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Abstract

The misexpressed imprinted genes causing developmental failure of mouse parthenogenones are poorly defined. To obtain
further insight, we investigated misexpressions that could cause the pronounced growth deficiency and death of fetuses
with maternal duplication of distal chromosome (Chr) 7 (MatDup.dist7). Their small size could involve inactivity of Igf2,
encoding a growth factor, with some contribution by over-expression of Cdkn1c, encoding a negative growth regulator.
Mice lacking Igf2 expression are usually viable, and MatDup.dist7 death has been attributed to the misexpression of Cdkn1c
or other imprinted genes. To examine the role of misexpressions determined by two maternal copies of the Igf2/H19
imprinting control region (ICR)—a chromatin insulator, we introduced a mutant ICR (ICRD) into MatDup.dist7 fetuses. This
activated Igf2, with correction of H19 expression and other imprinted transcripts expected. Substantial growth
enhancement and full postnatal viability was obtained, demonstrating that the aberrant MatDup.dist7 phenotype is
highly dependent on the presence of two unmethylated maternal Igf2/H19 ICRs. Activation of Igf2 is likely the predominant
correction that rescued growth and viability. Further experiments involved the introduction of a null allele of Cdkn1c to
alleviate its over-expression. Results were not consistent with the possibility that this misexpression alone, or in
combination with Igf2 inactivity, mediates MatDup.dist7 death. Rather, a network of misexpressions derived from dist7 is
probably involved. Our results are consistent with the idea that reduced expression of IGF2 plays a role in the aetiology of
the human imprinting-related growth-deficit disorder, Silver-Russell syndrome.
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Introduction

Parthenogenetic mouse embryos usually die before 6K days

post coitum (dpc). Occasionally they develop to the 25 somite

forelimb bud stage or approximately 9K dpc [1–5]. Partheno-

genones possess two maternally-derived genomes and would be

expected to possess abnormal levels of transcript of all known

imprinted genes, that is, lack of expression of paternally

expressed genes (two inactive copies), and over-expression of

maternally expressed genes (two active copies). Their death is

likely a composite effect of at least some of these misexpressions,

although those involved are not well defined. Defining the causes

is important for improving understanding of the aetiology of

genomic imprinting [6–9] and the prevalence of sexual

reproduction, which ‘has long been an evolutionary enigma’

[10].

Knowledge of the causes of parthenogenetic death has come

from two sources. First, the union of unbalanced complementary

gametes in intercrosses of mice carrying reciprocal or Robertso-

nian translocations yield, at low frequency, embryos with maternal

duplication and paternal deficiency for particular Chr regions as

defined by the translocation breakpoint [11–13]. Maternal

duplication of twelve Chr regions results in developmental

anomalies. Only three of these are associated with peri- or

prenatal death, these being maternal duplication of proximal Chr

6 (MatDup.prox6)—prior to 11K dpc [14], maternal duplication

of distal Chr 7 (MatDup.dist7)—late fetal death [15], and maternal

disomy of Chr 12—perinatal death, probably attributable to the

distal region [16]. Second, knockouts of imprinted genes and

imprinting control regions (ICRs) have provided information on

the effects of disregulation of imprinted genes, for example,

[17–21]. To better define the causes of failed parthenogenetic

development, and learn more of how imprinted genes at dist7

work together to regulate normal development, we have examined

some of the misexpressions of imprinted genes thought to

contribute to the abnormal development of MatDup.dist7

conceptuses. These display a pronounced growth deficit of the

fetus and placenta and die at the late fetal stage, or possibly at

birth. Live MatDup.dist7 young have never been observed [13,15]

(J. Mann, unpublished data).
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Dist7 is an important region in terms of genomic imprinting,

containing over 20 imprinted genes [13,22]. At least three of

these are regulated by the Igf2/H19 imprinting control region

(ICR), these being ‘insulin like growth factor 2’ (Igf2)—paternally

expressed and encoding a mitogen important for embryonic

growth [23,24], ‘insulin II’ (Ins2)—paternally expressed in yolk

sac [25], and the non-coding ‘H19 fetal liver mRNA’ (H19)

gene—maternally expressed [26]. Other non-coding transcripts

have been described, these being Mir483, contained within an

intron of Igf2 [27] and for which imprinting status is unknown,

Mir675, contained with an H19 exon and therefore likely to

follow the imprinting pattern of the host gene [28,29], and

antisense transcripts within Igf2 [30]. The targets of the Mir483

and Mir675 miRNAs are unknown. The maternally-derived Igf2

allele is inactive due to the hypo-methylated maternal Igf2/H19

ICR functioning as a‘CCCTC-binding factor’ (CTCF)-based

chromatin insulator. This lies between the Igf2 promoter and the

shared Igf2-H19 enhancers, preventing their interaction. The

maternal H19 promoter lies on the same side of the insulator as

the enhancers, therefore interaction occurs. On the paternal Chr

the ICR is hyper-methylated, preventing CTCF binding and

insulator formation and allowing for paternal Igf2 promoter and

enhancer interaction. The paternal H19 promoter, just distal to

the methylated ICR, also becomes methylated, and is inactive.

