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Abstract

Genotype imputation methods are now being widely used in the analysis of genome-wide association studies. Most
imputation analyses to date have used the HapMap as a reference dataset, but new reference panels (such as controls
genotyped on multiple SNP chips and densely typed samples from the 1,000 Genomes Project) will soon allow a broader
range of SNPs to be imputed with higher accuracy, thereby increasing power. We describe a genotype imputation method
(IMPUTE version 2) that is designed to address the challenges presented by these new datasets. The main innovation of our
approach is a flexible modelling framework that increases accuracy and combines information across multiple reference
panels while remaining computationally feasible. We find that IMPUTE v2 attains higher accuracy than other methods when
the HapMap provides the sole reference panel, but that the size of the panel constrains the improvements that can be
made. We also find that imputation accuracy can be greatly enhanced by expanding the reference panel to contain
thousands of chromosomes and that IMPUTE v2 outperforms other methods in this setting at both rare and common SNPs,
with overall error rates that are 15%–20% lower than those of the closest competing method. One particularly challenging
aspect of next-generation association studies is to integrate information across multiple reference panels genotyped on
different sets of SNPs; we show that our approach to this problem has practical advantages over other suggested solutions.
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Introduction

Genome-wide association studies have identified many putative

disease susceptibility loci in recent years [1–3]. This approach to

studying disease has succeeded largely because of improved

catalogues of human genetic variation [4] and advances in

genotyping technology, but it has also been bolstered by the rise of

genotype imputation methods [5–8], which have allowed

researchers to tease increasingly subtle signals out of large and

complex genetic datasets [9,10].

Imputation methods work by combining a reference panel of

individuals genotyped at a dense set of polymorphic sites (usually

single-nucleotide polymorphisms, or ‘‘SNPs’’) with a study sample

collected from a genetically similar population and genotyped at a

subset of these sites. Figure 1 shows a schematic example of such a

dataset. Imputation methods predict unobserved genotypes in the

study sample by using a population genetic model to extrapolate

allelic correlations measured in the reference panel. The imputed

genotypes expand the set of SNPs that can be tested for

association, and this more comprehensive view of the genetic

variation in a study can enhance true association signals and

facilitate meta-analysis [9,10].

To date, most imputation analyses have used reference panels

composed of haplotypes from Phase II of the International

HapMap Project, together with study samples genotyped on

commercial genome-wide SNP arrays. Figure 1 depicts this

arrangement, which we call Scenario A. To understand how

imputation methods work in this setting, it helps to observe that

the SNPs exist in a natural hierarchy, such that they can be

partitioned into two disjoint sets: a set T that is typed in both the

study sample and the reference panel, and a set U that is untyped in

the study sample but typed in the reference panel. Informally,

most imputation methods phase the study genotypes at SNPs in T

and look for perfect or near matches between the resulting

haplotypes and the corresponding partial haplotypes in the

reference panel—haplotypes that match at SNPs in T are assumed

to also match at SNPs in U. This is the fundamental basis of

genotype imputation.

Several important points emerge from this description. First, the

accuracy with which the study haplotypes are phased at SNPs in T

should determine how well they can be matched to haplotypes in

the reference panel, which should in turn influence the accuracy of

imputation at SNPs in U. Second, accounting for the unknown

phase of the SNPs in T can be computationally expensive; if the
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haplotypes at these SNPs were known, most methods would be

able to impute genotypes at SNPs in U more quickly. Third, many

existing methods do not use all of the available information to

phase the study genotypes at SNPs in T. In principle, a phasing

algorithm should be able to ‘‘learn’’ about desirable phasing

configurations for a given study individual by pooling information

across the reference panel and all other individuals in the study,

and the phasing accuracy should increase with the sample size; in

standard practice, most imputation methods gain phasing

information about each study individual only from the reference

panel, and phasing accuracy does not depend on the size of the

study sample. (This description applies to imputation methods

based on hidden Markov models, or ‘‘HMMs’’ [6,11]; non-HMM

methods often discard other kinds of information.) The BEAGLE

imputation model [12,13] is one notable exception to this point,

and we discuss its alternative modeling strategy in detail in this

work.

We have developed a new algorithm that seeks to improve

imputation accuracy at untyped SNPs by improving phasing

accuracy at typed SNPs, building on the points raised above. Most

HMM-based imputation methods simultaneously estimate missing

genotypes and analytically integrate over the unknown phase of

SNPs in T. By contrast, we propose to alternately estimate

haplotypes at SNPs in T and impute alleles at SNPs in U, assuming

the haplotype guesses are correct. We account for the phasing

uncertainty in the data by iterating these steps in a Markov chain

Monte Carlo (MCMC) framework. Separating the phasing and

imputation steps allows us to focus more computational effort on

phasing and use more of the available information; the extra

computation used in this step is largely balanced by the quick

haploid imputation in the step that follows.

Figure 1. Schematic drawing of imputation Scenario A. In this drawing, haplotypes are represented as horizontal boxes containing 0’s and 1’s
(for alternate SNP alleles), and unphased genotypes are represented as rows of 0’s, 1’s, 2’s, and ?’s (where ‘1’ is the heterozygous state and ‘?’ denotes
a missing genotype). The SNPs (columns) in the dataset can be partitioned into two disjoint sets: a set T (blue) that is genotyped in all individuals and
a set U (green) that is genotyped only in the haploid reference panel. The goal of imputation in this scenario is to estimate the genotypes of SNPs in
set U in the study sample.
doi:10.1371/journal.pgen.1000529.g001

Author Summary

Large association studies have proven to be effective tools
for identifying parts of the genome that influence disease
risk and other heritable traits. So-called ‘‘genotype
imputation’’ methods form a cornerstone of modern
association studies: by extrapolating genetic correlations
from a densely characterized reference panel to a sparsely
typed study sample, such methods can estimate unob-
served genotypes with high accuracy, thereby increasing
the chances of finding true associations. To date, most
genome-wide imputation analyses have used reference
data from the International HapMap Project. While this
strategy has been successful, association studies in the
near future will also have access to additional reference
information, such as control sets genotyped on multiple
SNP chips and dense genome-wide haplotypes from the
1,000 Genomes Project. These new reference panels
should improve the quality and scope of imputation, but
they also present new methodological challenges. We
describe a genotype imputation method, IMPUTE version
2, that is designed to address these challenges in next-
generation association studies. We show that our method
can use a reference panel containing thousands of
chromosomes to attain higher accuracy than is possible
with the HapMap alone, and that our approach is more
accurate than competing methods on both current and
next-generation datasets. We also highlight the modeling
issues that arise in imputation datasets.

Imputation in Next-Generation Association Studies
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This approach can improve imputation accuracy in Scenario A,

as we show in the Results section, but another major motivation of

this work is to extend IMPUTE [6] to handle ‘‘next-generation’’

association datasets. By this, we refer to studies in the near future

that will have access to additional reference data that could inform

imputation. Next-generation reference panels will present new

challenges for imputation, including larger sample sizes; unphased

and incomplete genotypes; and multiple reference panels contain-

ing different SNP sets. Our method aims to use the principles

outlined above to address these challenges and improve imputa-

tion accuracy in next-generation studies.

One new data configuration, which we call Scenario B and

explore in detail in the current study, is presented in Figure 2; we

will address other next-generation reference panels in the

Discussion. In Scenario B, there are different amounts of genotype

data in different cohorts of a study. For example, the Wellcome

Trust Case Control Consortium (WTCCC) is currently perform-

ing an association study in which 6,000 controls will be genotyped

on both the Affymetrix 6.0 and Illumina 1 M SNP chips, whereas

disease cohorts will be genotyped only on either the Affymetrix 6.0

chip or the Illumina 670 k chip. In other words, a large set of

controls will be genotyped at a subset of HapMap SNPs, and each

case cohort will be genotyped at a subset of the SNPs typed in the

controls. Published studies have already employed this design [14],

and it may become more prevalent in the future as common sets of

population controls become more widely available.

In Scenario B, the study individuals genotyped on a larger

number of SNPs can be used as an unphased, or ‘‘diploid’’,

reference panel for imputation in the remaining samples (which do

not necessarily have to be cases). As before, we approach such a

dataset by partitioning the SNPs into disjoint sets, named with

reference to the study sample: a set U1 that is untyped in the study

sample and typed only in the haploid reference panel, a set U2 that

is untyped in the study sample and typed in both the haploid and

diploid reference panels, and a set T that is typed in all samples.

