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Abstract

While conventional LDL-C, HDL-C, and triglyceride measurements reflect aggregate properties of plasma lipoprotein
fractions, NMR-based measurements more accurately reflect lipoprotein particle concentrations according to class (LDL,
HDL, and VLDL) and particle size (small, medium, and large). The concentrations of these lipoprotein sub-fractions may be
related to risk of cardiovascular disease and related metabolic disorders. We performed a genome-wide association study of
17 lipoprotein measures determined by NMR together with LDL-C, HDL-C, triglycerides, ApoA1, and ApoB in 17,296 women
from the Women’s Genome Health Study (WGHS). Among 36 loci with genome-wide significance (P,561028) in primary
and secondary analysis, ten (PCCB/STAG1 (3q22.3), GMPR/MYLIP (6p22.3), BTNL2 (6p21.32), KLF14 (7q32.2), 8p23.1, JMJD1C
(10q21.3), SBF2 (11p15.4), 12q23.2, CCDC92/DNAH10/ZNF664 (12q24.31.B), and WIPI1 (17q24.2)) have not been reported in
prior genome-wide association studies for plasma lipid concentration. Associations with mean lipoprotein particle size but
not cholesterol content were found for LDL at four loci (7q11.23, LPL (8p21.3), 12q24.31.B, and LIPG (18q21.1)) and for HDL
at one locus (GCKR (2p23.3)). In addition, genetic determinants of total IDL and total VLDL concentration were found at
many loci, most strongly at LIPC (15q22.1) and APOC-APOE complex (19q13.32), respectively. Associations at seven more loci
previously known for effects on conventional plasma lipid measures reveal additional genetic influences on lipoprotein
profiles and bring the total number of loci to 43. Thus, genome-wide associations identified novel loci involved with
lipoprotein metabolism—including loci that affect the NMR-based measures of concentration or size of LDL, HDL, and VLDL
particles—all characteristics of lipoprotein profiles that may impact disease risk but are not available by conventional assay.
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Introduction

Standard measures of plasma lipoprotein concentration do not

reveal heterogeneity in the size of lipoprotein particles or their

content of cholesterol and triglycerides. Yet recognizing this

heterogeneity may be essential for understanding qualitative

differences in lipid metabolism among individuals. Some reports

identify a pattern in the size distribution of lipoprotein sub-

fractions as intimately connected with coronary heart disease [1,2].

Related findings identify a link between lipoprotein profile and

metabolic syndrome, and by inference to diabetes [3]. While these

observations remain controversial for prognostic use [4], they

point to alterations in lipoprotein metabolism in disease.

The variation in particle size and lipid content can be quantified

accurately by NMR-based methods that determine lipoprotein

particle concentration according to lipid class and particle size.

Thus, NMR methods can measure concentration of large and

small low density lipoprotein (LDL) particles as well as

concentration of the related intermediate density lipoprotein

(IDL) particles, and similarly concentration of small, medium,

and large high density lipoprotein (HDL) or very low density

lipoprotein (VLDL) particles. HDL and LDL particle concentra-
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tion can also be estimated by chemical measures of apolipoprotein

A1 (ApoA1) and apolipoprotein B (ApoB) protein concentration,

respectively, but neither these assays nor other standard clinical

assays provide information about particle size distribution, and

consequently the apportionment of cholesterol and triglycerides to

different sized particles. The greater precision in characterizing

lipoprotein profiles using NMR-based techniques provides an

opportunity for correspondingly greater detail in understanding

lipid metabolism, for example by genome-wide genetic analysis, as

has been done recently for plasma concentration LDL-C, HDL-C,

triglycerides, ApoA1, and ApoB [5–13].

Results

Genome-wide association analysis of 22 NMR-based and
conventional lipoprotein fractions

Among 17,296 WGHS participants with confirmed European

ancestry (Table 1), we performed genome-wide association

analysis assuming an additive genetic model for 22 plasma

lipoprotein measures determined either by NMR methods or by

standard clinical assay. On the basis of genome-wide significance

(P,561028), genetic variation at total of 31 loci was associated

with at least one of the lipoprotein fractions (Table 2). Thirty of

these 31 loci derive from analysis in the whole sample, while the

remaining locus was identified with genome-wide significance in a

subset of 12,489 (72%) strictly fasting participants, for whom there

were small but significant differences in lipoprotein profiles

compared with non-fasting participants (Table 1). Nearly all of

the associations with genome-wide significance level in the fasting

subsample also had genome-wide significance in the larger, better

powered whole sample. One exception was the genome-wide

significant association with ApoA1 at ABCA1 (9q31.1), a locus that

was identified in the whole sample on the basis of genome-wide

significant associations with HDL-C and medium HDL particles

but not for ApoA1. The other was an association with mean

VLDL size at 8p23.1, a locus that appears only in analysis in the

fasting sub-sample (Table 2). These additional associations remain

strongly suggestive in the whole sample (P,1.661025) even

though they do not reach genome-wide significance. Statistics for

the most significant genome-wide associations with P,561028 at

each of the candidate loci are shown in the Table S1.

Seven of the 31 unique loci reveal novel genome-wide

significant associations with the plasma lipoprotein fractions (see

bold font type, Table 2). The associations at 3q22.3 (PCCB/

STAG1), 6p21.32 (BTNL2), 7q32.2 (KLF14), 12q24.31.B (CCDC9/

DNAH10/ZNF664) and 17q24.2 (WIPI1) are all near genes (Figure

S1), while genome-wide significant associations at the remaining

two novel loci, 8p23.1 and 12q23.2 are remote (i.e. .150kb) from

known genic regions. Among the standard clinical measures LDL-

C, HDL-C, and triglycerides only, novel genome-wide loci were

found at KLF14 (7q32.2) and CCDC9/DNAH10/ZNF664

Table 1. WGHS population.

whole sample fasting subsample

N with genotype 17,296 12,489

Clinical characteristics*

age (yrs)‘ 53 (49–59) 53 (49–59)

BMI (kg/m2) 25 (22–28) 25 (22–28)

smoking (%) 2055 (12) 1508 (12)

+HRT use (%) 7537 (44) 5460 (44)

diabetes (%) 0 (0) 0 (0)

hypertension (%)‘ 3943 (23) 2950 (24)

#lipid lowering trt. (%) 0 (0) 0 (0)

Lipoprotein fractions*

LDL large (nmol/l)‘ 540 (404–680) 547 (407–685)

LDL small (nmol/l) 650 (399–1008) 646 (393–1010)

LDL mean size (nm) 21 (21–22) 21 (21–22)

IDL total (nmol/l)‘ 32 (11–67) 34 (12–71)

LDL total (nmol/l) 1272 (1029–1591) 1274 (1032–1594)

LDL-C assay (mg/dl)‘ 121 (100–145) 123 (102–146)

ApoB assay (mg/dl)‘ 99 (83–120) 100 (84–121)

HDL total (mmol/l)‘ 35 (31–39) 35 (31–40)

HDL large (mmol/l)‘ 8 (5–10) 8 (5–10)

HDL medium (mmol/l) 3 (0.8–6.0) 3 (0.7–5.9)