The Ins2 gene is located just distal to Igf2. The Ins2 parental

alleles are affected in the same way as their Igf2 counterparts,

but only in yolk sac. Ins2 is expressed biallelically in pancreas

[25,31–33].

Telomeric or distal to the Igf2/H19 ICR domain is a large

cluster of imprinted genes under regulatory control of the Kv

differentially methylated region (DMR)-1 (KvDMR1) ICR. The

active state of maternally-derived genes within this cluster is

coincident with maternal-specific ICR methylation and the

inactive state of the promoter of the ‘KCNQ1 overlapping

transcript 1’ (Kcnq1ot1) gene contained within the ICR. The

paternal ICR is hypo-methylated, and paternal-specific elongation

of the Kcnq1ot1 transcript is coincident with silencing in cis of genes

within the cluster [17,34,35]. One of the genes regulated by this

ICR is the ‘cyclin-dependent kinase inhibitor 1C (P57)’ (Cdkn1c)

gene encoding a protein facilitating reduced cell proliferation,

increased apoptosis and delayed cell differentiation [36,37].

MatDup.dist7 fetuses are maternally duplicated for the hypo-

methylated Igf2/H19 ICR and hyper-methylated KvDMR1 ICR

regions, as well as for other imprinted transcripts at dist7. This

epigenetic configuration is highly similar to that associated with

the human imprinting-related growth deficit disorder, Silver-

Russell syndrome (SRS) (OMIM 180860). More than half of cases

are associated with hypo-methylation of the IGF2/H19 ICR, also

known as ‘ICR1’. The disease is also associated with maternal

duplication of the KvDMR1 ICR region, also known as ‘ICR2’,

and maternal duplication of the 11p15.5 Chr region encompassing

both ICRs. It is strongly suspected that SRS is caused by

downregulation of IGF2, and, in a minority of cases, excess

CDKN1C or other imprinted genes regulated by ICR2. However,

empirical evidence is lacking [38–40].

The death of MatDup.dist7 fetuses has been difficult to

decipher. Available evidence suggests that maternal duplication

of the Igf2/H19 ICR regulatory domain alone is insufficient to

explain the total phenotype observed. Mice with paternal

inheritance of a tandem duplication of a chicken b-globin

CTCF-based chromatin insulator, substituted for the endogenous

Igf2/H19 ICR, are similar to MatDup.dist7 mice in having a fully

functional hypo-methylated insulator on both parental Chrs. They

lack Igf2 activity, have at least twofold over-expression of H19,

with both parental alleles probably active, and would be expected

to lack Ins2 activity in yolk sac. Nevertheless, their phenotype—

dwarfism combined with postnatal viability—is essentially identi-

cal to Igf2 mutants [41]. Mice homozygous for this genetic

modification, in a mix of strains 129S1/SvImJ and outbred Swiss

CF-1, showed normal fecundity and were maintained as a

random-bred line for several years (J. Mann, unpublished data).

Further, lack of Igf2 activity is unlikely to be the sole cause of

reduced growth in MatDup.dist7 fetuses. At 17K dpc, their

weight is approximately 40% of wild-type [42] (J. Mann and

Walter Tsark, unpublished observations) compared to 50–60% of

wild-type for Igf2 mutants and mice maternally inheriting the

chicken insulator [41]. Overall, these observations indicate that

the MatDup.dist7 phenotype of fetal growth deficit and death

involves the misexpression of imprinted genes outside the influence

of the Igf2/H19 ICR, and this has previously been suggested [42].

Available evidence also indicates that maternal duplication of

the KvDMR1 ICR regulatory domain alone is insufficient to

explain the total phenotype observed. Mice with paternal

inheritance of a deletion of this element exhibit biallelic expression

of adjacent imprinted genes. These mice, in a mix of mouse strains

129S4/SvJae and C57BL/6J, are postnatally viable. They show

some reduction in size, and it has been indicated that this is caused

by over-expression of Cdkn1c [35]. Reduced growth has also been

observed in Cdkn1c-BAC transgenic mice. While these displayed

high frequency perinatal mortality in strain 129/Sv, high postnatal

viability was obtained in a mix of strains 129/Sv and outbred

Swiss MF1 [43]. These observations indicate that MatDup.dist7

late fetal death, occurring in the context of mixed strains including

outbred Swiss, involves the misexpression of imprinted genes

outside the influence of the KvDMR1 ICR. Overall, these

observations have led to suggestions that MatDup.dist7 death

could be a composite effect of misexpressions derived from both

imprinted domains, for example, Igf2 inactivity combined with

Cdkn1c over-expression [43].

