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Abstract

Long interspersed elements (LINEs) are transposable elements that proliferate within eukaryotic genomes, having a large
impact on eukaryotic genome evolution. LINEs mobilize via a process called retrotransposition. Although the role of the
LINE-encoded protein(s) in retrotransposition has been extensively investigated, the participation of host-encoded factors in
retrotransposition remains unclear. To address this issue, we examined retrotransposition frequencies of two structurally
different LINEs—zebrafish ZfL2-2 and human L1—in knockout chicken DT40 cell lines deficient in genes involved in the non-
homologous end-joining (NHEJ) repair of DNA and in human HeLa cells treated with a drug that inhibits NHEJ. Deficiencies
of NHEJ proteins decreased retrotransposition frequencies of both LINEs in these cells, suggesting that NHEJ is involved in
LINE retrotransposition. More precise characterization of ZfL2-2 insertions in DT40 cells permitted us to consider the
possibility of dual roles for NHEJ in LINE retrotransposition, namely to ensure efficient integration of LINEs and to restrict
their full-length formation.
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Introduction

Long interspersed elements (LINEs) and short interspersed

elements (SINEs) are transposable elements widely distributed in

eukaryotic genomes [1,2]; as such, they substantially affect genome

complexity and evolution [3,4]. These elements mobilize and

amplify their own sequences by a mechanism called retrotranspo-

sition. LINEs are 4–7 kbp in length and typically encode two open

reading frames (ORFs), ORF1 and ORF2, both of which are

essential for LINE retrotransposition [5,6]. During retrotransposi-

tion, LINEs are first transcribed into messenger RNA (mRNA) from

which the LINE-encoded proteins are translated (Figure S1A).

Next, the LINE mRNA and proteins form a complex [7,8] and

move to target sites on a host chromosome where the LINE-

encoded endonuclease (EN) nicks a strand on the DNA duplex. The

LINE-encoded reverse transcriptase (RT) then reverse transcribes

the LINE mRNA using the 39 hydroxyl group generated by the nick

as a primer; this reaction is called target-primed reverse transcrip-

tion [5,9,10]. Thereafter, the newly synthesized LINE is integrated

into the host chromosome, at which time sequence alterations are

generated at the target site. The position of the second strand

cleavage is considered to define which kind of target site alteration is

generated (Figure S1B) [11]. In the model, second-strand cleavage

downstream of the initial first-strand nick generates target site

duplication (TSD), cleavage at the same site generates blunt end

joining (BEJ), and cleavage upstream generates target site truncation

(TST). However, the precise mechanism of the integration remains

unclear (Figure S1A). A DNA double-strand break (DSB) would

necessarily need to be generated at the target site to integrate the

newly synthesized LINE element. In fact, overexpression of human

LINE L1 in mammalian cultured cells induces DSBs in the host

chromosomal DNA [12]. Accumulating evidence has revealed that

several host-encoded DNA repair proteins are involved in the

mobility reactions of retrotransposons, such as yeast LTR retro-

transposons and bacterial group II introns [for review, 13].

However, the roles of host factors in LINE retrotransposition

remain unclear. Only a few genetic studies have identified host

proteins that are involved in LINE retrotransposition: the ataxia-

telangiectasia mutated (ATM) protein—a protein kinase involved in

cellular responses to DSBs—is suggested to participate in L1

retrotransposition [12], and the ERCC1/XPF endonuclease—

which functions in nucleotide excision repair—is involved in

limiting L1 retrotransposition [14]. It is conceivable that the LINE

retrotransposition reactions involve other host factors, such as

proteins of the non-homologous end-joining (NHEJ) pathway, that

predominate in DSB repair in vertebrate cells [15].

The core components involved in vertebrate NHEJ are the Ku70

and Ku80 heterodimer (Ku70/80), the catalytic subunit of DNA
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protein kinase (DNA-PKcs), DNA ligase IV (LigIV), and Xrcc4.

Initially, Ku70/80 binds to the broken DNA ends. DNA-PKcs is

recruited to the ends by Ku70/80, with which it maintains the broken

ends in proximity and provides a platform for the recruitment of other

enzymes [16]. The kinase activity of DNA-PKcs—which is activated

upon recruitment to the broken ends—is considered to enhance the

DSB signal via phosphorylation of many downstream targets,

although physiological targets of the phosphorylation remain obscure

[for example, 17]. LigIV, which forms a tight complex with Xrcc4, is

responsible for ligation of the broken DNA ends [18,19]. There are

other proteins implicated in NHEJ. During NHEJ, a pair of broken

ends that are incompatible for ligation is processed into compatible

ends by a nuclease(s), such as Artemis, and/or a polymerase(s),

although their significance in NHEJ is less clear. Interestingly, broken

ends are still repaired by NHEJ in cells deficient in the core NHEJ

components such as Ku proteins or LigIV, suggesting that NHEJ can

be achieved by at least two distinct pathways [20,21]. To distinguish

these two processes, the NHEJ pathway that depends on the core

components is denoted ‘classical’, and the other pathway, which can

occur without the core components, is called ‘alternative’. In contrast

to the classical NHEJ, the enzymes responsible for the alternative

NHEJ remain uncharacterized.

Recently, we established a new system to detect LINE

retrotransposition in the chicken B lymphocyte cell line, DT40,

using two different kinds of LINEs, zebrafish ZfL2-2 and human

L1 [22] (Figure S2). Here, we applied this system to Ku702/2,

Artemis2/2, and LigIV2/2 DT40 cell lines to determine the effect

of these knockouts on the retrotransposition frequencies (RFs) of

ZfL2-2 and L1. We then characterized ZfL2-2 insertions retro-

transposed in the chromosomal DNA of DT40 cells to obtain

evidence for the involvement of NHEJ factors in the LINE

integration reaction. In addition, we examined the possible

involvement of DNA-PKcs in LINE integration in human HeLa

cells using NU7026, an inhibitor of DNA-PKcs activity.

Results

Disruption of Genes Involved in NHEJ Decreases the RF of
Zebrafish ZfL2-2 and Human L1 LINEs in Chicken DT40 Cells

To investigate whether host factors participating in NHEJ are

involved in LINE retrotransposition, we examined RFs of two

types of LINEs that have different structural characteristics—

zebrafish ZfL2-2 and human L1—using wild-type (WT) and five

knockout DT40 cell lines. The knockout DT40 cell lines were

deficient in the genes encoding Ku70, Artemis, LigIV, SHIP1, or

Rad18; the first three cell lines are related to NHEJ, and the others

are not (Figure 1, Tables S1, S2). Because the intrinsic colony-

forming capacities varied among these cell lines, we compensated

for this aspect by including the plating efficiency in the RF

calculation (see Materials and Methods). The RF of ZfL2-2

decreased by about 2- to 8-fold relative to the WT DT40 in all

NHEJ-deficient cell lines examined here (Figure 1B; Ku702/2,

Art2/2 and LigIV2/2). On the other hand, knockout of the

Rad18 or SHIP1 gene, neither of which is related to the NHEJ

pathway, did not affect the RF (Figure 1B; Rad182/2and

SHIP12/2). These results suggest that the NHEJ pathway plays

a role in ZfL2-2 retrotransposition in these chicken cells. Similar

retrotransposition results were obtained using L1, although the

decrease in the L1 RF in Ku702/2 and LigIV2/2 was smaller

than that for ZfL2-2 (Figure 1C; see also Table S1, S2).