HDL small (mmol/l)‘ 24 (20–27) 24 (20–27)

HDL mean size (nm)‘ 9 (9–9) 9 (9–9)

HDL-C by NMR (mg/dl) 53 (44–64) 53 (44–64)

HDL-C assay (mg/dl) 52 (44–63) 52 (44–63)

ApoA1 assay (mg/dl) 150 (133–169) 150 (133–169)

VLDL total (nmol/l) 69 (50–90) 68 (49–91)

VLDL large (nmol/l)‘ 1 (0.4–3.7) 1 (0.3–3.5)

VLDL medium (nmol/l)‘ 21 (11–32) 20 (11–32)

VLDL small (nmol/l)‘ 45 (33–58) 45 (33–58)

VLDL mean size (nm)‘ 47 (42–52) 46 (42–51)

TG by NMR (mg/dl)‘ 109 (82–146) 107 (81–144)

TG assay (mg/dl)‘ 117 (83–172) 113 (81–166)

*Clinical characteristics are given as number (fraction) or median (interquartile
range). Lipoprotein measures are given as median (interquartile range).

‘p,0.001 for comparison of non-fasting (N = 4,807) fasting (N = 12,489)
samples.

+HRT is abbreviation for hormone replacement therapy.
#lipid lowering treatment.
doi:10.1371/journal.pgen.1000730.t001

Author Summary

Genome-wide association studies (GWAS) of plasma
lipoprotein fractions hold great promise for understanding
lipid metabolism and its central role in cardiovascular
disease and related disorders. Conventional assays for
lipoprotein status determine total cholesterol content of
low- or high-density lipoprotein particles (LDL-C or HDL-C,
respectively) or total plasma triglyceride content (as an
estimate of very-low density lipoprotein particle concen-
tration [VLDL]). All three measures have been targets for
recent GWAS. However, a more precise target for GWAS of
lipoprotein metabolism would be the concentration of the
individual lipoprotein particles according to class (LDL,
HDL, VLDL) and size (small, medium, and large), all of
which can be measured by NMR-based methods. In a
population of 17,296 women of European ancestry from
the Women’s Genome Health Study, we have performed a
GWAS for 22 lipoprotein measures derived from NMR-
based and conventional assays. We find 43 genetic loci
involved in lipoprotein metabolism, including 10 novel
loci. The results offer a clearer picture of common genetic
influences on lipoprotein metabolism than available
previously, including genetic effects on the distribution
of LDL, HDL, and VLDL particle size, as well as on IDL and
VLDL particle concentration, neither of which can be
assessed by conventional measures.

Large-Scale GWAS of 22 Lipoprotein Measures
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(12q24.31.B), both for triglycerides. The association at the novel

locus 8p23.1 (which differentiated the fasting sample from the

whole sample on the basis of mean VLDL particle size) is over

1.8 Mb from a recently described association at 8p23.1 between

SNP rs7819412 and triglycerides [6].

The remaining 24 unique loci suggested genes recognized for a

diversity of roles in lipid metabolism, broadly defined (Figure S1).

Thus, SNPs with genome-wide significance, were confirmed in or

near PCSK9 (at 1p32.3), APOA2 (1q23.3), APOB (2p24.1), ABCG5/

8 (2p21), HMGCR (5q13.3), LPL (8p21.3), APOA1-A5 (11q23.3),

ABCA1 (9q31.1), FADS1-3 (11q12.2), LIPC (15q22.1), CETP

(16q13), LIPG (18q21.1), LDLR (19p13.2), the APOC-APOE

complex (19q13.32), and PLTP (20q13.12). Similarly, association

at 9q34.2 implicating the ABO gene recapitulates and extends the

known association between blood group antigen and total

cholesterol [14,15]. Less well characterized genic regions, which

nonetheless have been validated recently for roles in lipid

metabolism, were confirmed for ANGPTL3 (1p31.3), CELSR2/

MYBPHL/PSRC1/SORT1 (1p13.3), GCKR (2p23.3), MLXIPL

(7q11.23), and TRIB1 (8q24.13), HNF1A (12q24.31.A), and

HNF4A (20q13.12). The association at COBLL1/GRB14 (2q24.3)

with HDL-C was recently described elsewhere in this same cohort

Table 2. Loci and candidate genes with genome-wide significant associations (p,561028) for 22 lipoprotein measures.

locus whole sample fasting subsample candidate gene(s)

