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Abstract

Genetical genomics is a strategy for mapping gene expression variation to expression quantitative trait loci (eQTLs). We
performed a genetical genomics experiment in four functionally distinct but developmentally closely related hematopoietic
cell populations isolated from the BXD panel of recombinant inbred mouse strains. This analysis allowed us to analyze eQTL
robustness/sensitivity across different cellular differentiation states. Although we identified a large number (365) of ‘‘static’’
eQTLs that were consistently active in all four cell types, we found a much larger number (1,283) of ‘‘dynamic’’ eQTLs
showing cell-type–dependence. Of these, 140, 45, 531, and 295 were preferentially active in stem, progenitor, erythroid, and
myeloid cells, respectively. A detailed investigation of those dynamic eQTLs showed that in many cases the eQTL specificity
was associated with expression changes in the target gene. We found no evidence for target genes that were regulated by
distinct eQTLs in different cell types, suggesting that large-scale changes within functional regulatory networks are
uncommon. Our results demonstrate that heritable differences in gene expression are highly sensitive to the developmental
stage of the cell population under study. Therefore, future genetical genomics studies should aim at studying multiple well-
defined and highly purified cell types in order to construct as comprehensive a picture of the changing functional
regulatory relationships as possible.

Citation: Gerrits A, Li Y, Tesson BM, Bystrykh LV, Weersing E, et al. (2009) Expression Quantitative Trait Loci Are Highly Sensitive to Cellular Differentiation
State. PLoS Genet 5(10): e1000692. doi:10.1371/journal.pgen.1000692

Editor: Greg Gibson, Georgia Institute of Technology, United States of America

Received April 29, 2009; Accepted September 17, 2009; Published October 16, 2009

Copyright: � 2009 Gerrits et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a Horizon grant from the Netherlands Genomics Initiative (050-71-055), by a Biorange grant SP1.2.3 from the Netherlands
Genomics Initiative/Netherlands Bioinformatics Centre, by two VICI grants from the Netherlands Organization for Scientific Research (NWO) to GdH (918-76-601)
and RCJ (865-04-001), and by grants from the European Community (Marie Curie RTN EUrythron, grant. no. MRTN-CT-2004-005499 and EuroSystem, grant
no. 200720). XW is supported by the National Institutes of Health (U01-AA014425 and P20-DA21131). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: r.c.jansen@rug.nl (RCJ); g.de.haan@med.umcg.nl (GdH)

. These authors contributed equally to this work.

Introduction

Genetical genomics uses quantitative genetics on a panel of

densely genotyped individuals to map genomic loci that modulate

gene expression [1]. The quantitative trait loci identified in this

manner are referred to as expression quantitative trait loci, or

eQTLs [2]. Most genetical genomics studies that have thus far

been reported have analyzed single cell types or compared

developmentally unrelated and distant cell types [3–8]. Here, we

report the first application of genetical genomics to study eQTL

dynamics across closely related cell types during cellular

development. We show results that discriminate between eQTLs

that are consistently active or ‘‘static’’ and those that are cell-type–

dependent or ‘‘dynamic.’’

We used the hematopoietic system as a model to analyze how

the genome of a single stem cell is able to generate a large variety

of morphologically and functionally distinct differentiated cells.

Differentiation of hematopoietic stem cells towards mature,

lineage-committed blood cells is associated with profound changes

in gene expression patterns. The search for differentially expressed

genes, most notably for those transcripts exclusively present in

stem cells and not in their more differentiated offspring, has been

successful and has provided valuable insight into the molecular

nature of stem cell self-renewal [9–12]. Yet, complementary

approaches were needed to elucidate the dynamic regulatory

pathways that are underlying the robust differentiation program

leading to blood cell production.

We describe a genetic analysis of variation in gene expression

across four functionally distinct, but developmentally related

hematopoietic cell populations. Our data reveal complex cell-

stage specific patterns of heritable variation in transcript

abundance, demonstrating the plasticity of gene regulation during

hematopoietic cell differentiation.