We apply the same inference principles to Scenario B as to

Scenario A: at each MCMC iteration we phase all of the observed

data, pooling information across samples typed on common sets of

SNPs to estimate each haplotype pair, then perform haploid

imputation assuming that all of the haplotype guesses are correct.

One novelty of this scenario is that, at SNPs in U2, the reference

panel may contain thousands of chromosomes, in contrast to

HapMap Phase II panels that contain only 120–180 chromosomes

each. In principle, this added depth should improve imputation

accuracy at SNPs in U2, with notable gains at rare SNPs. The

latter point is especially relevant because rare SNPs are an

important source of power in imputation analyses [5,6]. Scenario

B also introduces the problem of multiple reference panels

Figure 2. Schematic drawing of imputation Scenario B. In this drawing, haplotypes are represented as horizontal boxes containing 0’s and 1’s
(for alternate SNP alleles), and unphased genotypes are represented as rows of 0’s, 1’s, 2’s, and ?’s (where ‘1’ is the heterozygous state and ‘?’ denotes
a missing genotype). The SNPs (columns) in the dataset can be partitioned into three disjoint sets: a set T (blue) that is genotyped in all individuals, a
set U2 (yellow) that is genotyped in both the haploid and diploid reference panels but not the study sample, and a set U1 (green) that is genotyped
only in the haploid reference panel. The goal of imputation in this scenario is to estimate the genotypes of SNPs in set U2 in the study sample and
SNPs in the set U1 in both the study sample and, if desired, the diploid reference panel.
doi:10.1371/journal.pgen.1000529.g002
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genotyped on different, hierarchical sets of SNPs. Many next-

generation imputation datasets will follow this paradigm, which

presents modeling challenges that remain largely unexplored.

In the sections that follow, we describe the details of our new

method as applied to the scenarios in Figure 1 and Figure 2. We

then compare the method with other imputation approaches on

real datasets from the United Kingdom that emulate Scenarios A

and B. We show that our method can attain higher accuracy than

existing methods in Scenario A, but that the absolute gains are

small, which we attribute to the inherent limitations of a small set

of reference haplotypes. In an example of Scenario B, we

demonstrate that our method can use a large unphased reference

panel to achieve higher accuracy than imputation based on the

HapMap alone. We also show that our method can impute

genotypes more accurately than other sophisticated [11,13] and

simpler [15] methods applied to the same dataset, and that our

approach has higher sensitivity and specificity to detect copies of

the minor allele at rare SNPs. In addition, we present results that

highlight important practical advantages of our imputation

modeling strategy over the one used by BEAGLE.

We have implemented our new imputation method as an

update to our existing software package IMPUTE; the new

program is called ‘‘IMPUTE version 2’’ (IMPUTE v2). We refer

to our previously published method [6] as ‘‘IMPUTE version 1’’

(IMPUTE v1).

Materials and Methods

Software
IMPUTE v1 and IMPUTE v2 are freely available for academic

use from the website http://www.stats.ox.ac.uk/,marchini/

software/gwas/gwas.html

Scenario A
In Scenario A, IMPUTE v2 estimates marginal posterior

probabilities of missing genotypes by alternately phasing all of the

SNPs in T in the study sample (simultaneously imputing any

sporadically missing genotypes) and then imputing study genotypes

at the SNPs in U, conditional on the haplotype guesses from the

first step. To explain this process in more detail, we begin by

defining HT ,U
R , the set of known reference haplotypes at SNPs in T

and U (i.e., the entire reference panel); HT
R , the set of known

reference haplotypes at SNPs in T; and HT
S , the set of unobserved

study haplotypes at SNPs in T. If there are NS individuals in the

study sample, their haplotypes at SNPs in T can be represented as

HT
S ~ HT

S,1, . . . ,HT
S,NS

n o
, where HT

S,i is the haplotype pair for

study individual i.

The method begins by choosing initial guesses for the

haplotypes in HT
S – by default, we choose haplotypes that are

consistent with the observed genotype data but phased at random.

We then perform a number of MCMC iterations. Each iteration

updates every study individual i (in some arbitrary order) in two

steps:

1. Sample a new haplotype pair HT
S,i for individual i at SNPs in T.

This is accomplished by sampling from the conditional

distribution Pr HT
S,i

��GT
S,i,H

T
S,({i),H

T
R ,r

� �
, where GT

S,i is indi-

vidual i’s multilocus genotype at SNPs in T, HT
S, {ið Þ contains

current-guess haplotypes at SNPs in T for all study individuals

except i, HT
R contains the reference panel haplotypes at SNPs

in T, and r is the fine-scale, population-scaled recombination

map for the region of interest. We describe this distribution

further below.

2. Impute new alleles (in two independent haploid steps) for SNPs

in U, conditional on HT
S,i, HT ,U

R , and r.

We typically run the method for a relatively small number of

burn-in iterations that invoke only the phasing step, followed by a

larger number of main iterations that include both steps and

contribute to the final imputation probabilities. We investigate the

convergence properties of the method in Text S1, Figure S1, and

Table S1.

In Step 1, the algorithm phases individual i’s observed genotype

GT
S,i by sampling from Pr HT

S,i

��GT
S,i,H

T
S, {ið Þ,H

T
R ,r

� �
. The model

we use to specify this conditional distribution is essentially the

same one used by IMPUTE v1 [6] – i.e., we use a hidden Markov

model that is based on an approximation to the coalescent-with-

recombination process [16]. This model views newly sampled

haplotypes as ‘‘imperfect mosaics’’ of haplotypes that have already

been observed. As with IMPUTE v1, we use an estimated fine-

scale recombination map [17] for SNP-to-SNP transition proba-

bilities and a result from population genetics theory [6] for

emission probabilities, which model historical mutation.

One difference between versions is that IMPUTE v1 analyti-

cally integrates over the unknown phase of the genotypes in the

study sample, whereas IMPUTE v2 uses Step 1 to integrate over

the space of phase reconstructions via Monte Carlo. This step is

accomplished for each individual by sampling a pair of paths

through the hidden states (haplotypes) of the model, then

probabilistically sampling a pair of haplotypes that is consistent

with the observed multilocus genotype. Path sampling is a

standard operation for HMMs, although in this case the

calculation burden can be reduced by careful inspection of the

equations for the HMM forward algorithm [11]. By default, the

state space of the model in Step 1 includes all of the known

haplotypes in HT
R and the current-guess haplotypes in HT

S, {ið Þ.
The computational burden of these calculations (both in terms of

running time and memory usage) grows quadratically with the

number of haplotypes and linearly with the number of SNPs. We

later propose approximations to make these calculations more

tractable on large datasets.

In Step 2, the algorithm uses each of the haplotypes in HT
S,i

(which were sampled in Step 1) to impute new genotypes for SNPs

in U. The HMM state space for this step includes only the

reference panel haplotypes HT ,U
R . The imputation is accomplished

by running the forward-backward algorithm for HMMs indepen-

dently on each haplotype in HT
S,i and then analytically

determining the marginal posterior probabilities of the missing

alleles – this process is simply a haploid analogue of the one used

by IMPUTE v1. If we assume that both haplotypes were sampled

from a population that conforms to Hardy-Weinberg Equilibrium

(HWE), it is straightforward to convert these allelic probabilities to

genotypic probabilities for individual i. Across iterations, we can

then sum the posterior probabilities for each missing genotype as if

they were weighted counts; at the end of a run, the final Monte

Carlo posterior probabilities can be calculated by renormalizing

these sums. By contrast with Step 1, the computational burden of

these calculations grows only linearly with the number of

haplotypes. Consequently, Step 2 can usually avoid the approx-

imations needed to make Step 1 feasible, thereby allowing us to

make full use of even very large reference panels.

By using both the reference panel and the study sample to inform

phasing updates in Step 1, IMPUTE v2 uses more of the

information in the data than most comparable methods [6,11],

which typically account for phase uncertainty using only the

reference panel. At the same time, each iteration is relatively fast

because untyped SNPs are imputed in a haploid framework rather

Imputation in Next-Generation Association Studies
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than the more computationally intensive diploid framework that is

used by other HMM methods. For example, one iteration of

IMPUTE v2 will typically finish faster and use less computer

memory than a run of IMPUTE v1 on the same dataset, although

IMPUTE v2 tends to be slower than IMPUTE v1 on the whole

since the new method requires multiple iterations. We explore the

computational burden of the method in detail in the Results section.