To define the role of imprinted genes regulated by the Igf2/H19

ICR in the MatDup.dist7 phenotype, we evaluated the effects of

introducing a mutated Igf2/H19 ICR (ICRD) which cannot bind

CTCF and form an insulator [44]. MatDup.dist7 fetuses carrying

ICRD would be expected to be corrected in terms of the number of

active alleles of Igf2—activation of one of two inactive alleles,

Author Summary

Parthenogenetic mouse embryos with two maternal
genomes die early in development due to the misexpres-
sion of imprinted genes. To gain further insight into which
misexpressions might be involved, we examined some of
the misexpressions that could determine the small size and
fetal death of a ‘‘partial parthenogenone’’—embryos with
maternal duplication of distal Chr 7 (MatDup.dist7). We
investigated the involvement of two maternal copies of
the Igf2/H19 imprinting control region (ICR), which is
associated with lack of activity of the Igf2 gene, encoding a
growth factor, and over-activity of H19. By introducing a
mutant ICR, we activated Igf2 and expected to correct
other misexpressions, such as that of H19. The result was
substantial increase in growth and full postnatal viability of
MatDup.dist7 fetuses, demonstrating the dependency of
their abnormal phenotype on two maternal copies of the
ICR. Activation of Igf2 was probably the main effector of
this rescue. These results are consistent with the idea that
reduced expression of IGF2 is causal in the human growth
deficit disorder, Silver-Russell syndrome.

Maternal Duplication of Distal Chr 7 in Mice
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H19—repression of one of two active alleles, and Ins2—activation

of one of two inactive alleles in yolk sac. MatDup.dist7 fetuses

carrying ICRD were significantly rescued in terms of growth and

were able to survive to adulthood. These results demonstrate that

the aberrant phenotype of MatDup.dist7 fetuses is highly

dependent on the presence of two maternally-derived Igf2/H19

ICR chromatin insulators.

Results

Maternal Inheritance of ICRD Rescues Growth in Igf2 Null
Mutants

Maternal inheritance of ICRD results in activation of Igf2 in cis

such that total Igf2 RNA is 1.7 and 2.1 times the normal level in

the liver and kidney of 17K dpc fetuses, respectively, and also

repression of H19 in cis, such that total H19 RNA is 0.2 and 0

times the normal level in these same tissues, respectively [44]. This

configuration of expression—two active Igf2 and two inactive H19

alleles—is coincident with increased growth, an effect thought to

be due to the former misexpression [18,45,46]. Lack of H19 RNA

alone has no effect on Igf2 expression or imprinting and results in

no discernible phenotype [47]. Maternal inheritance of ICRD

would also be expected to result in activation of Ins2 in yolk sac.

To confirm that maternal inheritance of ICRD can mediate

normal growth, we tested its function in mice paternally inheriting a

null mutation of Igf2 (Igf22). Mice of genotype (ICR+/+, Igf2+/2) are

small due to lack of Igf2 activity, with the maternal allele inactive,

and the paternal allele null [24]. Results are shown in Figure 1.

Experimental young of genotype (ICRD/+, Igf2+/2), in which the

maternally-derived Igf2 allele is activated in cis by ICRD, were not

significantly different in weight to control (ICR+/+, Igf2+/+) mice at 6

weeks of age (females, P = 0.271; males, P = 0.035). Thus, a single

maternal copy of ICRD induces sufficient Igf2 activity for achieving

normal postnatal growth. We note that, in respect to growth with

one versus two active Igf2 alleles, experimental (ICRD/+, Igf2+/2)

animals with one active allele (maternal), were not significantly

different in weight to (ICRD/+, Igf2+/+) animals with two active

alleles (females, P = 0.378; males, P = 0.089). Further, (ICR+/+,

Igf2+/+) females with one active allele (paternal), were not

significantly different in weight to (ICRD/+, Igf2+/+) females with

two active alleles (P = 0.04). However, in males, mice with one active

allele (paternal) were lighter than mice with two active alleles, as

expected (P = 0.002). Given the borderline probability values

obtained, greater numbers of animals need to be analysed to

accurately determine the relative growth rates of mice of the various

genotypes.

ICRD Rescues Growth and Viability in MatDup.dist7
Fetuses

MatDup.dist7 zygotes were produced in intercrosses of mice

carrying the reciprocal translocation T(7;15)9H (T9H). Such

intercrosses give rise to a high proportion of unbalanced zygotes,

and litter size is small. Of balanced zygotes, only one in seven are

expected to be MatDup.dist7, these identified by the dist7 marker,

albino (c), a mutation of the ‘tyrosinase’ (Tyr) gene [15].

The ICRD mutation was introduced into female T9H/+ parents

and was inherited by MatDup.dist7 zygotes (Figure 2). Expected

allelic activity of Igf2 and Cdkn1c in the three possible MatDup.-

dist7 genotypes is shown (Figure 2B). ICRD-induced activation of

Igf2 was confirmed in 13K dpc MatDup.dist7 fetuses obtained in

(T9H/+, Tyrc/c, ICRD/+ R6T9H/+, Tyr+/+, ICR+/+ =) intercross-

es. The level of Igf2 transcript in MatDup.dist7 ICRD.+ fetuses was

the same as in control ICR+/+ fetuses with one active allele, while

it was almost double the normal amount in MatDup.dist7 ICRD.D

fetuses with probably two active alleles (Figure 3A and 3B).