1p32.3 APOB, LDL-C, LDL:T, LDL:L, TG:N, VLDL:T, VLDL:S APOB, LDL-C, LDL:T, LDL:L, VLDL:T, VLDL:S PCSK9

1p31.3 TG:N, VLDL:T, VLDL:M, VLDL:S TG:N, VLDL:T, VLDL:M, VLDL:S ANGPTL3

1p13.3 APOB, LDL-C, LDL:T, LDL:L, LDL:S, VLDL:T, VLDL:S APOB, LDL-C, LDL:T, LDL:S, VLDL:S CELSR2, PSRC1, SARS, SORT1

1q23.3 HDL:M HDL:M APOA2

2p24.1 APOB, LDL-C, LDL:T, LDL:L, LDL:Z, TG:N, TG, VLDL:T, VLDL:M,
VLDL:S, VLDL:Z

APOB, LDL-C, LDL:T, LDL:L, TG:N, TG, VLDL:T, VLDL:M,
VLDL:S, VLDL:Z

APOB

2p23.3 APOA1, APOB, HDL:T, HDL:S, HDL:Z, IDL:T, LDL:T, LDL:S, LDL:Z,
TG:N, TG, VLDL:L, VLDL:T, VLDL:M, VLDL:Z

APOA1, APOB, HDL:T, HDL:S, HDL:Z, IDL:T, LDL:T, LDL:S,
LDL:Z, TG:N, TG, VLDL:L, VLDL:T, VLDL:M, VLDL:Z

GCKR

2p21 APOB, LDL-C LDL-C ABCG5/8

2q24.3 HDL-C - COBLL1, GRB14

3q22.3 HDL:S - PCCB, STAG1

5q13.3 LDL-C, LDL:L LDL-C, LDL:L HMGCR

6p21.32 TG:N, VLDL:L TG:N, VLDL:L BTNL2,HLA-DRA, HLA-DRB5

7q11.23 HDL:S, LDL:L, LDL:S, LDL:Z, TG:N, TG, VLDL:L, VLDL:T, VLDL:M TG:N, TG, VLDL:M MLXIPL

7q32.2 HDL:Z, LDL:T, LDL:S, TG - COPG2, KLF14, TSGA13

8p23.1 - VLDL:Z intergenic PPP1R3B

8p21.3 APOA1, HDL-C, HDL:L, HDL:Z, LDL:L, LDL:S, LDL:Z, HDL:N, TG:N,
TG, VLDL:L, VLDL:T, VLDL:M, VLDL:S

APOA1, HDL-C, HDL:L, HDL:Z, LDL:L, LDL:S, LDL:Z, HDL:N,
TG:N, TG, VLDL:L, VLDL:T, VLDL:M, VLDL:S

LPL

8q24.13 APOB, LDL:T, LDL:S, LDL:Z, TG:N, TG APOB, LDL:T, LDL:S TRIB1

9q31.1 HDL-C, HDL:M APOA1, HDL-C ABCA1

9q34.2 LDL-C, LDL:L, VLDL:S, VLDL:Z LDL-C, VLDL:S ABO

11q12.2 HDL:L, HDL:M, HDL:Z, LDL:L HDL:L, HDL:M, HDL:Z, LDL:L FADS1-3

11q23.3 APOA1, APOB, HDL-C, HDL:T, HDL:S, LDL:T, LDL:S, LDL:Z, HDL:N,
TG:N, TG, VLDL:L, VLDL:T, VLDL:M, VLDL:S

APOA1, APOB, HDL-C, HDL:T, HDL:S, LDL:T, LDL:S, LDL:Z,
HDL:N, TG:N, TG, VLDL:L, VLDL:T, VLDL:M, VLDL:S

APOA1-A5

12q23.2 HDL:T, HDL:N - intergenic ASCL1, PAH

12q24.31.A LDL-C - HNF1A/TCF1

12q24.31.B HDL:L, HDL:Z, LDL:T, LDL:S, LDL:Z, TG HDL:L CCDC92, DNAH10, ZNF664

15q22.1 APOA1, HDL-C, HDL:L, HDL:M, HDL:S, HDL:Z, IDL:T, LDL:L, LDL:S,
LDL:Z, HDL:N

APOA1, HDL-C, HDL:L, HDL:S, HDL:Z, IDL:T, LDL:L, LDL:S,
LDL:Z, HDL:N

LIPC

16q13 APOA1, HDL-C, HDL:T, HDL:L, HDL:Z, IDL:T, LDL:T, LDL:L, LDL:S,
LDL:Z, HDL:N, TG, VLDL:T, VLDL:S

APOA1, HDL-C, HDL:T, HDL:L, HDL:Z, IDL:T, LDL:T, LDL:L,
LDL:S, LDL:Z, HDL:N, VLDL:T, VLDL:S

CETP

17q24.2 HDL:M - PRKAR1A, WIPI1

18q21.1 APOA1, HDL-C, HDL:L, HDL:Z, LDL:L, LDL:Z, HDL:N APOA1, HDL-C, HDL:L, HDL:Z, LDL:L, LDL:Z, HDL:N LIPG

19p13.2 APOB, LDL-C, LDL:T, LDL:L, VLDL:S APOB, LDL-C, LDL:T, LDL:L, VLDL:S LDLR

19q13.32 APOA1, APOB, HDL-C, HDL:M, LDL-C, LDL:T, LDL:L, LDL:S, LDL:Z,
HDL:N, TG:N, TG, VLDL:L, VLDL:T, VLDL:M, VLDL:S

APOA1, APOB, HDL-C, HDL:M, LDL-C, LDL:T, LDL:L, LDL:S,
HDL:N, TG:N, TG, VLDL:L, VLDL:T, VLDL:S

APOC1,2-APOE

20q13.12.A APOA1 - HNF4A

20q13.12.B HDL-C, HDL:T, HDL:L, HDL:S, HDL:Z, LDL:T, LDL:L, LDL:S, LDL:Z, TG HDL-C, HDL:T, HDL:L, HDL:S, HDL:Z, LDL:L, LDL:S, LDL:Z, TG PLTP

LDL = low density lipoprotein, IDL = intermediate density lipoprotein, HDL = high density lipoprotein, VLDL = very low density lipoprotein, APOB = apolipoprotein B,
APOA1 = apolipoprotein A1.
X:L = large particles, X:M = medium particles, X:S = small particles, X:Z = mean particle size, X:T total particles, X:N = assay by NMR, X-C = cholesterol.
Bold type face indicates novel loci.
doi:10.1371/journal.pgen.1000730.t002
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and validated by replication [16]. The previous study found much

stronger association in women than men, suggesting a potential

interaction with gender. At this locus, the gene GRB14 is thought

to inhibit receptors in the insulin receptor class [17,18]. The

current analysis extends associations at this locus to concentrations

of LDL, HDL, and VLDL particles according to size (Table S1).

Consistent with a high degree of correlation among the

lipoprotein measures (Table S2), the rank order by p-value among

the highly significant SNPs was similar for each measure with at

least one genome-wide significant association (Figure S1). A

notable exception was the APOB gene (2p24.1), where the ordering

of the p-values, conditional analysis, and patterns of linkage

disequlibrium (LD) among the top SNPs (Table S1) revealed three

classes of associations. One class included VLDL-related fractions,

triglycerides, and mean LDL size for which either rs673548 or

rs676210 (LD r2 = 1.0) had the strongest association; a second class

included ApoB, large LDL particles, and total LDL particles for

which either rs1713222 or rs506585 (LD r2 = 0.5) had the

strongest association; and a final class including only LDL-C for

which rs137117 was most strongly associated (Figure 1A). Between

SNPs in different classes, maximum LD ranged from r2 = 0.04–

0.11. Similarly, at APOA5-APOA1 (11q23.3), p-values revealed two

classes of associations seemingly segregating between effects nearer

the APOA5 gene involving triglycerides and effects nearer the

APOA1 gene involving HDL related lipoprotein fractions

(Figure 1B).

Large, well-characterized cohorts with NMR-based measure-

ment of lipoprotein fractions are scant, but sub-samples of about

2700 participants in the Framingham Heart Study Offspring cohort

(FHS) [19] and about 2000 total CHD cases and controls from

PROCARDIS [20] had both the NMR-based lipoprotein measures

and genome-wide genetic data already determined. Among all

candidate loci, concordance of direction of effects was observed

respectively at 124 out of 146 (84%) [84% in fasting sub-sample]

and 125 out of 133 (94%) [99% in fasting sub-sample] of the

candidate associations for which there was genotype information in

FHS and PROCARDIS (Table S3 [whole WGHS sample

candidates], Table S4 [fasting WGHS subsample candidates]).

For each of the previously known loci except ABCA1 (9q31), at least

one of the candidate associations was nominally significant (P,0.05,

two-sided) in at least one of the replication cohorts or in analysis

combining p-values from the two replication cohorts when effect

estimates (beta coefficients) indicated trends in lipoprotein measure

consistent with the effects observed in the WGHS. Among the 7

novel loci from the primary analysis only, where the effect estimates

for the WGHS were generally smaller and power for replication was

less, concordance of the direction of effects remained high for the

PROCARDIS sample [86% (25/29)], although only modest for the

FHS sample [58% (22/38)], but these associations were not

significant (two-sided P.0.05; Table S3). However, a recent

genome-wide meta-analysis of LDL-C, HDL-C, and triglycerides

found significant, but not genome-wide significant, associations

among these fractions with candidate SNPs from the WGHS at

PCCB/STAG1 (3q22.3), BTNL2 (6p21.32), KLF14 (7q32.2), and

8p23.1 [10], although the significant SNP associations at PCCB/

STAG1 (3q22.3) and BTNL2 (6p21.32) were not fully concordant

between the two studies (Table 3). Independent evidence for

functional consequence of the candidate SNP (rs10778213) at

12q23.2 is its genome-wide significant association in a smaller

sample from the WGHS with plasma C-reactive protein (CRP), a

biomarker of inflammation that is slightly correlated if at all with the

two HDL measures associated at this locus (total HDL particle

concentration [HDL:T], Spearman r = 0.22; HDL cholesterol

estimated by the NMR [HDL:N], Spearman r = 20.04) [21]. With

the larger sample of WGHS genotype information in the current

study, the association with plasma CRP is more significant

(P,5610215). Finally, the associations at CCDC92/DNAH10/

ZNF664 [12q24.31.B] and WIPI1 (17q24.2) were not confirmed

either in the meta-analysis shown in Table 3 or in a second genome-

wide meta-analysis of LDL-C, HDL-C, and triglycerides that also

evaluated gender stratified association [11] (data not shown).