Scenario B
The structure of the dataset is more complex in this scenario

than in the previous one, but we follow the same basic principles of

imputation: phase the observed data, then impute alleles in each

haplotype separately, conditioning on as much observed data as

possible. Here, the goal of the phasing step is to end up with three

sets of haplotypes: HT ,U1,U2

HR , the known haploid reference panel

haplotypes at SNPs in T, U1, and U2; HT ,U2

DR , the unobserved

diploid reference panel haplotypes at SNPs in T and U2; and HT
S ,

the set of unobserved study haplotypes at SNPs in T. If there are

NDR individuals in the diploid reference panel, their haplotypes

can be represented as HT ,U2

DR ~ HT ,U2

DR,1 , . . . ,HT ,U2

DR,NDR

n o
, where

HT ,U2

DR,i is the haplotype pair for diploid reference individual i.

The method begins by choosing initial guesses for the
haplotypes in HT ,U2

DR and HT
S – as before, we choose haplotypes

that are consistent with the observed genotype data but phased at

random. Each MCMC iteration now includes five steps. First, we

update every diploid reference individual i:

1. Sample a new haplotype pair HT ,U2

DR,i for individual i at SNPs in

T and U2. This is accomplished by sampling from the

conditional distribution Pr HT ,U2

DR,i

��GT ,U2

DR,i ,HT ,U2

DR, {ið Þ,H
T ,U2

HR ,r
� �

.

2. Impute new alleles (in two independent haploid steps) for SNPs

in U1, conditional on HT ,U2

DR,i , HT ,U1,U2

HR , and r.

In other words, we phase the observed data for diploid reference

individual i by pooling information across both reference panels,

then use these haplotypes in separate imputation steps based on

the haploid reference panel. Up to this point, we have simply

recapitulated Scenario A with different notation. Next, we update

every study individual i:

3. Sample a new haplotype pair HT
S,i for individual i at SNPs in T.

This is accomplished by sampling from the conditional

distribution Pr HT
S,i

��GT
S,i,H

T
S, {ið Þ,H

T
DR,HT

HR,r
� �

.

4. Impute new alleles (in two independent haploid steps) for SNPs

in U2, conditional on HT
S,i, HT ,U2

DR , HT ,U2

HR , and r.

5. Impute new alleles (in two independent haploid steps) for SNPs

in U1, conditional on HT
S,i, HT ,U1

HR , and r.

As is Scenario A, burn-in iterations are used only for phasing

(Steps 1 and 3), while subsequent iterations cycle through all five

steps.

In this algorithm, each study individual gains phasing

information from all other individuals in the dataset, which can

lead to very accurate haplotype estimates at typed SNPs when the

total sample size is large. Once a study individual has sampled a

new pair of haplotypes, the imputation step is broken into two

parts: SNPs in U2 are imputed using information from both the

haploid and diploid reference panels (Step 4), and SNPs in U1 are

imputed using only the haploid reference panel (Step 5). This

modeling choice highlights a core principle of our inference

framework: we allow the method to naturally adapt to the amount

of information in the data by conditioning only on observed

genotypes, not imputed ones, at each step.

Choice of conditioning states
As noted above, the HMM calculations underpinning our

method require more running time and computer memory as

more haplotypes are added to the state space of the model. This

can be a problem for the phasing updates, whose computational

burden increases quadratically with the number of haplotypes

included in the calculation.

One solution, implemented in the phasing routine of the

MACH software, is to use only a random subset of the available

haplotypes for each update. For example, when sampling a new

haplotype pair from Pr HT
S,i

��GT
S,i,H

T
S, {ið Þ,H

T
R ,r

� �
in Step 1 of our

algorithm for Scenario A, we could use a random subset of k

haplotypes drawn from HT
S, {ið Þ,H

T
R

n o
to build the conditional

distribution, rather than the default approach of using all of the

haplotypes. This approximation to the model will generally

decrease accuracy, but it will also cause the computational burden

of the phasing updates to increase linearly (for fixed k), rather than

quadratically, with the number of chromosomes in the dataset.

We have developed another approximation that also constrains

phasing updates to condition on a subset of k haplotypes. Rather

than selecting haplotypes at random, our approach seeks to

identify the k haplotypes that are in some sense ‘‘closest’’ to the

haplotypes of the individual being updated. In genealogical terms,

this amounts to focusing attention on the parts of the underlying

tree where that individual’s haplotypes are located. The idea is

that haplotypes that reside nearby in the genealogical tree will the

most informative about the haplotypes of interest.

The structure of the underlying genealogical tree is usually

unknown (indeed, knowing the tree would essentially solve the

phasing problem), so we frame the list of the k closest haplotypes as

a random variable that gets updated for each individual at each

MCMC iteration. To sample a new phase configuration for

diploid individual i, we choose k conditioning states as follows: for

each available non-self haplotype (including current-guess haplo-

types for other diploid individuals), we calculate the Hamming

distance to each of individual i’s current-guess haplotypes and

store the minimum of these two distances. Then, we use the k

haplotypes with the smallest distances to build the HMM and

sample a new pair of haplotypes for individual i.

The transition and emission probabilities of our model [6]

depend explicitly on k. The intuition is that, as k gets larger, jumps

between different copied haplotypes should become less likely and

those haplotypes should be copied with higher fidelity; this is

because a chromosome will coalesce faster into a larger genealogy,

leaving less time for recombination and mutation events to occur

[18]. The underlying theory assumes that the haplotypes in

question were sampled randomly from a population, which is

clearly not the case when we select k haplotypes in the manner

described above. To account for the fact that these haplotypes will

find common ancestors (going backwards in genealogical time)

more quickly than would k haplotypes chosen at random, we

replace k with the total number of available haplotypes when specifying

the HMM parameters for a phasing update.

We refer to this approximation as informed selection of

conditioning states. While this method is built upon genealogical

intuitions, we emphasize that no explicit genealogies are

constructed in our inference scheme. One way of understanding

our approach is by comparison to the phasing method of Kong et

al. [19]. Their method uses rule-based techniques to phase

putative ‘‘unrelateds’’ by identifying long stretches of identity-by-

state (IBS) sharing between individuals, under the assumption that

such sharing is caused by recent common descent. Our Hamming

distance metric can be viewed as a way of identifying near-IBS

Imputation in Next-Generation Association Studies
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sharing, and our method combines information across multiple

closely related individuals in a model-based way rather than

seeking perfect IBS matching between specific individuals. In this

sense, our approximation can be viewed as a flexible middle

ground between full conditional modeling (which uses all of the

available haplotypes to phase an individual) and the Kong et al.

method (which may use only a small fraction of the available

haplotypes to phase an individual).

In our experience, imputation based on this informed method for

choosing conditioning states is only trivially slower than otherwise

identical analyses based on random state selection, effectively

because the common HMM calculations take much longer than

calculating all pairwise Hamming distances in the informed method.

At the same time, the informed method can generally achieve the

same phasing accuracy as the random method using many fewer

states, or higher accuracy for a fixed number of states (data not

shown). This is a major advantage because it is computationally

expensive to add states to the model (i.e., to increase k). We therefore

focus on the informed state selection method in this study, with the

random method used only during MCMC burn-in, although both

approaches are implemented in our software. We conduct an

exploration of the parameter settings under informed selection,

including the dependence of imputation accuracy on k, in Text S1,

where we also discuss potential limitations of the informed state

selection scheme.

Modeling strategies for imputation datasets
In order to understand the modeling choices underlying our new

imputation algorithm, it is crucial to consider the statistical issues

that arise in imputation datasets. For simplicity, we will discuss these

issues in the context of Scenario A, although we will also extend

them to Scenario B in the Results section. Fundamentally,

imputation is very similar to phasing, so it is no surprise that most

imputation algorithms are based on population genetic models that

were originally used in phasing methods. The most important

distinction between phasing and imputation datasets is that the

latter include large proportions of systematically missing genotypes.

Large amounts of missing data greatly increase the space of

possible outcomes, and most phasing algorithms are not able to

explore this space efficiently enough to be useful for inference in

large studies. A standard way to overcome this problem with

HMMs [6,11] is to make the approximation that, conditional on

the reference panel, each study individual’s multilocus genotype is

independent of the genotypes for the rest of the study sample. This

transforms the inference problem into a separate imputation step

for each study individual, with each step involving only a small

proportion of missing data since the reference panel is assumed to

be missing few, if any, genotypes.

In motivating our new imputation methodology, we pointed out

that modeling the study individuals independently, rather than

jointly, sacrifices phasing accuracy at typed SNPs; this led us to

propose a hybrid approach that models the study haplotypes

jointly at typed SNPs but independently at untyped SNPs. We

made the latter choice partly to improve efficiency – it is fast to

impute untyped alleles independently for different haplotypes,

which allows us to use all of the information in large reference

panels – but also because of the intuition that there is little to be

gained from jointly modeling the study sample at untyped SNPs.