Increased total Igf2 RNA was also seen in mice which maternally

inherit ICRD and have an active maternal and paternal allele of

Igf2 (Figure 3A and 3B). Also, MatDup.dist7 fetuses of all

genotypes contained at least double the amount of Cdkn1c RNA

relative to controls, probably because of two active alleles

(Figure 3A and 3B). These intercross matings were allowed to

proceed to term and we immediately began to observe viable

albino or MatDup.dist7 young which were of overtly similar size to

agouti littermates. A MatDup.dist7 animal and its two littermates

at 10 days post-partum is shown (Figure 4). All MatDup.dist7

young obtained were of genotype ICRD.+ or recombinant ICRD.D.

Seven of 52 mice born were MatDup.dist7 which is similar to the

expected frequency, indicating that ICRD was always able to

increase growth and rescue viability. In age- and litter-matched

animals, a significant weight deficit of approximately 17% in

Figure 1. Weight gain in Igf2 mutants carrying ICRD. Young were
obtained from (ICRD/+, Igf2+/+ R6ICR+/+, Igf2+/2 =) matings. Bars are
mean6s.d., with (n) given above the 1 wk bars. Key: alleles are
maternal/paternal in derivation. The two-sample t-test was used to
determine the probability that two 6 week samples (identified as paired
squares) were equal.
doi:10.1371/journal.pgen.1000803.g001

Maternal Duplication of Distal Chr 7 in Mice
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MatDup.dist7 animals became apparent at 6 weeks of age when

compared with controls carrying an equivalent number of active

Igf2 alleles, that is, MatDup.dist7 ICRD.+ with control ICR+/+ (one

active allele each) and MatDup.dist7 ICRD.D recombinant with

control ICRD/+ (probably two active alleles each) (Figure 5A).

Involvement of Cdkn1c Expression in MatDup.dist7 Death
CDKN1C may antagonize the growth promoting effects of

IGF2 [17,48], and it has been suggested that excess CDKN1C

may combine with lack of IGF2 to cause MatDup.dist7 death [43].

To test this possibility, we introduced a null allele of Cdkn1c

(Cdkn1c2) into MatDup.dist7 fetuses to enforce its monoallelic

expression. In (T9H/+, Tyrc/c, ICR+/+ Cdkn1c+/2 R6T9H/+,

Tyr+/+, ICR+/+ Cdkn1c+/+ =) matings, all of 55 young obtained

were agouti controls, that is, at least six albino MatDup.dist7

(ICR+.+, Cdkn1c+.2) pups were expected, but none were observed.

This result is not consistent with the idea that MatDup.dist7 death

results only from the combined action of the Cdkn1c and Igf2

misexpressions.

Involvement of Cdkn1c Expression in MatDup.dist7 ICRD.+

Postnatal Growth Deficit
To test for a role of Cdkn1c over-expresssion in the growth deficit at

6 weeks of age of rescued postnatal MatDup.dist7 ICRD.+ animals,

we introduced Cdkn1c2 into MatDup.dist7 fetuses such that they

were of genotype (ICRD.+, Cdkn1c+.2). This genotype should be

normalized for the number of active alleles of imprinted genes

regulated by the Igf2/H19 ICR, and also be normalized for Cdkn1c

expression, that is, all of these imprinted genes should be

monoallelically expressed. In (T9H/+, Tyrc/c, ICRD/+, Cdkn1c+/2

R6T9H/+, Tyr+/+, ICR+/+, Cdkn1c+/+ =) matings, viable MatDup.-

dist7 ICRD.+, Cdkn1c+.2 young were obtained and these did not

display a significant weight deficit at 6 weeks of age—with the caveat

that the weight measurements are relative to control young obtained

in the previous matings (Figure 5B). Their weights could not be

compared to littermates as, given the mating scheme, agouti

littermates were always positive for ICRD—inheritance of Cdkn1c2

being lethal—and therefore possessed two active copies of Igf2. In

any event, these results are consistent with the possibility that biallelic

expression of Cdkn1c does contribute to a reduction in postnatal

growth in MatDup.dist7 ICRD.+ or ICRD.D, Cdkn1c+.+ animals.

