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Abstract

Allele transmissions in pedigrees provide a natural way of evaluating the genotyping quality of a particular proband in a
family-based, genome-wide association study. We propose a transmission test that is based on this feature and that can be
used for quality control filtering of genome-wide genotype data for individual probands. The test has one degree of
freedom and assesses the average genotyping error rate of the genotyped SNPs for a particular proband. As we show in
simulation studies, the test is sufficiently powerful to identify probands with an unreliable genotyping quality that cannot
be detected with standard quality control filters. This feature of the test is further exemplified by an application to the third
release of the HapMap data. The test is ideally suited as the final layer of quality control filters in the cleaning process of
genome-wide association studies. It identifies probands with insufficient genotyping quality that were not removed by
standard quality control filtering.
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Introduction

Over the last several years, genome-wide association studies

(GWAS) have led to the identification of numerous, replicable

associations between novel genetic loci and complex diseases/

phenotypes [1–13]. While the technological breakthroughs in

genotyping technology provide a wealth of information and an

unbiased look at almost the entire human genome [14–16], the

statistical analysis of such studies is not trivial and the development

of new analysis methods is still ongoing. Besides the inherent

multiple testing problem in such studies, the genotype data

processing and cleaning steps present a statistical challenge, even

before the genetic association analysis can take place. In the data

cleaning step, basic statistical analysis tools are utilized as quality

control measures/filters to identify markers and probands for

whom the genotypic quality is problematic [17]. By filtering out

markers and probands with insufficient genotype quality, the

subsequent association analysis can be focused on the subset of

reliable markers and probands. The overall statistical power of the

study will thereby be increased and the number of false positive

findings will be reduced. The statistical analysis tools that are

applied in the quality control filtering step typically include testing

for Hardy-Weinberg equilibrium, testing for Mendelian inconsis-

tencies, evaluating quality scores, etc.

However, even after the most careful quality control filtering,

one has to recognize that it will not be possible to detect all

inherent genotyping errors in the dataset and eliminate their

influence on an association analysis. For many of the SNPs and

probands, the genotyping error rate will not be ‘‘poor’’ enough to

raise a ‘‘red flag’’ in the quality control filtering step and it will not

be possible to remove them from the dataset for the association

analysis.

Here we propose a new quality control filter for family-based

studies that allows the researcher to assess the genotyping quality

of each proband by looking at the transmission patterns of the

minor and the major allele within the same proband. That is, the

new filter provides an additional evaluation of data quality at the

proband level. For example, in a nuclear family in which one

proband and both of the proband’s parents have been genotyped,

we can compare the number of SNPs for which the minor allele is

transmitted from the heterozygous parents to the number of SNPs

for which the major allele is transmitted. Since the null hypothesis

of no association will be true for the vast majority of SNPs, we

expect to observe about the same number of minor allele
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transmissions as major allele transmissions. However, in the

presence of systematic genotypic error, this will be different.

Undetected genotyping error can create larger numbers of

transmissions of the major allele than the minor allele [18,19].

In contrast to standard family-based tests [20] that examine the

transmission pattern for all study participants at a specific genetic

locus, we propose here a transmission test that assesses the

transmission patterns at a genome-wide level for a single proband

in a nuclear family. Consequently, the test can be used to measure

the genotyping error rate of each proband individually. In

simulation studies, we show that, for sample sizes, error rates

and allele frequencies often observed in practice, the proposed test

is sufficiently powerful to identify probands with unreliable

genotyping quality that were not detected by standard quality

control filters. An application to the third release of the HapMap

data illustrates this important feature of the test further.

Methods

In the presence of genotyping error, it is a well-understood

phenomenon that standard family-based association tests (Trans-

mission Disequilibrium Test [20], Family-Based Association Tests

[21], etc) are biased under the null hypothesis and do not maintain

the pre-specified a-level [19,22,23]. Under standard genotyping

error models, more transmissions of the common allele will be

observed than can be expected just by chance under the

assumption of Mendelian transmissions [18,19]. In a genome-

wide association study, after the quality control filtering of all

genotyped SNPs, the genotyping error rate for each individual

SNP is expected to be small and departures of the transmission

pattern from the null hypothesis that are caused by genotyping

errors are unlikely detectable by a single locus analysis.

In order to estimate the undetected genotyping error for an

individual proband after quality control filtering, the information

about the transmission patterns has to be aggregated across all of

the proband’s genotyped SNPs. Consequently, we define for each

proband an individual transmission test statistic that can be used to

infer the underlying, undetected average genotyping error rate for

the selected proband.

