done using two tailed unpaired

Student’s t-test. *, p,0.05; **, p,0.01; ***, p,0.001.

Found at: doi:10.1371/journal.pgen.1000898.s009 (0.05 MB PDF)

Figure S10 Gsk3b inhibitor could reverse the proliferation

deficit of Fmr1 KO aNPCs. (A) Gsk3b inhibitor SB216763 (SB) SB

could repress proliferation of Fmr1 KO aNPCs. Effect on WT cells

was not statistically significant (p = 0.08). (B) SB treatment did not

affect cyclin D1 expression levels in either WT or KO aNPCs

(n = 3). All data are shown as mean 6 SEM. Statistics were done

using two tailed unpaired Student’s t-test. *, p,0.05; **, p,0.01.

PDF (53KB)

Found at: doi:10.1371/journal.pgen.1000898.s010 (0.13 MB PDF)

Figure S11 Neurog1 regulates the fate specification of the DG

aNPCs. Neurog1 could rescue the neuronal (A) and astrocyte (B)

differentiation deficits of Fmr1 KO DG aNPCs. Acute knockdown

of Neurog1 in WT DG aNPCs led to reduced neuronal (C) but

increased astrocyte (E) differentiation. NeuroD1 is an neuronal

lineage marker. GFAP is an astrocyte lineage marker. The relative

mRNA levels were in comparison with GAPDH mRNA.

Promoter activities of NeuroD1 and GFAP (fire fly luciferase, luc)

were normalized to a cotransfected internal control (E1a-Renilla

luciferase, Rluc). All data are shown as mean 6 SEM. Statistics

were done using two tailed unpaired Student’s t-test. *, p,0.05;

**, p,0.01; ***, p,0.001.

Found at: doi:10.1371/journal.pgen.1000898.s011 (0.10 MB PDF)

Text S1 Supplemental methods.

Found at: doi:10.1371/journal.pgen.1000898.s012 (0.13 MB PDF)
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