Figure 2. Production of MatDup.dist7 fetuses. (A) Quadrivalents
at meiosis I occurring in (T9H/+, Tyrc/c, ICRD/+ R6T9H/+, Tyr+/+, ICR+/+ =)
matings. Female reciprocal translocation heterozygote (T9H/+) parent is
homozygous for the dist7 marker albino (Tyrc/c) and carries ICRD (ICRD/+),
while the male T9H/+ parent is wild-type at both of these loci (Tyr+/+,
ICR+/+). (B) Genotypes of MatDup.dist7 fetuses obtained from the union
of unbalanced complementary gametes. MatDup.dist7 individuals are
readily identified as albinos from 12K dpc by lack of eye or fur
pigmentation. Many of these are ICRD.+ although a high frequency of
homozygous recombinants, ICRD.D and ICR+.+, are also obtained. Chrs
depicted are actually paired chromatids. Underneath is depicted allele-
specific expression—MatDup.dist7 ICRD.+ and ICRD.D fetuses have one
and probably two activated Igf2 alleles, and should have one and two
repressed H19 alleles, respectively.
doi:10.1371/journal.pgen.1000803.g002

Figure 3. Expression of imprinted genes in 13K dpc MatDup.
dist7 fetuses. (A) Northern blots for the imprinted genes Igf2 and
Cdkn1c, and for the housekeeping Gapdh gene for normalization. Each
lane is an individual fetus. ICR genotype is given immediately above the
lanes. (B) Northern blots in (A) were quantitated to show relative RNA
levels. Values for Igf2 and Cdkn1c were normalized to Gapdh RNA,
calibrated to control ICR+/+ values, and adjusted to a mean of 1.0. Values
are mean6s.d. with (n) as shown in (A). Mating scheme to breed these
animals was as described in the legend to Figure 2.
doi:10.1371/journal.pgen.1000803.g003

Maternal Duplication of Distal Chr 7 in Mice
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Discussion

We have shown that maternal introduction of a mutant Igf2/

H19 ICR, which lacks chromatin insulator activity, into

MatDup.dist7 fetuses substantially alters their abnormal pheno-

type—small size and death at the late fetal stage—to one of near

normal growth rate and survival to adulthood. This result clearly

demonstrates the dependence of this phenotype on a misexpres-

sion of imprinted genes caused by the presence of two active

maternally-derived Igf2/H19 ICR chromatin insulators. As this

ICR is known to regulate the expression of at least three dist7

imprinted genes—H19, Ins2, Igf2, and a number of non-coding

transcripts—correction in the misexpression of one or more of

these was probably responsible for the result obtained. Activation

of Igf2 was likely an important correction, this being the only

alteration in expression induced by ICRD expected to affect

growth.

The survival of MatDup.dist7 mice with ICRD is more difficult

to decipher. As discussed in the Introduction section, it is unlikely

that the Igf2/H19 ICR-derived misexpressions are solely respon-

sible for their death, as mice with two functional chromatin

insulators—a maternally-derived Igf2/H19 ICR, and a paternally-

derived chicken insulator substituted for the Igf2/H19 ICR,

possess the same combination of misexpressions as MatDup.dist7

mice in respect to this region, yet these animals have normal

postnatal viability [41]. Further evidence is provided by observa-

tions of the effects of misexpression of each imprinted gene alone.

First, for H19, no overt effect on phenotype is observed in

transgenic mice with ectopic over-expression [49–52]. Biallelic or

over-expression of H19 has been suggested to cause perinatal

death of mice produced by combining a non-growing oocyte

genome (ng), carrying a deletion of the distal Chr 12 IG-DMR

ICR (D12), with a fully grown oocyte genome (fg)—ngD12/fg mice

[53]. However, these mice would be predicted to have the

equivalent expression profile of imprinted genes as mice with

maternal inheritance of the chicken insulator substitution. The

latter mice are viable, despite twofold over-expression of H19 [41].

Therefore, the perinatal death of ngD12/fg mice may result from

the combined action of H19 RNA excess—or possibly Igf2 RNA

absence—and small imperfections in expression derived from the

non-growing oocyte genome, for example, as related to the IG-

DMR ICR deletion. Second, for Ins2, mice lacking in expression

of this gene are viable [54]. Third, for Igf2, mice lacking expression

are dwarfed and have impaired lung development [55], but are

usually viable. High postnatal survival frequency of Igf2 mutants is

seen in inbred strain 129/SvEv [23,24] although in this strain we

have observed a low level of perinatal death (J. Mann, unpublished

observations). In the present study, in a mix of strains 129/SvEv

and outbred Swiss CF-1, we observed high frequency survival.

Also, in this same strain mix, we maintained a Igf22/2 random-

bred line for a number of years which had normal fecundity (J.

Mann, unpublished data). On the other hand, use of a second Igf2

null mutation [56] revealed that lack of IGF2 in strain C57BL/6J

results in death at birth. This effect was not peculiar to this second

knockout allele as homozygous mutants can be obtained in strain

129 (M. Constancia, personal communication). In the present

study, MatDup.dist7 young were a mix of strains 129S1/SvImJ,

CF-1, C57BL/6J and CBA/Ca. In this mix, lack of Igf2 activity is

highly likely to be compatible with survival. Given these various

lines of evidence, the present experiments strongly suggest that

misexpressed imprinted genes, as regulated by the Igf2/H19 ICR,

work in combination with misexpressions derived outside of this

region of influence in causing the total MatDup.dist7 phenotype.