Results

Genetic Regulation of Gene Expression
We evaluated genome-wide RNA transcript expression levels in

purified Lin2Sca-1+c-Kit+ multi-lineage cells, committed Lin2-

Sca-12c-Kit+ progenitor cells, erythroid TER-119+ cells, and
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myeloid Gr-1+ cells, isolated from the bone marrow of ,25

genetically related and fully genotyped BXD – C57BL/6 (B6) X

DBA/2 (D2) – recombinant inbred mouse strains [13]. In this

study, we exploit the fact that the purified cell populations are

closely related, sometimes just a few cell divisions apart on the

hematopoietic trajectory. The Lin2Sca-1+c-Kit+ cell population

contains all stem cells with long-term repopulating ability, but also

includes multipotent progenitors that still have lymphoid potential.

Although long-term repopulating stem cells are known to only

make up a fraction of the Lin2Sca-1+c-Kit+ population, for

simplicity we will refer to this population as stem cells. The

Lin2Sca-12c-Kit+ cell population does not contain stem cells and

lymphoid precursors, but does include common progenitors of the

myeloid and erythroid lineages [14]. Finally, TER-119+ cells and

Gr-1+ cells are fully committed to the erythroid and myeloid

lineages, respectively. Unsupervised clustering of the most varying

transcripts demonstrated that each of the four cell populations

could easily be recognized based on expression patterns across all

four cell types (Figure 1 and Table S1).

We observed strong and biologically significant variation in

gene expression during hematopoietic differentiation, independent

of mouse strain. However, the genetical genomics strategy, in

which we focus on inter-strain gene expression differences, allows

for a far more comprehensive understanding of the genetic

regulatory links underlying this variation. QTL mapping of gene

expression traits allows us to identify eQTLs; genomic regions that

have a regulatory effect on those expression traits. Two types of

eQTLs can be distinguished, i.e., those that map near (less than

10 Mb from) the gene which encodes the transcript (local) and

those that map elsewhere in the genome (distant) [15]. Together,

local and distant eQTLs constitute a genome-wide overview of the

gene regulatory networks that are active in the cell type under

study. The strongest eQTLs were found for genes that were

expressed only in mouse strains carrying one specific parental

allele, suggesting that local regulatory elements are distinct

between the two alleles. Cases of such allele-specific expression

included H2-Ob and Apobec3. These transcripts were only

detectable in strains that carried the B6 allele of the gene (see

Figure S1A, S1B). A global view of heritable variation in gene

expression indicated that the strongest eQTLs are not associated

with the most highly expressed genes, and that for most probes the

expression difference between the B6 and D2 alleles is small (see

Figure S1C, S1D).

Since the focus of this project is to study the influence of cellular

differentiation state on regulatory links, we used ANOVA to

distinguish between ‘‘static’’ eQTLs that show consistent genetic

effects across the four cell types and ‘‘dynamic’’ eQTLs that are

sensitive to cellular state (i.e., eQTLs that have a statistically

significant genotype-by-cell-type interaction). We further parti-

tioned dynamic eQTLs into different categories on the basis of their

dynamics along the differentiation trajectory.

Cell-Type–Independent Static eQTLs
The first eQTL category comprises genes that have static eQTLs

across all four cell types under study. Variation in Lxn expression is

shown as a representative example (Figure 2A, left panel). Lxn

expression has previously been shown to be higher in B6 stem cells

compared to D2 stem cells, and to be negatively correlated with

stem cell numbers [16]. In our dataset Lxn showed clear expression

dynamics (it was most highly expressed in stem cells), and was

indeed more strongly expressed in cells carrying the B6 allele, but

the expression difference between mice carrying the B6 or D2

allele remained constant across all cell types.

In total, we identified 365 probes that displayed a static eQTL at

threshold p,1026 (FDR = 0.02). Among the 268 locally-regulated

probes in this category was H2-D1. The histocompatibility gene

H2-D1 is known to be polymorphic between B6 and D2 mice, and

would therefore be expected to be in the static eQTL category. The

remaining 97 probes mapped to distant eQTLs, i.e., their heritable

expression variation was affected by the same distant locus in all

four cell types (Table 1).