Nevertheless, ongoing genotyping in the WGHS of an additional

4639 samples (3305 with fasting status) completed subsequent to the

main analysis provided significant support for these last two loci on

the basis of internal replication, as well as significant or borderline

significant support for four others, confirming directions of effects

for all novel candidate associations, and leading to smaller p-values

in analysis combining the main WGHS sample with the additional

samples for all but three entries in Table 3 and at least one

lipoprotein measure for each locus (compare to Table S1).

Magnitudes of genetic effects
To assess the contribution of common genetic variation at each

of the candidate loci to each of the adjusted lipoprotein fractions,

we constructed regression models by stepwise selection of SNPs in

the vicinity of the primary genome-wide significant associations.

Most of these models explain less than 1% of the variation in the

adjusted lipoprotein fractions (Figure 2, Table S5, and Table S6).

The top three effects, all at APOC-APOE complex (19q13.32),

explain 8.9%, 8.4%, and 7.1% of the variance in ApoB particle

concentration, the related total LDL particle concentration, and

LDL-C, respectively. Fasting status had an influence on retention

of SNPs in the model selection procedure, but only for loci with

modest effects (Compare Table S5 and Table S6). There were no

genetic contributions remaining from the model selection

procedure for any of LDL-C, HDL-C, triglycerides, ApoA1, or

ApoB concentration at APOA2 (1q23.3) in the whole sample and at

WIPI1 (17q24.2) in the fasting subsample, suggesting that these

loci would not have been identified for genome-wide association

with the five conventional lipoprotein fractions even in a much

larger sample with the genome-wide SNP genotyping panel used

in this study. Clustering loci on the basis of the profile of associated

lipoprotein fractions suggests sub-groups of loci with related

patterns of effects (Figure S2, Figure S3), perhaps suggesting

distinct but possibly overlapping biological pathways for lipopro-

tein metabolism. For example, HNF1A, LDLR, ABCG5/8, PCSK9,

and CELSR2/PSRC1/SARS/SORT1 largely share associations with

IDL, small VLDL, total VLDL large LDL, LDL-C, total LDL,

and ApoB.

The total genetic effects for each lipoprotein determined by

summing over the effects at all loci ranged from 2.1% for mean

VLDL size to 17.2% for ApoB (Table 4). The effects were not

substantially different when the entire model selection procedure

was performed in the fasting subsample (Table 4), and only slightly

smaller in general among the unadjusted lipoprotein fractions

(Table S7). Notably, the common genetic variation in this study at

the genome-wide loci had a greater total effect on mean particle

size than on standard clinical cholesterol measures for HDL but

not for LDL or VLDL (Table 4).

Secondary genome-wide analysis
To examine the possibility that other loci might include SNPs with

genome-wide significant association conditional on effects at the

primary loci, we adjusted the primary lipoprotein fraction

measurements (which were already adjusted for clinical covariates)

for SNPs retained by the model selection procedure at the candidate

loci, and repeated the genome-wide association testing. Quantile-

quantile analysis confirmed that all of the excess of extremely small

Large-Scale GWAS of 22 Lipoprotein Measures
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p-values in the original analysis could be explained by the variation

at the candidate loci (not shown). Similarly, genotype-based

statistical models (as opposed to the allele-based additive models

used in the primary analysis) did not reveal other loci with genetic

influences at the genome-wide significance level in the whole sample.

While we adjusted the lipoprotein measures with a full set of

clinical characteristics to reduce variance and enhance power in the

primary analysis, it remained possible that relevant SNPs would be

overlooked if they acted through effects on the adjustment

covariates. Similarly, subtle effects on the association estimates

Figure 1. Loci with distinct classes of SNP associations among lipoprotein fractions with genome-wide significance. (A) APOB locus
(2p24.1), (B) APOA1-A5 locus (11q23.3). Recombination rates are from [41].
doi:10.1371/journal.pgen.1000730.g001
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due to non-normality of the (possibly log-transformed) adjusted

lipoprotein measures or due sub-European population stratification

might confound hypothesis testing. To evaluate whether our

discovery procedure was robust, we performed secondary analyses

repeating the entire genome-wide discovery procedure for alterna-

tive nested subsets of clinical covariates with and without further

adjustment for population structure and quantile normalization

(Table S8). Comparing the full adjustment procedure to alternatives

using either a reduced set of clinical covariates or age only, with or

without additional adjustment for potential sub-European popula-

tion stratification and quantile normalization yielded further

genome-wide significant associations at three loci with known lipid

metabolic genes, LPA (6q25.3), LCAT (16q22.1), and APOH

(17q24.2), and two additional loci, 6p22.3 and 10q21.3. All of the

additional loci were present in the age-adjusted analysis. Associa-

tions at 6p22.3 and 10q21.3 appear to be novel and implicate,

respectively the GMPR or MYLIP genes and the JMJD1C gene. The

lead SNPs at each of these loci were significantly associated with at

least one of LDL-C, HDL-C or triglycerides in the recently

published meta-analysis (Table 5) [10]. Similarly, in internal

replication among the additional 4639 WGHS samples with

genotype available after the main analysis was complete, associa-

tions at the candidate SNPs were all significant and the trends of

effects were all consistent with effects in the discovery sample

Figure 2. Variance explained in adjusted lipoprotein measures by common variation at the candidate loci by SNPs retained in
model selection procedures. See also Figure S2 and Figure S3.
doi:10.1371/journal.pgen.1000730.g002
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(Table 5). We note that at JMJD1C (10q21.3), the candidate SNPs

have minor allele frequency near 0.5, and that available data does

not allow us to determine whether the differences in the direction of

the minor allele effect on VLDL fractions in the WGHS and

triglycerides in the previously published replication study are truly

physiological or rather that the frequency of the coded (i.e. minor)

allele from the WGHS is greater than 0.5 in the replication cohort

resulting in an opposite sign of the effect estimates.

Since lipoprotein particle size is closely related to triglyceride

content, we also performed secondary analysis examining genome-

wide significant associations after adjustment of the lipoprotein

fractions by the full set of clinical covariates and (log-transformed)

triglyceride levels (Table 5 and Table S8). This analysis identified

only one new genome-wide significant association. At 11p15.4,

rs7938647 in the intron of the SBF2 gene was associated with full-

plus-triglyceride adjusted total HDL particle concentration. Again,

internal replication provided support for this association although

there was no association (P.0.05) with LDL-C, HDL-C, or

triglycerides in the recent meta-analysis for replication.