The significant rescue in growth probably mediated by Igf2

activation may also be directly related to MatDup.dist7 survival in

that it could compensate for negative effects derived from outside

the Igf2/H19 ICR region. Nevertheless, we cannot rule out the

possibility that Ins2 inactivity in yolk sac, excess H19 RNA, or the

misexpression of non-coding RNAs regulated by the Igf2/H19

ICR make a contribution to the lethal effect. These possibilities

could be investigated through correction of their misexpression in

MatDup.dist7 fetuses, then determining growth and survival. For

example, correction of H19 over-expression could be achieved by

introducing a deletion of the transcript region only.

The imprinted genes operating outside the influence of the Igf2/

H19 ICR that contribute to MatDup.dist7 death would be

expected to require maternal-, rather than paternal-specific

imprinting or methylation for attaining differential expression in

the normal context. This is because for full-term development,

there is apparently no other requirement, aside from Igf2/H19

ICR methylation, for paternal imprinting at dist7 [57]. The cluster

of genes requiring maternal-specific methylation of the KvDMR1

ICR for activity fulfills this criterion. While the introduction of a

null mutation of Cdkn1c, and hence enforced monoallelic

expression of this gene, did not rescue MatDup.dist7 fetuses, this

does not rule out the possibility that CDKN1C excess has a role in

causing MatDup.dist7 death. In MatDup.dist7 (ICR+.+, Cdkn1c+.+)

fetuses, Cdkn1c RNA levels were found to be more than three times

that of controls, suggesting that each maternally-derived Cdkn1c

allele was upregulated 1.5-fold. Therefore, CDKN1C could still be

in excess in MatDup.dist7 (ICR+.+, Cdkn1c+.2) animals. Also, there

remains the possibility that excess Cdkn1c RNA may contribute as

part of a network of misexpressions derived from the cluster

regulated by the KvDMR1 ICR. For example, biallelic expression

of the ‘pleckstrin homology-like domain, familiy A, member 2’

(Phlda2) gene results in placental growth retardation and marginal

fetal growth restriction [58], and upregulation of PHLDA2 is

Figure 4. Neonatal MatDup.dist7 mouse rescued by ICRD.
MatDup.dist7 (ICRD.+, Cdkn1c+.+) albino neonate with two agouti
littermates at 10 days post-partum. Mating scheme to breed these
animals was as described in the legend to Figure 2.
doi:10.1371/journal.pgen.1000803.g004
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Figure 5. Weight gain in post-partum MatDup.dist7 mice rescued by ICRD. (A) Weight gain in litter matched MatDup.dist7 (ICRD.+, Cdkn1c+.+)
or (ICRD.D, Cdkn1c+.+) young obtained from matings of (T9H/+, Tyrc/c, ICRD/+ R6T9H/+, Tyr+/+, ICR+/+ =) and (T9H/+, Tyrc/c, ICRD/+, Cdkn1c+/2 R6T9H/+,
Tyr+/+, ICR+/+, Cdkn1c+/+ =) mice. Each graph represents a single litter where at least one control with the same number of active Igf2 alleles was
obtained. Each bar represents a single animal. The paired-sample t-test was used to determine the probability that the weight of MatDup.dist7 and
control mice was equal. For three-animal litters, the pairs used in the statistical test are indicated by the bracket above the bars. The P value was
,0.01 for 6 week old mice, indicating a significant difference, while there was no significant difference in weight at 1, 2, and 3 weeks of age. (B) All
weight gain data collected from the two sets of matings as described in (A) regardless of littermate matching. Bars are mean6s.d., with (n) given
above the 1 wk bars. The two-sample t-test was used to determine the probability that two 6 week samples (identified as paired squares) were equal.
Key: alleles are maternal.maternal in derivation for MatDup.dist7 and maternal/paternal in derivation for controls.
doi:10.1371/journal.pgen.1000803.g005
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correlated with growth retardation in humans [59,60]. Also, it has

been suggested that excess expression of the ‘achaete-scute

complex homolog 2 (Drosophila) (Ascl2) gene could cause the

MatDup.dist7 lethal effect [42]. The phenotype of MatDup.dist7

fetuses could also involve misexpressions of dist7 imprinted genes

lying outside of the influence of the two known ICRs. For

example, ‘adenosine monophosphate deaminase 3’ (Ampd3)—

maternally expressed in placenta, and identified in a transcriptome

analysis of MatDup.dist7 conceptuses [22], ‘inositol polypho-

sphate-5-phosphatase F’ (Innp5f)—an isoform paternally expressed

in brain [61], and ‘cathepsin D’ (Ctsd)—possible paternal-specific

expression [62].

The postnatal weight deficit of approximately 17% in

MatDup.dist7 young at 6 weeks of age was similar to that in

mice paternally inheriting a deleted KvDMR1 ICR. This deletion

results in biallelic expression of imprinted genes regulated by this

ICR, including Cdkn1c [17,34]. Indeed, excess CDKN1C has been

indicated as the cause of the weight deficit [35]. Consistent with

this possibility is that the weight of MatDup.dist7 ICRD.+,

Cdkn1c+.2 young was normal at 6 weeks of age. However, we

note that MatDup.dist7 neonates displayed no significant weight

deficit until reaching adulthood, while in mice paternally

inheriting the deleted KvDMR1 ICR, the weight deficit is present

in fetuses and persists throughout postnatal development [17].

