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Abstract

Stress-induced transposition is an attractive notion since it is potentially important in creating diversity to facilitate
adaptation of the host to severe environmental conditions. One common major stress is radiation-induced DNA damage.
Deinococcus radiodurans has an exceptional ability to withstand the lethal effects of DNA–damaging agents (ionizing
radiation, UV light, and desiccation). High radiation levels result in genome fragmentation and reassembly in a process
which generates significant amounts of single-stranded DNA. This capacity of D. radiodurans to withstand irradiation raises
important questions concerning its response to radiation-induced mutagenic lesions. A recent study analyzed the
mutational profile in the thyA gene following irradiation. The majority of thyA mutants resulted from transposition of one
particular Insertion Sequence (IS), ISDra2, of the many different ISs in the D. radiodurans genome. ISDra2 is a member of a
newly recognised class of ISs, the IS200/IS605 family of insertion sequences.
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Introduction

Stress-induced transposition has been an attractive notion for

some time since it is potentially important in creating diversity to

facilitate adaptation of the host to severe environmental condi-

tions. One common major stress is DNA damage. This induces a

variety of responses including changes in expression of numerous

genes [1–4], cell cycle arrest [5,6], induction of bacterial

prophages [7–8] and, by generating diversity, can also aid

development of processes such as bacterial pathogenicity and

virulence [9].

Several studies have focused on DNA damage-induced

transposition in bacteria but have not yet provided a coherent

mechanistic scenario. This interest presumably stemmed directly

from capacity of UV-irradiation to promote lysogenic induction

[7]. Indeed, although IS10 transposition was shown to be induced

by UV light in an SOS-dependent pathway [10], the precise

mechanism has not been elucidated. A complex relationship

between the SOS response and Tn5 transposition has emerged

from contradictory reports [11–12]. More recently, activation of

Tn7 transposition into regional hotspots by double-strand breaks,

has suggested a relationship between Tn7 transposition and DNA

repair [13], but direct evidence is still missing. Finally, numerous

host factors can modulate transposition in E. coli in response to

stress [14], but their specific roles are presently unknown. Here we

identify and demonstrate the molecular basis of a strong radiation-

stimulated response of transposition in the irradiation resistant

Deinococcus radiodurans.

D. radiodurans has an exceptional ability to withstand the lethal

effects of DNA-damaging agents, such as ionizing radiation, UV

light and desiccation (for reviews, see [15,16,17]). High radiation

levels result in genome fragmentation and reassembly in a process

which generates significant amounts of single stranded (ss) DNA

[18]. In addition to this extraordinary ability to reassemble its

genome, the capacity of D. radiodurans to withstand irradiation also

raises important questions about the mechanisms involved in the

response to and repair of radiation-induced mutagenic lesions.

A recent study analysed the mutational profile in the thyA gene

following doses of 10 kGy of c- or 600 J m22 of UV-irradiation.

The majority of thyA mutants were due to a single insertion of one

particular IS belonging to the IS200/IS605 family: ISDra2

[19](originally named IS8301 [20]). While some mutants,

presumably resulting from point mutations or small insertions or

deletions, retained the length of the wild-type gene, the many

other resident ISs unrelated to ISDra2 made only small

contributions to the mutant pool despite their presence in

significant numbers (see www-IS.biotoul.fr) in the D. radiodurans

R1 genome sequence [21]. The importance of the contribution of

ISDra2 to mutagenesis is further underlined by its low genomic

copy number in the standard R1 ATCC 13939 strain used in our

studies as judged by a combination of whole genome hybridization

and sequencing [19]: 1 complete and 1 inactive degenerate ISDra2
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copy (in contrast to the published D. radiodurans genome sequence

which revealed 7 complete and one partial ISDra2 copy [21]).

Since another member of the IS200/IS605 family, IS608 from

Helicobacter pylori, uses obligatory ssDNA intermediates [22], it

seemed possible that the signal which triggers ISDra2 transposition

is the very event which leads to genome reassembly: the formation

of ssDNA.

We have explored the properties and behaviour of ISDra2

(ISDra2F; Figure 1A) in D. radiodurans and have identified the

mechanism by which ISDra2 transposition is triggered by

radiation. Using a genetic system to detect two principal

transposition steps, transposon excision and insertion, we show

that ISDra2, like other IS200/605 family members, requires TnpA

but not TnpB for both and that insertion occurs 39 to a specific

pentanucleotide (as deduced from genome analyses [20]). We

demonstrate genetically that both steps are significantly increased

following host cell irradiation. We also show that the entire TnpA-

catalysed transposition cycle including excision and insertion

depends strictly on single strand DNA substrates in vitro. Finally,

using a PCR-based approach, we demonstrate that, in vivo,

exposure to c-irradiation stimulates excision of the single genomic

copy of ISDra2 from the genome in the form of a DNA circle.

These events are closely correlated with the initiation of the

process leading to genome reassembly from chromosomal

fragments, which occurs mainly through a mechanism generating

long stretches of single stranded DNA [18].