Associations distinguishing NMR-based from
conventional lipoprotein measures

Among its unique characteristics, the NMR-based methodology

provides information about IDL and VLDL particle concentration,

both aspects of lipoprotein profiles that are difficult to measure by

conventional methods. For IDL, genetic associations were observed

at many of the candidate loci (Figure 2, Table 2, Table S1) and most

strongly at LIPC (15q22.1), where rs1532085 had an estimated

0.11 nmol/l shift in particle concentration for each copy of the minor

Table 4. Proportion (%) variance in fully adjusted lipoprotein
fractions explained by common variation at candidate loci.

lipoprotein fraction whole sample fasting subsample

LDL large 12.0 11.4

LDL small 8.9 9.4

LDL mean size 8.5 8.7

IDL total 3.5 3.5

LDL total 15.2 15.0

LDL-C assay 13.7 13.8

ApoB assay 17.2 16.8

HDL total 5.6 5.6

HDL large 13.1 12.5

HDL medium 4.6 4.4

HDL small 6.4 5.7

HDL mean size 12.2 11.7

HDL-C by NMR 10.3 9.9

HDL-C assay 9.9 9.1

ApoA1 assay 8.3 7.8

VLDL total 8.9 8.6

VLDL large 3.8 4.1

VLDL medium 6.0 6.0

VLDL small 7.6 7.4

VLDL mean size 2.1 2.5

TG by NMR 7.9 7.6

TG assay 7.7 8.1

doi:10.1371/journal.pgen.1000730.t004
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allele (p = 1.5610220). For total VLDL concentration, association

with genetic variation was observed at many loci but none more

strongly than at the APOC-APOE complex where rs439401, which is

in perfect LD with rs7412 (the SNP that distinguishes APOE alleles E2

and E3), had an estimated 22.4nmol/l shift in concentration per

copy of the minor allele (p = 2.1610212; Table S1).

Loci strongly affecting the relative concentration of NMR-based

estimates of small, medium, and large particle size could be identified

on the basis of genome-wide effects on mean particle size, and these

associations were of special interest when there was no accompanying

association with the corresponding cholesterol measure retained in

the model selection procedures (Table 6, Figure S4). For LDL, mean

particle size was associated with genome-wide significance at 12 loci

(Table 2), among which the model selection procedures failed to

identify any association with LDL-C at MLXIPL (7q11.23), LPL

(8p21.3), CCDC92/DNAH10/ZNF664 (12q24.31.B), and LIPG

(18q21.1). These loci implicate genes related to glucose or triglyceride

metabolism as well as unrecognized biological function at one novel

locus (CCDC92/DNAH10/ZNF664 [12q24.31.B]). The associations

with mean LDL particle size were a consequence of strong inverse

effects on large and small LDL particles (MLXIPL [7q11.23], LPL

[8p21.3], LIPG [18q21.1]) or of exclusive effects on small LDL

(CCDC92/DNAH10/ZNF664 [12q24.31.B]) [see Figure S4]. In the

fasting subsample, the associations with the NMR based measures at

LPL (8p21.3) and LIPG (18q21.1) also met genome-wide significance,

but the associations at MLXIPL (7q11.23) and CCDC92/DNAH10/

ZNF664 (12q24.31.B) did not. For HDL, 9 loci had genome-wide

significance for mean particle size (Table 2), among which the clinical

measure of HDL-C was not associated with genetic variation only at

GCKR (2p23.3), as was also found in the fasting subsample (Figure 2,

Table 6). The discordant effects on LDL size and cholesterol content

at LPL (8p21.3), CCDC92/DNAH10/ZNF664 (12q24.31.B), and

LIPG (18q21.1) but not those of HDL size and cholesterol content

were independent of triglyceride level in as much as associations

persisted in analysis that further adjusted the lipoprotein fractions for

(log-transformed) triglycerides, although only at nominal significance

rather than genome-wide significance (Table 6).

By the same standards, loci could be identified with effects on

mean particle size but not total particle concentration (Table 6).

Thus, SNPs at LIPC (15q22.1) and LIPG (18q21.1) had genome-

wide significant associations for mean LDL particle size, but were

null for particle concentration in model selection procedures in both

the whole sample and the fasting subsample. These loci are

characterized by genes known to influence triglyceride metabolism.

Similarly, for HDL, comparison of associations with mean par-

ticle size and total particle concentration identified variation at

KLF14 (7q32.2), FADS1-3 (11q12.2), CCDC92/DNAH10/ZNF664

(12q24.31.B) and LIPC (15q22.1), implicating roles for known lipid

candidate genes as well as loci with unknown functions. Variation at

the novel locus WIPI1 (17q24.2), while not affecting mean HDL

particle size, was associated with the concentration of medium-sized

HDL, but not large or small HDL, total HDL particle concentra-

tion, or HDL-C (Table 2, Figure 2, Figure S4). In addition,

associations at LPL (8p21.3) in the fasting subsample distinguished

total HDL particle concentration from HDL-C (Table 6). VLDL

particle size but not concentration was influenced by variation at

8p23.1 in the fasting subsample but there were no genome-wide

significant associations at this locus in the whole sample. Again, in

triglyceride-adjusted analysis, discordant effects on mean particle

size and total concentration persisted but at some of the candidate

loci in the analysis of LDL and HDL (Table 6).

Lipoprotein candidate loci from other genome-wide
association studies

Recent genome-wide meta-analysis of lipoprotein LDL-C, HDL-

C, and triglycerides identified and validated 17 loci that were not

found at the genome-wide significance level in the current

population [10–12] in spite of comparable statistical power. We

examined SNPs within 100kb of each of these additional candidate

loci to extend associations to each of the NMR-based lipoprotein

fractions. The choice of a threshold p-value for significance is a

controversial issue in these analyses: although all of the candidate

loci had been validated previously, the current analysis was

performed in the context of a genome-wide association study. We

present all locus associations when statistical significance of

Bonferroni corrected p-value for the most significant locus

association was less than 0.05, accounting for the product of the

number of lipoprotein fractions tested (22) and the number of locus

SNPs considered (range 8–125) (Table S9 and Table S10). Seven

loci (TMEM57, GALNT2, TIMD4/HAVCR1, MADD/FOLH1/

NR1H3, MVK/MMAB, LCAT, CLIP2/PBX4/NCAN/SF4) met this

criterion in the whole WGHS sample and, at the same standard,

one more locus (MAFB) could be added in the fasting subsample.

Among these loci, associations with lipoprotein size measures were

found for LDL at GALNT2, and for HDL at GALNT2, MADD/

FOLH1/NR1H3, MVK/MMAB, CLIP2/PBX4/NCAN/SF4. No

associations at the stringent significance level were found with

mean VLDL size or total IDL concentration. Associations with

HDL and LDL total particle concentration were largely consistent

with parallel associations with ApoA1 and ApoB respectively.