More data regarding weight gain in relation to the inheritance of

ICRD, in MatDup.dist7 young and otherwise, is required to

confirm these observations.

In terms of MatDup.dist7 death, additional experiments are

required to determine exactly which combination of misexpres-

sions are involved. The total MatDup.dist7 phenotype has been

ascribed to the very distal portion of Chr 7 as defined by the

reciprocal translocation T(7;11)65H (T65H) [42]. This transloca-

tion has a breakpoint far more distal on Chr 7 relative to the T9H

translocation used in this study, although is still proximal to the

two clusters of imprinted genes regulated by the Igf2/H19 and

KvDMR1 ICRs. However, some caution should be exercised in

ascribing the total effect to this region. While it was shown that

T65H- and T9H-MatDup.dist7 fetuses are of similar morphology

[42], the postnatal viability of the former was not investigated. If

T65H-MatDup.dist7 fetuses are also inviable, then the composite

lethal effect is likely to be contained within the two aforementioned

clusters of imprinted genes. Evidence that the KvDMR1 cluster

contributes to the effect could be obtained by determining the

viability of MatDup.dist7 fetuses carrying a deletion of this whole

cluster. This would result in enforced monoallelic expression of all

genes under regulation of the KvDMR1 ICR, including Cdkn1c,

and these mice and would be expected to be postnatally viable,

although small because of Igf2 inactivity. Such a deletion, made

through truncation of Chr 7 at a point distal to the Ins2 gene, has

been described [63]. A complication with this possible experiment

is the existence of imprinted genes at dist7 which are not regulated

by either ICR. Another experiment could be to breed mice with

paternal inheritance of the chicken b-globin insulator substituted

for the Igf2/H19 ICR [41] combined with paternal inheritance of

the KvDMR1 ICR deletion [17]. These would misexpress all

imprinted genes under regulatory control of both ICRs. If these

were the only misexpressions involved in the MatDup.dist7

phenotype, then the phenotype should be reproduced.

MatDup.dist7 fetuses provide an epigenetic model of a subtype

of human Silver-Russell syndrome (SRS) involving maternal

duplication of the orthologous Chr region, 11p15.5, which

encompasses ICR1 and ICR2. In these fetuses, we have shown

that abrogation of ICR1 insulator function was able to restore Igf2

expression, concomitant with restoration of growth and survival.

The most common subtype of SRS, that involving hypo-

methylation of ICR1, is perhaps better modelled in mice

maternally inheriting the chicken insulator in place of ICR1.

These animals provide information on the effects of the presence

of two functional insulators at the Igf2/H19 region as the only

epigenetic lesion. In these fetuses, we previously showed that DNA

methylation was abrogated while insulator function remained

intact. This resulted in reduced Igf2 activity and growth

retardation [41]. Both of these findings support the idea that

reduced expression of IGF2 during fetal development is causal in

the development of SRS. They also support the suggestion that the

failure to detect low concentrations of serum IGF2 in SRS patients

is related to downregulation of IGF2 by this stage [38]. Further

genetic manipulation in these mouse models should provide

additional implications for the human disease.

Our experiments suggest that misexpression of imprinted genes

caused by two maternal copies of the Igf2/H19 ICR constitute one

component of a composite barrier to parthenogenetic develop-

ment that was not previously predicted. The lethal effect in

MatDup.dist7 fetuses may be specific to later stages of develop-

ment, and may not normally occur in parthenogenones given their

peri-implantation death. Nevertheless, high-level paternal- and

maternal-specific expression of Igf2 and H19, respectively, is

present shortly after implantation, at least by 6K dpc [64].

Therefore, it cannot be ruled out that these misexpressions, and

others regulated by the Igf2/H19 ICR, play a role in what

probably is a complex composite lethal effect involving a network

of misexpressed imprinted genes. Indeed, the fact that partheno-

genones fail earlier in development than embryos with maternal

duplication of any single Chr region, indicates that misexpressions

of imprinted genes from different regions are cumulative or

synergistic in their deleterious effects. Further, at the molecular

level, it has been shown that disregulation of the imprinted genes

‘pleiomorphic adenoma gene-like 1’ (Plagl1) and H19 can affect the

expression of other imprinted genes in an imprinted gene

expression network [65,66].

Previous observations have shown that the normal activity of

imprinted genes regulated by the Igf2/H19 ICR are one of a small

number of developmentally critical expression profiles provided

exclusively by imprinting through the male germ line, provided

that most if not all other imprinted genes are not misexpressed

[57]. The present results raise the possibility that full-term

parthenogenetic development could be achieved by correcting

the misexpressions of only a few imprinted genes in order to repair

the total expression network. One necessary correction would be

to activate the ‘paternally expressed 10’ (Peg10) gene. Lack of

expression of this gene results in death by 10K dpc, and this

misexpression alone would be expected to present a barrier to

parthenogenesis. It would be expected to contribute to, or could be

solely responsible for, the embryonic death of MatDup.prox6

mice, which occurs prior to 11K dpc [20].