Results

ISDra2 excision and insertion in vivo in D. radiodurans
IS200/IS605 family members often carry 2 genes, tnpA,

encoding the transposase and tnpB, a gene of unknown function

(Figure 1A). As shown for the related IS608 [23], the transposition

cycle occurs in two principal steps: excision from the donor

backbone in the form of a single strand circle and subsequent

insertion into a suitable DNA target [22]. These steps were

monitored for ISDra2 transposition in D. radiodurans using a genetic

assay. TnpA and/or TnpB were expressed in trans from a plasmid,

pGY11559, under control of the IPTG-inducible Pspac promoter

[19] (Table S1). For excision, the unique active ISDra2 copy

(ISDra2F: D. radiodurans loci DR1651-DR1652) was replaced either

by a derivative, ISDra2-113, retaining functional IS ends but in

which tnpA and tnpB were replaced by a CamR cassette, or by

ISDra2-103, similar to ISDra2-113 but retaining tnpA controlled by

its own promoter (Figure 1A). The resident ISDra2F was first

replaced by a TetR cassette and ISDra2-113 (or ISDra2-103) was

Figure 1. A genetic assay for ISDra2 transposition. (A) Derivatives
of ISDra2 (1736 bp). Orfs are indicated as boxes with arrowheads
showing the direction of translation; LE and RE, red and blue boxes,
respectively. In ISDra2-113 (1509 bp) both tnpA and tnpB were replaced
by a CamR cassette, while ISDra2-103 (1778 bp) was deleted only of
tnpB and expresses tnpA from its natural promoter. ISDra2-104 results
from replacement of the tnpA coding region of ISDra2-103 by the lacZ
coding region. ISDra2-103Term116 (1889 bp) carries the Deinococcal
transcription terminator Term116 [45] downstream of the cat gene. (B)
In vivo genetic assay to measure excision and insertion events of a
derivative of ISDra2. The ISDra2F copy was first replaced by a TetR

cassette and ISDra2-113 (or ISDra2-103) was inserted at the unique
TTGAT target site present in the tetA gene. The second inactive copy,
ISDra2*, was replaced by the sacB gene and an accompanying
hygromycin (hyg) resistance cassette as a selective marker. TnpA-
dependent ISDra2 excision restores a functional tetA gene, giving rise to
TetR colonies while insertion into the reporter sacB gene confers
resistance to sucrose. See Figure S1 and its legend.
doi:10.1371/journal.pgen.1000799.g001

Author Summary

Induction of transposition in prokaryotes under cell stress
conditions is potentially important in creating diversity
facilitating adaptation to severe environments. In Deino-
coccus radiodurans, the most radiation-resistant organism
known, despite abundance of resident insertion sequences
(IS), transposition of a single IS, ISDra2, was found to be
strongly induced by irradiation. We show that both steps
involved in transposition, IS excision, and insertion,
increase significantly following host cell irradiation and,
using PCR analysis of genomic DNA, that exposure to
c-irradiation stimulates massive excision of the single
genomic ISDra2 copy as a DNA circle and reclosure of the
empty site. These events are closely correlated with the
initiation of the process leading to genome reassembly
from chromosomal fragments, which occurs mainly
through a mechanism generating long stretches of
single-stranded DNA. Consistent with this, we also
demonstrate a requirement for single strand DNA sub-
strates in TnpA-catalysed cleavage and strand transfer in
vitro. Since we find no evidence for irradiation-induced
expression of the ISDra2 transposase, we infer that
transposition is triggered by the increase in its single-
strand DNA substrate. The potential impact on genome
reassembly and in creating genome host diversity by
triggering transposition in this way is discussed.

Transposition of D. radiodurans ISDra2
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inserted by homologous recombination at the unique 59TTGAT39

target site (see below) present in the tetA gene. IS excision restores a

TetR phenotype (Figure 1B). These constructions are described in

detail in Figure S1.

Ectopic TnpA expression in this system induced ISDra2-113

excision at a frequency of 261023 (Table 1). This was not

increased when IPTG was added to the medium, to induce TnpA

expression. Similar experiments in which Pspac was used to drive a

lacZ gene in plasmid pGY11556 (Figure S2) showed that addition

of IPTG resulted in a 143-fold increase in b-galactosidase activity.

This suggests that sufficient transposase would be produced by

escape synthesis from Pspac to ensure transposition and that activity

is limited by the supply of a correct DNA substrate. Activity

obtained with ectopic TnpB alone (,161029) was similar to the

background levels observed with the empty vector plasmid

(,4.8 1029) clearly demonstrating that TnpA is absolutely

required for ISDra2 excision while TnpB is dispensable. Similar

results were obtained with ISDra2-103 (Figure 1A), in which tnpA

was in its natural location in the IS sequence and expressed from

its own promoter (Table 1).

To measure transposon insertion, both non-targeted and

targeted approaches were used. In both cases, we measured

insertion in the subpopulation of cells in which the transposon

ISDra2-113 had excised from its initial locus and had inserted

elsewhere in the genome as judged respectively by the reconsti-

tution of the TetR gene and retention of the CamR marker carried

by the IS derivative.

In the non-targeted approach, the proportion of CamR among

TetR clones, reflecting the frequency of spontaneous insertion, was

about 1022 in strain GY13120 (Figure 1B, top) expressing TnpA

ectopically, compared to ,1029 in the absence of TnpA. These

insertions were true transposition events since they had occurred

39 to the pentanucleotide, 59TTGAT39 (Table S2), the sequence

preceding the left end of ISDra2 in all genomic loci identified [20].

In the targeted approach, the degenerate ISDra2 copy (ISDra2*

loci DR0177-DR0178) was replaced with the target sacB gene from

Bacillus subtilis, coupled to a hygromycin resistance cassette to assist

the construction (Figure 1B, bottom, and Figure S1). As in other

bacteria [24,25], sacB expression in the presence of sucrose is lethal

for D. radiodurans (data not shown) and inactivation of sacB, for

example, by IS insertion, confers a sucrose resistant phenotype.