In order to keep the notation simple, we assume that one trio is

available for genotyping at m bi-allelic marker loci. The variable

Xi denotes the number of target/minor alleles in the proband of

the trio at the i th marker locus based on a called genotype. It,

therefore, reflects any errors in genotyping and is not necessarily

equal to the true allele totals. Similarly, the parental counts at the

i th locus are given by Pi. Then for i th marker locus, we can

define the Mendelian residual by

DXi~Xi{E(Xi Pij ), ð1Þ

where E(Xi Pij ) is computed based on the assumption of

Mendelian transmissions. When the parental genotypes are

unknown and genotypic information on additional probands is

available, the parental genotypes in equation (1) can be replaced

by the sufficient statistic of Rabinowitz & Laird [24]. Based on the

Mendelian residuals, a genome-wide transmission score for the

proband in the trio can be constructed as

SGW ~
Xm

i~1

DXi: ð2Þ

By summing over the Mendelian residuals DXi for all genotyped

markers in the proband, the score SGW assesses the Mendelian

transmission patterns globally and evaluates the null hypothesis of

no preferential transmission of the minor allele at a genome-wide

level. Given the SNP density on the currently used SNP chips,

some proportion of the SNPs will be in linkage disequilibrium

(LD). The potential correlation between the SNPs has to be taken

into account when the variance of SGW is computed in order to

standardize the test statistic. Standard approaches for the

computation of the variance, as they are used, for example in

the TDT or FBAT statistic, assume independence of the

Mendelian residuals DXi and are therefore not applicable here.

However, the asymptotic properties of SGW can be derived

without knowledge of the LD structure by interpreting SGW as a

permutation test statistic. For the computation of the Mendelian

residual at each SNP, an allele has to be selected as the target

allele. For a bi-allelic marker locus, an exchange of the target allele

implies a change in the sign of the Mendelian residual, i.e. DXi

changes to {DXi. Under the null hypothesis of no preferential

transmission of either allele at a genome-wide level, the assignment

of the target allele at each SNP can be considered as a random

selection process, with selection probability 50% for each allele

and with independent draws at each SNP locus. The absence or

presence of LD between the SNPs does not affect the validity of

this permutation argument, since the Mendelian residuals are

treated here as fixed and the sign of the residual is selected

randomly with equal probabilities. Hence, under the null

hypothesis of no preferential transmission, the expected value of

SGW and its variance are given by E(SGW )~
X

i

E(DXi)~P
i

(DXi
:1=2z({DXi):1=2)~0 and Var(SGW )~

X
i

Var(DXi)~P
i

E DXið Þ2
h i

~
P

i

DXið Þ2:1=2z {DXið Þ2:1=2
h i

~
P

i

DXið Þ2

for any user-specified choice of target alleles at the genetic loci under

consideration. Although derived in a different context, this variance

estimator is similar to the empirical variance estimator that is used in

the pedigree disequilibrium test [25]. Here, under the null

hypothesis of no preferential transmission of one allele, the

standardized genome-wide transmission statistic, TGW , is

TGW ~
X

i

DXi

 !2

=
X

i

DXið Þ2 ð3Þ

and will have an approximate x2- distribution with 1 df when the

null hypothesis (of no genotyping errors) is true. In our application

Author Summary

Genome-wide association studies have led to the discov-
ery of many novel, reproducible associations between
genetic loci and disease phenotypes. An important step in
the analysis of genome-wide association studies is the data
cleaning/QC filtering step. The statistical analysis tools that
are applied as QC filters typically include testing for Hardy-
Weinberg equilibrium, testing for Mendelian inconsisten-
cies, evaluating quality scores, etc. We propose a new
genome-wide transmission test for family-based designs
that is applied to the dataset after the QC filtering. It allows
for the assessment of the genotyping error rate that is
caused by miscalled genotypes that could not be detected
by the QC filters. By applying the test to individual
probands, probands with insufficient genotyping quality
can be identified and removed from the dataset before the
analysis.
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of the genome-wide transmission statistic TGW , we will select the

minor allele as the target allele for all SNPs. In the presence of

genotyping errors across SNPs, the minor allele is expected to be

under-transmitted, i.e. more negative Mendelian residuals than just

by chance are expected [18,19]. Consequently, by selecting the

minor allele as target allele for all SNPs in the specification of TGW ,

we obtain a test statistic that will assess genotype error across all

SNPs within one proband.