Expression of Cloned Chicken Ku70 Rescues the RF
Decrease of ZfL2-2 in Ku702/2 Cells

To confirm that the RF decrease in the Ku70-defective cells was

caused by Ku70 disruption, ZfL2-2 retrotransposition was assessed

in three DT40 cell lines, WT, Ku702/2 and LigIV2/2, with

transient expression of a cloned chicken Ku70 gene (Figure 1D,

Table S3). Transcription of the cloned and/or endogenous Ku70

genes in each sample was verified by RT-PCR. Expression of the

cloned Ku70 in WT and LigIV2/2 cells did not significantly alter

the ZfL2-2 RF. In contrast, exogenous Ku70 expression in Ku702/2

cells dramatically increased the ZfL2-2 RF to a level comparable to

WT cells. These results indicate that the decrease of ZfL2-2 RF in

Ku702/2 cells was indeed caused by Ku70 disruption.

The EN Activity of ZfL2-2 and L1 Does Not Influence
Viability of WT and NHEJ-Defective Cell Lines

The NHEJ-defective DT40 cell lines are sensitive to intense

ionizing radiation [23,24], indicating that the cells cannot

efficiently repair radiation-induced DSBs, causing cell death. If

the expression of ZfL2-2 or L1 in DT40 cells induces DSBs in

chromosomal DNA as in the case of the L1 expression in HeLa

cells [12], the NHEJ-defective DT40 cells may be more sensitive to

such LINE-induced DSBs than WT cells. If this is the case, it is

possible that the decrease of ZfL2-2 and L1 RF observed in the

NHEJ-defective DT40 cells only reflects cell death caused by the

LINE-induced DSBs, which cannot be compensated for by the

plating efficiency in our assay (see Figure S3). To examine this

possibility, we monitored the viability of WT and mutant DT40

cells transfected with the LINE expression vector. As shown in

Figure S4, when two different fluorescence protein expression

vectors (enhanced green fluorescence protein (EGFP) and DsRed-

Express) were mixed and co-electroporated into DT40 cells, most

transfected (fluorescence-positive) cells (.80%) express both of the

two fluorescent proteins, and the amounts of proteins expressed

from the co-transfected vectors were roughly proportional to each

other (Figure S4D and S4E). Hence, to trace the LINE-expressing

cells, an EGFP expression vector was electroporated together with

the LINE expression vector into DT40 cells, and the EGFP

expression and its intensity were monitored as shown in Figures

S5, S6, S7, S8, S9, S10, S11, and S12. This EGFP monitoring was

conducted from 3 to 8 days after electroporation, during which cell

division occurred at least eight times (data not shown). EGFP

expression observed on the eighth day was minimal, showing the

Author Summary

Long interspersed elements (LINEs) are transposable
elements that mobilize and amplify their own copies
within eukaryotic genomes. Although LINEs had been
considered as ‘‘junk’’ DNA, recent studies have suggested
that the LINE-induced alterations of host chromosomes are
a major driving force for eukaryotic genome evolution.
LINEs mobilize via a mechanism called retrotransposition,
in which transcribed LINE RNA is reverse transcribed into
DNA that is then integrated into the host chromosome.
Although the role of LINE-encoded proteins in retrotrans-
position has been revealed, the participation of host-
encoded proteins has not been well investigated. Here,
using knockout chicken DT40 cell lines, we present genetic
evidence that the host-encoded proteins involved in repair
of DNA double-strand breaks participate in LINE retro-
transposition. More precise characterization of LINE
insertions in DT40 cells suggested dual roles for these
host DNA repair proteins in LINE retrotransposition; one
function is required for efficient integration of LINEs and
the other restricts their full-length formation.
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detection limit. As shown in Figure 2, the relative ratio of the

amount of EGFP-expressing cells at each time point to that of the

third day was similar between WT and Ku702/2 DT40 cells up to

the end of the monitoring. In addition, the time course of the

relative ratio of the geometric mean and the median of the EGFP

intensity was similar between the WT and Ku702/2 DT40 cells

(Figure 2). Moreover, the time course of the values did not change

when a point mutation that abolishes LINE EN activity was

introduced in the ZfL2-2 and L1 elements. Similar results were

obtained from Artemis2/2 and LigIV2/2 cell lines (Figure S13,

S14). These results indicate that LINE EN expression does not

influence the viability of WT and NHEJ-defective cell lines. Thus,

the decrease in LINE RF in the NHEJ-defective cell lines is likely

to be related to the involvement of NHEJ in LINE retrotranspo-

sition in DT40 cells.

Retrotransposition of ZfL2-2 and L1 in DT40 Cells
Depends on Their Own ENs

LINE retrotransposition typically depends on the LINE’s own

EN [5,25,26]. In contrast, a previous study reported that a fraction

of human L1 retrotransposition in Chinese hamster ovary (CHO)

cells was not dependent on L1 EN [27,28]. This L1 EN-

independent retrotransposition was enhanced in mutant CHO

cells defective in a gene involved in NHEJ [27]. This report

prompted us to consider that ZfL2-2 and L1 might atypically

retrotranspose in NHEJ-defective DT40 cells through an EN-

independent manner. To examine this possibility, we examined

RFs of the EN-defective ZfL2-2 and L1 elements in the NHEJ-

defective DT40 cell lines (Table S1, S2). In both NHEJ-defective

and WT cell lines, no G418-resistant colonies were formed with

these EN mutants, indicating that mobilization of ZfL2-2 and L1

in the DT40 cell lines examined here is dependent on their own

ENs. Although we have not resolved the reason why the

dependence of LINE retrotransposition on EN differs in chicken

and hamster cells, this may reflect the differences in DNA repair

that exist between these cells as discussed by Morrish et al. [27].

NHEJ Defect–Dependent Structural Alterations of ZfL2-2
Insertions in Chicken DT40 Cells

To determine in which step of the retrotransposition reaction

each NHEJ factor is involved, we determined and analyzed the 59

and 39 junction sequences of 102 ZfL2-2 inserts in chromosomal

DNA of WT, Ku702/2, Artemis2/2 and LigIV2/2 DT40 cells

(26, 25, 24 and 27 insertions, respectively; Table S4). We

previously showed that ,40% of ZfL2-2 elements in the zebrafish

genome had extra nucleotides at the 59 junction, whereas ,50%

had microhomologies [29]. At the 39 junction, on the other hand,

,80% of these elements had microhomologies [29]. Similar

tendencies were observed at both junctions of ZfL2-2 insertions in

DT40 cells, and these tendencies were not altered by NHEJ

defects (Table S5). Also, the length distribution of the 59 and 39

microhomologies did not differ between the WT and NHEJ-

deficient DT40 cells (Figure S15). However, the ZfL2-2 insertions

in Ku702/2 and Artemis2/2 cells were significantly longer than

those in WT cells (Figure 3A and 3B; P = 0.008 and 0.036,

respectively). In particular, full-length elements were recovered

only from NHEJ-deficient cells (Figure 3A, 3C). Indeed, the

fraction of full-length insertions differed significantly between WT

and Ku702/2 cells and between WT and Artemis2/2 cells

(P = 0.010 and 0.046, respectively). These results indicate that

Figure 1. Retrotransposition frequencies (RFs) in DT40 cell lines. (A) Schematic of zebrafish ZfL2-2 and human L1. ZfL2-2 encodes only one
ORF, but L1 encodes two ORFs. (B) RFs of ZfL2-2 in six different DT40 cell lines. (C) RFs of L1 in six different DT40 cell lines. (B, C) Means and standard
deviations of RFs. WT, wild-type DT40 cell line. Ku702/2, Ku70-deficient DT40 cell line. Art2/2, Artemis-deficient DT40 cell line. LigIV2/2, DNA ligase IV-
deficient DT40 cell line. Rad182/2, Rad18-deficient DT40 cell line. SHIP12/2, hematopoietic-restricted SH2-containing inositol 59-phosphatase-1-
deficient DT40 cell line. An asterisk indicates P,0.01 by two-tailed Student’s t-test. For ZfL2-2: WT vs Ku702/2, P = 1.761028; WT vs Art2/2,
P = 2.861024; WT vs LigIV2/2, P = 1.261026. For L1: WT vs Ku702/2, P = 1.161024; WT vs Art2/2, P = 6.661025; WT vs LigIV2/2, P = 5.761023. (D) Ku70
complementation assay. The control expression vector, pAneo, or the Ku70 expression vector, chicken Ku70/pAneo, was transiently transfected into
the WT, Ku702/2, and LigIV2/2 DT40 cell lines (exogKu 2 or +, respectively). Using these transiently transfected cell lines, the ZfL2-2
retrotransposition assay was performed. Mean values (with standard deviations) of the ZfL2-2 RFs are shown. Transcription of the exogenous (cloned)
and/or endogenous Ku70 gene was detected by RT-PCR (middle). Transcription of the b-actin gene was also detected by RT-PCR as a control
(bottom). The asterisk indicates P,161024 by two-tailed Student’s t-test (for Ku702/2 cells, P = 4.761025).
doi:10.1371/journal.pgen.1000461.g001
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Ku70 and Artemis inhibit the generation of longer inserts in DT40

cells, suggesting that these NHEJ factors, at least in part,

participate in LINE 59 truncation.