By contrast, the recently published BEAGLE [13] imputation

approach fits a full joint model to all individuals at all SNPs. To

overcome the difficulties caused by the large space of possible

genotype configurations, BEAGLE initializes its model using a few

ad-hoc burn-in iterations in which genotype imputation is driven

primarily by the reference panel. The intuition is that this burn-in

period will help the model reach a plausible part of parameter space,

which can be used as a starting point for fitting a full joint model.

This alternative modeling strategy raises the question of

whether, and to what extent, it is advantageous to model the

study sample jointly at untyped SNPs. One argument [20] holds

that there is no point in jointly modeling such SNPs because all of

the linkage disequilibrium information needed to impute them is

contained in the reference panel. A counterargument is that, as

with any statistical missing data problem, the ‘‘correct’’ inference

approach is to create a joint model of all observed and missing

data. We have found that a full joint model may indeed improve

accuracy on small, contrived imputation datasets (data not shown),

and this leads us to believe that joint modeling could theoretically

increase accuracy in more realistic datasets.

However, a more salient question is whether there is any useful

information to be gained from jointly modeling untyped SNPs, and

whether this information can be obtained with a reasonable amount

of computational effort. Most imputation methods, including our

new algorithm, implicitly assume that such information is not worth

pursuing, whereas BEAGLE assumes that it is. We explore this

question further in the sections that follow.

Results

To test our new imputation method, we compared it with

established methods on realistic datasets that fit the two scenarios

described above.

Scenario A
As an example of Scenario A, we used the 120 HapMap CEU

parental haplotypes as a reference panel to impute genotypes in

the WTCCC 1958 Birth Cohort (58 C) controls [1]. The 58 C

samples were genotyped on the Affymetrix 500 K SNP chip, and

the data were subjected to the SNP and sample filters specified in

the WTCCC study [1]. Of the 1,502 58 C individuals, 1,407 were

also genotyped on the Illumina 550 K chip, and 1,377 passed

filtering in both datasets. We supplied only the latter set of

individuals to the imputation methods, and we asked them to

impute the 22,270 CEU HapMap SNPs on chromosome 10 that

were represented on the Illumina chip but not the Affymetrix chip.

We then used the imputed Illumina genotypes to evaluate the

success of imputation based on the Affymetrix data.

Program settings. We used the following methods to

perform the imputation: IMPUTE v1.0; MACH v0.1.10 with

analytical (‘‘mle’’) imputation, where the model parameters were

selected by running the ‘‘greedy’’ algorithm for 100 iterations on a

random subset of 500 58 C samples, as suggested in the online

tutorial that accompanies the software (http://www.sph.umich.

edu/csg/abecasis/mach/tour/imputation.html); fastPHASE [11]

v1.3.2 with 20 and 30 clusters (K = 20 and K = 30, in separate

runs), 15 starts of the expectation-maximization (EM) algorithm to

estimate model parameters, and 35 iterations per EM start (this

version of fastPHASE automatically fits the clustering model to the

reference panel and then imputes each study individual separately,

conditional on the fitted model); BEAGLE v3.0.2 on default

settings and with 50 iterations (rather than the default 10); and

IMPUTE v2.0 with 40 and 80 conditioning states used for diploid

updates at typed SNPs (k = 40 and k = 80, in separate runs) and

120 conditioning states (i.e., the full HapMap CEU panel) used for

all haploid updates. We ran IMPUTE v2 with 10 burn-in

iterations followed by 20 additional iterations. The first 3 burn-in

iterations used random conditioning states for phasing updates,

and all subsequent iterations used informed conditioning states.

We discuss the motivations for these settings in Text S1.
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We declined to include other imputation methods in this

analysis because the Genetic Association Information Network

(GAIN) Imputation Working Group is planning to publish a

similar comparison using a broad cross-section of methods; our

goal here is mainly to benchmark a new method. In order to speed

up the analysis via our parallel computing facilities, we split

chromosome 10 into 20 non-overlapping analysis chunks. Each

imputation run spanned 7 Mb, with an additional 250 kb buffer

on either side that was used for inference but omitted from the

results – this buffer guards against a deterioration of imputation

quality near the chunk edges. We ran every algorithm using the

same analysis chunks.

Accuracy comparison. The results of this analysis are shown

in Figure 3. The x-axes in this figure display the discordance

between imputed genotype calls and observed Illumina calls,

which is a surrogate for imputation error rate; the y-axes display

the percentage of genotypes for which no call was made. Each

method’s line is formed by considering several different calling

thresholds for imputation posterior probabilities. For example, a

certain number of maximum posterior probabilities will exceed a

threshold of 0.9, and among these we can ask what percentage of

the best-guess imputed genotypes disagree with the Illumina

genotypes. This yields an x-coordinate, and the y-coordinate is

simply the percentage of all imputed genotypes for which no

posterior probability exceeds the threshold. We generated the lines

on the plots by repeating these calculations for calling thresholds

ranging from 0.33 to 0.99 for each method.

On these plots, lines that are below and to the left of other lines

are more desirable. One interpretation is that, for a given level of

missing data, an imputation method with a line further to the left

has lower discordance with the external genotypes. Such plots

allow us to evaluate competing methods in a more nuanced way

than just looking at best-guess genotypes (which is equivalent to

setting a single calling threshold of 1/3). We strongly emphasize,

however, that the point of this exercise is not to determine an

‘‘optimal’’ calling threshold and use this to make hard calls of

imputed genotypes for downstream analyses. Imputation results

inherently contain more uncertainty than experimental genotype

calls, and a host of methods have been developed to appropriately

take this uncertainty into account when doing things like

association testing [6]. Such methods are implemented in our

freely available association testing software, SNPTEST.

Figure 3A shows the full results of this comparison. The curves

are difficult to distinguish in this plot, so Figure 3B and 3C

magnifies either end of the range to highlight the salient features.

The grid lines in all three panels are shown at the same vertices to

help convey the degree of magnification. The results can also be

summarized by the best-guess error rate for each method (x-

intercept on the plots): BEAGLE (default), 6.33%; BEAGLE (50

iterations), 6.24%; fastPHASE (K = 20), 6.07%; fastPHASE

(K = 30), 5.92%; IMPUTE v1, 5.42%; IMPUTE v2 (k = 40),

5.23%; IMPUTE v2 (k = 80), 5.16%; MACH, 5.46%. Figure 3

shows that IMPUTE v1 (blue) achieved error rates that were

consistently, if only slightly, lower than those of MACH (cyan)

across the range of calling thresholds, and that both methods

yielded lower error rates than fastPHASE (black) and BEAGLE

(green). The IMPUTE v2 run with k = 40 (solid red line) attained

similar accuracy to IMPUTE v1 at stringent calling thresholds

(Figure 3B), although IMPUTE v2 gained a slight advantage at

more lenient thresholds (Figure 3C). The IMPUTE v2 run with

k = 80 (dotted red line) showed a small but consistent improvement

over both IMPUTE v1 and the other IMPUTE v2 run.

Computational requirements. To describe the relative

computational burdens of these methods, we re-ran each

program on a more limited dataset on a single Linux server,

which had four dual-core Intel Xeon processors (running at

2.33 GHz, with a 6.1 MB cache, and using a 64-bit architecture)

and a total of 8 GB of RAM. Specifically, we repeated the analysis

for the 4th, 8th, 12th, and 16th chunks, each of which encompasses a

7.5 Mb region of chromosome 10 (centered, respectively, at

positions 22.22 Mb, 50.22 Mb, 78.22 Mb, and 106.22 Mb in

NCBI Build 35 coordinates). The average running times and

memory requirements for these analyses are shown in Table 1.

Table 1 shows that IMPUTE v1 was the fastest of the methods

considered here, followed by BEAGLE (default), MACH, IMPUTE

v2 (k = 40), BEAGLE (50 iterations), fastPHASE (K = 20), IMPUTE

v2 (k = 80), and fastPHASE (K = 30). Conversely, fastPHASE

required the least computer memory, followed by MACH,

IMPUTE v2, IMPUTE v1, and BEAGLE. Note that, while

IMPUTE v2 with k = 40 took about six times as long as IMPUTE

v1, it needed less than 16% of the RAM; this is mainly a consequence

of modeling SNPs in U as haploid in version 2, as opposed to diploid

in version 1. We also note that both fastPHASE and MACH spent

most of their running time fitting their models to the HapMap, and

that both methods could probably decrease running times (via more

lenient settings) without sacrificing much accuracy.