Since the sample size for the genome-wide transmission statistic

TGW is the number of statistically independent SNPs on a

particular chip, the proposed test will have a sample size of at least

tens of thousands for most commercially available SNP chips.

Consequently, for sample sizes, error rates and allele frequencies

often observed in practice, the genome-wide transmission statistic

TGW will have sufficient power to detect small to moderate

departures from the Mendelian transmission patterns that are

caused by genotyping errors, even though TGW is computed for

only one proband. This theoretical property is verified and

quantified in subsequent simulation studies.

Results

Simulation Studies—Power
Using simulation studies, we examine the power of the

transmission test statistic TGW to detect and estimate the average

genome-wide genotyping error rate for individual probands.

Previous studies investigated genotyping error models that are

specific to an individual SNP [18,26–29]. In this communication,

we examine genotyping error at a SNP-chip level where several

thousand markers have been genotyped. The specification of a

universal genotyping error model that is a reflection of the

genotyping errors as they are encountered on a genome-wide SNP

chip is not straightforward. Such a model depends on various,

partly unknown, parameters, e.g. the true genotyping error rate, its

dependence on the allele frequency, the DNA quality, chip quality,

the selected genotyping platform, etc. We therefore assess the

effect of all possible misclassifications for a particular genotype in

separate simulations. For all possible combinations of miscalling

genotypes (Figure 1), we estimate the average of the genome-wide

Figure 1. Genotyping error models. The three genotype clusters represent the clouds generated from intensity plots. The AA cluster consists of
all homozygous minor calls, the AB cluster heterozygous calls and the BB homozygous major calls. Each arrow represents one of the genotyping error
models considered. For example, in Model #6 minor homozygotes (AA) can be miscalled as heterozygotes (AB).
doi:10.1371/journal.pgen.1000572.g001
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transmission test statistic TGW . For each genotyping error/

misclassification model, the average value for TGW can then be

used as an upper bound for assessing the average genotyping error

rate within an individual proband.

In each replicate of the simulation study, we simulate data on m
SNPs in one trio. The minor allele frequencies pi,i~1, � � � ,m, for

each of the m SNPs are randomly drawn either from a uniform

(0.1,0.5) distribution or a beta (2,8) distribution (truncated so that

10%,MAF,50%), resembling SNP chips with evenly distributed

allele frequencies and SNP chips with higher proportions of rare

SNPs. Assuming Hardy-Weinberg equilibrium, the parental geno-

types, Pi~(Pi1,Pi2), are generated by drawing twice from a binomial

distribution with probability pi, once for each parent. Then, using

Mendelian transmission from the parents, proband genotypes are

simulated. In order to understand the severity/effect of miscalling

each genotype and its impact on the transmission test statistic TGW ,

all possible genotyping error models of Figure 1 are considered

separately in the simulation study. We assume that the probability of

misclassifying one genotype as another genotype is denoted by pmis,

and errors are randomly generated in all three family-members,

based on the genotyping error model (Figure 1). That is, each

genotype is miscalled with probability, pmis. This process is repeated

until genetic data for m markers is created for the trio.

Quality control filtering is applied in order to identify trios with

particularly bad quality data. Specifically, trios with Mendelian

inconsistencies are removed. Then the standardized genome-wide

statistic TGW is calculated using all markers passing the quality

control filtering. The average value of the test statistics over 1000

replications from both the beta and the uniform distributions are

displayed below (Figure 2 and Figure 3, respectively). These reveal

that the genome-wide transmission test statistic TGW can show

large deviations from the null hypothesis when the genotyping

error rate is small to moderate. The transmission test statistic can

therefore serve as a measure of the previously undetectable

genotyping error within a single proband.

Investigating differences specific to genotyping error models, we

see that the most severe deviations occur under Models 1 & 3,

which involve miscalling of homozygous major genotypes as

heterozygotes and vice versa. For example, under Model 1, a

misclassification probability (pmis) of 2%, a chip size of 350,000

markers and alleles generated from a beta distribution, the average

value of the transmission test statistic was 101.12 and was 50.49

when the marker allele frequencies were drawn from a uniform

distribution. This observation makes sense intuitively as these

genotype classes are the most common. Since genotyping errors

are less likely to be identified for heterozygous parents, this effect is

further amplified. Miscalling between homozygous genotype

clusters (Models 2 & 5) results in the next largest average test

statistics followed by the models where heterozygotes and minor

homozygotes are misclassified (Models 4 & 6).