We classified the target site alterations of the ZfL2-2 insertions in

DT40 cells into five categories: long TST (L-TST, .20 bp), short

TST (S-TST, #20 bp), BEJ, short TSD (S-TSD, #20 bp) and long

TSD (L-TSD, .20 bp) (Figure 3D, Table S5). Consistent with our

previous data regarding ZfL2-2 elements present in the zebrafish

genome [29], a large fraction of ZfL2-2 insertions (20 of 25, 80%) in

WT DT40 had a TSD, and the rest of them had a TST (Figure 3D).

Most insertions (24 of 25) in the WT cells had short target site

alterations (#20 bp), and only one had a L-TSD (1228 bp),

indicating that long target site alterations are relatively rare in WT

cells. On the other hand, L-TST (343–50187 bp) insertions were

frequently observed in Ku702/2 cells (Figure 3D; 5 of 25),

suggesting that Ku70 prevents the generation of L-TST.

We next focused on insertions with short target site alterations

(Figure 3E). Insertions with S-TSD predominated in all cell lines.

Still, 5 of 25 insertions (20%) in WT cells and 3 of 20 insertions

(15%) in Ku702/2 cells had an S-TST. In contrast, only one of 23

insertions (4%) in Artemis2/2 cells had an S-TST, and no S-TSTs

were observed in LigIV2/2 cells. The difference in occurrence of S-

TSTs between the WT and LigIV2/2 cells is statistically significant

(Figure 3E; P = 0.016). These results indicate that LigIV (and

possibly Artemis) plays an important role in generating S-TSTs.

Inhibition of DNA-PKcs Kinase Activity Decreases the
ZfL2-2 and L1 RFs in HeLa Cells

To examine whether NHEJ is also involved in LINE

retrotransposition in cells other than chicken DT40, we performed

the retrotransposition assay in human HeLa cells (Figure 4). No

knockout HeLa cell line is available, but DNA-PKcs kinase activity

can be specifically inhibited by NU7026 [30]. We first confirmed

that NU7026 kills HeLa cells in a dose-dependent manner only in

the presence of a DSB inducer, etoposide [31]. HeLa cells treated

with NU7026 became more sensitive to etoposide, indicating that

the NHEJ repair capacity is suppressed by NU7026 (Figure 4A).

The RFs of both ZfL2-2 and L1 decreased with increasing

concentrations of NU7026, suggesting that the NHEJ pathway is

also involved in LINE retrotransposition in HeLa cells (Figure 4B,

Table S6, S7). Consistent with the results using DT40 cells, ZfL2-2

retrotransposition was more sensitive than L1 retrotransposition to

NU7026.

Discussion

Host repair systems are likely to be involved in the later stages of

LINE retrotransposition [12,13,29,32,33]. For example, bioinfor-

matic studies have suggested that the ‘alternative’ NHEJ pathway

is involved in LINE retrotransposition [33] (see below). There is,

however, no bioinformatic evidence for such involvement of the

‘classical’ NHEJ or experimental evidence for a role in LINE

retrotransposition of any host repair system except for the ATM

kinase [12]. Here, we studied the effects of defects in ‘classical’

NHEJ on ZfL2-2 retrotransposition and found that such defects

considerably decrease the ZfL2-2 RF, suggesting that a large

fraction of ZfL2-2 insertion events in DT40 cells utilizes these

classical NHEJ factors. In addition, the characterization of ZfL2-2

insertions revealed that disruption of the genes encoding NHEJ

components extended the length of inserted ZfL2-2 elements,

allowing more full-length insertions (Ku702/2 and Artemis2/2);

frequently generated L-TSTs (Ku702/2); and diminished the

generation of S-TSTs (LigIV2/2). These results suggest that

NHEJ proteins are involved in the 59 joining of ZfL2-2 insertions

during retrotransposition, as detailed below.

During retrotransposition (Figure S1A), the ZfL2-2 RNA-

protein complex chooses a target site, at which the ZfL2-2 EN

nicks the first strand of the host DNA. The ZfL2-2 RT then

initiates reverse transcription of the ZfL2-2 RNA from the nick.

Most ZfL2-2 elements in DT40 cells as well as those in the

zebrafish genome have a certain length of truncation at the 59 end

(59 truncation), which is a characteristic of a typical LINE element.

The mechanism by which the 59 truncation is generated is,

however, unclear. Our data provide a possible mechanism for the

59 truncation. The Ku70 defect produced longer insertions

(Figure 3A, 3B), implying that the Ku70/80 complex can obstruct

the progression of the ZfL2-2 RT. For instance, transient

dissociation of the RT from the template RNA could allow

Ku70/80 to associate with the end of the newly synthesized ZfL2-

2 DNA (Figure 5) because Ku70/80 is able to interact with a

single-to-double-strand transition of DNA [34]. The Ku70/80

association may interfere with further reverse transcription and

initiate a joining reaction between the premature ZfL2-2 cDNA

and upstream target DNA, resulting in a 59 truncation. Because

deficiencies of Artemis and LigIV—which act downstream of

Ku70 in NHEJ—also caused longer insertions (Figure 3A, 3B), the

progression of the NHEJ pathway might be related to the

switching of reaction modes from reverse transcription to 59

joining.

Ku70/80 protects DNA ends from exonucleolytic degradation

[35]. Consistently, Ku702/2 cells frequently produced ZfL2-2

insertions containing long chromosomal DNA deletions

(Figure 3D; L-TST, 343–50187 bp). This suggests that Ku70/80

is associated with the end of the upstream target DNA as well as

the end of the ZfL2-2 element during integration, and protects the

chromosomal DNA from degradation (Figure 5). In the case of

TST generation, genomic information is altered not only by

inserting the ZfL2-2 sequence but also by deleting the pre-existing

sequence. Thus, Ku70/80 may also serve as a barrier against the

loss of genomic information caused by ZfL2-2 retrotransposition.

