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Abstract

In this work we present a method for the differential analysis of gene co-expression networks and apply this method to look
for large-scale transcriptional changes in aging. We derived synonymous gene co-expression networks from AGEMAP
expression data for 16-month-old and 24-month-old mice. We identified a number of functional gene groups that change
co-expression with age. Among these changing groups we found a trend towards declining correlation with age. In
particular, we identified a modular (as opposed to uniform) decline in general correlation with age. We identified potential
transcriptional mechanisms that may aid in modular correlation decline. We found that computationally identified targets of
the NF-KB transcription factor decrease expression correlation with age. Finally, we found that genes that are prone to
declining co-expression tend to be co-located on the chromosome. Our results conclude that there is a modular decline in
co-expression with age in mice. They also indicate that factors relating to both chromosome domains and specific
transcription factors may contribute to the decline.
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Introduction

Since the introduction of DNA microarrays over a decade ago,

it has become possible to use genome-wide approaches to explore

differences between two biological conditions, such as tumor

versus healthy samples, mutant versus wild-type cells or old versus

young tissues. The most common type of analysis, called

differential expression analysis, looks for genes whose expression

changes between two or more different groups. In addition to

individual genes, differential expression analysis can also identify

groups of genes or pathways that change expression levels in an

experiment. For example, pathway analysis shows that genes

involved in the electron transport chain show a general decrease in

expression with age, even though individual genes in this pathway

may not show a large effect [1].

A different type of analysis, differential network analysis, is to

create a genome-wide network of genes, and then to look for

changes that occur in the network. Gene co-expression networks

give insight into how genes work together in particular pathways or

systems across multiple microarray conditions. Because most

biological processes arise from the complex interactions among

multiple gene products, information about how genes function

together can improve our understanding of the underlying

biological mechanisms. For instance, Hughes et al. used DNA

microarrays to profile expression of every gene in yeast in 300

different mutants and chemical treatments, and then calculated

which genes were co-expressed with each other under these diverse

conditions. This work clearly showed that genes could be grouped

into cellular pathways based on co-expression, and provided a useful

approach to categorize the function of unknown genes on a global

scale [2]. Since this finding, gene co-expression networks have been

constructed using worm, fly, mouse, and human microarray data

[3–6]. In addition, the comparison of co-expression links between

orthologous genes in multiple species allows one to search for

relationships that are functionally conserved [6,7].

Looking at how gene co-expression relationships change

between two networks is a potentially powerful way to obtain a

holistic view of how gene co-expression relationships change

between two states. However, searching for differences in networks

requires great sensitivity to the initial choice of data. For example,

the absence of a shared link in mouse and human co-expression

networks does not necessarily indicate divergent function. Instead,

differences in the mouse and human co-expression networks may

indicate differences in the technical platforms or the experimental

conditions used to build the networks.

In this work, we present a novel method for differential co-

expression network analysis. Past research has focused on

differences in co-expression between networks. Ihmels et al.

developed the differential clustering algorithm (DCA) to identify

groups of co-expressed genes that differ between yeast species [8].

Choi et al. created a nonweighted co-expression network using a

collection of published cancer arrays and compared it to a network

composed of the control arrays [9]. Here, we describe a

comprehensive and scalable methodology for differential co-

expression network analysis and apply it to search for differences

in gene co-expression networks during aging in mice.

Aging affects a myriad of genetic, biochemical and metabolic

processes, and thus it is attractive to use a network approach to
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globally characterize changes in old age. Genes do not work alone,

but rather act within a functional group or pathway, such as a

metabolic pathway or a regulatory network. One effect of aging may

be to diminish the coherence in expression of gene pathways. In old

animals, some genes in a pathway may not be fully activated in

tissues that require the function of the pathway, and other pathway

components may not be fully repressed in tissues in which the

function of the pathway is not needed. In this case, old mice would

show less correlation in expression for genes in the pathway than

young mice. We test this possible effect of aging by comparing co-

expression networks between young and old mice (Figure 1A).

Results

We used a co-expression network approach to find differences in

mice during aging. We first generated separate gene co-expression

networks for young and old mice. We used the data from

AGEMAP, a large DNA microarray study of gene expression as a

function of age [10]. Specifically, AGEMAP studied gene co-

expression in C57BL6 mice aged 16 months and 24 months. For

each age group, the study examined expression in 16 different

tissues. The array platform is a spotted radioactive array with over

12,000 unique cDNA clones stemming from gonad, ovary, and pre-

and postimplantation embryos [10]. We discarded the data from

three tissues (liver, bone marrow, and striatum) due to missing or

poor-quality arrays. For each of the remaining 13 tissues, there are

five male and five female biological repeats, resulting in a total of

130 arrays. Each gene array contains 12,273 cDNA clones from the

mouse genome. Of these, we discarded expression data from 3,169

cDNAs due to low overall expression (see Materials and Methods).

Instead of looking for genes that change expression with age, we

analyzed changes in how genes are linked together by co-

expression. Using the expression data that passed the quality

controls described above, we generated a gene expression network

for each age. For each age group we calculated the Spearman

correlation across the 130 arrays for every pair of genes. In each

subset of genes from the network, the few gene pairs that show

high correlation are more relevant than the large number of gene

pairs that show little or no correlation. We also transformed the

Spearman correlation r by Fisher’s transformation f~
1

2
log((1zr)=(1{r)), to get better resolution for the largest most

biologically interesting correlations.

We created weighted co-expression networks for each age group

in which the nodes in the network correspond to genes and the

edges are the non-negative Fisher transformation of the Spearman

correlation in expression between two genes. One approach to

comparing the young and old gene networks is to separately count

the number of edges in each network. With an edge threshold of

f~1:4 (r̂r~0:885), we found that there are 26% fewer total edges

(K ) in the 24-month-old network than in the 16-month-old

network. In both networks, the connectivity of each gene in the

network follows a power law distribution: P(k)*kc, where P(k) is

the probability that a node in the network is connected to k other

nodes. For the young network, we estimate c~c(Young)~{2:54,

and for the old network, we estimate c~c(Old)~{3:68.