Results between the two types of SNP chip, distinguished by the

generation of minor allele frequencies, are relatively minor, with

the average transmission test generally being higher using a beta

distribution. Under either setting, probands can be identified with

sufficient power when exhibiting genotyping error rates consistent

with Models 1, 2, 3 & 5. That is, unless genotyping errors only

come about by miscalling between heterozygote and minor

homozygote genotype classes, the new transmission test statistic

is powerful to detect probands who have remained unfiltered by

traditional quality control measures.

Linkage Disequilibrium
In the previous simulations, we assume the absence of linkage

disequilibrium between the loci. However, the SNP density on

most modern SNP chips is so high that the genotyped SNPs are in

linkage disequilibrium. We therefore repeated the simulation

experiments under the assumption that the analyzed SNPs are

correlated. In the presence of LD, the minor allele frequency is

randomly drawn from either a beta or a uniform distribution and

is then adjusted for the presence of LD using the linkage

disequilibrium parameter D and the minor allele frequency at

the previously generated locus, i.e. P(A)~(P(AB){D)=P(B),
where A denotes the minor allele at the current locus and B the

minor allele at the previously generated locus. The parameter D

can be defined through the parameter r2 and be generated by

drawing from a uniform distribution.

Figure 4 and Figure 5 display the average values of the

standardized genome-wide test statistic over 1000 replicates under

the previously considered scenarios with minor allele frequencies

being generated as before, from a beta distribution and a uniform

distribution, respectively. With the exception of genotyping error

Models 2 and 5, the presence of LD between the SNPs leads to a

small reduction in power of the genome-wide transmission statistic

TGW . However, the power of the approach remains sufficiently

large to identify probands with even small genotyping error rates.

For the genotyping error Models 2 and 5, the presence of LD

slightly increases the power of the genome-wide transmission test

statistic TGW . It is important to note that these two genotyping

error models are extreme and probably not very realistic in the

sense that the common homozygous genotype is misclassified as

the rare homozygous genotype (Model 2) and vice versa (Model 5).

Simulation Studies—Type I Error
To verify the theoretically derived distribution of TGW under

the null hypothesis of no genotyping error, we conducted

simulation studies mirroring all of the scenarios examined

previously. The simulation studies were run in the absence and

in the presence of LD. For each scenario, 10,000 datasets were

generated and the empirical significance level was estimated by the

proportion of replicates for which the genome-wide transmission

test statistic TGW was significant at an a-level of 5%. Table 1 and

Table 2 show the estimated significance levels in the presence and

absence of LD. In all settings, the nominal Type I error rate of 5%

is maintained by the test statistic.

Application to HapMap data
To illustrate the practical relevance of the proposed genome-

wide test for single probands, we applied the methodology to the

third release of the HapMap data [30]. We analyzed 41 available

probands in the CEPH (Utah residents with ancestry from

northern and western Europe) family pedigrees with both parents

gentoyped. The SNPs were generated by genotyping all probands

with both the Affymetrix 6.0 chip and the Illumina 1M chip,

providing total data on 1,403,896 SNPs.

The genotyping data was extensively cleaned as described at

http://www.broad.mit.edu/,debakker/p3.html. For example,

SNPs were filtered if, within a population, the Hardy-Weinberg

test p-value was less than 1026, missingness was greater than 5%

or if there were three or more Mendelian errors.