Discussion

By performing genome-wide association analysis among 17,296

Women with European ancestry for 22 NMR-based and conven-

tional lipoprotein fractions, we identified 36 loci in the primary and

Table 6. Loci with genome-wide significant association
(P,5.061028) for mean particle size but no associations in
model selection procedures with cholesterol content or
particle number*.

locus Fraction‘

LDL mean size v. LDL-C LDL:T

7q11.23 (MLXIPL) W

8p21.3 (LPL) w/f

12q24.31.B w

15q22.1 (LIPC) w/f

18q21.1 (LIPG) w/f w/f

HDL mean size v. HDL-C HDL:T

2p23.3 (GCKR) w/f

7q32.2 w

8p21.3 (LPL) f

11q12.2 (FADS1-3) w/f

12q24.31.B w

15q22.1 (LIPC) w/f

VLDL mean size v. VLDL:T

8p23.1 F

*See Figure S4 for effects of individual SNPs across lipoprotein measures.
‘Bold typeface indicates differential associations for triglyceride adjusted

fractions with at least nominal significance. w = whole sampe, f = fasting
subsample.

doi:10.1371/journal.pgen.1000730.t006
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secondary analyses for roles in lipoprotein metabolism, broadly

defined. Ten of these loci have not been reported in other recent

genome-wide association studies, including one identified only after

adjustment for triglyceride levels. The functional bases for the

associations are uncertain for five, including associations at 8p32.1

and 12q23.2 that map to intergenic regions. In spite of the high

degree of correlation among some of the NMR-based and

conventional measures, two of the novel loci (PCCB [3q22.3] and

PPP1R3B [8p23.1]) could not have been found at the genome-wide

significance standard solely with conventional measures (or their

NMR-based equivalents) of lipoprotein profile in the WGHS.

Replication in independent cohorts of men and women as well as

other observations provided confirmatory evidence for candidate

variation at all novel, although only through internal replication at

SBF2 (11p15.4), CCDC92/DNAH10/ZNF664 (12q24.31.B), and

WIPI1 (17q24.2). The failure of external replication to validate these

two novel loci may simply reflect intrinsic differences from the

WGHS in NMR-based assay protocols (FHS) or clinical features of

the cohort (e.g. lipid lowering treatment in PROCARDIS) as well as

limiting power; alternatively, the associations observed in the

WGHS may not reflect true genetic effects. Among the primary loci,

total genetic effects were largest and appreciable for ApoB, total

LDL, and others. They were the smallest for mean VLDL size.

While the heritability for the NMR-based fractions has not been

thoroughly explored, the present analysis suggests some aspects of

lipoprotein profiles may be much less affected by common genetic

variation than others. Combining the 31 loci in the primary

analysis, the five loci in the secondary analysis (three novel loci plus

APOH and LCAT), and the seven previously recognized loci for

which the WGHS extends associations to the NMR-based

lipoprotein measures brings the total to 43 loci characterized by

the present study.

As important as the total number of candidate loci, some loci

harbored variation exclusively correlated with the size of lipoprotein

particles rather their cholesterol or total concentration (Table 6). A

priori, one might have argued that triglyceride metabolic processes

would be critical in this respect. This notion was confirmed by

several candidate genes with known function in triglyceride

metabolism, for example the enzymes encoded by LPL, LIPC,

LIPG, and GCKR as well as the transcriptional regulatory protein

encoded MLXIPL all have activities that may alter equilibrium pools

of triglycerides and hence particle size or concentration. Other loci

with only partly understood function were also identified, and these

loci may now be further characterized through the current analysis.

While it remains possible that the loci in Table 6 contain genetic

variants not evaluated in this study and yet associated with

cholesterol content or total particle concentration, the discordant

effects on particle size compared with cholesterol or total particle

concentration suggest biochemical pathways impinging on aspects

of lipoprotein metabolism that are overlooked by standard clinical

testing. To the extent that the pathophysiology of cardiovascular

disease and related metabolic disorders, e.g. diabetes, is influenced

by the distribution of lipoprotein particle size there may be

therapeutic opportunities targeting the biochemical pathways

identified by the discordant associations.

The procedures in the primary analysis enforced a genome-wide

significance standard of P,561028 for each lipoprotein measure.

This standard was likely adequate for performing separate tests in

the whole sample and the fasting subsample (see Materials and

Methods) but does not explicitly address the multiplicity of testing

the 22 lipoprotein measures at once. In part, the burden of

significance is attenuated by correlations between the lipoprotein

measures (Table S2), but the correlations are not exact and

independent aspects of each measure are revealed by the diversity of

effects shown in Figure 2 as well as by the discordant associations of

Table 6. However, the choice of P,561028 for genome-wide

significance can be further justified by false discovery rate (FDR)

analysis. For p-values from all of the lipoprotein measures

considered at once, the conventional standard requiring

FDR,0.05 implied a P,261025, more than two order of

magnitude less significant than the genome-wide p-value threshold.

Similarly, among the individual lipoprotein measures, FDR,0.05

implied at worst P,761027 for the case of IDL, still less significant

than our genome-wide standard by over an order of magnitude.

Thus, on a post-hoc basis, applying the conventional genome-wide

standard P,561028 for all fractions appears to have been justified.

Four of the 10 novel loci (7 from primary analysis, 3 from

secondary analysis) have functional links to lipoprotein metabolism

or disease status, even if strict biochemical roles of the candidate

genes and protein are not yet known. Variation at BTNL2

(6p21.32) has been associated with Grave’s disease, multiple

sclerosis, and sarcoidosis, apparently independent of the neigh-

boring HLA class DR genes [22–24]. In addition, the lipoprotein

association at this locus is within 780kb of a recently reported

association of rs2254387 with LDL-C attributed to the B3GALT4

gene encoding a galactosyltransferase [6]. At STAG1/PCCB

(3q22.3), the genome-wide significant association with small

HDL particle concentration is in the STAG1 gene, but a more

likely candidate for lipid metabolism may be the adjacent PCCB

gene encoding the propionyl coenzyme A carboxylase beta

subunit, in which substitutions cause Mendelian forms of

proprionic acidemia (see, for example [25]). At 8p23.1, over

150kb from the candidate SNP rs983309, PPP1R3B encodes a

phosphatase regulating glycogen phosphorylase, a plausible

regulator of glucose and triglycerides. At 17q24.3, the connection

to lipid metabolism can be made through an encoded domain of

WIPI1 protein, the WD40 domain, which is a structural motif

thought to interact with phospholipids [26]. The strongest

association at this locus is over 2Mb away but statistically

independent from the associations of rs1801689 with full-plus-

triglyceride-adjusted total LDL particle concentration or

rs2909207 with age-adjusted medium HDL particles (Table 5),

both adjacent to the lipid candidate gene APOH [27]. The

remaining six loci have intergenic status, or are proximal to genes

with unresolved connections to lipoprotein metabolism.