Moreover, sacB contains 10 copies of the insertion site

59TTGAT39 (9 on one strand and 1 on the complementary

strand; Figure S3A). For this analysis, it was considered prudent to

include a transcriptional terminator (Term116) downstream of the

cat gene of ISDra2-113 to avoid possible interference of sacB

transcription from the strong Pspac promoter with expression of the

cat gene (Figure 1A and 1B; Figure S1). By imposing a triple

selection for TetR, CamR and SucR, we were able to directly

collect clones in which ISDra2-103Term116 had excised from its

resident site (TetR) and inserted into sacB (SucR). The nucleotide

sequence of the SucR mutants confirmed that each had ISDra2-

113 inserted into one of the 59TTGAT39 target sequences (Figure

S3A and Figure 3B).

Together, these results demonstrate that TnpA alone is

sufficient for both transposon excision and insertion.

Effect of UV and c-radiation on excision and insertion
Using this genetic system, we then measured the excision

frequency of ISDra2-113 and ISDra2-103 following exposure to

UV- (600 J m22) or c-irradiation (5 kGy). Both treatments

increased excision frequencies about 10-fold (Table 1).

To determine whether c-ray irradiation also stimulates the

insertion step of transposition, we measured the insertion

frequency of ISDra2-103 (Term116) expressing TnpA from its

own promoter (to remain as close to natural conditions as possible)

(Figure 1A) into sacB. The frequency of TetR colonies and of SucR

CamR TetR colonies in cells irradiated with 5 kGy of c-rays and in

non-irradiated cultures was measured in the tester strain GY13174

carrying ISDra2-103 (Term116). The TetR frequency, which

monitors the excision step, rose from 2.3261023 to 1.8561022

after c- irradiation (Table 1; average values of 10 independent

experiments). The frequency of SucR CamR TetR colonies,

representing the overall transposition frequency into the reporter

gene, also increased from 3.76610210 to 1.861028 after c-

irradiation (Table 2).

Table 1. Excision frequencies of ISDra2 derivatives.

ISDra2 derivative Plasmid
Inducing
treatment

Excision frequency
(TetR/viable cell) (a)

ISDra2-113:
D(tnpA tnpB)Vcat

pGY11559
(empty)

None ,4.8 1029

pGY13203
(tnpA)

None 2 (60.6) 1023

c-rays (b) 2.7 (60.4) 1022

UV (c) 3.22 (60.89) 1022

pGY13204
(tnpB)

None ,1 1029

ISDra2-103:
tnpA+DtnpB Vcat

None None 2.62 (62.2) 1023

c-rays (b) 2.69 (60.17) 1022

UV (c) 1.52 (60.37) 1022

ISDra2-103Term116:
tnpA+DtnpB Vcat::Term116

None None 2.32 (60.9) 1023

c-rays (b) 1.85 (60.3) 1022

(a)The excision frequency of ISDra2 derivatives was calculated as described in
Materials and Methods.

(b)5 kGy.
(c)600 J m22.
doi:10.1371/journal.pgen.1000799.t001

Table 2. Insertion frequencies of ISDra2-103Term116 into sacB.

ISDra2 derivative Plasmid
Inducing
treatment

TetR CamR SucR/viable
cell TetR CamR SucR/TetR

Insertion stimulation
factor

ISDra2-103Term116:
tnpA+DtnpB Vcat::Term116

None None 3.76 (60.52) 10210 1.68 (60.54) 1027 1

c-rays (b) 1.8 (60.75) 1028 1 (60.49) 1026 5.95

(b)5 kGy.
doi:10.1371/journal.pgen.1000799.t002

Transposition of D. radiodurans ISDra2
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Thus, both excision and insertion of the ISDra2 derivatives were

stimulated by irradiation. This stimulation is unlikely to result

from an increase in tnpA expression after irradiation since strain

GY14310 in which the coding region of tnpA was replaced by the

coding region of lacZ in ISDra2-104 (Figure 1A) showed no

detectable increase in b-galactosidase activity at 0, 30, 60, 120 or

180 min post-irradiation (Figure S2 and data not shown).

In vitro cleavage, strand transfer, and insertion of ISDra2
Since the related TnpA from IS608 uses obligatory single-

stranded DNA substrates in in vitro transposition reactions [22], we

suspected that the stimulation of ISDra2 excision and insertion

might be linked to the formation of single-stranded DNA during

repair of DNA damage which would supply the appropriate

substrate.

To confirm that ISDra2 TnpA is active only on single-strand

DNA substrates, we used an in vitro system, developed for the

related IS608, to investigate TnpA-catalysed cleavage and strand

transfer [22,26]. IS608 transposition reactions are strand specific

and use, by definition, the top strand. Recombination reactions

recapitulating transposon excision and donor joint formation were

performed. For this, the ISDra2 tnpA gene was cloned with a C-

terminal His6 tag under control of a plac promoter (Materials and

Methods) and the protein was purified as described previously

[23]. The C-terminal His-tagged TnpA from D. radiodurans was

active since it catalysed ISDra2-113 excision in vivo in a tester strain

expressing TnpA-His6 under the control of Pspac promoter in

plasmid pGY13505 (data not shown).

The DNA substrate was a 59 nt single strand DNA fragment

including the first 39 nt of ISDra2 LE carrying a subterminal

secondary structure which serves as the TnpA binding site

(Burgess-Hickman et al., in prep) and a 20 nt 59 flank with the

conserved pentanucleotide target sequence (59TTGAT39)

(Figure 2A). Incubation of the 59 end-labelled fragment

(Figure 2B, lane 1) with purified TnpA in the presence of Mg2+

generated a cleaved 59 end-labelled donor flank fragment of 20 nt

(Figure 2B, lane 2). When mixed with an unlabelled 63 nt ss DNA

fragment composed of the terminal 43 nt of RE (including the

secondary structure) and a 39 20 nt flank, an additional fragment

of 40 nt representing the joined donor flanks was generated

(Figure 2B, lane 3). In contrast, double stranded LE (Figure 2B,

lane 4) was neither cleaved nor underwent a strand transfer

reaction with the unlabelled RE (Figure 2B, lane 5).