For the analysis, we selected a cutoff of 5% for the minor allele

frequency as a quality control filter. Each proband was analyzed

three times. First, the genome-wide transmission test statistic was

computed for all 1,403,896 available SNPs. The second analysis

was focused on the 249,889 SNPs that were available on both

genotyping platforms and provided concordant genotype calls for

both SNP chips. For the third analysis the SNPs that were

available on only one of the SNP chips but not on the other were

On Quality Control Measures in GWA

PLoS Genetics | www.plosgenetics.org 4 July 2009 | Volume 5 | Issue 7 | e1000572



Figure 2. Simulation results—minor allele frequencies drawn from a truncated Beta (2,8) distribution. Average standardized
transmission test over 1,000 replications for varying levels of genotype error and SNP chip sizes. Each graph displays results for a single genotype
error model from Figure 1. (A–F) correspond to Models 1–6, respectively. Legends are different in each graph.
doi:10.1371/journal.pgen.1000572.g002
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Figure 3. Simulation results—minor allele frequencies drawn from a Uniform (0.1,0.5) distribution. Average standardized transmission
test over 1,000 replications for varying levels of genotype error and SNP chip sizes. Each graph displays results for a single genotype error model from
Figure 1. (A–F) correspond to Models 1–6, respectively. Legends are different in each graph.
doi:10.1371/journal.pgen.1000572.g003
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Figure 4. Simulation results with LD—minor allele frequencies drawn from a truncated Beta (2,8) distribution. Average standardized
transmission test over 1,000 replications for varying levels of genotype error and SNP chip sizes in the presence of LD. Each graph displays results for
a single genotype error model from Figure 1. (A–F) correspond to Models 1–6, respectively. Legends are different in each graph.
doi:10.1371/journal.pgen.1000572.g004
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Figure 5. Simulation results with LD—minor allele frequencies drawn from a Uniform (0.1,0.5) distribution. Average standardized
transmission test over 1,000 replications for varying levels of genotype error and SNP chip sizes in the presence of LD. Each graph displays results for
a single genotype error model from Figure 1. (A–F) correspond to Models 1–6, respectively. Legends are different in each graph.
doi:10.1371/journal.pgen.1000572.g005
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examined. Table 3 shows the results of all 3 analyses for 41 CEPH

probands.

Given the additional quality control checking based on

concordant genotype calls on both SNP chips, the second analysis

will be based on the SNPs with very highest genotyping quality,

while SNPs that are used in the third analysis are of considerably

lower genotyping quality.

In the first analysis it is important to note that, for some

probands, genome-wide transmission test statistics are observed

that exceed values of 30, indicating substantial amounts of

genotyping error in the data. The second analysis, which is

focused on the SNPs that were available on both SNP chips and

provided consistent genotyping results, produced much smaller

test statistics for nearly all of the probands, even those who had

very high transmission test results in the first analysis. Although 3

probands still show significant test results for the presence of

genotyping error at an overall a-level of 5%, adjusted for 41

comparisons using Bonferroni-correction, the actually observed

values for the test statistic TGW indicate that the genotyping error

rate can be expected to be low.

In general for the second analysis, based on our previous

simulations, we do not observe any probands that seem to have

excessive amount of genotyping error. This observation is intuitively

expected, since the second analysis is based only on genotype data

that was concordant on both platforms and, therefore, should be of

relatively high quality. In the third analysis, we again observe

probands for whom the genome-wide transmission test indicates

substantial amount of genotyping error. These probands are the

same ones who also exhibited the high test statistic values in the first

analysis. This result is expected as well since the third analysis is

focused on the SNPs where genotype calls could not be confirmed

by a second platform and are likely of poorer genotyping quality

than the SNPs used in the second analysis.

As an exploratory analysis, we examined whether the probands

with large values for the TGW statistic could have been identified

by other methods. If we had additionally applied filtering based on

plotting each proband’s mean heterozygosity versus the fraction of

missing genotypes [31], only one proband would have been

identified as an outlier. This proband is 1362: 10860 (Pedigree ID:

Proband ID) and has TGW statistics of 90.93 when all genotyped

SNPs are included in the analysis, 1.60 using the SNPs that are on

both platforms and 98.69 for the analysis of SNPs that are only

available on a single platform.

Discussion

In this manuscript, we proposed a novel transmission test for the

detection of genotyping errors in a single proband. In contrast to

previously proposed family-based association tests, our approach

can be applied just to a single proband with an arbitrary number

of genotyped SNPs without the need to specify any LD structure.

Our simulation results suggest that the genome-wide transmission

test is sufficiently powerful to detect single probands with poor

genotyping quality. This feature will allow the researcher to

remove such probands from the dataset before the association

analysis. Because the family-based association test statistic will be

inflated regardless of which family member contains the

genotyping error, we recommend removal of the entire nuclear

family. In an application to the third release of the HapMap data,

the proposed test was able to identify single probands with high

genotyping error rates which are attributable to SNPs that could

not be genotyped on both SNP chips. The key properties of the

genome-wide test statistic, application to an arbitrary number of

SNPs and an unspecified LD structure, will make the approach a

useful tool for the quality control filtering in genome-wide

association studies.

Table 1. Empirical significance – Percentage of genome-wide
transmission test false positives in 10,000 datasets with no LD.