For the measurements of c and K , we used a permutation test to

ascertain the significance of the observed differences in values

Figure 1. A novel approach for differential co-expression
network analysis. (A) Collections of microarrays can be used to look
for differences in co-expression networks with age. (B) Each edge in the
difference network represents the change in correlation that occurs
between young and old mice. The edge weights in the 16-month and
the 24-month networks are a function of the correlation in expression
between two genes. The edge weights in the difference network
represent the magnitude of the difference in correlations. The
correlation difference matrix view is a heat map representation of the
difference network. In both the network view and the matrix view, red
represents a decrease in correlation, and blue represents an increase.
doi:10.1371/journal.pgen.1000776.g001

Author Summary

There is mounting evidence that mammalian aging is
marked by increased gene transcriptional variation. This
trend was shown not only by studying gene expression in
single cells (Bahar et al. 2006), but at the coarse tissue
resolution as well (Somel et al. 2006; Li et al. 2009). These
led us to believe that looking at absolute changes in
expression level alone may not tell the whole story of
transcriptional changes in age. Instead the story may be in
the more subtle changes in the coordination of expression
among multiple genes. For this reason, we decided to look
at changes in co-expression relationships with age. To this
end, we developed a methodology for differential co-
expression network analysis for the comparison gene co-
expression on a global scale. We applied this methodology
to compare co-expression between young (16-month) and
old (24-month) mice. This allowed us to find both gene
groups whose coordination appear to be affected by age
and to propose potential mechanisms for the change. We
believe our work is of broad importance because it
represents a different paradigm for looking not only at
aging but also at any complex condition or disease—away
from changes in individual genes towards changes in gene
relationships.

Gene Expression Correlation Decline in Aging Mice
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between the young and old networks. In the permutation test, the

age labels of the mice are permuted, and the data are

reconstructed using the new labeling (see Materials and Methods).

Significance is determined by the fraction of the permuted test

statistic values that exceeds these observed test statistic. The

permutation approach eliminates artifacts arising from bias in the

data that are not due to aging itself, such as a small number of sick

mice or bad gene array experiments that appear in one age group

but not in the other. In 1000 permutations the permuted

difference K (Young){K (Old) exceeded the observed value 3% of

the time. This gives a one-tailed p value of 0:03. To be cautious we

report a two-tailed p-value of 0:06. The observed value of

c(Young){c(Old) exceeded the permuted values in 24% of the cases

(two tailed pv0:48). Thus the connectivity slope does not differ

significantly between the groups, while the total number of edges

has at most borderline significance.

Difference networks identify groups of genes that
change co-expression with age

We developed a difference network framework to directly

identify groups of genes that change correlation with age. In the

difference network framework, every node represents a gene, and

every weighted edge represents the change in correlation between

old and young mice for the corresponding gene pair (Figure 1B).

The edge weights, d, are scalars such that a negative d represents a

decrease in correlation and a positive d represents an increase in

correlation:

di,j~max(f(r̂r
(Old)
i,j ),0){max(f(r̂r

(Young)
i,j ),0), ð1Þ

where r̂r
(Old)
i,j and r̂r

(Young)
i,j are the Spearman correlation coefficients

between genes i and j in the 24 month and 16 month data sets

respectively, and f is the Fisher transformation. The Fisher

transformation, when applied to a sample correlation coefficient r̂r,

yields an approximately normally distributed estimator. Though

changes in negative correlations could also be of interest, this

choice of d allows us to focus on changes in positive correlations.

The most straightforward way to evaluate the difference

network is to determine whether the average is positive or

negative. However, in the difference network, there are a total of

approximately 36 million weighted edges, a vast majority of which

involve pairs of genes that are not co-expressed and thus have

values that are near zero. The small fraction of edges that reflect

true co-expression difference would likely be obscured by the large

number of edges that do not change with age.

We reduced the complexity of the difference network problem

by focusing on groups of genes rather than individual gene pairs.

We used two different classification methods to define gene

groups: (a) genes that show strong co-expression in a related set of

gene array experiments and (b) genes that are within the same

function group as defined by the Gene Ontology (GO)

classification.

The first classification method involved finding groups of genes

that are co-expressed. We could not use the gene array data from

either the 16- or the 24-month-old mice because this would bias

the analysis. For example, a gene set defined by co-expression in

the 16-month data set naturally has higher co-expression than it

would in the 24-month data set, and vice versa. For this reason, we

used a separate gene expression data set, the AGEMAP

compilation of data from 6-month-old mice. Like the 16- and

24-month AGEMAP data, the 6-month data included 10 gene

arrays from 13 different tissues. Using the gene expression data

from this set of 130 gene arrays, we calculated the correlation in

expression between all pairs of genes, then used average-linkage

hierarchical clustering to group the genes into clusters (see

Materials and Methods). For this analysis, we defined gene

clusters using a distance cutoff such that all resulting clusters had

an average within-cluster Spearman correlation of at least �rr~0:7.

The hierarchical clustering established a list of 312 gene sets

containing a minimum of five genes. For each group (g), we

defined the test statistic (�ddg ) as the mean of the intergroup edge

weights in the difference network. For each gene group, we used a

permutation test to count how many times the permuted test

statistic exceeded the observed �ddg . We considered a gene group

significantly decreasing if the sample value was below the

first percentile of permutations (two-sided p-value v0:02). We

considered a gene group significantly increasing if the sample

value was above the 99th percentile of permutations. From the 312

gene clusters, we found nine clusters of genes that show decreasing

correlation with age and one cluster that shows increasing

correlation with age (Table 1). Because we tested 312 clusters,

we would expect to identify 3.12 clusters of each type (increasing

and decreasing) under the null hypothesis (Figure 2A).

We inspected the expression pattern of the genes for the ten

clusters that change co-expression with age, and noticed an

interesting pattern regarding expression in the gonads and adrenal

glands. The genes from two clusters (clusters 175 and 14) are

expressed at high levels specifically in the gonads and adrenal

glands, and the genes from four clusters (clusters 78, 73, 68 and

178) are broadly expressed except for low expression in the gonads

and the adrenals (Table 1). The gonads and adrenals both produce

steroid hormones. The ovaries produce estrogen and progester-

one, the testes produce testosterone and the adrenal glands

produce corticosteroids such as ACTH. In all cases, steroid

production decreases with age.

In addition to grouping genes based on co-expression, we also

grouped genes based on shared genetic functions using GO

categories. We used gene sets that shared the same GO molecular

function, associated cellular component, or biological process. GO

categories are useful in that they provide a functional grouping of

related genes, and genes with similar functions are often co-

expressed.

We used 395 GO categories containing 5 to 200 genes with

minimal overlap to test for group-wide correlation changes with

age. We identified the set of GO categories by looking at the

categories at every level of distinction, and discarded any group

that has more than 50% overlap with any other category that is

smaller than it. As before, we used permutation to test for

significance of within-group edge weight change. We found that

nine GO categories decrease correlation with age, and zero

categories increase correlation with age (Figure 2A).