Similar results were obtained using 59 end-labelled RE and

unlabelled LE: cleavage and strand transfer were strictly

dependent on ss subtrates (Figure 2B). We were also able to

recapitulate the integration reaction in vitro using an end-labelled

target DNA and an unlabelled RE-LE junction (Figure 2B).

Thus, the ISDra2 transposase is active on single- but not double-

stranded substrates and is capable of cleavage of both LE and RE

and of strand transfer to generate the donor joint and the RE-LE

junction.

Kinetics of irradiation-induced ISDra2 excision
To investigate the relationship between irradiation and

induction of ISDra2 transposition, we analysed the kinetics of c-

irradiation-triggered ISDra2-113 excision directly from the D.

radiodurans chromosome. For this, we isolated genomic DNA

before and at different times after c-irradiation and subjected

samples to PFGE analysis following NotI digestion (Figure 3B) and

to PCR analysis (Figure 3A, 3C and 3D). Primer pairs P1+P2,

complementary to the tetA flanks of ISDra2-113 (Figure 3A), should

generate a 2120 bp fragment when ISDra2-113 is inserted into tetA

and a 500 bp fragment when the donor backbone is sealed

following ISDra2-113 excision. IS circle junction formation was

monitored using primers P3+P4, complementary to the subtermi-

nal IS region (Figure 3A), by the appearance of a 260 bp product

representing abutted LE and RE.

Total NotI-digested genomic DNA (Figure 3B) showed complete

fragmentation immediately following irradiation (compare lanes 1

and 2). Reassembly, evidenced by the gradual reappearance of

distinct NotI fragments, could be detected at about 2 h post-

irradiation while the complete regenerated banding pattern

exhibited by the non-irradiated sample (lane 1) occurred after

3 h (lane 6). PCR analysis of these samples using the P1+P2 primer

pair revealed the presence of the full length IS together with a low

but significant quantity of donor joint prior to irradiation resulting

from rejoining of the DNA flanks following IS excision (Figure 3C,

lane 1). This indicates that IS excision occurs during normal

growth of the host strain as might be expected as tnpA expression is

under control of Pspac. Importantly, a significant increase in the

level of the donor joint (Figure 3C) occurred over the 4.5 h post-

irradiation period. We note that the progressive disappearance of

the full length IS does not necessarily reflect its excision. In order

to visualize the donor joint product, the PCR conditions were

adjusted (short extension times; see Materials and Methods) to

favour amplification of shorter donor joint fragment. It is probable

that the reduction in the intensity of full length IS is due to

competition in the reaction mixture from the increasing

concentration of the short donor joint. In addition, the P3+P4

primer pair revealed the gradual appearance between 1 and 1.5 h

post irradiation of the IS junction species (Figure 3D). The identity

of the donor joint and the IS junction was verified by sequencing.

The IS junction generated by P3+P4 was cloned into a plasmid

carrying CamR (unable to replicate in D. radiodurans) which was

then introduced by transformation into a strain expressing ectopic

TnpA. Ten independent CamR clones were analysed using inverse

PCR and each was shown to carry an insertion 39 to a

59TTGAT39 target sequence, demonstrating that the IS junction

generated by P3+P4 is active in transposition (data not shown).

Although we did not use quantitative PCR, care was taken to

include identical quantities of DNA in each reaction and, to a first

approximation, the results indicate that both the donor joint and

the transposon junction were formed with very similar kinetics.

Products started to accumulate at a time which coincided with the

end of DNA degradation and probably with the start of the

ESDSA pathway generating long stretches of single stranded DNA

[18]. These results therefore strongly suggest that the factor which

triggers ISDra2 transposition is the formation of single stranded

DNA during D. radiodurans genome assembly.

Discussion

D. radiodurans has been the object of much interest due to its

astonishing capacity to resist high levels of radiation [15,17] and to

the genome fragmentation and reassembly processes essential for

its survival after irradiation [18]. Clearly such exceptional

properties might influence the behavior of mobile genetic elements

within the genome and perhaps reveal new and interesting

regulatory mechanisms. One hint that this might be the case came

from the observation that transposition of one IS, ISDra2, into the

thyA gene was apparently increased by high levels of c- or UV-

irradiation [19]. ISDra2 was the only insertion sequence of the 12

different IS family members present in the D. radiodurans genome to

behave in this way.

We show that ISDra2 transposition is specifically triggered

during the process of reassembly of the D. radiodurans genome

which is associated with recovery from irradiation damage. ISDra2

Transposition of D. radiodurans ISDra2
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belongs to the IS200/IS605 family (see www-is.biotoul.fr) and the

paradigm of this family, IS608, transposes by excision of a single

strand circular DNA intermediate which can then insert into a

single strand DNA target [22]. Our results demonstrate that

ISDra2 also exhibits a strict requirement for single stranded DNA

in vitro (Figure 2). Furthermore, we show genetically that both

ISDra2 excision (detected by the restoration of an intact tetA gene)

and insertion (into the reporter sacB resulting in resistance to

sucrose) require TnpA, and that insertion occurs 39 to the specific

pentanucleotide sequence, 59TTGAT39, found adjacent to the left

end of all naturally occurring genomic ISDra2 copies [20].