All probes that belonged to the static eQTL category are

graphically depicted in an eQTL dot plot displaying the genomic

positions of the eQTLs compared to the genomic positions of the

genes by which the variably expressed transcripts were encoded

(Figure 2A, right panel). Whereas in this plot local eQTLs appear

on the diagonal, distant eQTLs appear elsewhere. In general, as has

been reported before in eQTL studies, transcripts that were locally

regulated showed strong linkage statistics. Not surprisingly, the

statistical association between genotype and variation in transcript

abundance for those transcripts that were controlled by distant loci

was weaker. These genes are likely to be controlled by multiple

loci, each contributing only partially to the phenotype, thereby

limiting their detection and validation in the current experimental

sample size. A list of all transcripts with significant static eQTLs is

provided in Table S2.

Cell-Type–Dependent Dynamic eQTLs
The second eQTL category comprises genes that have dynamic

eQTLs across all four cell types under study. In total, we identified

1283 eQTLs (p,1026, FDR = 0.021) that showed different genetic

effects in different cell types, indicating that eQTLs are highly

sensitive to cellular differentiation state (Table 1). Within this

dynamic eQTL category, the first four subcategories are composed

of eQTLs that were preferentially active in only one of the four cell

types we analyzed (Figures 2B–2E).

For example, Slit2 mapped to a strong eQTL that was active

only in stem cells. Slit2 mRNA was only detected in the most

primitive hematopoietic cell compartment in those BXD strains

that carried the D2 allele at rs13478235, a SNP that mapped

629 kb away from the Slit2 gene (Figure 2B, left panel). Slit2

encodes an excreted chemorepellent molecule that is known to be

Author Summary

Blood cell development from multipotent hematopoietic
stem cells to specialized blood cells is accompanied by
drastic changes in gene expression for which the triggers
remain mostly unknown. Genetical genomics is an
approach linking natural genetic variation to gene
expression variation, thereby allowing the identification
of genomic loci containing gene expression modulators
(eQTLs). In this paper, we used a genetical genomics
approach to analyze gene expression across four devel-
opmentally close blood cell types collected from a large
number of genetically different but related mouse strains.
We found that, while a significant number of eQTLs (365)
had a consistent ‘‘static’’ regulatory effect on gene
expression, an even larger number were found to be very
sensitive to cell stage. As many as 1,283 eQTLs exhibited a
‘‘dynamic’’ behavior across cell types. By looking more
closely at these dynamic eQTLs, we show that the
sensitivity of eQTLs to cell stage is largely associated with
gene expression changes in target genes. These results
stress the importance of studying gene expression
variation in well-defined cell populations. Only such
studies will be able to reveal the important differences in
gene regulation between different cell types.

Cell-Stage-Sensitivity of eQTLs
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expressed in embryonic stem cells [17], to be involved in

neurogenesis [18] and angiogenesis [19], and to inhibit leukocyte

chemotaxis [20]. We found a total of 140 genes that have eQTLs

that are preferentially/selectively active in stem cells (Figure 2B,

right panel, largest symbols, Table 1). These 140 genes included

well-known candidate stem cell genes such as Angpt1, Ephb2, Ephb4,

Foxa3, Fzd6, and Hoxb5. Interestingly, many transcripts with as yet

unknown (stem cell) function were transcriptionally affected by

stem-cell-specific eQTLs. Candidate novel stem cell genes include

Msh5, and Trim47, in addition to a large collection of completely

unannotated transcripts.