Scenario B
We simulated Scenario B by modifying the WTCCC 58 C

dataset as follows: First, we integrated the genotypes from the two

SNP chips for the 1,377 shared 58 C individuals (see Text S1 for

details), yielding a consensus set of 44,875 SNPs. Next, we split the

58 C samples into two groups: a diploid reference panel of 918

individuals (2/3 of the dataset) and a study sample of 459

individuals. To complete the reference panel, we added 120

haplotypes from the HapMap Phase II CEU data. We then created

two Scenario B study sample datasets by masking the genotypes of

SNPs unique to each chip in turn; there were 18,489 such SNPs on

the Affymetrix chip and 22,219 such SNPs on the Illumina chip.

Modeling considerations. A full representation of Scenario

B would include all HapMap SNPs that are polymorphic in the

CEU panel. There were 138,592 such SNPs in our dataset, with

44,875 of these belonging to set U2 and the remaining 93,717 to set

U1. This data structure is problematic for most imputation methods

because their modeling strategies are premised on a single reference

panel in which most genotypes have been observed (i.e., some

version of Scenario A). If the data from both reference panels in

Scenario B were combined into a single panel, many reference

SNPs (those in U1) would be missing large proportions of their

genotypes, which could substantially decrease imputation accuracy

in the study sample. Ad-hoc modifications of these approaches are

not attractive either. For example, it would be possible for such

methods to impute SNPs in U1 in the diploid reference panel and

then combine the observed and imputed genotypes to impute SNPs

in U1 and U2 in the study sample, but failing to account for the

uncertainty in the imputed reference genotypes would probably

lead to overconfident and lower-quality inferences. Alternatively, it

would be possible to perform separate imputation runs on the SNPs

in {U1,T} and the SNPs in {U2,T}, but this approach is neither

elegant nor convenient in a large association study.

To our knowledge, BEAGLE is the only method other than

ours that has proposed a strategy for overcoming these difficulties.

(This strategy is not discussed in the paper [13], but it is detailed in

the documentation accompanying the BEAGLE v3.0 software.)

When BEAGLE encounters multiple reference panels, as in

Scenario B, it simply downweights the less complete panels during

the burn-in stage of its model-fitting procedure. Specifically, every

individual in the dataset is assigned a weight that reflects the
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completeness of that individual’s genotypes – individuals with

more missing data get lower weights, and therefore have less

influence on the early steps of the model-fitting algorithm. This

detail aside, BEAGLE still fits a joint model to the complete

dataset in Scenario B, in contrast to the IMPUTE v2 approach of

modeling the observed data jointly but the missing data

independently.

In light of these considerations, we decided to create two

versions of our Scenario B dataset: one that includes the full set of

HapMap SNPs, and one in which the HapMap dataset is restricted

to SNPs that were genotyped on at least one of the chips (i.e., in

which all SNPs in U1 have been removed). We used the latter

dataset to broaden the range of methods that could be included in

the comparison (at the cost of removing some of the complexity of

Scenario B), and we used the former dataset to evaluate BEAGLE

and IMPUTE v2 in a more realistic setting.

Program settings. In the restricted dataset, we used

IMPUTE v1.0, IMPUTE v2.0, BEAGLE v3.0.2, fastPHASE

v1.3.2, and PLINK [15] v1.03 to impute each chip’s masked

genotypes from the other chip’s study sample genotypes and the

Figure 3. Percentage discordance versus percentage missing genotypes for Scenario A dataset. (A) Full range of results, corresponding
to calling thresholds from 0.33 to 0.99. (B) Magnified results for calling thresholds near 0.99. (C) Magnified results for calling thresholds near 0.33.
doi:10.1371/journal.pgen.1000529.g003
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reference panels. IMPUTE v2, BEAGLE, fastPHASE and PLINK

used the 918 diploid individuals and the 120 HapMap CEU

haplotypes as an expanded reference panel for imputation, while

IMPUTE v1 was provided with only the HapMap reference panel.

We ran IMPUTE v1, BEAGLE, and PLINK on their default

imputation settings, and we also performed separate BEAGLE

runs with 50 iterations (rather than the default 10). We ran

fastPHASE with 20 and 30 clusters (K = 20 and K = 30, in separate

runs), 15 starts of the EM algorithm to estimate model parameters,

and 35 iterations per EM start. As in Scenario A, we first fit the

fastPHASE clustering model to the reference data, then instructed

the software to impute each of the 459 study individuals

independently, conditional on the fitted model. Finally, we set

IMPUTE v2 to use 40 and 80 conditioning states (k = 40 and

k = 80, in separate runs) for phasing updates in both diploid panels

and 1,956 reference panel states (26918+120) for haploid

imputation updates in the study sample. As before, we ran the

algorithm for 30 MCMC iterations with the first 10 discarded as

burn-in, and we specified that the algorithm should choose

random conditioning states for phasing updates in the first 3

iterations and informed conditioning states thereafter.

On the full Scenario B dataset, we ran BEAGLE and IMPUTE

v2 using the faster settings described above: 10 iterations for

BEAGLE and k = 40 for IMPUTE v2. For each SNP that was not

typed in the study sample, IMPUTE v2 used all observed

reference panel chromosomes in each imputation step (1,956 states

at SNPs in U2 and 120 states at SNPs in U1).

Accuracy comparison on restricted dataset. The results

of our restricted Scenario B comparison are shown in Figure 4,

using the same discordance vs. missing genotype percentage

format as Figure 3. Note that each panel in this figure follows a

different scale. The top two panels (Figure 4A and 4B) share a

common set of grid lines, and the bottom two panels (Figure 4C

and 4D) share a finer set of grid lines. We omitted the results from

the BEAGLE run with 50 iterations since they were only trivially

better than the results based on default settings.

Figure 4A shows the results for all Illumina-only SNPs imputed

from Affymetrix genotypes, and Figure 4B shows the equivalent

results for Affymetrix-only SNPs imputed from Illumina geno-

types. One striking difference between these plots is that the

imputations based on Illumina genotypes (Figure 4B) are generally

more accurate. There are a number of possible explanations for

this trend: the Illumina chip has a higher SNP density, and

imputation generally improves as more SNPs are observed; the

Affymetrix chip contains a larger proportion of rare SNPs, which

are easier to impute on the whole, as we discuss below; and, while

the Illumina SNPs were specifically chosen to predict, or ‘‘tag’’,

many of the common Affymetrix SNPs via the HapMap, the

reverse is not true.

Regardless, one trend within Figure 4A and 4B is clear: with an

expanded reference panel containing nearly 2,000 chromosomes,

it is possible to improve imputation accuracy substantially over

what is attainable with 120 chromosomes. For example, the

IMPUTE v2 runs with k = 40 (solid red line) achieved best-guess

discordance rates of 3.40% and 0.86% in Figure 4A and 4B,

respectively, whereas the rates for IMPUTE v1 (which had access

to only the HapMap reference panel; blue line) were 5.42% and

1.62%. BEAGLE (green), fastPHASE (black), and IMPUTE v2

(red) were all able to increase accuracy with the expanded

reference panel, but the improvements for fastPHASE were

smaller. BEAGLE (solid green line) and IMPUTE v2 with k = 40

(solid red line) yielded similar results: for BEAGLE, the best-guess

discordance rates in Figure 4A and 4B were 3.46% and 0.93%.

For IMPUTE v2, increasing the number of conditioning states

used for phasing updates to k = 80 further reduced the discordance

rates to 3.07% and 0.78%.

Unlike the other imputation methods with access to the

expanded reference panel, PLINK achieved lower accuracy than

IMPUTE v1; in Figure 4A and 4B, PLINK’s best-guess

discordances were 7.83% and 2.45%. We tried varying PLINK’s

settings from their defaults, including settings that were much

more computationally rigorous, but these additional runs led to

negligible improvements. PLINK is faster than the other methods

considered here, which are all based on HMMs, but it also uses a

simpler population genetics model. The multinomial haplotype

frequency model that PLINK uses for imputation has fared poorly

in recent comparisons of phasing methods [21]; its role in this

analysis was to see if any accuracy is lost by using a simpler method

to speed up imputation in a large and complex dataset.

Our results suggest that the model used by PLINK (which also

underpins other imputation methods [7]) may be a liability in a

dataset in which a large proportion of genotypes, including those

in the reference panel, are unphased. However, we also note that

PLINK’s imputation functionality is still in beta testing. A recent

study of Type 1 Diabetes [14] used a similar method to impute

genotypes in a Scenario B dataset. Like PLINK, this method

defines a multimarker tag for each SNP to be imputed, although in

this case there is no phasing model since the tagging is based on

correlations between unphased genotypes. It is not clear how this

method would have fared in our comparison, but its similarities

with PLINK imply that future studies might be better off using

more sophisticated imputation methods.