Moreover, we observe a 50 to 60-fold increase in the overall

frequency of transposition following UV or c-irradiation resulting

from stimulation of the two transposition steps: a 8-fold increase in

excision and a 6-fold increase in insertion of the IS circle

transposition intermediate (Table 1). The overall transposition

stimulation factor is in accord with the 50- and 100-fold induction

of in vivo transposition of wild-type ISDra2 into the thyA gene by

UV- and c-irradiation respectively [19].

Monitoring tnpA promoter activity with the lacZ reporter gene

demonstrated that the radiation-triggered ISDra2 transposition

was not due to a specific induction of TnpA expression. Moreover,

a same stimulatory effect of irradiation was observed whether

TnpA was expressed from its natural promoter or from an external

IPTG-inducible Pspac promoter.

Importantly, using a physical PCR-based approach, we also

demonstrate that ISDra2 excision, reclosure of the chromosomal

DNA donor joint and formation of a transposon joint with abutted

left and right ends (consistent with a circular form of ISDra2) occur

within irradiated D. radiodurans cells. Both rejoined donor DNA

flanks and the LE-RE junction begin to accumulate after 90 min

of post-irradiation incubation. This correlates with the end of the

Figure 2. ISDra2 TnpA-catalyzed cleavage and strand transfer in vitro. (A) Oligonucleotides used as DNA substrates. Length of cleavage
products is indicated. The potential secondary structure in both LE and RE is indicated. Black dotted and black lines: left and right DNA flanks
cleavage sites are shown as vertical black arrows. Asterisk (*) indicates radioisotope position. (B) Excision in vitro: donor joint formation and single-
versus double-strand substrates. The 59-32P-labelled oligonucleotide used was the 59-base LE composed of 39 nt of LE and 20 nt 59 to the 59TTGAT39
and the unlabelled 63-base oligonucleotide RE. Lane 1: no-protein control; lane 2: TnpA alone; lane 3: TnpA and unlabelled RE; lane 4: dsLE, no-
protein; lane 5: dsLE, TnpA and ssRE.
doi:10.1371/journal.pgen.1000799.g002

Transposition of D. radiodurans ISDra2
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degradation of damaged DNA and the start of DNA double strand

break repair processes such as extended synthesis dependent

strand annealing (ESDSA) that generates high concentration of

single stranded DNA [18,27].

Induction of transposition by exposure to environmental stress

has often been tacitly assumed. However, there has been only

limited supporting evidence for the idea that transposition can

be induced efficiently by environmental insults and the sparse

data available are generally based on indirect genetic assays

[10,12–13,28–32]. These data should be revisited using more

powerful technologies now available.

The idea of environmentally-induced transposition has also

arisen from analysis of the growing number of available complete

prokaryote genome sequences. These have identified many

bacterial and archaeal species in which the number of ISs is

dramatically high. They include different Shigellae species [33],

Bordetella pertusis [34], Yersinia pestis [35–36] Lactobacillus [37],

Sulfolobus solfataricus [38] among many others. While it is attractive

to imagine that this is the result of transposition bursts induced by

an environmental trigger, a strong alternative has been to invoke

stochastic transposition together with the formation of population

bottlenecks produced in small isolated populations to fix such

mutational events (insertions) [34].

Irradiation-triggered transposition described here is a response

to an extreme set of environmental conditions which transiently

generates large quantities of a substrate (single strand DNA)

favoring transposition of ISDra2 but not of the other, unrelated,

ISs present in the D. radiodurans genome. This response would

Figure 3. Physical evidence for irradiation-induced ISDra2 excision. Strain GY13120 (tetAVISDra2-113 expressing tnpA in trans) received 5
kGy of c–irradiation and aliquots were taken to isolate genomic DNA used to prepare DNA agarose plugs and as template for PCR analysis. The time
following irradiation is shown in hours above each lane. (A) Schematic representation of IS excision products. The excision products are shown
together with the position of primers used in PCR analysis. Note that the transposon circle including the transposon junction is single stranded. (B)
Kinetics of double-strand-break repair. DNA agarose plugs were digested with NotI prior to PFGE analyses and loaded onto a 1.06% agarose gel. L: l
Ladder. (C) Kinetics of donor joint appearance. PCR reactions were performed with primer pair P1 and P2 and loaded onto a 1% agarose gel; L:
MassRuler DNA Ladder. (D) Kinetics of IS circle junction appearance. PCR reactions were performed with primer pair P3 and P4 and loaded onto a 2%
agarose gel; L: O’GeneRuler 100 bp DNA Ladder.
doi:10.1371/journal.pgen.1000799.g003
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result in movement of the single ‘‘top strand’’ IS copy generating

mutational diversity while retaining the inactive bottom strand

copy. Insertion of the single-stranded circle intermediate and

replication of the bottom strand would increase the copy number

of the IS and disperse it throughout the genome. Moreover, D.

radiodurans possesses an efficient natural competence system whose

regulation remains to be explored. In view of the fact that such

processes in other bacterial species occur using single strand DNA

intermediates, transformation may be instrumental in assuring

spread of this single strand transposable element [39]. Thus

radiation-triggered ISDra2 transposition might additionally gener-

ate diversity through participation of DNA containing newly

transposed ISDra2 copies in intercellular transformation.