Materials and Methods

Mouse Lines
Line no.; genotype; strain; source, how produced, or reference:

Line-1; 129S1/SvImJ (129S1); Tyr+/+; The Jackson Laboratory,

stock no. 002448. Line-2; outbred Swiss CF-1; Tyrc/c; Charles

River Laboratories. Line-3; T9H/T9H, Tyr+/+; mix of C57BL/6J

(B6) and CBA/Ca (CB); The Jackson Laboratory, stock

no. 001752. Line-4; T9H/T9H, Tyrc/c; mix of B6, CB and CF-

1; made by mating line-2 with -3, then intercrossing. Line-5; Tyrc/c,

ICRD/D; mix of CF-1 and 129S1; made by mating ICRD/+ mice

[44] with line-2, then intercrossing. Line-6; Tyrc/c, Cdkn1c+/2; mix
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of 129S7/SvEvBrd (129S7), B6 and CF-1; made by mating

Cdkn1c+/2 mice [37] with line-2, then intercrossing. Line-7; T9H/

T9H, Tyrc/c, Cdkn1c+/2; mix of strains B6, CB, CF-1, and 129S7;

made by mating line-4 with -6, then intercrossing. Line-8; Igf2+/2;

129/SvEv [23].

Matings
Production of experimental (ICRD/+, Igf2+/2) mice (Figure 1):

Female parents (ICRD/+, Igf2+/+) were bred in (line-5 R6line-1 =)

matings. Male parents (ICR+/+, Igf2+/2) were of line-8. Young were a

mix of strains 129 and CF-1. Production of MatDup.dist7 ICRD.+

and ICRD.D mice (Figure 2): Female parents (T9H/+, Tyrc/c, ICRD/+)

were bred in (line-5 R6line-4 =) matings. Male parents (T9H/+,

Tyr+/+, ICR+/+) were bred in (line-3 R6line-1 =) matings. Young

were a mix of strains 129S1, CF-1, B6, and CB. Production of

MatDup.dist7 Cdkn1c2.+ young, attempted: Female parents (T9H/+,

Tyrc/c, Cdkn1c+/2) were bred in (line-4 R6line-6 =) matings. Male

parents (T9H/+, Tyr+/+, ICR+/+) were bred in (line-3 R6line-1 =)

matings. Young were a mix of strains 129, B6, CB, and CF-1.

Production of MatDup.dist7 (ICRD.+, Cdkn1c+.2) young (Figure 5B):

Female parents (T9H/+, Tyrc/c, ICRD/+, Cdkn1c+/2) were bred in

(line-5 R6line-7 =) matings. Male parents (T9H/+, Tyr+/+, ICR+/+)

were bred in (line-3 R6line-1 =) matings. Young were a mix of strains

129S1, 129S7, B6, CB, and CF-1.

Genotyping
For the ICR, two pairs of primers were used. The first pair was

specific for the mutant ICR, identical to a pair previously

described [41]: 59- GCCC ACCA GCTG CTAG CCATC -39

and 59- CCTA GAGA ATTC GAGG GACC TAAT AAC -39,

240 bp amplicon identified ICRD.+ and ICRD.D animals. The

second pair was specific for ICR+, with primers binding to

sequence positions that were modified in ICRD [44]: 59- AACA

AGGG AACG GATG CTAC CG -39 and 59- GCAA TATG

TAGT ATTG TACT GCCA CCAC -39, lack of a 506 bp

amplicon identified ICRD.D animals. For Cdkn1c, the null allele was

identified using primers specific for the selection cassette using in

gene targeting: 59- CTCA GAGG CTGG GAAG GGGT GGGT

C -39, within the mouse ‘phosphoglycerate kinase 1’ (Pgk1)

promoter, and 59- ATAC TTTC TCGG CAGG AGCA AGGT

G -39, within the neo coding sequence, 520 bp amplicon.

Northern Blots
Fetuses were genotyped, and total RNA recovered using

RNAzol (Tel-Test) after homogenization of the total fetus minus

the head. Probes for Igf2 and ‘glyceraldehyde-3-phosphate

dehydrogenase’ (Gapdh) RNA were as previously described [67].

The Cdkn1c probe was made by RT-PCR using primers; 59-

GCCG GGTG ATGA GCTG GGAA -39 and 59- AGAG AGGC

TGGT CCTT CAGC -39, 221 bp amplicon. Northern blots were

performed with 32P radiolabelled probes as described previously

[68]. The three probes were hybridized independently to the same

blots after stripping. Radioactivity of bands was quantitated using

a Typhoon PhosphorImager (Molecular Dynamics). For each

lane, values for Igf2 and Cdkn1c were normalized to the Gapdh

value.
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