A total of 45, 531, and 295 eQTLs were found to be

preferentially/selectively active in progenitors, erythroid cells,

and myeloid cells, respectively (Table 1). Very distinct patterns of

cell-type–specific gene regulation emerged when these eQTLs

were visualized in genome-wide dot plots (Figures 2C–2E). Using

genome-wide p-value thresholds of p,1026, we identified 53

distantly-regulated transcripts in stem cells, 13 in progenitor cells,

400 in erythroid cells, and 132 in myeloid cells. In erythroid and

myeloid cells most of these transcripts mapped to relatively few

genomic loci; these trans-bands are statistically significant, as

assessed by a permutation approach taking expression correlation

into account (see Materials and Methods) [21]. Typically,

transcripts mapping to a common marker showed a directional

bias towards either B6 or D2 expression patterns.

In addition to the relatively simple eQTL dynamics that we

have thus far illustrated, more complex eQTL dynamics were also

detected using this approach. For example, Rpo1-2 is a transcript

that shows a strong local eQTL in the two non-committed lineages

included in our study, but shows a much weaker genetic effect in

erythroid and myeloid cells (Figure 2F). Whereas in mice carrying

the B6 allele of Rpo1-2 the overall expression of the gene decreased

substantially during differentiation of progenitor to erythroid cells,

in mice carrying the D2 allele expression slightly increased. This

observation hints at complex regulatory mechanisms underlying

the expression of this gene. Full lists of genes in each dynamic eQTL

subcategory described thus far are supplied in Table S2.

Additional subcategories and their exact definitions are explained

more extensively in the Materials and Methods section, and

complete results of all dynamic eQTLs are available in Table S3.

Detailed Analysis of Static and Dynamic eQTLs
eQTL dynamics can be caused by transcription factors being

switched on/off upon cellular differentiation, or by a transcription

factor showing changed specificity due to variations in regulatory

input. We found that most (.75%) of the dynamic eQTLs are

active in only one of the four cell types under study (Figure 3A). A

more detailed analysis revealed that in the majority of cases the

genes with a cell-type–specific eQTL were also most highly

expressed in that particular cell type (Figure 3B). Next, we

Figure 1. Mean expression levels for all probes in the four cell types. Unsupervised clustering including all probes for the 96 RNA samples
follows cell type (top hierarchical tree), while clustering of the 876 most varying probes reveals distinct categories of genes that show cell-type–
specific expression (left hierarchical tree). The heat map shows the expression patterns of those probes and selected enriched gene categories in each
major cluster. Discriminatory genes are enriched in various functional classes, including SH2/SH3 domain containing transcription factors for stem
cells, mitochondrial genes for progenitor cells, genes involved in DNA replication and zinc fingers for erythroid cells, and immunoglobulin type genes
for myeloid cells (all p-values,0.05). For genes that belong to each of these clusters, see Table S1.
doi:10.1371/journal.pgen.1000692.g001

Cell-Stage-Sensitivity of eQTLs
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explored whether we could find transcripts that were regulated by

distinct eQTLs in different cell types (see Materials and Methods).

Such eQTL ‘‘swapping’’ would indicate major changes in

transcriptional regulatory networks. We could find no evidence

for such cases. However, given our limited population size we have

a low power to detect multiple eQTLs, so swapping eQTLs may

still exist but remain undetected in our experimental setting.

It has been described that not all local eQTLs in genetical

genomics experiments reflect actual expression differences be-

tween mouse strains, but rather indicate differential hybridization

caused by polymorphisms in the sequences recognized by the

probes [22]. For this reason, we divided both the static and dynamic

eQTL categories in local and distant eQTLs, and indicated the

number of probes that hybridized to sequences that are known to

contain polymorphisms (Figure 3C). As expected, the static eQTL

category contained a higher number of such potential false local

eQTLs. If these false positive eQTLs could be removed, the

relative abundance of dynamic eQTLs would be higher, indicating

that our study may even conservatively underestimate the level of

eQTL dynamics.