An increase in the ISDra2 copy number exposed to a single

gamma irradiation cycle has been observed previously (see Figure

S2 in [19]). Moreover, Islam et al [20] characterized the

distribution of ISDra2 in different laboratory D. radiodurans strains

and found that its copy number varied from strain to strain: 7

copies were identified in the published D. radiodurans R1 genome

sequence, 6 in the MR1 strain, 21 in the KD8301 strain but only

one in KR1, the parent strain of KD8301 and in the reference

strain ATCC 13939 used here. Unfortunately, the history and the

intermediate strains are not available and no conclusions can be

drawn concerning the factors which contributed to the gain or loss

of ISDra2 copies in the genome of these strains. The expansion of

transposon copy number with accompanying ectopic sequence

homology raises the question whether this would be a detriment to

the extensive chromosome repair process after heavy irradiation.

Precise reconstitution of a shattered genome through ESDSA

involves annealing of 20–30 kb single-stranded DNA overhangs.

Zahradka et al ([18]) speculated that short blocks, 1–2 kb, of

dispersed repetitive sequences present in the genome of D.

radiodurans would not compromise the accuracy of repair through

ESDSA. These authors pointed out that annealing only a limited

repeated sequence block within two long non-complementary

single-stranded overhangs could not readily link two fragments

together. However, such ectopic sequence homology might

stimulate chromosomal rearrangements through other DNA

double strand break repair pathway such as single strand

annealing (SSA) with a potential of increasing the plasticity of

the genome under very adverse conditions.

Since this class of newly recognized transposable elements

require single stranded DNA as both substrate and target site, any

process which generates single strand DNA such as replication,

mismatch repair and transcription, might lead similarly to limited

induction of transposition and also provide suitable insertion sites.

In view of the extremely widespread occurrence of members of this

IS family in nature, this type of mechanism could be important in

regulating transposition activity, interfacing transposition with host

physiology and cell cycle and in creating genomic diversity as has

been recently shown for the IS200/605 family member, IS1541,

whose insertion allows the Yersinia pestis host to escape from

adaptive immune responses and plague immunity [9].

Materials and Methods

Bacterial strains, media, and growth conditions
Bacterial strains are listed in Table S1. E. coli strain DH5a was

the general cloning host and strain SCS110 was used to propagate

plasmids prior to introduction into D. radiodurans via transforma-

tion[40]. All D. radiodurans strains were derivatives of strain R1

(ATCC 13939). TGY2X liquid medium and TGY plates [41]

were used for D. radiodurans and Luria-Bertani (LB) broth for E. coli

strains. Media were supplemented with the appropriate antibiotics

used at final concentrations of: chloramphenicol 20 mg ml21 for E.

coli and 3 mg ml21 for D. radiodurans; spectinomycin 40 mg ml21 for

E. coli and 75 mg ml21 for D. radiodurans; tetracycline 2.5 mg ml21

for D. radiodurans; hygromycin 50 mg ml21. 5% (w/v) sucrose was

supplemented to isolate the D. radiodurans sacB inactivated mutants.

Transformation of D. radiodurans with genomic DNA, PCR

products, or plasmid DNA was performed as described [41].

DNA manipulations
Plasmid DNA was extracted from E. coli using the QIAprep

Spin miniprep kit (Qiagen). D. radiodurans chromosomal DNA was

isolated as described previously [19]. PCR reactions were carried

out with Phusion DNA Polymerase (Abgene).

Inverse PCR was performed as follows: genomic DNA was

digested with NarI, purified by Phase Lock Gel procedure

(Eppendorf), and then ligated using T4 DNA ligase. After ethanol

precipitation, the ligated circular DNA was used as a template

with primers P3 and P4 described in Table S1. The iPCR

products were then directly sequenced with LEext and REext by

Genome Express (Grenoble, France). Oligonucleotides used are

listed in Table S3.

PCR reactions used for analysis of kinetics of irradiation-

induced ISDra2 excision were performed as follows: PCR was

carried out in a final volume of 50 ml with using 0.5 Units of

DyNazyme EXT DNA polymerase (Finnzymes) and 200 mM of

each dNTP. To detect the donor joint, PCR analysis using P1+P2

primer pair was performed under the following conditions: 94uC
for 3 min, 30 cycles of 94uC for 45 s, 60uC for 45 s, and 72uC for

20 s; and finally 72uC for 10 min. To detect the RE-LE junction,

PCR analysis using P3+P4 was carried out as follows: the PCR of

the first round was performed with 1 mg of genomic DNA under

the following conditions: 94uC for 3 min, 30 cycles of 94uC for

45 s, 55uC for 45 s, and 72uC for 10 s, and finally 72uC for

10 min. The second round of PCR used a 15 ml aliquot from

round 1 as template and was done under the same conditions than

round 1.

Plasmids
For plasmid pGY13224 expressing tnpA and tnpB from a Pspac

promoter, the coding sequences of the two genes were amplified by

PCR using primers DraF (tagged with EcoRV) and DraR (tagged

with XhoI). After cleavage, the PCR fragment was cloned into

pGY11559 between the SwaI and XhoI sites.

For plasmid pGY13203 expressing tnpA from the Pspac promoter,

the D. radiodurans ISDra2 tnpA gene was amplified by PCR using the

primer pair DraF/DraX and D. radiodurans R1 genomic DNA as

template. The product was cloned into plasmid pGY11559

between the EcoRV and XhoI sites.

For plasmid pGY13204 expressing tnpB from the Pspac promoter,

the N-terminal part of tnpB was amplified using the primer pair

1651F/1651R, digested with NdeI and BsaI and ligated to the

10885-bp NdeI-BsaI fragment from pGY13224.

For plasmid pGY13507 expressing sacB from the Pspac promoter,

the B. subtilis sacB gene was amplified with the primer pair

NdeUPsacB/XhoDwnsacB and cloned into pGY11559 between

the NdeI and XhoI sites.