Table 1 lists the GO categories that change significantly with

age. The top GO category includes genes involved in memory,

which clearly declines with age. Another interesting GO category

is selenium binding. Selenium is a trace element that acts as a

cofactor for reduction of antioxidant enzymes [11]. Several studies

have suggested that low levels of selenium may be a risk factor for

developing cancer in humans [12]. Changes in the genes

responsible for selenium binding with age would have interesting

implications for the role of antioxidants in aging.

Identifying dense areas of change in the aging difference
network

The observation that gene sets tend to show an overall decline

in correlation of gene expression with age suggests that there may

be densely-connected subgraphs of negative edges in the gene-

correlation difference network. To find areas of the difference

Gene Expression Correlation Decline in Aging Mice
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network that loosen with age, we clustered genes using the

weighted edges of the difference network as a distance matrix. For

example, to find a densely-connected subgraph of the difference

network where all of the edges are negative (i.e., decreasing with

age), we define the distance metric between two genes i and j to be

d{
i,j ~1{di,j . Thus, a gene pair that decreases correlation with age

has a small clustering distance. If we cluster using the distance

matrix composed of d{
i,j for i~1, . . . ,n and j~1, . . . ,n, then the

resulting clusters of genes are chosen based on their shared

correlation loss. Similarly, if we set the distance measurement to be

dz
i,j ~1zdi,j , then two genes that increase correlation with age are

separated by only a small distance. Clustering via dz will yield

clusters in which the members increase correlation with one

another.

We clustered the genes in the difference network using dz and

d{ to locate clusters that increase and decrease respectively. We

used average linkage hierarchical clustering with a set distance

cutoff of h~0:75 to define clusters. We set the height cutoff to

h~0:75 so that all of the resulting clusters had a mean average

correlation difference of �dd~{0:25 or �dd~0:25 for d{ and dz,

respectively. Using a minimum size cutoff of five probes, we found

54 clusters that decreased correlation with age and 18 clusters that

increased correlation with age (Figure 2B).

As shown in Figure 2B, by using permutations to test for

significance, we found that the number of clusters identified via

d{ and dz are both significant. For dz the true number of

clusters fell in the top 0.4 percentile (corresponding to two-tailed

pv0:008). For d{ the true number of clusters far exceeded any of

the permuted values. Although both clusterings are significant,

Figure 2. Functional gene clusters tend to decrease with age.
(A) The number of co-expression- and Gene Ontology (GO)- defined
groups that change with age. The red bars indicate decreasing co-
expression, and the blue bars indicate increasing co-expression. The
dotted line represents the number of groups expected under the null
distribution. (B) Histogram of the sum of the edge weights for the
clusters using dz and d{. Again the red bars indicate decreasing co-
expression, and the blue bars indicate increasing co-expression. Top left
panel: The total number of groups that decrease in co-expression
exceeds any of the 1000 permuted values. Top right panel: The total
number of groups that decrease in co-expression exceeds all but 4/
1,000 of the permuted values.
doi:10.1371/journal.pgen.1000776.g002

Table 1. Co-expression clusters and Gene Ontology (GO)
categories that change correlation with age at the top 1
percentile.

Group name %a Descriptionb

cluster175 0.0 IPR000225 Armadillo (pv0:0001
c

)

GO:0007613 0.0 Memory

cluster78 0.2 GO:000716 G-protein coupled receptor protein
signaling (pv0:0005)

GO:0008146 0.2 Sulfotransferase activity

cluster73 0.3 IPR006630 RNA-binding protein Lupus La
(pv0:0001)

GO:0008173 RNA methyl-transferase activity
(pv0:0001)

IPR014729 Rossmann-like sandwich fold
(pv0:0001)

GO:0006898 Receptor-mediated endocytosis
(pv0:0001)

cluster306 0.3 GO:0019203 Carbohydrate phosphatase activity
(pv0:0001)

GO:0006118 Electron transport (pv0:002)

GO:0016050 0.5 Vesicle organization and biogenesis

GO:0008430 0.7 Selenium binding

GO:0006940 0.8 Regulation of smooth muscle contraction

GO:0006518 0.8 Peptide metabolic process

cluster120 0.9 -

cluster68 0.9 GO:0000079 Cyclin-dependent protein kinase
activity (pv0:0001)

KEGG:00190 Oxidative phosphorylation (pv0:0002)

GO:0005048 0.9 Signal sequence binding

cluster201 0.9 GO:0015935 Small ribosomal subunit (pv0:0001)

cluster17 0.9 -

cluster178 0.9 GO:0005925 Focal adhesion (pv0:0001)

GO:0030057 0.9 Desmosome

GO:0031253 0.9 Cell projection membrane

cluster14� 99.50 KEGG:00350 Tyrosine metabolism (pv0:0001)

KEGG:04514 Cell adhesion molecules (CAMs)
(pv0:0001)

aThe percentile is calculated as the percent of permutation that exceeds the
true correlation difference. The percentile corresponds to 1006[one-tailed p-
value. Gene groups marked with a * indicate that the correlation is increasing
with age.

bIf a co-expression cluster is enriched for genes in a GO category, genes in a
KEGG category, or genes that share a protein motif from the Interpro (IPR)
database, then the associated category is listed [48,49].

cThe p-value for enrichment is calculated using the hypergeometric distribution
(see Materials and Methods).

doi:10.1371/journal.pgen.1000776.t001
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there are more clusters that decrease in correlation than increase

in correlation with age (Figure S1).

From the difference network clusters obtained using d{ and

dz, we located interesting groups of genes that change

correlation with age. Table 2 and Table 3 describe the clusters

we found using d{ and dz, respectively. Among the clusters that

decreased correlation with age are many gene groups previously

implicated in aging pathways, such as mitochondrial function,

transcriptional regulation, and ribosome biogenesis. One cluster,

enriched for DNA-damage genes, shows increasing correlation

with age. Because DNA damage increases with age [13], it is

possible that DNA-damage pathways are more frequently

triggered in old age, producing a more coordinated transcrip-

tional response.

Modular loosening of the correlation difference network
One possibility is that there may be a uniform loosening of gene

edges throughout the difference network. For example, there may

be age-related damage to basic components of gene expression

that are used for all genes, such as RNA polymerase II, or there

may be damage to chromatin-modification enzymes. If such

proteins become damaged in old age, expression of all genes may

be affected and may result in decreased levels of gene correlation.