The variability of target site alteration has been accounted for

by the difference in the position of the second strand cleavage [11]

(Figure S1B); however, it remains unclear what other factor or

factors are involved in this variation. We found that LigIV2/2

cells did not produce S-TSTs, whereas ,20% of insertions in WT

cells had an S-TST (P = 0.016), indicating that S-TST generation

Figure 2. Effect of LINE expression on DT40 cell viability. DT40 cells were co-transfected with pEGFP-FLAG-1 and one of the LINE expression
vectors (pBZ2-5, p131.11, pJM102/L1.3, or pJM102/L1.3 H230A) by electroporation (see Tracing of EGFP-positive cells in the Materials and Methods
section). After transfection, the cells were monitored for 8 days. (A) ZfL2-2 expression in DT40 cells. The relative proportion of EGFP-expressing cells
(left), the geometric mean of the EGFP fluorescence intensity (FI) (middle) and the median of the EGFP FI (right) calculated using the values 3 days
after electroporation as the standard are indicated (the raw data are shown in Figures S5 and S6). DT40 WT, wild-type DT40 cell line. DT40 Ku702/2,
Ku70-deficient DT40 cell line. ZfL2-2 WT, wild-type ZfL2-2 element. ZfL2-2 ENm, endonuclease-mutated ZfL2-2 element. Two independent
experiments were performed (upper and lower panels). (B) L1 expression in DT40 cells. The relative proportion of EGFP-expressing cells (left), the
geometric mean of the EGFP FI (middle) and the median of the EGFP FI (right) calculated using the values 3 days after electroporation as the standard
are indicated (the raw data are shown in Figures S9 and S10). DT40 WT, wild-type DT40 cell line. DT40 Ku702/2, Ku70-deficient DT40 cell line. L1 WT,
wild-type L1 element. L1 ENm, endonuclease-mutated L1 elements. Two independent experiments were performed (upper and lower panels).
doi:10.1371/journal.pgen.1000461.g002
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Figure 3. Characterization of ZfL2-2 insertions in DT40 cells. Abbreviations are as defined for Figure 1. (A) ZfL2-2 insertions isolated from
DT40 cells. The top diagram shows the full-length ZfL2-2 element containing the mneoI400/ColE1 cassette (Cassette) in the 39 UTR. ORF, open reading
frame. Each horizontal line represents one of the 26, 25, 24 or 27 ZfL2-2 insertions isolated from the various DT40 cell lines. Blue lines represent
insertions with a 59 truncation. Red lines represent full-length insertions. The dashed line in Art2/2 indicates a deletion. (B) A box-and-whisker plot
shows the median (red line), the first and third quartiles, and the upper and lower limits of the length of insertions indicated in (A). P values less than
0.05 are indicated (Mann-Whitney U test). (C) Full-length vs. truncated elements. The ZfL2-2 insertions in (A) were categorized by the absence (Full) or
presence (Truncated) of a 59 truncation. The number of insertions identified is indicated inside each bar. P values less than 0.05 are indicated (two-
sided Fisher’s exact test). (D) Target site alterations. The ZfL2-2 insertions shown in (A) were categorized with regard to target site alterations. The
number of insertions identified is indicated inside each bar. L-TST, long target site truncation (.20 bp). S-TST, short target site truncation (#20 bp).
BEJ, blunt end joining. S-TSD, short target site duplication (#20 bp). L-TSD, long target site duplication (.20 bp). (E) Short target site alterations. The
ZfL2-2 insertions with short target site alterations in (D) were compared. The number of insertions identified is indicated inside each bar.
Abbreviations and definitions are as for panel D. P values less than 0.05 are indicated (Wilcoxon Rank Sum test).
doi:10.1371/journal.pgen.1000461.g003
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is dependent on LigIV activity. Moreover, the S-TST frequency

was also decreased in Artemis2/2 cells. Therefore, the 59

overhang (generated by the second-strand cleavage upstream of

the first nick; see Figure S1B) at the chromosomal end may be

processed predominantly by Artemis and then ligated to the ZfL2-

2 59 end by LigIV (Figure 5). Hence, our results suggest that these

NHEJ factors contribute to variation among target site alterations.

Taken together, our data suggest the possibility that NHEJ

proteins, originally recruited for the repair of chromosomal breaks

generated by the ZfL2-2 EN, are necessarily utilized for ZfL2-2

integration. Deficiencies of NHEJ proteins remarkably decreased

the ZfL2-2 RF, indicating that NHEJ proteins are required for

efficient retrotransposition. On the other hand, these NHEJ factors

restricted the generation of full-length ZfL2-2 copies by diverting

initiated retrotransposition reactions toward the generation of

truncated ZfL2-2 copies. The restriction of full-length copies that

have the potential to undergo subsequent retrotransposition limits

the amplification of ZfL2-2 copies in the next generation.

Interestingly, Deininger’s group showed that many more DSBs

than retrotransposition events are generated by L1 EN expression

in HeLa cells [12], suggesting that a considerable fraction of L1-

induced DSBs are repaired without L1 insertions. Because DSBs

Figure 4. Retrotransposition assay in HeLa cells with NU7026. (A) Survival rate of HeLa cells treated with NU7026 in the presence or absence
of etoposide. HeLa cells treated with these agents for 2 h were plated on a 100-mm plate. Three independent experiments were performed, and the
means with standard deviations are shown. (B) The result of the retrotransposition assay in HeLa cells treated with NU7026. Retrotransposition
frequency (RF) values are relative to those measured in the absence of NU7026. Two independent experiments were performed, and the means with
standard deviations are shown.
doi:10.1371/journal.pgen.1000461.g004

Figure 5. A model for ZfL2-2 integration. See Discussion for explanation of the model. TSD, target site duplication. BEJ, blunt end joining. TST,
target site truncation. Blue lines denote chromosomal DNA that is duplicated in TSD. Green lines denote chromosomal DNA that is truncated in TST.
doi:10.1371/journal.pgen.1000461.g005
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are predominantly repaired by NHEJ in vertebrate cells, it is

plausible that these L1-induced DSBs are fixed by NHEJ. Thus,

the NHEJ pathway probably limits retrotransposition at two

different phases: 1) inhibition of LINE cDNA integration itself by

immediate repair of DSBs, resulting in direct limitation of

retrotransposition and 2) production of truncated insertions,

resulting in limitation of retrotransposition in the next generation.

Because more active L1 elements produce longer insertions [36],

the rapid or efficient progression of reverse transcription may

counteract both of these NHEJ limitations. Thus, rapid cDNA

synthesis prior to the operation of the NHEJ pathway may be vital

for successful LINE amplification. Taken together, these observa-

tions indicate that there is opposition between DNA repair and

LINE retrotransposition. Similarly, a retrotransposon conflict

hypothesis has been proposed by Sawyer and Malik, in which

NHEJ proteins are proposed to be hijacked for mobilization of Ty

LTR retrotransposons or recruited to defend against them [37].

Our data show that disruption of the NHEJ pathway in DT40

cells did not completely suppress ZfL2-2 retrotransposition

(Figure 1). Therefore, a pathway(s) other than classical NHEJ

may exist to connect the ZfL2-2 integrants and the end of the

target DNA at the 59 junction. As proposed by Zingler et al. [33],

one possibility is the ‘alternative’ NHEJ pathway, which joins two

DNA ends via microhomology in a manner independent of NHEJ

factors such as Ku70/80 and LigIV. However, the fraction of

insertions having 59 microhomology was not elevated in Ku702/2

or LigIV2/2 cells (Table S5), and thus this putative mechanism

cannot fully account for the observed residual Ku70- or LigIV-

independent retrotransposition activity. Rather, the template-

jump model [33,38–43] seems more likely for the 59 joining

process, although the DNA ligase responsible remains unidenti-

fied. Indeed, a large proportion of extra nucleotides found at the 59

junction of ZfL2-2 insertions in DT40 cells appears to be

synthesized by the template jump reaction (unpublished data).

Cell death caused by LINE EN expression was not detected in

chicken DT40 cells in our experimental system (Figure 2, S13 and

S14), although it causes considerable cell death in human HeLa

cells [12] (data not shown). Neither DT40 nor HeLa cells have

detectable levels of p53, a tumor suppressor that induces apoptosis

or cell cycle arrest against DNA damage [44,45]. Thus, although a

lack of p53 appears to confer tolerance to chromosomal instability

in DT40 cells [44], it cannot explain the observed differential

sensitivity to LINE EN between DT40 and HeLa cells. We thus

speculate that this differential sensitivity may reflect the presence

of an intrinsic LINE retrotransposition mechanism in each cell

line. The fact that LINE retrotransposition in chicken DT40 and

hamster CHO cells is differentially dependent on EN supports this

idea. Hence, comparative analysis of the mechanism of LINE

retrotransposition in different cell lines and organisms is

indispensable for understanding the generality and specificity of

the LINE amplification mechanism.