Discussion

We found that many eQTLs are highly sensitive to the

developmental state of the cell population under study. Even

when the purified cells were only separated by a few cell divisions,

eQTLs demonstrated a remarkable plasticity. Furthermore, we

provide evidence that the cell-stage-sensitivity of eQTLs is often

Figure 2. Identification of static and dynamic eQTLs. (A) Genome-wide identification of cell-type–independent static eQTLs. (Left panel) Lxn
mRNA levels were analyzed in all 4 cell types. Each circle represents an individual sample (strain). The yellow line shows mean expression levels across
all strains. The red and blue lines indicate mean Lxn expression levels in strains that carry the B6 or D2 Lxn allele, respectively. The genetic effect of
parental alleles on Lxn expression levels was consistent in all cell types. (Right panel) Individual probes that detected a transcript that was consistently
controlled by the same eQTL in all 4 cell types. The y-axis indicates the physical position of the encoding gene; the x-axis provides the genomic
position of the marker with strongest linkage statistics. Vertical gray and white bandings indicate different chromosomes, ranging from chromosome
1 to X. The size of each symbol reflects the strength of the genetic association: eQTLs with p-values,1028 are represented by the largest crosses; p-
values between 1026 and 1028 are shown with medium crosses, while small crosses refer to eQTLs with p-values between 1024 and 1026. The color
coding (red and blue) indicates the parental allele of the eQTL that caused a higher gene expression (B6 is red and D2 is blue). (B–E) Genome-wide
identification of transcripts that are controlled by cell-type–specific eQTLs. (Left panels) Expression data for some transcripts that were affected by
cell-type–specific eQTLs [(B) Slit2 in stem cells, (C) Snrpn in progenitor cells, (D) Hbb-bh1 in erythroid cells, and (E) Foxd4 in myeloid cells]. (Right
panels) Genome-wide distribution of eQTLs that were preferentially/uniquely detected in each of the four cell populations. (F) Transcripts that were
controlled by eQTLs in both stem and progenitor cells. An example is Rpo1-2. Full lists of all genes belonging to the eQTL (sub)categories shown here
are provided in Table S2.
doi:10.1371/journal.pgen.1000692.g002

Cell-Stage-Sensitivity of eQTLs
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intertwined with gene expression variation during development.

We did not identify target genes that were regulated by distinct

eQTLs in different cell types, suggesting that large-scale changes

within transcriptional regulatory networks are not common.

The fact that eQTLs appear to be highly cell-type–dependent

highlights the importance of using well-characterized purified cell

types in eQTL studies. In particular, eQTL studies of physiolog-

ical or disease processes [23–26] should target the relevant cell

type as precisely as possible, i.e. they should use cells or tissues

directly involved in the patho-physiological process. This could

even mean that several different cell types need to be separately

studied, in particular if developmental trajectories are affected

[27]. Using unfractionated bone marrow cells, we would have

missed many of the diverse and dynamic patterns that we

uncovered here, both at the expression level and at the genetic

regulatory level. Even so, the four cell populations that we studied

are still heterogeneous and further subfractionation of these

populations based on different sets of markers would have resulted

in even more precise regulatory maps.

Many genetical genomics experiments have used highly

heterogeneous samples, in which mRNA from a variety of

different cell types was pooled [4,5,28–31]. In such mixed samples

it is usually impossible to ensure that the contribution of individual

cell types to the mixture is the same across samples. As a result,

important parts of the variation in gene expression could arise

from different sample compositions. For example, if in whole brain

samples a heritable morphological or developmental trait leads to

an increased size of some brain regions, this can cause apparent

hotspots for transcripts that are specific for those particular

regions. Our data provide a valuable tool for studying the exact

consequences of sample heterogeneity on eQTL mapping: a

further study could simulate a collection of samples made of

computed mixtures of different hematopoietic cells in defined

proportions. Clearly, cell purification strategies are essential to

identify those cell-type–specific eQTLs that would otherwise be

‘‘masked’’ in heterogeneous cell populations. Therefore, future

genetical genomics studies should be realized on as many cell types

or cellular differentiation states as possible, and ideally even on the

scale of individual cells.