Another possibility is that certain areas of the correlation

difference network may show much greater loss of edge strength

than other areas. This difference would appear modular, with

entire groups of genes losing correlation relative to one another.

For example, aging may affect a specific DNA-binding transcrip-

tion factor, in which case the downstream target genes of the

transcription factor would show large age-related losses in gene

correlation.

We investigated whether there was uniform or modular

loosening of the correlation network with age using two

parameters in the unweighted gene co-expression networks: the

connectivity and the clustering coefficient. In an unweighted

network, the connectivity is defined as the number of neighbors of

a given gene. The clustering coefficient measures the degree to

which genes cluster together (Materials and Methods). The

clustering coefficient ranges from zero (none of a gene’s neighbors

is connected to any other) to one (all of the neighbors are

connected to one another).

Figure 3 shows a plot of the clustering coefficient against the

connectivity for the 16- and the 24-month-old gene-correlation

networks. We found that there are fewer genes in the upper right side

of the plot in the older network than the younger network, implying

that large interconnected gene groups tend to be lost as mice age.

We developed simulation tests to determine whether the

differences between young and old mice networks could be

explained by uniform or modular loosening of gene expression

edges. We then compared the observed data to each of the

simulations to determine which showed the greatest resemblance.

We simulated uniform loosening of the network using a node-

based deletion. In the node based simulation we randomly selected

nodes in the 16-month-old network and deleted all edges leading

out of those nodes. We continued to delete edges until the number

of edges in the simulated network was equal to the number of

edges in the 24-month-old network. We repeated the simulation

100 times, and each time we drew the boundaries of the simulated

Table 2. Groups of genes defined using the cluster distance d{.

Clustera n GO IDb GO description Enrichmentc

cluster 5 8 GO:0031966 mitochondrial membrane 0.0004

cluster 7 8 GO:0003779 actin binding 0.0001

cluster 8 5 GO:0005344 oxygen transporter activity 0.0001

cluster 10 6 GO:0006888 ER to Golgi vesicle-mediated transport 0.0001

cluster 16 6 GO:0022613 ribonucleoprotein complex biogenesis and assembly 0.0002

cluster 21 5 GO:0006461 protein complex assembly 0.0001

cluster 24 8 GO:0006260 DNA replication 0.0002

cluster 25 6 GO:0043066 negative regulation of apoptosis 0.0001

cluster 27 7 GO:0048568 embryonic organ development 0.0001

cluster 28 5 GO:0019318 hexose metabolic process 0.0001

cluster 29 7 GO:0016458 gene silencing 0.0001

cluster 30 17 GO:0016481 negative regulation of transcription 0.0002

cluster 33 7 GO:0009966 regulation of signal transduction 0.0003

cluster 36 6 GO:0008757 S-adenosyl methionine-dependent methyl transferase activity 0.0001

cluster 42 5 GO:0005746 mitochondrial respiratory chain 0.0001

cluster 43 6 GO:0006118 electron transport 0.0001

cluster 48 5 GO:0005624 membrane fraction 0.0001

cluster 49 5 GO:0015630 microtubule cytoskeleton 0.0001

cluster 50 5 GO:0006898 receptor-mediated endocytosis 0.0001

cluster 53 6 GO:0005624 membrane fraction 0.0002

cluster 54 5 GO:0050877 neurological system process 0.0001

aOnly clusters significantly enriched for a Gene Ontology (GO) category are listed.
bThe GO category with the highest enrichment in the gene group.
cThe p-value for enrichment is calculated using the hypergeometric distribution.
doi:10.1371/journal.pgen.1000776.t002

Gene Expression Correlation Decline in Aging Mice
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networks on the scatter plot of the clustering coefficient versus the

connectivity (see Materials and Methods). As shown in Figure 4A,

the boundaries of the simulated networks do not resemble the

boundary for the 24-month-old network. This result indicates that

loss of gene expression correlation in 24-month-old mice does not

occur uniformly across the network.

We also modeled networks in which the loss of gene co-

epression during aging was modular. We simulated modular

correlation loss using a cluster-based deletion, removing co-

expressed clusters from the network derived from the young mice.

First, we clustered the genes by co-expression in the 16-month-old

network. We defined clusters using average linkage hierarchical

clustering, with a distance metric of 1-r̂ri,j , where r̂ri,j is the

Spearman correlation between genes i and j. Distinct clusters are

formed by cutting the tree at a particular height h (see Materials

and Methods). Next, we deleted all of the clusters from the 16-

month-old network using a number of different values of h. Figure

S2 shows the simulation results for various height cutoffs. This

figure shows that the correlation loss observed from young to old

mice is consistent with removing clusters defined at a �rr of 0:925
(Figure 4B). These results show that aging gene networks appear to

loosen in a modular fashion.

Transcription factor binding sites
One possible mechanism of modular loosening of a gene

expression cluster with age is if all of the genes in a cluster are

targets of a specific transcription factor. If a transcription factor

loses the ability to co-regulate a group of genes with age, we can

expect to see a decline in correlation in expression between those

genes as the animals age. To this end, we searched for

transcription factors whose targets changed co-expression with

each other between young and old mice. Transcription factors

contain DNA binding domains that attach to a specific sequence of

DNA. The Transfac database lists known sequence motifs to

which a transcription factor binds. By identifying all genes that

contain a conserved Transfac motif in their upstream regions, we

obtain an estimate of genes that may be targets of a particular

transcription factor (See Materials and Methods).

We downloaded binding information for 258 known conserved

transcription factor binding sites from the Transfac database.

From all of the transcription factor binding sites, we created 163

gene groups classified according to the presence of a conserved

transcription factor binding site within 5000 bp upstream of the

translation start site. We only used gene groups that contained

five or more unique targets. To each group, we looked at the

mean d (Equation 1) and assessed significance using the

permutation method described in Materials and Methods. We

found five transcription factors whose downstream targets

decreased correlation with age, where 1:63 are expected by

chance (Table 4, Figure 5). For each of these significant sets of

genes, there is a subset of genes that strongly lose correlation in

expression relative to one another with age. We did not find any

transcription factors whose targets increased correlation in

expression with age.

Three of the most significant groups contain genes with binding

sites for NF-kB, AP2, and MEF-2. NF-kB is involved in cellular

inflammation. NF-kB has a myriad of inducers, such as reactive

oxygen species (ROS), infection, and cytokines [14,15]. All of these

factors increase with time and thus have been implicated in aging.