Error Model Uniform MAF Beta MAF

100k 350k 500k 1M 100k 350k 500k 1M

1 0.050 0.049 0.050 0.049 0.049 0.049 0.047 0.047

2 0.051 0.050 0.048 0.049 0.053 0.045 0.048 0.049

3 0.050 0.049 0.047 0.052 0.051 0.050 0.048 0.050

4 0.046 0.045 0.051 0.051 0.049 0.051 0.051 0.055

5 0.049 0.049 0.053 0.051 0.048 0.048 0.049 0.048

6 0.051 0.054 0.050 0.050 0.050 0.049 0.048 0.045

Proportion of 10,000 datasets simulated under the null hypothesis of no
genotyping error and without LD such that TGW wx2

1,0:95 . Columns 2 through 5
display results for various chip sizes when generating minor allele frequencies
from a Uniform (0.1,0.5) distribution. Columns 6 through 9 display analogous
results when generating minor allele frequencies from a Beta (2,8) distribution.
Each row depicts results corresponding to a distinct genotyping error model
from Figure 1.
doi:10.1371/journal.pgen.1000572.t001

Table 2. Empirical significance — Percentage of genome-
wide transmission test false positives in 10,000 datasets with
LD.

Error
Model Uniform MAF Beta MAF

100k 350k 500k 1M 100k 350k 500k 1M

1 0.054 0.048 0.052 0.049 0.051 0.052 0.052 0.054

2 0.052 0.051 0.050 0.048 0.048 0.050 0.048 0.047

3 0.050 0.050 0.045 0.051 0.048 0.052 0.050 0.051

4 0.048 0.044 0.051 0.050 0.051 0.050 0.048 0.051

5 0.050 0.050 0.049 0.051 0.053 0.049 0.047 0.052

6 0.044 0.052 0.050 0.050 0.051 0.052 0.052 0.053

Proportion of 10,000 datasets simulated under the null hypothesis of no
genotyping error and in the presence of LD such that TGW wx2

1,0:95 . Columns 2
through 5 display results for various chip sizes when generating minor allele
frequencies from a Uniform (0.1,0.5) distribution. Columns 6 through 9 display
analogous results when generating minor allele frequencies from a Beta (2,8)
distribution. Each row depicts results corresponding to a distinct genotyping
error model from Figure 1.
doi:10.1371/journal.pgen.1000572.t002
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Table 3. Genome-wide transmission test statistic for 41 CEPH probands.

Pedigree ID Proband ID All SNPs Analysis Concordant SNPs Analysis Single Platform Analysis

1330 12335 1.77 0.05 2.50

1330 12336 24.07 8.26 16.57

1334 10846 17.30 8.99 10.16

1334 10847 14.16 7.93 8.05

1340 7029 92.13 2.18 98.12

1341 6991 3.29 0.14 4.73

1345 7348 15.12 3.91 11.33

1345 7349 3.98 0.04 4.47

1347 10859 39.99 4.79 35.50

1350 10855 66.04 8.57 57.79

1350 10856 0.16 0.66 0.00

1353 12376 62.68 5.52 58.42

1354 12386 3.26 0.65 2.61

1362 10860 90.93 1.60 98.69

1362 10861 0.24 0.21 0.57

1375 10863 49.55 6.73 43.02

1377 10864 12.94 0.53 13.19

1408 10831 32.93 4.90 28.09

1416 10835 21.91 1.67 20.83

1418 10836 92.60 0.12 116.45

1418 10837 15.91 1.29 15.00

1420 10839 1.11 0.92 0.51

1421 10840 22.72 5.80 17.10

1423 10843 13.33 1.38 12.13

1424 10845 7.69 0.25 8.01

1444 12740 5.54 0.00 6.79

1447 12752 33.59 4.98 28.67

1447 12753 24.07 5.21 18.92

1451 12766 2.20 0.11 3.21

1451 12767 55.85 16.08 40.64

1454 12801 34.50 0.67 47.20

1454 12802 37.64 9.67 28.28

1456 12817 0.81 0.08 0.74

1456 12818 47.65 8.75 38.91

1458 12832 99.97 20.15 79.89

1459 12864 2.15 1.28 1.19

1459 12865 34.20 4.51 29.85

1463 12878 39.54 11.93 28.38

13281 12344 25.49 6.60 19.11

13291 6995 0.03 0.03 0.07

13291 6997 0.11 0.17 0.32

Medians 21.91 1.67 16.57

Significance threshold at an overall a-level of 5% for x2-statistics adjusted for 41 comparisons using Bonferroni-correction: 10.46.
The genome-wide transmission test statistic, TGW , is reported for each CEPH proband with both parents genotyped, ordered by Pedigree ID. Each statistic is calculated
using all available SNPs (Column 3), all concordant SNPs (Column 4) and the SNPs appearing on only one platform (Column 5). Test statistics using all concordant SNPs
that are larger than the Bonferroni-adjusted value of 10.46 are presented in bold.
doi:10.1371/journal.pgen.1000572.t003
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