Deficiencies of NHEJ proteins in DT40 and HeLa cells also

decreased the L1 RF, suggesting that NHEJ factors participate in

retrotransposition of human L1 as well as zebrafish ZfL2-2 in these

vertebrate cells. The degree of decrease in the L1 RF was,

however, smaller than that for ZfL2-2 (Figure 1, 4), indicating that

NHEJ is not much involved in retrotransposition of human L1.

This implies that each LINE has its own dependency on NHEJ

and probably other repair system(s); in other words, that the

mechanism of LINE retrotransposition is considerably distinct

between each LINE in the light of the participation of host repair

systems. A major structural difference between these LINEs is the

absence (ZfL2-2) or presence (L1) of ORF1p. Because L1 ORF1p

has been suggested to be involved in the 59 joining [46], ORF1p

might make L1 more independent of the host NHEJ system. Our

study indicates that the factors of classical NHEJ are involved in

the repair of breaks generated by LINEs during retrotransposition.

Our results also indicate that the NHEJ pathway is not the only

mechanism by which such breaks can be repaired. Elucidation of

the entire ensemble of host factors involved in LINE mobilization

will help us understand the interaction between hosts and

molecular parasites during evolution.

Materials and Methods

Expression Vectors
pBZ2-5 expresses the WT zebrafish LINE ZfL2-2 containing the

neomycin resistance gene that is disrupted by an intron in the

antisense orientation (mneoI) [25]. p131.11 expresses the mneoI-marked

ZfL2-2 element containing a point mutation (E72A) in the EN

sequence [22]. pAZ2-2, which expresses the WT ZfL2-2 element

marked by mneoI400/ColE1 [11], was constructed as follows. The

mneoI400/ColE1 cassette was amplified from pCEP4/L1.3mneoI400/

ColE1 [11] by PCR using primers Neo-NotF-1 (59-TGT-

GTGTGGCGGCCGCGCACAAACGACCCAACACCC-39) and

Neo-BamR-1 (59-CACACGGATCCGCTGCAGCATAGCCT-

CAGG-39). The PCR fragment of mneoI400/ColE1 was digested with

NotI and BamHI. Using the mneoI400/ColE1 fragment, the NotI and

BamHI fragment of pBB4 [25], which contains mneoI, was replaced,

resulting in pBB5-9. The 39 tail of ZfL2-2 was amplified from pBZ2-5

by PCR using primers Z2-39F1 (59-ATATGGATCCT-

GAAACTTGCCTTTAGTACTTATTCATTGTTGC-39) and

Z2-39R1 (59-ATATGGATCCTTTACATTTACATTTACATT-

TAGTCATTTAGCAGACGC-39). The PCR fragment of the 39

tail was digested with BamHI and inserted in the BamHI site of

pBB5-9, resulting in pAZ2-2. pJM102/L1.3 expresses the WT L1

(L1.3) containing the marker mneoI [27]. pJM102/L1.3 H230A

expresses the mneoI-marked L1 (L1.3) containing a point mutation

(H230A) in the EN sequence [27]. pEGFP-FLAG-1 expresses an

enhanced green fluorescence protein (EGFP) [22]. Chicken Ku70/

pAneo was constructed by cloning the chicken Ku70 gene into the

expression vector pAneo [23]. The expression vectors were all

purified using the QIAfilter Plasmid Midi or Mega kit (Qiagen).

Cell Culture
WT DT40 and its SHIP12/2 and IP3R2/2 derivatives were

purchased from RIKEN Bioresource Center (cell numbers

RCB1464, 1465, and 1467). Ku702/2, DNA ligase IV2/2 and

Rad182/2 DT40 cell lines were established previously [23,24,47].

The Artemis2/2 DT40 cell line was kindly provided by Dr.

Minoru Takata [48]. These DT40 cells were cultured in RPMI

medium 1640 (Invitrogen) supplemented with 10% fetal bovine

serum, 1% chicken serum, 20 U/ml penicillin, 20 mg/ml

streptomycin, and 10 mM b-mercaptoethanol, in a humidified

atmosphere with 5% CO2 at 37uC or at the temperatures

indicated.

Retrotransposition Assay in DT40 Cells
The retrotransposition assay procedure in DT40 cells has been

described [22]. Briefly, DT40 cells were cotransfected with

pEGFP-FLAG-1 (15 mg) and one of the LINE expression vectors

(15 mg), pBZ2-2, p131.11, pJM102/L1.3, or pJM102/L1.3

H230A [22,27]. Transfection was carried out by electroporation

at 250 V and 960 mF for ZfL2-2 expression vectors, and at 200 V

and 960 mF for L1 expression vectors using the GENE Pulser (Bio-

Rad). After the transfected cells were incubated at 33uC for 3 days,

the number of EGFP-positive and EGFP-negative cells were

counted by flow cytometry to measure the transfection efficiency.

NHEJ Involvement in LINE Integration
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To detect retrotransposition, the electroporated cells (,16106

cells per dish) were plated in soft agarose medium containing

G418 (1.6 mg/ml). In parallel, to determine the plating efficiency,

the electroporated cells (200 cells per dish) were plated in soft

agarose medium without G418. After an 11-day incubation at

37uC, visible colonies were counted. Plating efficiency was

calculated as the number of visible colonies on the plate (without

G418) as a percentage of the 200 cells plated. RF was calculated

as: RF = G/(E6P/100), where G represents the number of G418-

resistant colonies, E represents the number of EGFP-positive cells,

and P represents the plating efficiency.

Ku70 Complementation Assay
DT40 cells (WT, Ku702/2 or LigIV2/2) were cotransfected

with pEGFPFLAG-1 (10 mg), pBZ2-2 (10 mg), and one of two

expression vectors (10 mg), chicken Ku70/pAneo or pAneo.

Transfection was carried out by electroporation at 250 V and

960 mF using a GENE Pulser. After transfection, cells were

processed by the same procedure described above, and the RF was

calculated.

To detect transcription of Ku70 from the exogenous and/or

endogenous gene, cells transfected with the three plasmid DNAs

were harvested 3 days after transfection. Total RNA was extracted

from the cells using the RNeasy Mini kit (Qiagen). The column-

based preparation was repeated to avoid any DNA contamination.

RT-PCR was performed using the total RNA (1 mg) as the

template with primers cKu70R1 (59-CAGAGACAGTGAGC-

TTGCCC-39) and cKu70F2 (59-CGCTGGATATGCTGGAA-

CCA-39). As a control, transcription of the chicken b-actin gene

was detected by RT-PCR using primers cActinF1 (59-GGTCA-

GGTCATCACCATTGG-39) and cActinR1 (59-TGCATCC-

TGTCAGCAATGCC-39).

Tracing of EGFP-Positive Cells
DT40 cells were cotransfected with pEGFP-FLAG-1 (15 mg)

and one of the LINE expression vectors (15 mg), pBZ2-2, p131.11,

pJM102/L1.3, or pJM102/L1.3 H230A [22,27]. Transfection was

carried out by electroporation at 200 V and 950 mF using the

GENE Pulser Xcell (Bio-Rad). After electroporation, the cells were

incubated at 33uC for 3 days. Then the cells were subcultured at

37uC. The percentage of EGFP-positive cells and their EGFP

fluorescence intensity were monitored by flow cytometry at

intervals of 12 h from 3 to 8 days after electroporation. Ten

thousand cells were counted for each measurement by flow

cytometry.