The amounts of ROS, a by-product of cellular metabolism, has

clearly been shown to increase in old animals. Perhaps because of

the increase in ROS, NF-kB is abnormally activated in the major

lymphoid organs [16].

AP2 is involved in a variety of processes, including morpho-

genesis and development. Its involvement with aging primarily

stems from its regulation of the aging-associated human helicase

protein WRN [17]. The targets of MEF-2 also appear to lose

correlation in expression with age. MEF2 is a muscle-specific

transcription factor that has been shown to increase binding

affinity with oxidative stress in human primary skeletal muscle

cells [18].

Table 3. Groups of genes defined using the cluster distance dz.

Clustera n GO IDb GO description Enrichmentc

cluster 1 5 GO:0016887 ATPase activity 0.0001

cluster 3 5 GO:0016887 ATPase activity 0.0001

cluster 9 6 GO:0005506 iron ion binding 0.0001

cluster 12 8 GO:0008380 RNA splicing 0.0003

cluster 13 5 GO:0006974 response to DNA damage stimulus 0.0001

aOnly clusters significantly enriched for a Gene Ontology (GO) category are listed.
bThe GO category with the highest enrichment in the gene group.
cThe p-value for enrichment is calculated using the hypergeometric distribution.
doi:10.1371/journal.pgen.1000776.t003

Figure 3. Difference in the clustering coefficient (cc) versus the
connectivity (k) distributions between young and old net-
works. Each dot represents a probe in either the 16-month-old (blue)
and 24-month-old (red) networks. All of the probes with at least one
neighbor are plotted.
doi:10.1371/journal.pgen.1000776.g003
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Chromosomal clustering of genes that lose expression
correlation with age

Another mechanism that could account for the unevenness in

the correlation loss of the gene co-expression network in old mice

is changes in specific chromatin domains. Chromosomes have

regions of open chromatin (which are accessible to transcription

factors and permit gene expression) and closed chromatin (which

does not allow transcription factor binding and prevents gene

expression). Domains that are open in young mice may become

less open in old mice, and domains that are closed in young mice

may become partially open in old mice. If so, genes that are fully

expressed from open chromatin domains in young mice may

become partially repressed in old mice, and genes that are not

expressed in young mice because they are in closed chromatin

domains may become partially derepressed in old mice. The net

effect of such a loss of regulation could be to show lower

correlation levels in old age. In this case, we would expect genes

that tend to lose correlation with other genes in old age to be

clustered together on the chromosome.

We tested for a chromatin domain effect by determining

whether genes that lose expression correlation with other genes

in old age tend to be clustered together or randomly dispersed.

We defined neighbors as the genes in the difference network

that show a decreasing correlation in expression with the target

gene above a set threshold. The number of such neighbors

represents an age-related correlation loss score (Figure 6A).

Thus a gene that has a high age-related correlation loss score is

Figure 4. Deletion simulations indicate modular co-expression loss. (A) The clustering coefficient (cc) versus the connectivity (k) after
simulation of uniform co-expression loss. Each dot represents a probe in either the 16-month-old (blue) and 24-month-old (red) networks. All of the
probes with at least one neighbor are plotted. The gray lines represent the 100 node-deletion simulations. (B) The clustering coefficient (cc) versus
the connectivity (k) for young and old mice as contrasted with the cluster-based deletion simulation. Each dot represents a probe in either the 16-
month-old (blue) and 24-month-old (red) networks. All of the probes with at least one neighbor are plotted. The distributions from the cluster-based
deletion simulations are shown in gray.
doi:10.1371/journal.pgen.1000776.g004

Table 4. Transfac-defined gene groups that change
correlation with age in the top 1 percentile.

Transcription factor n
a

%b

NF-kB 13 0.2

MEF2 31 0.4

RREBP1 44 0.6

AP2 27 0.6

MZF1 43 0.9

an is the number of downstream targets.
bThe percentile is calculated as the percent of permutation that exceeds the

true correlation difference and corresponds to 1006[one-tailed p-value.
doi:10.1371/journal.pgen.1000776.t004
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a gene that loses correlation with many of the genes that it was

previously correlated with at 16 months. We scanned the

genome with a moving window and counted the number of

windows that have two or more genes with a correlation loss

score above the threshold. Using a threshold set at six genes

and a window size of 80 kb, we identified 44 windows with

Figure 5. Heat map representation of correlation changes in targets of transcription factors that significantly decrease correlation
with age. Red represents a decrease in correlation between two genes, and blue represents an increase. The yellow boxes identify the subsets of
genes that are strongly decorrelated.
doi:10.1371/journal.pgen.1000776.g005

Figure 6. Genes that are prone to correlation loss are clustered on the chromosome. (A) For a window of a set size, genes with
connectivity in the difference network above a threshold t are counted. (B) The positions of genes are plotted on the chromosome. The black bars are
genes that do not meet the loss score threshold. Genes with a high loss score (red bars) were found to be clustered together.
doi:10.1371/journal.pgen.1000776.g006
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two or more genes that lose expression correlation with age

(Figure 6B).

To determine whether this number is statistically significant, we

repeatedly scrambled the locations of the genes and recalculated

the number of clusters. The results from 1000 permutations are

presented in Figure S3A, which shows that the observed number

of windows is greater than the number found by random

permutation in all but two cases (p~0:004). This result indicates

that genes that lose correlation in expression with their neighbors

in old age tend to be clustered on the chromosome. We repeated

this analysis using a number of different thresholds (two to six

genes) and window sizes (10 to 200 kb). We found similar results

for a range of parameters (Figure S3B), including some even more

significant than our original choices. Thus, genes that are sensitive

to loss of regulation of expression with age occur in specific regions

in the chromosome, perhaps because these regions correspond to

chromatin domains that are affected by aging (Table S1).

Discussion

Here we present a methodology to compare two biological

states (young versus old mice) by performing a global comparison

of changes in gene co-expression. There is an important difference

between comparing changes in expression levels and comparing

co-expression relationships. Traditional analysis focuses on finding

genes or groups of genes whose expression levels differ between

two states. On the other hand, differential co-expression analysis

looks for changes in the co-expression relationships between genes.

By comparing how the correlation in gene expression differs

between two states, we can make inferences about changes in

functional interconnectedness of those genes.

Comparing network relationships is not a novel concept,

however most such comparisons focus on finding similarities.