All data presented in this paper were deposited in the online

database GeneNetwork (http://www.genenetwork.org), an open web

resource that contains genotypic, gene expression, and phenotypic

data from several genetic reference populations of multiple species

(e.g. mouse, rat and human) and various cell types and tissues

[32,33]. It provides a valuable tool to integrate gene networks and

phenotypic traits, and also allows cross-cell type and cross-species

comparative gene expression and eQTL analyses. Our data can

aid in the identification of candidate modulators of gene

expression and/or phenotypic traits [34], and as such can serve

as a starting point for hypothesis-driven research in the fields of

stem cell biology and hematology.

Materials and Methods

Ethics Statement
All animal experiments were approved by the Groningen

University Animal Care Committee.

Recombinant Inbred Mice
Female BXD recombinant inbred mice were originally

purchased from The Jackson Laboratory and housed under clean

conventional conditions. Mice were used between 3 and 4 months

of age.

Cell Purification
Bone marrow cells were flushed from the femurs and tibias of

three mice and pooled. After standard erythrocyte lysis, nucleated

cells were stained with either a panel of biotin-conjugated lineage-

specific antibodies (containing antibodies to CD3e, CD11b

(Mac1), CD45R/B220, Gr-1 (Ly-6G and Ly-6C) and TER-119

Table 1. Overview of static and dynamic eQTLs (p,1026): number of probes and associated markers.

eQTL category eQTL subcategory # probes # markers # probes/# markers

Static All Local 268 161 1.66

Distant 97 76 1.28

Total 365 213 1.71

Dynamic All Local 642 282 2.28

Distant 641 276 2.32

Total 1283 445 2.88

Stem-specific Local 87 66 1.32

Distant 53 42 1.26

Total 140 105 1.33

Progenitor-specific Local 32 27 1.19

Distant 13 12 1.08

Total 45 39 1.15

Erythroid-specific Local 131 90 1.46

Distant 400 164 2.44

Total 531 223 2.38

Myeloid-specific Local 163 121 1.35

Distant 132 72 1.83

Total 295 179 1.65

doi:10.1371/journal.pgen.1000692.t001

Cell-Stage-Sensitivity of eQTLs
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(Ly-76)), fluorescein isothiocyanate (FITC)-conjugated antibody to

Sca-1 and allophycocyanin (APC)-conjugated antibody to c-Kit, or

with biotin-conjugated TER-119 antibody and FITC-conjugated

antibody to Gr-1. After being washed, cells were incubated with

streptavidin-phycoerythrin (PE) (all antibodies were purchased

from Pharmingen). Cells were purified using a MoFlo flowcyt-

ometer (BeckmanCoulter) and were immediately collected in RNA

lysis buffer. Lineage-depleted (Lin2) bone marrow cells were

defined as the 5% of cells showing the least PE intensity.

RNA Isolation and Illumina Microarrays
Total RNA was isolated using the RNeasy Mini kit (Qiagen) in

accordance with the manufacturer’s protocol. RNA concentration

was measured using a Nanodrop ND-1000 spectrophotometer

(Nanodrop Technologies). The RNA quality and integrity was

determined using Lab-on-Chip analysis on an Agilent 2100

Bioanalyzer (Agilent Technologies). Biotinylated cRNA was

prepared using the Illumina TotalPrep RNA Amplification Kit

(Ambion) according to the manufacturer’s specifications starting

with 100 ng total RNA. Per sample, 1.5 mg of cRNA was used to

hybridize to Sentrix Mouse-6 BeadChips (Illumina). Hybridization

and washing were performed by ServiceXS according to the

Illumina standard assay procedures. Scanning was carried out on

the Illumina BeadStation 500. Image analysis and extraction of

raw expression data were performed with Illumina Beadstudio

v2.3 Gene Expression software with default settings and no

normalization. The raw expression data from all four cell types

were first log2 transformed and then quantile normalized as a

single group.

Clustering of Genes
For cluster analysis we retained only genes having a minimal

fold change of 2 (difference of 1 in log2 scale) in either direction in

mean expression on the transition from Lin2Sca-1+c-Kit+ to

Lin2Sca-12c-Kit+ and on the transition from Lin2Sca-12c-Kit+

to TER-119+ or to Gr-1+. This filter reduced the dataset to 876

probes. We then computed the distance matrix for this group of

probes, using the absolute Pearson correlation. Using this distance

matrix, we applied the hierarchical clustering algorithm. From the

resulting tree, 8 different clusters emerged from a manually chosen

threshold. We then submitted each of these clusters to DAVID to

identify enriched functional annotations [35].