Isolation of ZfL2-2 Insertions from DT40 Cells
Circular DNA containing ZfL2-2 insertions was isolated using

the procedure developed by Gilbert et al. [11]. Briefly, DT40 cell

clones derived from each G418-resistant colony produced by

pAZ2-2 were cultured separately until the total number of cells

reached ,16107 per clone. Genomic DNA was isolated from

each clone using the GenElute mammalian genomic DNA

miniprep kit (Sigma). Genomic DNA (,20 mg per clone) was

digested with 75 U of HindIII for 6 h at 37uC. The digested DNA

(,20 mg) was then self-ligated overnight by T4 DNA ligase

(350 U) in 500 ml solution at 16uC. Ninety percent of the circular

DNA was incorporated in E. coli DH10BT1R (Invitrogen) by

electroporation with the GENE Pulser Xcell (Bio-Rad) under

conditions of 2,500 V, 25 mF and 100 V, and the electroporated

cells were plated on kanamycin-containing (70 mg/ml) plates.

Circular DNA containing a mneoI400/ColE1-marked ZfL2-2

insertion (with its flanking chicken genomic DNA) was isolated

from the kanamycin-resistant cells. The 59 and 39 junctions of each

isolated ZfL2-2 insertion were sequenced using the appropriate

primers. Sequences flanking each ZfL2-2 insertion were used as

probes in BLAT searches to identify the preintegration site in the

chicken genome database (http://genome.ucsc.edu; the May 2006

chicken (Gallus gallus) v2.1 draft assembly).

Survival of HeLa Cells Treated with NU7026 and
Etoposide

Exponentially growing HeLa-RC cells [25] were exposed to

increasing concentrations of NU7026 with or without etoposide

(1 mM) for 2 h. After treatment, the cells were trypsinized and

reseeded into new 100-mm dishes at densities of 350 or 3,500

cells/dish and grown in fresh medium containing no drug. After

10 days, colonies were fixed with 100% ethanol and stained with

2% Giemsa solution. The survival rate was calculated as the

number of colonies as a percentage of the reseeded cells.

Retrotransposition Assay in HeLa Cells with NU7026
HeLa-RC cells (26105 cells/well) were seeded in 6-well dishes

[25]. NU7026 of the indicated concentration was added to the

medium 1 day after seeding. One hour after the addition of

NU7026, the cells were transfected with 1 mg plasmid DNA

(pBZ2-5 or pJM102/L1.3). The cells containing the plasmid were

selected with hygromycin (200 mg/ml) for 6 days. NU7026

treatment was continued during the hygromycin selection. The

hygromycin-resistant (HygR) cells were trypsinized and reseeded

into new 100-mm dishes (at the density of 100,000 cells/dish for

pBZ2-5 and 5,000 cells/dish for pJM102/L1.3) and grown in

medium with 400 mg/ml G418. In parallel, 10,000 HygR cells for

pBZ2-5 or 2,000 HygR cells for pJM102/L1.3 were also reseeded

in a 100-mm dish and grown in medium without G418 to measure

the plating efficiency. After a 12-day incubation, cell colonies were

fixed by 100% ethanol and stained with 2% Giemsa solution. The

plating efficiency was calculated as the number of visible colonies

on the plate (without G418) as a percentage of the number of cells

plated. RF was calculated as the number of G418-resistant

colonies per HygR cell, compensating for the plating efficiency.

Supporting Information

Figure S1 A model for LINE retrotransposition. (A) An

overview of the model. LINEs are transcribed into RNA from

which the LINE-encoded protein is translated. The LINE RNA

and protein form a RNA-protein complex (RNP). The LINE

endonuclease in the RNP nicks the bottom strand of the target site

DNA, and the LINE reverse transcriptase in the RNP reverse

transcribes the LINE RNA using the 39 hydroxyl group generated

by the nick as a primer. This reaction is called target-primed

reverse transcription (TPRT). The LINE DNA/RNA heterodu-

plex must then be converted to a DNA/DNA duplex and

integrated into the target site. However, the molecular mechanism

by which LINE retrotransposition is completed remains unclear.

(B) A model for target site alterations. Variation in target site

alterations is considered to arise from differences in the position of

the second strand cleavage (Gilbert et al, Cell 110: 315–325, 2002).

Second-strand cleavage downstream of the first-strand nick

generates a target site duplication (TSD). Second-strand cleavage

at the same site as the first-strand nick generates blunt end joining

(BEJ). Second-strand cleavage upstream of the first-strand nick

generates a target site truncation (TST). Blue lines denote the

duplicated region in TSD. Green lines denote the truncated region

in TST.

Found at: doi:10.1371/journal.pgen.1000461.s001 (0.03 MB PDF)
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Figure S2 Retrotransposition assay in chicken DT40 cells. (A)

Procedure for detection of LINE retrotransposition in DT40 cells.

The retrotransposition detection cassette, mneoI, is inserted in the

39 UTR of a LINE element. mneoI encodes the neomycin

resistance gene (Neo), which is disrupted by an intron in the

antisense orientation. The functional neomycin resistance protein

is expressed only after the mneoI-marked LINE has been

transcribed, spliced, and reverse transcribed into cDNA, which

is then integrated into the chromosomal DNA of DT40 cells.

pCMV, cytomegalovirus promoter. Pro, promoter. SVpA, SV40

polyA signal. pA, polyA signal. (B) Overview of LINE retrotrans-

position assay in DT40 cells. The LINE/mneoI expression vector

and the EGFP expression vector are co-transfected into DT40 cells

by electroporation. Three days after electroporation, the propor-

tion of EGFP-expressing cells is measured as the transfection

efficiency. At the same time, cells are plated in two kinds of soft

agarose medium, one containing the antibiotic G418 and the other

containing no antibiotic. Eleven days after plating, the number of

colonies in the medium with no antibiotic is counted, and the

plating efficiency is calculated from the colony number. The

number of colonies in the G418-containing medium is also

counted. The retrotransposition frequency is calculated as the

number of G418 resistance (G418R) colonies per viable plated cell

expressing EGFP (Materials and Methods). Small gray circles

indicate EGFP-expressing cells. Small black circles indicate EGFP-

expressing cells with G418R (that is, containing a LINE integrant(s)

in the genomic DNA).

Found at: doi:10.1371/journal.pgen.1000461.s002 (0.15 MB PDF)

Figure S3 A possible effect of the LINE EN expression on the

retrotransposition frequency (RF) of Ku702/2 cells calculated in

the retrotransposition assay. Representative data from the ZfL2-2

retrotransposition assay in WT and Ku702/2 cells are shown in

each panel. (A) The case in which EN expression did not influence

the viability of Ku702/2 cells. (B) The case in which EN

expression influenced the viability of Ku702/2 cells. Although the

values shown in (A) and (B) are identical, the RF of Ku702/2 cells

cannot be calculated properly (see below). Transfection efficiency -

measured as the percentage of EGFP-positive cells 3 days after

electroporation - was approximately 10% in Ku702/2 cells (as

well as WT cells), indicating that EN expression causes a

maximum of only 10% decrease in the plating efficiency if EN

causes severe death of Ku702/2 cells. Thus, the plating efficiency

of Ku702/2 cells was scarcely altered by EN expression. On the

other hand, the number of G418-resistant colonies was markedly

decreased by the severe cell death caused by EN, indicating that

the proper RF value in Ku702/2 cells cannot be measured in the

case of (B). However, the trace of EGFP-positive cells shown in

Figure 2, S13 and S14 indicates that EN expression does not affect

the cell viability of Ku702/2 cells or Artemis2/2, LigIV2/2 and

WT cells. We have not determined why the plating efficiency is

different in each cell line, but the difference does not appear to be

caused by LINE expression. Actually, the plating efficiency of

untreated Ku702/2 cells (no treatment with electroporation,

G418, etc.) was ,2-fold lower than that of untreated WT cells,

suggesting that the colony-forming capability of these two cell

types is fundamentally different in soft agarose medium (data not

shown). In addition, manipulations of the retrotransposition assay,

such as the G418 selection, may differentially affect the plating

efficiency of each cell line.