For plasmid pGY11556 expressing the E. coli lacZ from the Pspac

promoter, pGY11559 was digested with BglII and XhoI and ligated

to the BglII-XhoI fragment from pGY11540 containing lacZ fused

to the Pspac promoter.

Plasmids for production and in vivo analysis of His-

tagged TnpA. The tnpA coding sequence was amplified with the

primer pair NdeUptnpA/TnpAHISsph and was cloned at the NdeI

and SphI sites of pAPT110 with a C-terminal His6 tag under the
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control of Plac, to generate plasmid pGY13503. The plasmid also

carried the lacI gene to regulate tnpA-His6 expression. To analyse

the ability of C-terminal His-tagged TnpA to catalyse in vivo

transposition, the tnpA-His6 copy was amplified from pGY13503

with primer UpNde107 (tagged with NdeI) and DwntnpAHISxho

(tagged with XhoI) and cloned into pGY11559 at the unique NdeI

and XhoI sites to produce plasmid pGY13505, in which tnpA-His6

is expressed under the control of Pspac promoter.

Pulsed field gel electrophoresis
Irradiated cultures were diluted in TGY2X to an A650 = 0.3 and

incubated at 30uC. At different post-irradiation incubation times,

samples (5 ml) were taken to prepare DNA plugs as described [42].

The DNA in the plugs was digested for 16 h at 37uC with 60 units

of NotI restriction enzyme. After digestion, the plugs were

subjected to pulsed field gel electrophoresis for 28 hours at 10uC
using a CHEF MAPPER electrophoresis system (Biorad) with the

following conditions: 5.5 V/cm, linear pulse of 40 s, and a

switching angle of 120u (260u to +60u).

Measurement of in vivo spontaneous, c-, and UV-induced
excision frequencies of ISDra2 derivatives

Individual CamR TetS colonies purified from GY13111 or

derivatives of GY13115 strain expressing in trans TnpA, or TnpB

or no protein were inoculated into 3 ml of TGY2X supplemented

with spectinomycin when required and grown to an A650 of 1–2.

The bacterial cultures were washed in 10 mM MgSO4, resus-

pended in the same buffer to an A650 = 1. Half of the resuspension

was kept on ice, and the second half was exposed to UV light at a

dose rate of 3.5 J m22 s21 in Petri dishes. For c-irradiation, the

cultures were grown to an A650 = 1, then concentrated 30-fold in

TGY2X and irradiated on ice with a 137Cs irradiation system

(Institut Curie, Orsay, France) at a dose rate of 41.8 Gy min21.

UV-, c- or non-irradiated cells were diluted in TGY2X to an

A650 = 0.3 and grown to stationary phase. Determination of the

total number of viable cells was performed on TGY plates and

excision of ISDra2 derivatives from tetA gene was selected on TGY

plates containing tetracycline. Colonies were counted after 3–4

days of incubation at 30uC. The frequencies of the excision event

per viable cell from 10 independent experiments were used to

calculate the mean values and the standard deviations.

Measurement of in vivo spontaneous and c-induced
insertion frequencies of ISDra2-103 into sacB

5 individual CamR TetS colonies purified from GY13174 strain

expressing ISDra2-103 were inoculated into 10 ml of TGY2X

supplemented with hygromycin and grown to an A650 of 1.5. The

bacterial cultures were concentrated 30-fold in TGY2X. 100 ml of

the resuspension was kept on ice and the rest was c-irradiated as

described above. After dilution, c- or non-irradiated cells were

grown to stationary phase. Excision of ISDra2-103 from tetA and

insertion into sacB gene were selected on TGY plates containing

tetracycline, or tetracycline, chloramphenicol and sucrose, respec-

tively. Colonies were counted after 3–4 days of incubation at 30uC.

The insertion frequencies per viable cell from 5 independent

experiments were used to calculate the mean values and the

standard deviations.

Measurement of lacZ expression under control of PtnpA or
Pspac promoters

Replacement of the tnpA coding region of ISDra2-103 with the

lacZ coding region to generate ISDra2-104 (Figure 1A) was

performed as follows: the PtnpA::lacZ fusion was amplified by the

joining PCR method [43]; see Table S3). The resulting lacZ fusion,

the accompanying chloramphenicol resistance cassette and the

right end of ISDra2-103 were then inserted into the tetA gene of

strain GY13109 using the tripartite ligation method [44]. The

resulting strain GY14310 was selected for CamR and the insertion

of the lacZ fusion by homologous recombination was confirmed by

diagnostic PCR. LacZ gene was expressed under the Pspac promoter

in strain GY14312 containing plasmid pGY11556. Expression of

the lacZ reporter gene was detected in D. radiodurans colonies

formed on TGY plates containing 5-bromo-4-chloro-3-indolyl-b-

D-galactoside (X-gal) at 40 mg/ml. b-galactosidase activity was

measured as previously described [41].

TnpA purification, DNA procedures, and oligonucleotide
cleavage and strand transfer reactions in vitro

TnpA was purified from E. coli K12 MC1061 endA carrying

TnpA-His6 expression plasmid pGY13503 (Table S1) following

induction with 0.5 mM IPTG as previously described [25].