Nevertheless, association at one of these six loci, 12q23.2,

between rs7307277 and HDL-C measured by NMR involves the

same SNP we previously reported for genome-wide significant

association with plasma C-Reactive Protein (CRP) in a subset of the

current population [21], an association that remains highly

significant in the current sample (P = 4.5610215). Previous reports,

including our own, had also identified associations at GCKR, APOC-

APOE complex, and HNF1A with both lipid fractions and CRP [21].

We could now also add HNF4A to this list since rs4810479 at

20q13.12.A is associated in the WGHS with both CRP and the

lipoprotein fractions (Table 2, Table S1). These links between

lipoprotein metabolism and CRP are particularly intriguing given

the efficacy of lipid lowering therapy with statins among individuals

identified as at risk on the basis of elevated CRP [28].

The etiology of cardiovascular disease is complex, and is

believed to include an interplay between cell-based processes,

including inflammation, and blood components, including lipo-

protein fractions. The latter aspect may be summarized by clinical

measures of cholesterol or triglycerides, or by ApoA1 and ApoB

concentration. However, none of these aggregate measures reflects

the full diversity of lipoprotein species in blood. The current

investigation not only identifies novel loci for lipid metabolism in

general, but may also help delineate the impact of lipoprotein

Large-Scale GWAS of 22 Lipoprotein Measures
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metabolic genes on lipoprotein profile viewed with the highest

resolution currently available.

Materials and Methods

Ethics statement
All analyses were performed with approval of local institutional

review boards (IRBs).

Study populations
All samples in the discovery analysis derive from the Women’s

Genome Health Study (WGHS), a prospective cohort of North

American women with phenotypes related to cardiovascular

disease, extensive clinical and demographic data, blood samples

at baseline, and ongoing genome-wide genotyping [29]. The

current data derive from 17,296 WGHS participants with

confirmed, self-reported European ancestry who were non-

diabetic, not using lipid lowering therapy at baseline, and for

whom genotype information was available. Within this group,

12,489 (72%) provided the baseline blood sample at least 8 hours

after a meal and these participants constitute the fasting

subsample. Samples in the replication analysis derive from

PROCARDIS, an ongoing European study of premature

coronary artery disease [30,31], and from the Framingham Heart

Study (FHS) [32], an ongoing, family-based longitudinal cohort

designed to identify correlates with cardiovascular health,

including subgroup analysis of the impact of plasma lipoprotein

fractions. The FHS samples with NMR-based lipoprotein

measurements for replication derive from the Offspring cohort

within the FHS [19].

Lipoprotein determinations
In the WGHS, lipoprotein determinations were performed on

baseline plasma samples that had been stored in liquid nitrogen

(2170uC) since collection. LDL-C, HDL-C, triglycerides, ApoA1,

and ApoB100 levels were all measured by direct assay and had low

coefficients of variation [29]. NMR-based lipoprotein fractions

were determined as described by proton NMR spectroscopy

(LipoProtein-II assay, Liposcience Inc., Raleigh, NC) [33]. The

coefficients of variation for these measures were also low (range

0.4–7.1%), except for the concentration of medium HDL particles

(CV,30%) and IDL particle concentration (CV = 13.1%) [4].

PROCARDIS measurements were also performed with LipoPro-

tein-II assays. Lipoprotein fractions for the FHS [19] samples were

measured with the LipoProtein-I assay (Liposcience Inc. Raleigh,

NC), which provides less accuracy for some measurements but is

otherwise similar to LipoProtein-II.

Genotyping
Genotyping in the WGHS sample was performed using the

HumanHap300 Duo ‘‘+’’ chips or the combination of the

HumanHuman300 Duo and iSelect chips (Illumina, San Diego,

CA) with the Infinium II protocol. In either case, the custom SNP

content was the same; these custom SNPs were chosen without

regard to minor allele frequency (MAF) to saturate candidate

genes for cardiovascular disease as well as to increase coverage of

SNPs with known or suspected biological function, e.g. disease

association, non-synonymous changes, substitutions at splice sites,

etc. For quality control, all samples were required to have

successful genotyping using the BeadStudio v. 3.3 software

(Illumina, San Diego, CA) for at least 98% of the SNPs. In the

final dataset, SNPs were retained with MAF .1%, successful

genotyping in 90% of the subjects, and deviations from Hardy-

Weinberg equilibrium not exceeding P = 1026 in significance. A

total of 335,603 unique SNPs, of which 32,521 derive from the

custom content, remained in the final data. Although assays for

two non-synonymous SNPs at the APOE locus (19q13.32),

rs429358 and rs7412, which determine ApoE isotype, failed in

the design of the Illumina custom content, genotypes for these two

SNPs were determined separately by an allele-specific, PCR based

method (Celera, Alameda, CA) [34]. These additional SNPs are in

linkage disequilibrium with SNPs in the Illumina panel. The

targeted genotypes for APOE were included during the model

selection procedures but not during the primary analysis to

discover loci with genome-wide significant associations.

Analytic methods
Primary analysis to discover loci with highly significant

associations in the WGHS discovery cohort was performed by

linear regression in PLINK [35] assuming an additive relationship

between the number of copies of the minor allele of each SNP and

the mean values of the adjusted lipoprotein measures. A

conservative threshold of P,561028 was assumed for genome-

wide significance [36]. For each lipoprotein measure, a full

adjustment was performed by linear regression using the clinical

covariates: age at baseline (continuous), BMI (continuous),

menopausal status (yes/no), current smoking status (yes/no), and

use of hormone replacement therapy (yes/no). Concentrations of

IDL particles, total LDL particles, medium HDL particles,

triglycerides determined by NMR, and triglycerides determined

by chemical assay were log-transformed before adjustment to

approximate normality. Self-reported European ancestry was

confirmed among the WGHS participants included in the primary

analysis by clustering in a principal component analysis in PLINK

with 1443 ancestry informative SNPs chosen for large Fst values

(.0.4) among the HapMap CEU, YRI, and JPN+CHB

populations [37]. Discrepancy between self reported European

ancestry and the clustering pattern was observed only for 68

samples (,0.5%), and these samples were excluded from the

analysis. In addition, genomic control parameters for the primary

analysis were close to unity, ranging from 1.013–1.061. There was

an estimated 80% power at the genome-wide significance level to

detect effects explaining 0.23% and 0.32% of the variance in the

adjusted lipoprotein measures respectively in the whole sample

and the fasting subsample.

The primary analysis also included association testing in a

nested subset of 72% of the study participants who reported fasting

for at least eight hours before providing the baseline blood sample.

Analysis in this subset was expected to differ from the analysis in

the whole sample by opposing trends: a loss of power due to

reduced sample size was contrasted with possibly smaller variance

among lipoprotein fractions that are influenced by prandial status,

e.g. triglycerides. Because the majority of the sample was fasting,

the association statistics in the two samples were expected to be

highly correlated, and the statistical penalty for this additional

testing in the Bonferroni framework was expected to be less than a

factor of two. Our genome-wide significance threshold

(P,561028) was already smaller than required by correction for

the number of SNPs tested by a factor of three, and justified

including testing the fasting subset in the primary analysis.