Found at: doi:10.1371/journal.pgen.1000461.s003 (0.03 MB PDF)

Figure S4 Flow cytometric analysis of DT40 cells electroporated

with fluorescence protein expression vectors. The red fluorescence

protein (DsRed-Express) and green fluorescence protein (EGFP)

expression vectors were co-electroporated into DT40 cells. Flow

cytometric analysis was conducted 3 days after electroporation.

Ten thousand cells were counted in one measurement. Fluores-

cence intensities of EGFP (FL1-H) and DsRed-Express (FL2-H)

are shown. A dot shows a cell expressing no fluorescence protein

(black), DsRed-Express only (red), EGFP only (green) or both of

the fluorescence proteins (orange). R1 is defined as the region in

which cells are expressing no fluorescence protein. R2 is defined as

the region in which cells are expressing DsRed-Express only. R3 is

defined as the region in which cells are expressing EGFP only. R4

is defined as the region in which cells are expressing both DsRed-

Express and EGFP. (A) DT40 cells electroporated with no vector

DNA. (B) DT40 cells electroporated with the DsRed-Express

expression vector. (C) DT40 cells electroporated with the EGFP

expression vector. (D) DT40 cells electroporated with both the

DsRed-Express and EGFP expression vectors. (E) The percentage

of cells presented in each region (R1-4) is shown. When the two

kinds of plasmid DNAs are co-electroporated into DT40 cells,

most transfected (fluorescence-positive) cells (.80%) express both

of the two fluorescent proteins (Figure S4E). This indicates that

both plasmids are usually introduced in each DT40 cell by

electroporation. In addition, the fluorescence intensities of DsRed-

Express and EGFP in a doubly transfected cell are roughly

proportional to each other (Figure S4D), suggesting that the

amounts of each plasmid introduced into a cell are positively

related. Thus, when the EGFP and LINE expression plasmids are

co-transfected into DT40 cells by electroporation, the fluorescence

intensity of EGFP should be roughly proportional to the

expression level of the LINE protein.

Found at: doi:10.1371/journal.pgen.1000461.s004 (0.12 MB PDF)

Figure S5 Flow cytometric analysis of WT DT40 cells co-

electroporated with the EGFP and ZfL2-2 expression vectors.

Expression of EGFP was measured from 3 to 8 days after

electroporation. The histogram of the EGFP intensity (FL1-Height)

is shown. The longitudinal axis shows the number of cells (Counts).

The horizontal line in the histogram indicates the region defined as

EGFP positive. GP, the percentage of EGFP-positive cells at each

time point. Red arrowheads show the position of the geometric mean

of the EGFP intensity (each value is indicated at the right of the

arrowhead). Two independent experiments were conducted (A, B

and C, D). (A, C) The flow cytometric data of WT DT40 cells without

electroporation. (B, D) The flow cytometric data of WT DT40 cells

electroporated with the EGFP expression vector and the ZfL2-2 wild-

type (WT) or ZfL2-2 EN mutant (ENm) expression vector.

Found at: doi:10.1371/journal.pgen.1000461.s005 (2.71 MB PDF)

Figure S6 Flow cytometric analysis of WT and Ku702/2 DT40

cells co-electroporated with the EGFP and ZfL2-2 expression

vectors. Expression of EGFP was measured from 3 to 8 days after

electroporation. The histogram of the EGFP intensity (FL1-

Height) is shown. The longitudinal axis shows the number of cells

(Counts). The horizontal line in the histogram indicates the region

defined as EGFP positive. GP, the percentage of EGFP-positive

cells at each time point. Red arrowheads show the position of the

geometric mean of the EGFP intensity (each value is indicated at

the right of the arrowhead). Two independent experiments were

conducted (A, B and C, D). (A, C) Flow cytometric data of WT

and Ku702/2 DT40 cells without electroporation. (B, D) The flow

cytometric data of WT and Ku702/2 DT40 cells electroporated

with the EGFP expression vector and the ZfL2-2 wild-type (WT)

or ZfL2-2 EN mutant (ENm) expression vector.

Found at: doi:10.1371/journal.pgen.1000461.s006 (2.71 MB PDF)

Figure S7 Flow cytometric analysis of WT and Artemis2/2

DT40 cells co-electroporated with the EGFP and ZfL2-2

NHEJ Involvement in LINE Integration
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expression vectors. Expression of EGFP was measured from 3 to 8

days after electroporation. The histogram of the EGFP intensity

(FL1-Height) is shown. The longitudinal axis shows the number of

cells (Counts). The horizontal line in the histogram indicates the

region defined as EGFP positive. GP, the percentage of EGFP-

positive cells at each time point. Red arrowheads show the position

of the geometric mean of the EGFP intensity (each value is

indicated at the right of the arrowhead). Two independent

experiments were conducted (A, B and C, D). (A, C) The flow

cytometric data of WT and Artemis2/2 DT40 cells without

electroporation. (B, D) The flow cytometric data of WT and

Artemis2/2 DT40 cells electroporated with the EGFP expression

vector and the ZfL2-2 wild-type (WT) or ZfL2-2 EN mutant

(ENm) expression vector.

Found at: doi:10.1371/journal.pgen.1000461.s007 (2.71 MB PDF)

Figure S8 Flow cytometric analysis of WT and LigaseIV2/2

DT40 cells co-electroporated with the EGFP and ZfL2-2

expression vectors. Expression of EGFP was measured from 3 to

8 days after electroporation. The histogram of the EGFP intensity

(FL1-Height) is shown. The longitudinal axis shows the number of

cells (Counts). The horizontal line in the histogram indicates the

region defined as EGFP positive. GP, the percentage of EGFP-

positive cells at each time point. Red arrowheads show the position

of the geometric mean of the EGFP intensity (each value is

indicated at the right of the arrowhead). Two independent

experiments were conducted (A, B and C, D). (A, C) The flow

cytometric data of WT and LigaseIV2/2 DT40 cells without

electroporation. (B, D) The flow cytometric data of WT and

LigaseIV2/2 DT40 cells electroporated with the EGFP expression

vector and the ZfL2-2 wild-type (WT) or ZfL2-2 EN mutant

(ENm) expression vector.

Found at: doi:10.1371/journal.pgen.1000461.s008 (2.71 MB PDF)

Figure S9 Flow cytometric analysis of WT DT40 cells co-

electroporated with the EGFP and L1 expression vectors.

Expression of EGFP was measured from 3 to 8 days after

electroporation. The histogram of the EGFP intensity (FL1-

Height) is shown. The longitudinal axis shows the number of cells

(Counts). The horizontal line in the histogram indicates the region

defined as EGFP positive. GP, the percentage of EGFP-positive

cells at each time point. Red arrowheads show the position of the

geometric mean of the EGFP intensity (each value is indicated at

the right of the arrowhead). Two independent experiments were

conducted (A, B and C, D). (A, C) The flow cytometric data of WT

DT40 cells without electroporation. (B, D) The flow cytometric

data of WT DT40 cells electroporated with the EGFP expression

vector and the L1 wild-type (WT) or L1 EN mutant (ENm)

expression vector.