Full ANOVA Model for eQTL Mapping
The expression data of the four cell types were firstly corrected

for batch effect and then analyzed separately by the following

ANOVA model:

yi~mzQizei

where yi is the gene’s log intensity on the ith microarray; m is the

mean; Qi is the genotype effect under study; and ei is the residual

error.

Next, expression data of the four cell types were combined and

analyzed by a full ANOVA model including the cell type effect

(CT) and the eQTL6CT interaction effect:

yij~mzCTjzQiz(Q|CT)ijzeij

where yij is the gene’s log intensity at the ith microarray (i = 1,…n)

and jth cell type; CTj is the jth cell type effect; (Q6CT)ij is the

interaction effect between the ith eQTL genotype and jth cell type,

and eij is the residual error. The batch effect was included as one of

Figure 3. Quantitative overview of static and dynamic eQTLs. (A)
Pie charts presenting all 365 static and 1283 dynamic eQTLs that were
detected with p,1026. Dynamic eQTLs are subdivided in all 14
categories of interaction eQTLs. (B) Matrix showing the four cell-type–
dependent dynamic eQTL categories and the cell type in which the
gene was expressed most highly. (C) All static and dynamic eQTLs are
subdivided in local and distant eQTLs. Shown is which number of eQTLs
was detected by Illumina probes that hybridize to sequences that are
known to contain polymorphisms (SNPs) between the two parental
strains. Abbreviations: S, stem cells; P, progenitor cells; E, erythroid cells;
M, myeloid cells.
doi:10.1371/journal.pgen.1000692.g003

Cell-Stage-Sensitivity of eQTLs
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the factors. For each probe, we performed a genome-wide linkage

analysis to identify the two markers that showed the most

significant main QTL effect and interaction effect, respectively.

Local and Distant eQTLs
We defined an eQTL as local if it was located within less than

10 Mb from the gene. All other eQTLs were considered distant.

Classification of eQTLs
The ANOVA yields significance p-values for the main QTL

effect Qi and the interaction effect (Q6CT)ij for each probe at

each marker. A small p-value for the interaction effect indicates

that the eQTL effect is different between the cell types. This

significant difference can be due to very diverse patterns, with

different biological interpretations. It is therefore necessary to

classify interaction eQTLs based on these patterns. To achieve

this classification, for every interaction eQTL we evaluated the

strength of the effect in each cell type by calculating the

difference between the mean expression of both genotypes. The

cell type for which the effect was the strongest was labeled

‘‘High.’’ The cell type whose effect was most different from the

strongest effect was labeled ‘‘Low.’’ The remaining two cell types

were assigned to the group they resembled most closely. This

classification allowed us to define 14 categories of interaction

eQTLs. Additionally, we identified eQTLs that have a consistent

effect across all four cell types. This category of consistent eQTLs

consists of all probes satisfying the following three conditions: the

gene has a significant main effect Qi at marker m; for the same

marker m, the interaction (Q6CT)ij is not significant; the mean

eQTL effect across cell types has a coefficient of variation smaller

than 0.3.

Estimating the FDR for the Main QTL Effect
We permuted the strain labels in the genotype data 100 times,

maintaining the correlation of expression traits while destroying

any genetic association. Then we applied the full ANOVA model

and stored the genome-wide minimum p-value for each transcript.

Based on the resulting empirical distribution of p-values, we

estimated that a threshold of 2log10p = 6 corresponds to a false

discovery rate [36] of 0.02 for the main QTL effect. The 99.9th

percentile of the number of significant eQTLs per marker (i.e., the

minimum size of statistically significant ‘‘eQTL hotspots’’) is 28.