Figure 4C and 4D mirrors Figure 4A and 4B, respectively, but

these results are restricted to imputed SNPs with minor allele

frequencies (MAFs) less than 5%—Figure 4C is based on 1,113

SNPs and Figure 4D is based on 1,979 SNPs. The same relative

patterns remain, although the discordance and missing data

percentages are lower because it is easier to guess most of the

genotypes correctly and with high confidence at a rare SNP than a

common one, simply because most genotypes at a rare SNP will be

homozygous for the common allele. Among the most accurate

methods, the best-guess discordances based on Affymetrix

genotypes (Figure 4C) were 1.01% (IMPUTE v2, k = 40), 0.84%

(IMPUTE v2, k = 80), and 0.97% (BEAGLE), as compared to

1.73% for HapMap-based imputation with IMPUTE v1; the

Table 1. Running times and memory requirements for
various algorithms in Scenario A.

Method
Avg. running
time (min)

Avg. required
RAM (MB)

BEAGLE 56 3100

BEAGLE (50iter) 392 3200

fastPHASE (K = 20) 397 8

fastPHASE (K = 30) 855 16

IMPUTE v1 43 1000

IMPUTE v2 (k = 40) 270 155

IMPUTE v2 (k = 80) 505 180

MACH 105 80

Running times are in minutes (min) and RAM requirements are in megabytes
(MB). Each entry in the table is an average across four runs on different 7.5 Mb
regions of chromosome 10. Each analysis included a reference panel of 120
chromosomes (CEU HapMap) and a study sample of 1,377 individuals
genotyped on the Affymetrix 500 K SNP chip.
doi:10.1371/journal.pgen.1000529.t001
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discordances based on Illumina genotypes (Figure 4D) were 0.48%

(IMPUTE v2, k = 40), 0.38% (IMPUTE v2, k = 80), and 0.46%

(BEAGLE), as compared to 0.93% for IMPUTE v1.

Accuracy comparison on full dataset. The results of our

full Scenario B comparison are shown in Figure 5 in two panels that

mirror Figure 4A and 4B. Although this dataset contains a large

number of HapMap-only SNPs that were imputed here but not in

the restricted dataset, we calculated discordance only at masked

chip SNPs in the study sample, so the curves in Figure 4 and Figure 5

are based on exactly the same sets of masked genotypes. There are

four curves in each panel: IMPUTE v2 in the full Scenario B dataset

(k = 40; dashed red line); BEAGLE in the full dataset (default

settings; dashed green line); BEAGLE in the restricted dataset

(default settings; solid green line); and IMPUTE v1 in the restricted

dataset (solid blue line). The first two curves (dashed lines) are the

main focus of this comparison, and the latter two curves (solid lines)

are carried over from Figure 4 for reference.

One important point about this figure is that the IMPUTE v2

curve is in exactly the same place as in Figure 4. It follows from

our modeling approach that simply adding SNPs to the set U1, as

Figure 4. Percentage discordance versus percentage missing genotypes for restricted Scenario B dataset. (A) Results for masked
Illumina genotypes imputed from Affymetrix genotypes in the study sample. (B) Results for masked Affymetrix genotypes imputed from Illumina
genotypes in the study sample. (C) Results for masked Illumina genotypes (SNPs with MAF,5% only) imputed from Affymetrix genotypes in the
study sample. (D) Results for masked Affymetrix genotypes (SNPs with MAF,5% only) imputed from Illumina genotypes in the study sample.
doi:10.1371/journal.pgen.1000529.g004
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we have done here, will not affect the imputation of SNPs in U2.

Conversely, Figure 5 shows that adding SNPs to U1 actually makes

BEAGLE’s imputation results worse at SNPs in U2: between the

restricted and full datasets, the best-guess discordance increased

from 3.46% to 4.01% in panel A and from 0.93% to 1.04% in

panel B. We observed a similar decline in accuracy at rare SNPs,

which are not shown separately in Figure 5. Hence, in the full

Scenario B dataset, which we regard as a more realistic application

of these methods, IMPUTE v2 achieves a best-guess discordance

that is 15–18% smaller than BEAGLE’s. In the Discussion, we

propose an explanation for the change in BEAGLE’s results

between the full and restricted datasets.

A major goal of performing imputation in Scenario B (and

extensions thereof) is to simultaneously use all available reference

data in an integrated modeling framework. As such, it is also

important to assess the quality of imputation at SNPs in U1 (i.e.,

HapMap-only SNPs) in this context. To do so, we created a

modified version of the full Scenario B dataset with observed

Illumina genotypes in the study sample. We masked every 25th

Illumina SNP in both the study sample and the diploid reference

panel, then ran BEAGLE and IMPUTE v2 as before. We

repeated these steps for each of the 24 other possible sets of

masked SNPs (i.e., after shifting the starting index), so that every

Illumina SNP was masked and imputed exactly once.

Across these imputation runs, the best-guess discordance at

masked SNPs in U1 was 2.87% for IMPUTE v2 and 3.60% for

BEAGLE – i.e., the discordance for IMPUTE v2 was 20% smaller

than the discordance for BEAGLE.

Detecting minor allele copies at rare SNPs. While

Figure 4 confirms that a large reference panel can improve

imputation accuracy at rare and common SNPs alike, it is

instructive to examine where the gains at rare SNPs are made. To

evaluate this question, we took the results from Figure 4C and 4D

and classified the kinds of errors made by each method’s best-guess

imputations (i.e., at a calling threshold of 1/3). We focused

primarily on the ability of each method to detect copies of the

minor allele. This is clearly an important quantity, but it is

obscured by gross measures of accuracy, which are inherently

dominated by homozygote-common genotypes at rare SNPs. We

examined two classifications of erroneous minor allele calls: false

positives (homozygous common called as heterozygous) and false

negatives (heterozygous called as homozygous common). The

results are shown in Table 2, where the false positive and false

negative rates are expressed as percentages of the total number of

homozygous common and heterozygous genotypes, respectively.

Several insights emerge from this table. First, IMPUTE v2 was

consistently among the best methods for reducing both false

negatives and false positives, suggesting that our new approach is

generally more accurate than others at imputing rare SNPs.

Second, while most methods were much more likely to make false

negative calls than false positive calls, IMPUTE v1 was relatively

Figure 5. Percentage discordance versus percentage missing genotypes for full Scenario B dataset. (A) Results for masked Illumina
genotypes imputed from Affymetrix genotypes in the study sample. (B) Results for masked Affymetrix genotypes imputed from Illumina genotypes in
the study sample. Solid lines were obtained from the restricted Scenario B dataset (Figure 4) and are shown for reference; dashed lines were obtained
from the full Scenario B dataset.
doi:10.1371/journal.pgen.1000529.g005

Table 2. False negative (FN) and false positive (FP) minor
allele call rates at rare SNPs (MAF,5%) in Scenario B.

Method Affymetrix 500 K data Illumina 550 K data

FN calls (%) FP calls (%) FN calls (%) FP calls (%)

BEAGLE 12.81 0.30 6.75 0.17

fastPHASE (K = 20) 21.12 0.28 11.07 0.15

fastPHASE (K = 30) 19.46 0.27 9.77 0.13

IMPUTE v1* 14.52 0.79 10.23 0.34

IMPUTE v2 (k = 40) 12.86 0.15 6.81 0.07

IMPUTE v2 (k = 80) 9.66 0.15 4.90 0.08

PLINK 32.79 0.53 25.63 0.40

The two columns on the left show results for Illumina-only genotypes imputed
from Affymetrix 500 K data in the study sample, and the two columns on the
right show results for Affymetrix-only genotypes imputed from Illumina 550 K
data. The FN rates are expressed as percentages of genotypes that are truly
heterozygous and the FP rates as percentages of genotypes that are truly
homozygous common.
*Unlike the other methods, IMPUTE v1 was not provided with the diploid
reference panel. Consequently, these numbers are based on using a reference
panel of 120 chromosomes to impute a study sample of 459 individuals.

doi:10.1371/journal.pgen.1000529.t002
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more inclined toward false positives. This outcome is consistent

with the use of a smaller reference panel, which will tend to

overestimate the population frequencies of rare alleles. At the same

time, IMPUTE v1 missed fewer true heterozygote calls than did

fastPHASE or PLINK, despite using a much smaller reference

panel. This tendency for fastPHASE and PLINK to mistake rare

heterozygotes as homozygous for the major allele is the main

factor separating these methods from IMPUTE v2 and BEAGLE

in Figure 4C and 4D. Conversely, BEAGLE and IMPUTE v2

with k = 40 showed similar false negative rates, but IMPUTE v2

made half as many false positive rare allele calls.