Oligonucleotide substrates for in vitro reactions. LE

(59-mer):

GGCGTCTGAATGGCCTTGATGCTTGAGGGGCGCAC-

ACTCGTGACTTCAGTCATGAGTTA

LEcom (59-mer):

TAACTCATGACTGAAGTCACGAGTGTGCGCCCCTCA-

AGCATCAAGGCCATTCAGACGCC

RE (63-mer):

CTGCGAAGTGAGAATCACGCGACTTTAGTCGTGTGA-

GGTTCAAGAGTCCCTTGGCGCCCATGA

REcom (63-mer)

TCATGGGCGCCAAGGGACTCTTGAACCTCACACGAC-

TAAAGTCGCGTGATTCTCACTTCGCAG

In vitro oligonucleotide cleavage and strand transfer
reactions

Reactions were performed by 45 min incubation of 20 fmol of a

59-32P-labelled oligonucleotide and 1 pmol of the same oligonucle-

otide unlabelled with or without 10 pmol unlabelled recombining

oligonucleotide, 0.5 mg of poly-dIdC and 20 pmol TnpA-His6 at

37uC in a final volume of 16 ml in 20 mM HEPES (pH 7.5), 2.5%

DMSO, 200 mM NaCl, 5 mM MgCl2, 1 mM TCEP, 20 mg/ml

BSA and 10% glycerol. The reactions were terminated by addition

of 0.1% SDS followed by 15 min of incubation at 37uC and

separated on a 10% denaturing sequencing polyacrylamide gel. The

gel was analysed by phosphorimaging.

59-end-labelling. 10 pmol of oligonucleotide was mixed with

16 pmol of [c-32P] ATP (5000 Ci/mmol, Amersham Inc.) and

1 unit of T4 kinase (NEB Inc.) in T4 kinase buffer (70 mM

Tris–HCl pH 7.6, 10 mM MgCl2, 5 mM DTT). Incubation was

for 1 h at 37uC. Labelled oligonucleotides were purified by

filtration through Sephadex G25. Ds substrates were obtained by

hybridisation of labelled top-stranded oligonucleotide with cold

bottom-stranded oligonucleotide.

Supporting Information

Figure S1 Construction of the D. radiodurans tester strains. All

constructions described below were verified by DNA sequencing.

The oligonucleotides used for PCR amplification of DNA

fragments required for strains or plasmids construction, for

diagnostic PCR or for sequencing are described in Table S3.

The active ISDra2 genomic copy (loci DR1651-DR1652) was first

replaced with a TetR cassette expressing the tetA gene from the

deinococcal PgroESL promoter using the tripartite ligation method

[Mennecier S, Coste G, Servant P, Bailone A, Sommer S: 2004
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Mol Genet Genomics, 272(4):460–469.]. The resulting strain,

GY13109, was selected for its TetR phenotype and the allelic

replacement of ISDra2 by the TetR cassette was confirmed by

diagnostic PCR. The ISDra2 derivatives (Figure 1A) were inserted

at the unique 59TTGAT39 target sequence of the tetA gene by

double-crossover events between tripartite ligation products

previously amplified by the joining PCR method [Fabret C,

Ehrlich SD, Noirot P: 2002 Mol Microbiol, 46(1):25–36.] and

chromosomal tetA region. The resulting tester strains (GY13115

with ISDra2-113; GY13111 with ISDra2-103; and GY13173 with

ISDra2-103Term116; Figure 1B) were selected for CamR and the

insertion of the ISDra2 derivatives into the tetA gene by

homologous recombination was confirmed by diagnostic PCR.

Transposon insertion into sacB, was studied by first replacing the

degenerate ISDra2* copy (loci DR0177-DR0178) with the sacB

gene from B. subtilis and the accompanying hygromycin resistance

cassette. The strain GY13173 or GY13177 was transformed by the

tripartite ligation mixture (see Table S2) and the resulting strains

GY13174 and GY13182, respectively, were selected for their

HygR phenotype. The allelic replacement of ISDra2* by the

fragment encompassing the HygR cassette and the sacB gene was

confirmed by diagnostic PCR and sequenced.

Found at: doi:10.1371/journal.pgen.1000799.s001 (0.46 MB TIF)

Figure S2 Expression of the lacZ reporter gene under the control

of PtnpA or Pspac promoter. GY14310 and GY14312 bacteria

expressing lacZ under the control of PtnpA and Pspac respectively

were exposed (&) or not ( ) to 5 kGy c-irradiation and b-

galactosidase activity was measured at time 0, 30, 60, 120, and

180 min post irradiation incubation. The strain GY14312 was

grown in the absence (-IPTG) or in the presence of 1 mM IPTG

(+IPTG). The b-galactosidase activity being constant at the

different times after irradiation, the results were presented only

for t = 60 min. Values are averages6standard deviation derived

from three independent experiments.

Found at: doi:10.1371/journal.pgen.1000799.s002 (0.48 MB TIF)

Figure S3 PCR analyses of SucR insertion mutants. (A)

Schematic representation of the sacB gene showing potential

pentanucleotide insertion sites (S1 - 10) and the position of primers

used for PCR analysis. (B) Agarose gel showing the sizes of

amplification products obtained with genomic DNA of 10 TetR

CamR SucR mutants (from strain GY13186) as template and the

pair of primers Camdwn/RevsacB. Mutants sac1, 3, 4, and 7 are

inserted at site S1 of sacB; mutant sac2 is inserted at site S8;

mutants sac8 and sac9 at site S9 and mutants sac5, sac6, and sac10

are inserted at site S5.

Found at: doi:10.1371/journal.pgen.1000799.s003 (1.67 MB TIF)

Table S1 Bacterial strains and plasmids.

Found at: doi:10.1371/journal.pgen.1000799.s004 (0.06 MB

DOC)

Table S2 ISDra2-113 genomic insertions sites.

Found at: doi:10.1371/journal.pgen.1000799.s005 (0.03 MB

DOC)

Table S3 Overview of primers used for strains construction,

cloning, diagnostic PCR, and sequencing experiments.

Found at: doi:10.1371/journal.pgen.1000799.s006 (0.16 MB

DOC)
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