Found at: doi:10.1371/journal.pgen.1000461.s009 (2.71 MB PDF)

Figure S10 Flow cytometric analysis of WT and Ku702/2

DT40 cells co-electroporated with the EGFP and L1 expression

vectors. Expression of EGFP was measured from 3 to 8 days after

electroporation. The histogram of the EGFP intensity (FL1-

Height) is shown. The longitudinal axis shows the number of cells

(Counts). The horizontal line in the histogram indicates the region

defined as EGFP positive. GP, the percentage of EGFP-positive

cells at each time point. Red arrowheads show the position of the

geometric mean of the EGFP intensity (each value is indicated at

the right of the arrowhead). Two independent experiments were

conducted (A, B and C, D). (A, C) The flow cytometric data of WT

and Ku702/2 DT40 cells without electroporation. (B, D) The flow

cytometric data of WT and Ku702/2 DT40 cells electroporated

with the EGFP expression vector and the L1 wild-type (WT) or L1

EN mutant (ENm) expression vector.

Found at: doi:10.1371/journal.pgen.1000461.s010 (2.72 MB PDF)

Figure S11 Flow cytometric analysis of WT and Artemis2/2

DT40 cells co-electroporated with the EGFP and L1 expression

vectors. Expression of EGFP was measured from 3 to 8 days after

electroporation. The histogram of the EGFP intensity (FL1-

Height) is shown. The longitudinal axis shows the number of cells

(Counts). The horizontal line in the histogram indicates the region

defined as EGFP positive. GP, the percentage of EGFP-positive

cells at each time point. Red arrowheads show the position of the

geometric mean of the EGFP intensity (each value is indicated at

the right of the arrowhead). Two independent experiments were

conducted (A, B and C, D). (A, C) The flow cytometric data of WT

and Artemis2/2 DT40 cells without electroporation. (B, D) The

flow cytometric data of WT and Artemis2/2 DT40 cells

electroporated with the EGFP expression vector and the L1

wild-type (WT) or L1 EN mutant (ENm) expression vector.

Found at: doi:10.1371/journal.pgen.1000461.s011 (2.72 MB PDF)

Figure S12 Flow cytometric analysis of WT and LigaseIV2/2

DT40 cells co-electroporated with the EGFP and L1 expression

vectors. Expression of EGFP was measured from 3 to 8 days after

electroporation. The histogram of the EGFP intensity (FL1-

Height) is shown. The longitudinal axis shows the number of cells

(Counts). The horizontal line in the histogram indicates the region

defined as EGFP positive. GP, the percentage of EGFP-positive

cells at each time point. Red arrowheads show the position of the

geometric mean of the EGFP intensity (each value is indicated at

the right of the arrowhead). Two independent experiments were

conducted (A, B and C, D). (A, C) The flow cytometric data of WT

and LigaseIV2/2 DT40 cells without electroporation. (B, D) The

flow cytometric data of WT and LigaseIV2/2 DT40 cells

electroporated with the EGFP expression vector and the L1

wild-type (WT) or L1 EN mutant (ENm) expression vector.

Found at: doi:10.1371/journal.pgen.1000461.s012 (2.72 MB PDF)

Figure S13 Effect of LINE expression on DT40 cell viability.

DT40 cells were co-transfected with pEGFPFLAG-1 and one of

the LINE expression vectors (pBZ2-5, p131.11, pJM102/L1.3, or

pJM102/L1.3 H230A) by electroporation (see Tracing of EGFP-

positive cells in the Materials and Methods section). After

transfection, the cells were monitored for 8 days. (A) ZfL2-2

expression in DT40 cells. The relative proportion of EGFP-

expressing cells (left), the geometric mean of the EGFP

fluorescence intensity (FI) (middle) and the median of the EGFP

FI (right) calculated using the values 3 days after electroporation as

the standard are indicated (the raw data are shown in Figures S5

and S7). DT40 WT, wild-type DT40 cell line. DT40 Art2/2

Artemis-deficient DT40 cell line. ZfL2-2 WT, wild-type ZfL2-2

element. ZfL2-2 ENm, endonuclease-mutated ZfL2-2 elements.

Two independent experiments were performed (upper and lower

panels). (B) L1 expression in DT40 cells. The relative proportion of

EGFP-expressing cells (left), the geometric mean of the EGFP FI

(middle) and the median of the EGFP FI (right) calculated using

the values 3 days after electroporation as the standard are

indicated (the raw data are shown in Figures S9 and S11). DT40

WT, wild-type DT40 cell line. DT40 Art2/2, Artemis-deficient

DT40 cell line. L1 WT, wild-type L1 element. L1 ENm,

endonuclease-mutated L1 elements. Two independent experi-

ments were performed (upper and lower panels).

Found at: doi:10.1371/journal.pgen.1000461.s013 (0.07 MB PDF)

Figure S14 Effect of LINE expression on DT40 cell viability.

DT40 cells were co-transfected with pEGFPFLAG-1 and one of

the LINE expression vectors (pBZ2-5, p131.11, pJM102/L1.3, or

pJM102/L1.3 H230A) by electroporation (see Tracing of EGFP-

NHEJ Involvement in LINE Integration
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positive cells in the Materials and Methods section). After

transfection, the cells were monitored for 8 days. (A) ZfL2-2

expression in DT40 cells. The relative proportion of EGFP-

expressing cells (left), the geometric mean of the EGFP

fluorescence intensity (FI) (middle) and the median of the EGFP

FI (right) calculated using the values 3 days after electroporation as

the standard are indicated (the raw data are shown in Figures S5

and S8). DT40 WT, wild-type DT40 cell line. DT40 LigIV2/2,

LigaseIV-deficient DT40 cell line. ZfL2-2 WT, wild-type ZfL2-2

element. ZfL2-2 ENm, endonuclease-mutated ZfL2-2 elements.

Two independent experiments were performed (upper and lower

panels). (B) L1 expression in DT40 cells. The relative proportion of

EGFP-expressing cells (left), the geometric mean of the EGFP FI

(middle) and the median of the EGFP FI (right) calculated using

the values 3 days after electroporation as the standard are

indicated (the raw data are shown in Figures S9 and S12). DT40

WT, wild-type DT40 cell line. DT40 LigIV2/2, LigaseIV-

deficient DT40 cell line. L1 WT, wild-type L1 element. L1

ENm, endonuclease-mutated L1 elements. Two independent

experiments were performed (upper and lower panels).

Found at: doi:10.1371/journal.pgen.1000461.s014 (0.07 MB PDF)

Figure S15 Length distributions of the 59 and 39 microhomol-

ogies of ZfL2-2 insertions in DT40 cells. All junctions except those

with extra nucleotides are shown. (A) The length distribution of

the 59 microhomology. (B) The length distribution of the 39

microhomology.

Found at: doi:10.1371/journal.pgen.1000461.s015 (0.01 MB PDF)

Table S1 ZfL2-2 retrotransposition in DT40 cells.

Found at: doi:10.1371/journal.pgen.1000461.s016 (0.05 MB

DOC)

Table S2 L1 retrotransposition in DT40 cells.

Found at: doi:10.1371/journal.pgen.1000461.s017 (0.05 MB

DOC)

Table S3 Ku70 complementation assay with ZfL2-2 in DT40

cells.

Found at: doi:10.1371/journal.pgen.1000461.s018 (0.04 MB

DOC)

Table S4 The 102 ZfL2-2 insertions in chicken DT40 cells.

Found at: doi:10.1371/journal.pgen.1000461.s019 (0.18 MB

DOC)

Table S5 Summary of ZfL2-2 insertions in chicken DT40 cells.

Found at: doi:10.1371/journal.pgen.1000461.s020 (0.05 MB

DOC)

Table S6 ZfL2-2 retrotransposition assay in HeLa cells with

NU7026.

Found at: doi:10.1371/journal.pgen.1000461.s021 (0.04 MB

DOC)

Table S7 L1 retrotransposition assay in HeLa cells with

NU7026.

Found at: doi:10.1371/journal.pgen.1000461.s022 (0.04 MB

DOC)
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