Putting these pieces together, it appears that IMPUTE v2

achieves higher accuracy than other methods at rare SNPs

because it has both high sensitivity and high specificity for

detecting rare alleles. These results show the strength of using a

large reference panel for imputation, and of our particular

approach to performing inference in that setting.

Computational requirements. As in Scenario A, we re-ran

all programs on a single Linux server to assess their computational

burdens in Scenario B. We used the same server and analysis

chunks as before; the average running times and memory

requirements across these four 7.5 Mb regions of chromosome

10 are shown in Table 3. (These numbers were averaged across

both the masked Affymetrix and masked Illumina datasets, so

eight runs contributed to each table entry.) Numbers in

parentheses refer to the full Scenario B dataset, and all other

numbers refer to the restricted dataset. Note that IMPUTE v1 was

run on a version of the dataset that did not include the diploid

reference panel.

PLINK was the fastest of these methods, followed by IMPUTE

v1, BEAGLE, IMPUTE v2, and fastPHASE. PLINK also

required the least RAM, followed by fastPHASE, IMPUTE v2,

IMPUTE v1, and BEAGLE. While BEAGLE was quite fast, it

also required more than ten times as much RAM as any other

method (at least 2.5 GB per 7.5 Mb region of the genome).

BEAGLE includes an option to decrease memory usage, but this

would come at the cost of increased running time.

We emphasize that IMPUTE v1 was among the fastest methods

in this comparison only because it was assigned a much smaller

problem: its reference panel contained 120 phased haplotypes,

while every other method confronted a panel with 1,956

chromosomes, most of which were unphased. Using the

knowledge that IMPUTE v1’s computational burden grows

quadratically with the number of chromosomes in the reference

panel, we can project that it would have required over

1,300 minutes and 69,000 MB of RAM to run the program on

a single 7.5 Mb analysis chunk with a reference panel of that size

(which would also have needed to be phased ahead of time). This

highlights a major advantage of our new modeling strategy:

whereas IMPUTE v1 becomes computationally intractable as the

reference panel grows, IMPUTE v2 remains competitive (both in

computational burden and imputation accuracy) while allowing

more flexibility (such as multiple, unphased, and/or incomplete

reference panels).

Another advantage of our approach can be seen by comparing

the running times of the restricted and full datasets for BEAGLE

and IMPUTE v2. The average BEAGLE run took 3.3 times

longer in the full dataset than in the restricted dataset, whereas the

IMPUTE v2 running time increased by factor of just 1.1. For

comparison, the total number of SNPs in the dataset increased by

a factor of 3.1. This contrast between the methods arises from the

way they model SNPs in U1: IMPUTE v2 models only the

reference panel at such SNPs, whereas BEAGLE tries to model all

individuals in the dataset. We regard the full dataset as a more

realistic application of these methods, so we believe that the

parenthetical running times in Table 2 offer the best comparison

between BEAGLE and IMPUTE v2.

Discussion

In this study we introduced a new method for genotype

imputation in large association studies. Our method, IMPUTE

version 2, follows a flexible inference framework that uses more of

the information in the data than many comparable methods,

thereby improving accuracy, while remaining computationally

tractable on large datasets. This approach is well-suited to the

kinds of datasets that will become available in next-generation

association studies: it can handle large reference panels, including

ones with unphased and incomplete genotypes, and it can also

integrate multiple reference panels containing different sets of SNPs.

Scenario A
The observation that IMPUTE v2 can achieve lower error rates

than IMPUTE v1 in Scenario A validates our new approach. At

the same time, the absolute improvement is small, as can be seen

in Figure 3 by comparing the separation between IMPUTE v1

and v2 with the separation between IMPUTE v1 and MACH,

which typically yield very similar results in our experience. We

have also performed separate experiments in which IMPUTE v2

achieves much higher phasing accuracy than IMPUTE v1 at SNPs

in T, but where the improvements in HapMap-based imputation

of SNPs in U remain modest (data not shown). We suggest that this

disconnect between phasing accuracy and imputation accuracy is

caused by the inherent limitations of a small reference panel; in

other words, we posit that existing models would not attain

substantially lower imputation error rates with the current

HapMap panel even if we knew the phase of the study genotypes perfectly.

In the wake of these results, we suspect that the accuracy

improvement of IMPUTE v2 over IMPUTE v1 is not practically

Table 3. Running times and memory requirements for
various algorithms in Scenario B.

Method
Avg. running
time (min)

Avg. required
RAM (MB)

BEAGLE 21 (70) 2500 (3200)

fastPHASE (K = 20) 530 12

fastPHASE (K = 30) 1100 20

IMPUTE v1* 5 260

IMPUTE v2 (k = 40) 409 (450) 80 (190)

IMPUTE v2 (k = 80) 790 120

PLINK 1.5 8

Running times are in minutes (min) and RAM requirements are in megabytes
(MB). Each entry in the table is an average across eight runs, including four runs
on different 7.5 Mb regions of chromosome 10 for study samples with either
Affymetrix-only or Illumina-only SNPs masked. Each analysis included a haploid
reference panel of 120 chromosomes (CEU HapMap), a diploid reference panel
of 1836 chromosomes, and a study sample of 459 individuals. Numbers in
parentheses represent analyses that included all SNPs that are polymorphic in
the HapMap CEU panel; for the rest of the analyses, only SNPs that were
genotyped on either the Affymetrix 500 K or Illumina 550 K chip were included
in the HapMap dataset.
*Unlike the other methods, IMPUTE v1 was not provided with the diploid
reference panel. Consequently, these numbers are based on using a reference
panel of 120 chromosomes to impute a study sample of 459 individuals.

doi:10.1371/journal.pgen.1000529.t003
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meaningful for imputation based on the HapMap Phase II data.

However, given that IMPUTE v1’s computational requirements

scale quadratically with the number of chromosomes in the

reference panel while IMPUTE v2’s requirements grow linearly,

the newer version may become more computationally favorable as

baseline reference panels grow in the future. For example,

expanding the HapMap reference panel in this study to 800

chromosomes (which is roughly the size anticipated for each panel

in the 1,000 Genomes Project) would lead to similar running times

for both versions of IMPUTE, but version 2 would need only 2%

of the computer memory required by version 1. At the same time,

IMPUTE v2 would probably achieve higher accuracy, and its

computational advantages over IMPUTE v1 would continue to

grow with larger reference panels.

Scenario B
In our Scenario B dataset, we demonstrated that an expanded

reference panel containing thousands of chromosomes can greatly

improve accuracy over what is possible based on the HapMap

alone, although these gains are limited to the subset of HapMap

SNPs that are included on multiple genotyping chips. This finding

is consistent with the conclusions of the recent BEAGLE paper

[13]. IMPUTE v2 was consistently among the most accurate

methods we considered. For example, IMPUTE v2 attained best-

guess error rates that were 15–20% lower than those of its closest

competitor (BEAGLE) in a realistic representation of Scenario B.

Rare SNPs are of particular interest because of an increasing

awareness that such SNPs may underlie common, complex

diseases, and because imputation methods gain the most power

over tagging approaches at such SNPs [6,11]. Expanded reference

panels ought to allow rare SNPs to be imputed much more

accurately than they can be with the HapMap panel, and our

method is able to exploit this information more effectively than

competing methods. Relative to IMPUTE v1 (which had access to

only the HapMap reference panel) and BEAGLE, the main

improvement of IMPUTE v2 is to increase specificity by cutting

down on false positive heterozygous calls; relative to fastPHASE

and PLINK, the main improvement is to increase sensitivity by

cutting down on false negative heterozygous calls.

Modeling issues in imputation datasets
Throughout this study we have touched on the fundamental

modeling difficulties that arise in imputation datasets, and we have

discussed various strategies that have been proposed to solve these

problems. In particular, we have contrasted the BEAGLE

approach of full joint modeling with the IMPUTE v2 approach,

which phases the observed data jointly but imputes the missing

alleles in different haplotypes independently.

Based on the results seen here and elsewhere [13], we claim that

BEAGLE gains very little useful information through joint

modeling of entire imputation datasets. Consider these lines of

evidence:

1. In our Scenario B comparison, BEAGLE’s accuracy at SNPs in

U2 actually decreased when SNPs were added to U1. This is

highly counterintuitive: it is hard to explain why adding

HapMap-only SNPs to a dataset, without changing any of the

data in the rest of a region, should have a noticeable effect on

the imputation of SNPs in an expanded reference panel, let

alone a negative effect.