For example, co-expression networks have been constructed for

multiple species by identifying genes that show conserved co-

expression with each other among large numbers of DNA

microarray experiments [6,7]. Numerous algorithms have also

been proposed to find similarities among different types of

biological networks. For example, Walhout et al. combined co-

expression data with protein-protein interaction and phenotypic

data to obtain information about functional gene interactions in

the Caenorhabditis elegans germline [19]. Similar approaches that

integrate multiple high-throughput data types have been created

for various microbes, yeast, worms, and humans [20–31].

The above approaches have successfully been used to pinpoint

similarities between networks. Searching for differences is a more

nuanced problem. In addition to our method, two previous studies

have looked at differences in networks [8,9]. There are several key

differences between our algorithm and the previous ones. Our

method assigns a statistical significance to the changes in the gene

clusters, it uses weighted networks and it allows for the

unsupervised identification of changing clusters. Although the

previous two algorithms were able to achieve many of these

criteria, neither met all of them.

When looking for network similarities, less attention can be

given to the composition of the data from which the networks are

constructed because similarities in differently constructed networks

are likely to be biologically relevant. For example a similarity

between an edge in the fly and worm gene co-expression network

is likely to indicate a shared functional link between two genes. In

contrast, when looking for network differences, more attention

needs to be given to the input data so that the comparison shows

biological differences rather than artifacts that reflect the manner

in which the data were collected. A divergence in that network

may be due to a trivial difference in the types of experiments being

performed, the experimental platform, the lab that performed the

experiment or the experimental design. For example, the

differential clustering algorithm (DCA) identifies groups of genes

that are co-expressed in one yeast species (C albicans) but not

another (S. cerevisiae), or vice versa [8]. However, the input

expression data for the two yeast species are not closely matched.

Thus, it is possible that some of the differences observed between

S. cerevisiae and C. albicans arise from a bias in experiment selection

rather than intrinsic differences in biological properties.

Bias in the experimental input can be controlled by carefully

matching the arrays for each condition. Choi et al. used this

method to compare a non-weighted gene co-expression network

from cancer samples to a similarly constructed network from

normal tissues [9]. By matching each tumor type to the

corresponding control from normal tissues, they minimized the

potential for experimental bias in the construction of the cancer

and normal networks. The AGEMAP data set provides a unique

opportunity to create matching networks as the data set from the

16- month old mice is matched to the data set from the 24- month

old mice. The mice were raised in the same facility, the data were

collected by one lab using one experimental platform and identical

experimental protocols. Since the only consistent difference

between the 16- and 24-month old data sets is the age of the

mice, it is more likely that the differences in gene correlations

between the two networks reflect the effects of aging.

We chose to use a network approach to compare young versus

old mice because aging is a complex process involving the

cumulative effects of many different genetic pathways in diverse

tissues. Efforts to understand the underlying molecular basis of

aging are often thwarted by the complexity of the aging process.

DNA microarray analysis is well suited to aging research because

it allows for simultaneous measurement of gene expression

outputs from nearly all genes in the genome in parallel. However,

by focusing on changes in expression of genes, most traditional

differential analyses neglect the interactions in expression

between the genes. For example, the AGEMAP publication

described changes in expression levels between young and old

mice for the 16 tissues separately [10]. Gene set enrichment

analysis (GSEA) was also used to find groups of genes whose

expression increased or decreased levels with age. This type of

analysis successfully identified many pathways that were previ-

ously associated with aging, as well as many novel age-associated

pathways. However, there is little overlap between the gene sets

found in the AGEMAP paper based on changes in gene

expression and the gene sets found in this work based on changes

in co-expression interactions. By finding different pathways, both

differential expression analysis and co-expression analysis can

complement each other to generate a more complete overview of

age-related changes.

We used a differential co-expression network approach to show

that there are large-scale changes in gene co-expression associated

with the aging process. Previous work has shown that there is an

increase in the variability in expression levels in old age. Using

DNA microarrays, one study showed that expression levels

typically show more variability in old versus young, when

comparing different samples from either human or rat tissues

[32,33]. Another study used single-cell PCR to show that aging

was marked by increased cell-to-cell variation in gene expression

in mouse cardiac myoblasts [34]. However, single cell analysis of

mRNA levels in a variety of blood cell types did not replicate this

finding [35]. These studies all show increased transcriptional

instability with age, which is consistent with our finding of a

decrease in gene co-expression in old mice.

Gene Expression Correlation Decline in Aging Mice
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The loss of correlation in gene expression could be due to

several different causes. For instance, transcriptional machinery

may degrade with time, such that genes show weaker activation or

repression in old tissues compared to young. It could be that there

are changes in tissue specificity in old age, such that pairs of genes

are co-expressed in specific tissues in young mice but show more

general expression across many tissues in old mice. Another

possibility is that certain pathways, such as inflammation, could

become constitutively induced in old age.

We found two possible mechanisms that could account for loss

of gene correlation in old age. The first is that old age may affect

the activity of transcription factor NF-kB, such that the direct

targets of NF-kB may show strong co-regulation in young mice but

weaker co-expression in old mice. Previous work has also

implicated the NF-kB transcription factor with aging. NF-kB is

involved with inflammation, which increases with age in all tissues

[36]. Adler et al. used a combination of differential expression

analysis and computational identification of transcription factor

targets to identify transcription factors whose targets change

expression levels with age [37]. They found that both NF-kB and

AP2 targets increased expression with age. Looking at arrays from

three different mouse tissues and six different human tissues they

found that their targets were age-induced in the majority of the

tissues examined.

NF-kB activity increases with age and controls gene expression

through its interaction with the sirtuin protein SIRT6 [38]. A

reduction of NF-kB activity in the skin of old mice caused a

reversal of their gene expression aging profile [39]. These results

suggest that high or constitutive activity of NF-kB in old adults

could be a molecular mechanism accounting for loss of co-

regulation of the NF-kB target genes in old age.

Another possible mechanism for loss of gene co-expression in

old age is deterioration of chromatin structure. Histone modifi-

cations in chromatin are responsible for both permitting and

preventing gene expression [40]. If these histone modifications

were to degenerate in old age, chromatin domains would become

less well-defined. Genes that are completely repressed and strongly

activated in young animals would show either high basal

expression or low activated expression in old age. This would

result in lower levels of gene co-expression with other genes in the

network. In support for a role for chromatin domains in age-

regulated changes in transcription, we found that genes that lose

correlation with age tend to be clustered together on the

chromosome.