Once loci having at least one genome-wide significant

association with at least one lipoprotein fraction had been

identified, a non-redundant set of SNPs contributing to each

lipoprotein fraction at each locus was constructed by forward-

backward stepwise selection using the Bayesian Information

Criterion (BIC) from among all genotyped locus SNPs within

100 kb of the locus genome-wide SNP associations. Separately,

these model selection procedures were performed also at each of

Large-Scale GWAS of 22 Lipoprotein Measures
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the candidate loci with the unadjusted, but possibly log-

transformed, lipoprotein fractions to estimate the proportion of

variance explained without adjustment.

To assess the degree to which the adjustment procedure or sub-

European population stratification might influence the identifica-

tion of genome-wide loci, we performed a secondary analysis to

evaluate the sensitivity of the locus discovery procedure to the

adjustments applied to lipoprotein fractions before association

testing. First, we adjusted for all of the clinical covariates as well as

ten eigenvectors corresponding to a principal component analysis

of genotype frequency in EIGENSTRAT [38] among 64,208

SNPs chosen with inter-SNP LD r2,0.2 and followed by quantile

normalization of the residuals. Second, we adjusted with all of the

clinical covariates except BMI, either with or without inclusion of

the eigenvectors and subsequent quantile normalization. Finally,

we adjusted only for baseline age, again either with or without

inclusion of the eigenvectors and subsequent quantile normaliza-

tion. In an additional secondary analysis, the genome-wide

association procedures were performed with lipoprotein fractions

transformed and fully adjusted as for the primary analysis,

including also log transformed triglyceride levels among the

adjustment variables (see text).

Additional analytic procedures, including the hierarchical

clustering of loci according to effects on lipoprotein fractions, as

well as the graphical representations were programmed in R [39],

and included the False Discovery Rate analysis with the R-package

QVALUE [40]. All annotations derive from human genome

reference sequence hg18 (NCBI build 36.1), the UCSC Refseq as

of October 27, 2008, and the dbSNP database (build 129) as

represented by the UCSC database.

Analysis in replication cohorts
In the Framingham Heart Study (FHS) sample, residual

lipoprotein fractions were created by adjusting for gender, age at

exam lipoprotein fraction collection (continuous), age-squared

(continuous), and the top ten principal components from

EIGENSTRAT [38] before analysis. When appropriate, log

transformations were applied to approximate normality before

computing residuals. Association testing was performed in R [39]

using a linear mixed effect regression model with a kinship matrix

to account for the family structure in the sample. Genotype data

were derived by imputation using MACH 1.0 (http://www.sph.

umich.edu/csg/abecasis/mach/) from raw genotypes collected

with the Affymetrix (Santa Clara, CA) 500K array, and the

regression models assumed a linear relationship between the

dosage of the minor allele (ranging from 0 to 2) and the lipoprotein

measures [10]. Only SNPs with high quality imputation measures

(squared correlation of imputed and true genotype .0.3) were

used in the analysis. In the PROCARDIS study [20], where

genotype data derive from the Illumina (San Diego, CA) Human

1M platform representing a superset of the SNPs in the WGHS

data, lipoprotein fractions were adjusted for case/control specific

effects of age at baseline (continuous), gender, country of

recruitment (Germany, Italy, Sweden, United Kingdom), self-

reported hypertension (yes/no), diabetes (yes/no), current smoking

status by questionnaire (yes/no), and statin therapy (yes/no).

Regression models assumed a linear relationship between the

number of copies of the minor allele and adjusted mean

lipoprotein measure.

Supporting Information

Figure S1 Locus p-values for lipoprotein fractions with at least

one SNP reaching genomewide significance at each of the

candidate loci. All plots correspond to analysis in the whole

sample except for locus 8p23.1, for which genomewide association

was observed only in the fasting subsample as shown.

Found at: doi:10.1371/journal.pgen.1000730.s001 (0.41 MB PDF)

Figure S2 Primary loci clustered hierarchically according to

Cartesian distance corresponding to whether ( = 1) or not ( = 0)

there were associations with each of the lipoprotein fractions in the

model selection procedures (see Materials and Methods).

Found at: doi:10.1371/journal.pgen.1000730.s002 (0.02 MB PDF)

Figure S3 Dendorgram showing bierarchical relationships

between loci clustered as in Figure S2.

Found at: doi:10.1371/journal.pgen.1000730.s003 (0.01 MB PDF)

Figure S4 Normalized SNP effects (beta coefficients) from

univariate regression models. All plots correspond to analysis in

the whole sample except for locus 8p23.1, for which genome-wide

association was detected only in the fasting subsample as shown.

Locus SNPs are shown if they were retained in the model selection

procedure for at least one lipoprotein fraction. Absence of shading

indicates the univariate beta coefficient was not significant

(p.0.05). A small black dot for some combinations of SNPs and

lipoprotein fractions indicates genomewide significance for the

univariate beta coefficient.

Found at: doi:10.1371/journal.pgen.1000730.s004 (0.10 MB PDF)

Table S1 Best genome-wide associations with the lipoprotein

fractions at each candidate locus.

Found at: doi:10.1371/journal.pgen.1000730.s005 (1.10 MB

DOC)

Table S2 Correlations between all pairs of lipoprotein fractions.

Found at: doi:10.1371/journal.pgen.1000730.s006 (0.12 MB

DOC)

Table S3 Replication of WGHS candidate associations from

whole sample in PROCARDIS and the Framingham Heart

Study.

Found at: doi:10.1371/journal.pgen.1000730.s007 (0.56 MB

DOC)

Table S4 Replication of WGHS candidate associations from

fasting sub-sample in PROCARDIS and the Framingham Heart

Study.

Found at: doi:10.1371/journal.pgen.1000730.s008 (0.45 MB

DOC)

Table S5 Proportion of variance in fully adjusted lipoprotein

fractions explained in the whole sample by genetic variation at the

candidate loci.

Found at: doi:10.1371/journal.pgen.1000730.s009 (0.15 MB

DOC)

Table S6 Proportion of variance in fully adjusted lipoprotein

fractions explained in the fasting sub-sample by genetic variation

at the candidate loci.

Found at: doi:10.1371/journal.pgen.1000730.s010 (0.15 MB

DOC)

Table S7 Total proportion of variance explained by candidate

loci for each of the unadjusted lipoprotein fractions.

Found at: doi:10.1371/journal.pgen.1000730.s011 (0.04 MB

DOC)

Table S8 Sensitivity analysis for locus discovery procedure.

Found at: doi:10.1371/journal.pgen.1000730.s012 (0.10 MB

DOC)

Table S9 Lipoprotein associations in the whole sample at loci in

previous lipid fraction GWAS.

Large-Scale GWAS of 22 Lipoprotein Measures

PLoS Genetics | www.plosgenetics.org 12 November 2009 | Volume 5 | Issue 11 | e1000730



Found at: doi:10.1371/journal.pgen.1000730.s013 (0.34 MB

DOC)

Table S10 Lipoprotein associations in the fasting sub-sample at

loci in previous lipid fraction GWAS.

Found at: doi:10.1371/journal.pgen.1000730.s014 (0.16 MB

DOC)
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Performed the experiments: AN Parker. Analyzed the data: DI Chasman,
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