2. Browning and Browning (2009) observed that BEAGLE

attained better accuracy by subdividing a study sample and

fitting the model separately to each subsample (along with the

complete reference panel) than by simply fitting the model to

the entire dataset – indeed, this subdividing strategy is now

recommended as standard practice by the authors. The

benefits of subdividing the sample were attributed to ‘‘model

averaging’’, but that is not an apt description of the process

since each individual in the dataset is subjected to only a single

model fit. Some model fits are probably better than others due

to the stochastic nature of the algorithm, but some are also

worse, so there is no reason to expect systematic improvements

from this strategy if the model is working properly.

3. Browning and Browning (2009) also observed that, for a fixed

study sample of 188 individuals, BEAGLE’s accuracy consis-

tently improved relative to that of IMPUTE v1 as the size of

the reference panel increased. No mechanistic rationale was

provided to explain this trend.

The first two points document strange behavior of the BEAGLE

method: apparently, adding data – whether in the form of

additional SNPs or additional individuals in the study sample –

can cause BEAGLE’s imputation accuracy to decrease. More

specifically, it seems that increasing the proportion of missing data harms

BEAGLE’s inferences. This suggests an explanation for the third

point above: as the reference panel grew and the study sample

remained fixed, the total proportion of missing genotypes in the

sample decreased, thereby generating datasets that were relatively

less harmful to BEAGLE.

In our view, these disparate observations point to a single

underlying cause: joint modeling of untyped SNPs is generally

ineffective, and it grows progressively worse as the space of missing

genotypes expands. BEAGLE was competitive in our analyses, so

its modeling strategy may have some merit, but it is also possible

that BEAGLE’s success came in spite of the joint modeling

framework, not because of it. A better alternative might be to

embed the same clustering model in a framework like the ones

used by fastPHASE or IMPUTE v2. We suggest that further

scrutiny be applied before a full joint model is used in general

applications. Comparisons like ours, and others [13], are

necessarily restricted to artificially small datasets, but we have

shown that these ‘‘toy’’ datasets can mask problems that might

occur in more realistic settings, which will often include larger

amounts of missing data. In practice, the accuracy levels and

running times achieved by BEAGLE in our study may represent

best-case scenarios rather than standard results.

These considerations apply to imputation datasets in general,

but it is particularly interesting to examine them in the context of

multiple reference panels genotyped on different sets of SNPs.

BEAGLE’s joint approach to such datasets is flexible, but we have

seen that it can lose accuracy when certain kinds of new data are

added. Conversely, IMPUTE v2’s multi-panel modeling strategy

responds intuitively to new sources of information like additional

individuals or SNPs. This property makes it easy to predict how

IMPUTE v2 will perform in larger and more complex datasets

than the ones used here, whereas the same cannot necessarily be

said for BEAGLE.

More broadly, we believe that any imputation algorithm should

strive to incorporate as much of the available reference

information as possible while remaining easy to use. For example,

in Scenario B it is desirable to simultaneously impute the SNPs in

the expanded panel (to improve accuracy) and the SNPs

represented only in the HapMap (to maintain genomic coverage).

IMPUTE v2 provides an integrated framework for handling this

kind of problem: it is flexible enough to handle numerous

variations of Scenarios A and B, yet it remains tractable by

focusing computational effort on the parts of the dataset that are

most informative.
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Extensions
The expanded reference panel we considered was constituted by

controls genotyped on multiple SNP chips, but other kinds of new

reference panels will also become available in the near future. For

example, the HapMap Project has recently augmented its Phase II

data with additional samples from both the original HapMap

locations and new locations aimed at capturing more human

genetic diversity. These samples have all been genotyped on

multiple, largely non-overlapping SNP chips, and could be used

for imputation in the same way as the controls in our Scenario B.

In addition, the 1,000 Genomes project is currently pursuing

whole-genome sequencing of hundreds of individuals sampled

from broad geographic regions in Africa, East Asia, and Europe.

One aim of the project is to generate high-quality haplotypes for

these individuals, including near-complete coverage of SNPs with

population MAFs of 1% or more. This resource will increase the

utility of imputation approaches by expanding both the number of

chromosomes in the reference set and the number of SNPs that

can be imputed.

Our method is well-suited to this kind of dataset: in addition to

its ability to accurately impute rare SNPs, which will constitute

most of the new variants in the 1,000 Genomes data, IMPUTE v2

expends relatively little computational effort on haploid imputa-

tion steps. This means that, for a given SNP chip typed in a given

study sample, doubling the number of untyped variants in a

phased reference panel will increase the computational burden of

imputation by a factor of less than two. By contrast, other

imputation methods (such as IMPUTE v1, BEAGLE, and

fastPHASE) would slow down by a factor of at least two.

One major use of our new method (and of imputation methods

generally) will be to facilitate meta-analyses [9,10], which combine

samples from studies of similar diseases to increase the chances of

detecting low-penetrance risk alleles. For this application, we

might expect to repeat Scenario B for a number of different study

samples genotyped on different SNP chips. Rather than re-phase

the diploid reference panel for each study sample, we can save

time by simply storing the posterior samples from a single run of

phasing the reference panel, then read these sampled haplotypes

from memory when processing each study sample. This function-

ality is implemented in our software.

IMPUTE v2 is already fast enough to use in large association

studies, but we also have plans to make it faster. We believe that

the software can gain some speed simply by optimizing the code,

but we also have plans to implement an analytical speed-up for the

HMM forward-backward calculations [22] that may further

decrease running times by a factor of five or so.

Finally, while we described our imputation approach in terms of

two specific scenarios involving the HapMap, it could in fact be

generalized to include any number of reference panels of any type

(phased/unphased, complete/incomplete) so long as their SNP

sets follow a hierarchy such as the ones laid out in Figure 1 and

Figure 2. We envision that IMPUTE v2 will be used in a variety of

situations. For example, it may soon become standard practice to

combine the HapMap Phase II and Phase III datasets to create a

compound reference panel like the one in Scenario B, except with

all of the reference data phased. Another plausible situation is the

version of Scenario B that we described, in which a large set of

controls is used to impute genotypes in cases; we discuss some

concerns about association testing in this setting in Text S1 and

Figure S2. IMPUTE v2 will also be applied in populations beyond

the UK controls used in this study, and we expect that its

performance will follow trends much like those observed for

similar imputation methods [23,24].

Our modeling strategy is flexible and fast, and it is general

enough that it could be adopted by other imputation methods. We

believe that this intuitive way of thinking about imputation

datasets will benefit next-generation association studies, and that

IMPUTE v2 will prove to be a useful tool for finding subtle signals

of association.

Supporting Information

Figure S1 Percentage discordance between best-guess imputed

and observed Illumina genotypes for various parameter settings of

IMPUTE v2. These results were obtained from a 2 Mb region of

chromosome 10 in the Scenario B dataset.

Found at: doi:10.1371/journal.pgen.1000529.s001 (0.27 MB TIF)

Figure S2 Expected versus observed p-values for additive

association tests between the 58 C and UKBS control groups,

where the UKBS genotypes have been imputed from 58 C

genotypes. (A) p-p plot for common (MAF$5%) SNPs. (B) p-p plot

for rare SNPs. The 95% concentration band is shown in grey, and

the y = x line is shown in red.

Found at: doi:10.1371/journal.pgen.1000529.s002 (0.13 MB TIF)

Table S1 Convergence statistics for various parameter settings of

IMPUTE v2. For each combination of burn-in and main

iterations, the number shown is the percentage of imputed

genotypes for which the R convergence statistic was greater than

1.02 across 10 independent runs of the algorithm. The results are

stratified into genotypes at 100 common SNPs (left) and genotypes

at 24 rare SNPs (right); for rare SNPs, only genotypes that include

the minor allele were used in the calculations. These results were

obtained from a 2 Mb region of chromosome 10 in our Scenario B

dataset, using IMPUTE v2 with k = 30 (results with k = 100 were

similar).

Found at: doi:10.1371/journal.pgen.1000529.s003 (0.03 MB PDF)

Text S1 Performance of IMPUTE v2 under various parameter

settings; Convergence of IMPUTE v2 algorithm; Limits of

informed conditioning approximation; Integrating genotypes from

two SNP chips; Association testing of cases imputed from controls.

Found at: doi:10.1371/journal.pgen.1000529.s004 (0.28 MB PDF)
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