Estimating the FDR for Interaction QTL Effect
We estimated the residuals of the full ANOVA model after

fitting all factors up to the main QTL effect at each marker for

each transcript [37]. Then we permuted the strain labels and

applied the ANOVA model yij = Qi + CTj + (Q6CT)ij + eij to the

permuted residuals at each marker for each transcript and stored

the genome-wide minimum p-value. Based on 100 permutations

and the resulting empirical distribution of p-values, we estimated

that a threshold of 2log10p = 6 corresponds to a false discovery

rate of 0.021 for interacting QTL effect. The 99.9th percentile of

the number of significant eQTLs per marker (i.e., the minimum

size of statistically significant ‘‘interaction hotspots’’) is 8.

Detection of Swapping eQTLs
Swapping eQTLs are those transcripts that show one eQTL in

one cell type, but another eQTL in another cell type. From the full

model mapping described above, we obtained 1283 transcripts

with a significant interaction effect between genotype (first marker)

and cell type. After taking into account the genetic and interaction

effects of the first marker, we scanned the genome excluding the

region of the first marker (window size = 30 cM) and tested if there

was a significant interaction effect between genotype and cell type

and whether this new interaction effect was classified in a different

cell type category (see above Classification of eQTLs), which

would indicate a swapping eQTL.

This means, for each transcript, a two-marker full model

mapping was applied using the following model:

yij~mzCTjzQ�i z(Q�|CT)ijzQiz(Q|CT)ijzQi
�Qizeij

where yij is the gene’s log intensity at the ith microarray (i = 1,…n)

and jth cell type; CTj is the jth cell type effect; Q*
i and (Q*6CT)ij

are the main genotype effect at first marker and interaction effect

between cell type and the genotype effect at this marker, where the

first marker is defined as the marker with maximal interaction

effect from previous one-marker full model mapping; Qi is the

genotype effect of the second marker; (Q6CT)ij is the interaction

effect between the ith genotype and jth cell type, Qi
*Qi is the

epistasis effect and eij is the residual error.

URLs
All raw data were deposited in the NCBI Gene Expression

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/, accession

number GSE18067). All processed data were deposited in the

GeneNetwork (http://www.genenetwork.org) [32,33].

Supporting Information

Figure S1 Analysis of the quantitative aspects of eQTLs. (A)

Strain distribution pattern (expression values per strain) of H2-Ob

transcript levels in stem cells. H2-Ob is a locally regulated transcript

where only strains that carry the B6 allele of the gene (indicated by

red bars) show gene expression. (B) As in panel A, but here Apobec3

transcript levels are shown. (C) For all variably expressed

transcripts genetic linkage analysis identified a genomic locus

where presence of B6 or D2 alleles correlated with variation in

expression levels of the corresponding gene. We compared the

strength of the genetic association (eQTL effect) with the mean

expression levels of the corresponding genes. Each dot refers to a

single probe. If the eQTL effect is negative, B6 alleles at the locus

most strongly associated with variation in transcript abundance

increase its expression. If the eQTL effect is positive, D2 alleles at

the eQTL increase expression. The data are shown for stem cells,

but identical patterns were obtained for the other three cell

populations. (D) This plot illustrates the size of the effect of the

presence of either parental B6 or D2 allele at the eQTL on gene

expression levels. Each dot refers to a single probe. For each probe

expression values for strains carrying the B6 allele at the strongest

associated marker were compared with values for strains carrying

the D2 allele. Indicated in red are transcripts that are locally

regulated by a strong eQTL mapping within 10 Mb from the

corresponding gene.

Found at: doi:10.1371/journal.pgen.1000692.s001 (1.40 MB TIF)

Table S1 Clustering results.

Found at: doi:10.1371/journal.pgen.1000692.s002 (0.17 MB

XLS)

Table S2 Principal eQTL categories.

Found at: doi:10.1371/journal.pgen.1000692.s003 (0.99 MB

XLS)

Table S3 All dynamic eQTLs.

Found at: doi:10.1371/journal.pgen.1000692.s004 (0.87 MB

XLS)
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