The strength of the connections between genes is an important

system-wide property of a network that can be used to compare

two states. Here, we compare young to old mice, but this approach

could be used to compare many other states such as healthy versus

disease or wild-type versus mutant. Differential network analysis, is

applicable not only to co-expression networks derived from gene

expression data, but can also potentially be applied to other types

of biological networks, including networks constructed from

protein-protein interactions, mutant phenotypes, or from integra-

tion of many types of gene interaction experiments. Differential

network analysis could potentially be used to compare a network

from one species to the network from another. Finally, this

approach could be used to evaluate non-biological networks,

including changes in social or economic networks over time.

Materials and Methods

Data normalization
We downloaded the AGEMAP data from the NCBI Gene

Expression Omnibus (accession GSE9909) [10]. The AGEMAP

microarray collection contains microarrays for 16 different tissues

for five male and five female mice aged both 16 and 24 months.

We removed the liver, striatum, and bone marrow samples

because they were missing multiple array experiments (i.e., they

each had less than four biological repeats for either the males or

females in a single age group). For each remaining array, we then

calculated the mean correlation coefficient with each of the other

four arrays in the same tissue, sex, and age class. For example, for

an array taken from the kidney of a 16-month-old male, we

calculated the correlation coefficients across all genes for the

remaining four male kidney samples. We calculated the mean of

those four correlations to determine how well the array agrees with

other arrays in the same class. Figure S4 plots the distribution of

mean correlation coefficients for each array.

Thereafter, we removed any arrays with a mean correlation

coefficient of less than 0.8. In both the young and the old data set

there were 2 such arrays. We substituted any missing or removed

arrays with a pseudoarray calculated from the mean of the four

arrays for the missing arrays’ tissue, sex, and age class. The

pseudoarray keeps the number of arrays equal for both age groups,

ensuring that all tissues are represented equally in the resulting

data. The presence of pseudoarrays could potentially bias gene-

correlation coefficients toward a higher correlation. However,

because there are equal numbers of pseudoarrays in both the

young and the old data sets, we found this bias to be acceptable.

Next, we normalized each array by subtracting the mean

expression value over all genes for that array. After normalization,

we removed all probes that had a low variance and low expression

in both the 16-month-old and 24-month-old data sets. We tested

the effect of removing low-expressing genes by studying the

correlation between probes that match to the same genes. Each

array contains 12,273 probes, which map to 8932 unique

UniGene IDs [41]. If the mapping is correct, one would expect

that the expression of two probes that match to the same UniGene

ID would be highly correlated.

Figure S5 plots the expression correlation for each pair of

probes that map to the same UniGene ID. By discarding the

probes that fall below a set mean (m) and variance (s2), we

observed that thresholding reduces the proportion of matched

probes with low correlation. By increasing the mean and variance

thresholds, we decreased the total number of probes; however, the

mean correlation between the matched probes increased. These

results indicate that as we removed the genes that have low

expression in all arrays, the amount of noise due to nonexpressing

genes correspondingly decreased. We ultimately chose cutoffs of

m~{0:3 and s2~0:1, leaving 9104 probes that exceed these

thresholds.

Connectivity and clustering coefficient
If the neighborhood Ni represents the set of directly connected

neighbors of gene i, then the connectivity of that node is the

number of neighbors in the neighborhood:

ki~
X
j[Ni

ei,j :

Given a gene’s neighborhood (Ni) the clustering coefficient is the

fraction of links between the nodes in its neighborhood over the

total possible number of edges between all genes in the

neighborhood:

Ci~

P
j[Ni

P
‘[Ni

ej,‘

ki(ki{1)
:
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The clustering coefficient can be considered a measure of modularity

in the data. Networks that have a tendency toward high clustering

coefficients contain many densely connected subgraphs.

Significance testing: permutation
We used a permutation method to determine the significance

for a number of test statistics. For each one, we generated

B~1000 permuted data sets such that each permuted data set

contained randomly sampled data from the young and the old

data. Because each data set is stratified into sex, mice, and arrays,

we sampled from the individual male and female mice separately.

For example, for the male mice we pooled the 10 males, 5 young

and 5 old. We then randomly chose 5 mice from the pool and

labeled them young in the randomized data set. The remaining 5
mice were designated as old for the randomized data. For each

mouse, all of the arrays and all of the probes went into the same

data set. We repeated this procedure for the female mice. We then

computed the test statistic on the permuted data and repeated 999
more times.

For each permutation of the data, we recalculated the test

statistic and counted the number of times the permuted test

statistic exceeded the observed value. For example, let

fK�1 , . . . ,K�Bg be the set of test statistics generated from the

B~1000 total permutations. Then the p-value is calculated as:

p~1{
1

B

XB

i~1

I (K�i vK):

Because of the different stratifications, we end up with

10

5

� �2

~63,504 possible permutations. In each randomized data

set the number of young and the number of old mice is not set to

be equal. For example the randomized old data set may have 4
young females and only 1 old female. This type of permutation,

called non-balanced permutation, has been found to be more

accurate than it’s balanced counterpart [42].

Identification of co-expressed clusters from six-month
AGEMAP data

We downloaded the AGEMAP data for the 6-month-old mice

from the NCBI Gene Expression Omnibus (accession GSE9909)

[10]. We normalized the data using the method described for the

other AGEMAP data. We found gene clusters by performing a

hierarchical clustering of the 6-month data, using a Spearman

correlation–based distance metric and average linkage for merging

nodes. In average linkage hierarchical clustering, each gene starts

as its own cluster. Pairs of clusters are then successively merged

according to their average distance. In this case, we used a

Spearman correlation based distance metric, 1{r, to determine

the distance between any two genes. Here r is the Spearman

correlation between two genes calculated across all available

experiments in the 6-month data set. To determine the distance

between two clusters for merging, we used the average distance

between all of the genes in the two clusters. Clustering of this sort

provides a hierarchical tree of clusters. By cutting the tree at an

average distance of r̂r~0:7, we obtained distinct clusters. We

discarded any clusters containing fewer than five genes.

Calculating cluster overlap with GO, KEGG, and INTERPRO
categories

We obtained GO, KEGG and Interpro categories from the

DAVID database [43,44]. For GO categories we looked at gene

groupings based on GO molecular function, associated cellular

component, and biological process. We discarded any categories

with fewer than 5 or more than 200 genes. We determined overlap

between a cluster and a functional category using the hypergeo-

metric distribution P(X~k)~

k

m

� �
n{k

N{m

� �

N

n

� � . Here N~9104

is the number of genes, k is the number of genes that are both in

the cluster and the functional category, m is the size of the cluster

and n is the size of the functional categories.

Testing uniform correlation loss
For the node-deletion simulation, we randomly selected nodes

in the 16-month-old network and deleted all edges leading out of

those nodes. We iterated the edge-selection and deletion process

until approximately 25% of the edges were deleted, i.e., when the

simulated network has the same number of edges as the 24-month-

old network. Because it is not possible to exactly match the

number of edges in the simulated network to the number of edges

in the 24-month network, we allowed K (sim) to be within +0:2%
of K (24), where K (24) and K (sim) are the total number of nodes in

the 24-month and simulated networks, respectively.

We repeated the simulation 100 times, and each time we drew

the boundaries of the simulated networks on the scatter plot of the

clustering coefficient versus the connectivity. We drew the

boundaries by dividing the x{y plot into a 30|30 grid and

binning the data points for each gene. For each simulation, we

then drew a boundary around the outermost edge of the bins that

contained at least one data point, such that all bins outside of the

drawn boundary contained zero data points.

Testing modular correlation loss
We defined gene clusters using a range of cluster thresholds, and

removed the clusters from the network simulating modular co-

expression loss. Clusters were assigned using average linkage

hierarchical clustering, with a distance metric of 1-r̂ri,j , where r̂ri,j is

the Spearman correlation between genes i and j. Distinct clusters

are formed by cutting the tree at a particular height h. For a given

h, all genes in the resulting cluster have an average distance from

one another of at least h. For example, if h~0:1, all the clusters

that result from cutting the tree at h have a mean distance of

h~0:1 (corresponding to a mean correlation of �rr~0:9). In this

way, h sets the stringency for inclusion into a cluster: small

values of h result in clusters of genes that show higher levels of

co-expression.

Finding conserved transcription factor binding data in
the mouse genome

We obtained predicted transcription start sites for all human

RefSeq genes from the University of California, Santa Cruz

(UCSC) human genome assembly (hg17). We then downloaded

from the Transfac Matrix Database all of the conserved

transcription factor binding sites (TFBs) found by Hinrichs et al.

to be at pv0:01. The database contains 258 transcription factors

conserved in human, mouse, and rat at this threshold [45]. We

then located all of the conserved TFBs within 5000 bp of the

transcription start site of all RefSeq genes. Thus, we obtained a list

of conserved TFBs within 5000 bp of a known human gene. To

map these results to the mouse genome, we used the chained

alignment of the mouse genome (mm9) to the human genome

(hg17) supplied by the UCSC genome database [46]. For every

RefSeq gene in mm9, we assigned a TFB if the site in the human
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genome appeared in a conserved region within 5000 bp of the

mouse gene.

Moving window approach for chromosomal clustering
To search for chromosomally-clustered genes, we first defined

the correlation loss score of a given gene to be the connectivity of

that gene within the difference network. The connectivity here is

defined by the number of neighbors a gene i has with di,jv{0:3
for j~1, . . . ,9104, where di,j is the edge weight of the difference

network between two genes. We then mapped probes to the mouse

genome using the mm9 assembly from the UCSC Genome

Browser [47]. When more than one probe mapped to the same

location, we averaged the connectivities of those probes.

We used a moving window approach to define gene clusters as

follows. First, we identified all genes whose connectivity ki was

greater than or equal to a threshold t. Then, we scanned a window

across the genome and counted the number of windows containing

more than one gene (i) with ki§t. We defined a cluster as a window

containing more than one gene that met or exceeded this threshold.

For a given window size and threshold, we calculated the

number of gene clusters on the chromosome, then permuted the

data to determine whether the rate of clustering exceeded the rate

expected by chance. For every chromosome, we permuted the

genes’ locations and recalculated the number of gene clusters. We

defined the two sided p-value as p~2P=B, where P is the number

of gene clusters in the permuted set that exceeded the original

number of clusters, and where B is the number of permutations.

Supporting Information

Figure S1 The difference in the number of clusters using d+ and

d2 for the 1,000 permutations. None of the permuted differences

in cluster number (absolute) is larger than the real difference in

cluster numbers.

Found at: doi:10.1371/journal.pgen.1000776.s001 (0.26 MB EPS)

Figure S2 The clustering coefficient (cc) versus the connectivity

(k) for young and old mice as contrasted with the modular deletion

simulation. Each dot represents a probe in either the 16-month-old

(blue) and 24-month-old (red) networks. All of the probes with at

least one neighbor are plotted. The distributions from the cluster-

deletion simulations are shown in gray. For each of the four

panels, a different height parameter was chosen for the clustering.

Found at: doi:10.1371/journal.pgen.1000776.s002 (10.09 MB

TIF)

Figure S3 Significance of chromosomal clustering. (A) A

histogram of the number of clusters found in the permuted data

(window size l = 80 kb and threshold t = 6). Of the 1,000

permutations, only two surpassed the real value of 44 clusters.

(B) The percent of permuted chromosomal clusters that surpass

the true value for a variety of window sizes and thresholds. The

blue line corresponds to t = 2, the green line corresponds to t = 4,

and the red line corresponds to t = 6. The dotted line represents the

2.5th percentile corresponding to p,0.05.

Found at: doi:10.1371/journal.pgen.1000776.s003 (0.46 MB EPS)

Figure S4 The distributions for each array’s correlation with

other arrays in the same sex and tissue class for each age group. If

an array was missing due to experimental error, the correlation

was plotted as zero. Using a cutoff of r = 0.8, we excluded two

arrays from both the 16-month-old and 24-month-old data.

Found at: doi:10.1371/journal.pgen.1000776.s004 (0.46 MB EPS)

Figure S5 Removal of genes with low expression mean and

variance. (A) For a variety of mean (m) cutoffs,we calculated the

correlations between all pairs of probes that map to the same

UniGene ID. The white bars indicate the correlation between

matched probe pairs for all possible pairs. The red bars represent

the correlations of the remaining probes after thresholding. (B) Plot

of the fraction of matched probe pairs with r.0.5 after imposing a

variety of mean (m) and variance (s2) thresholds. As the thresholds

increase, the number of probes that pass the thresholds (n)

decreases.

Found at: doi:10.1371/journal.pgen.1000776.s005 (0.39 MB EPS)

Table S1 List of chromosome clusters by chromosome.

Found at: doi:10.1371/journal.pgen.1000776.s006 (0.03 MB PDF)
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