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Abstract

CLK-2/TEL2 is essential for viability from yeasts to vertebrates, but its essential functions remain ill defined. CLK-2/TEL2 was
initially implicated in telomere length regulation in budding yeast, but work in Caenorhabditis elegans has uncovered a
function in DNA damage response signalling. Subsequently, DNA damage signalling defects associated with CLK-2/TEL2
have been confirmed in yeast and human cells. The CLK-2/TEL2 interaction with the ATM and ATR DNA damage sensor
kinases and its requirement for their stability led to the proposal that CLK-2/TEL2 mutants might phenocopy ATM and/or
ATR depletion. We use C. elegans to dissect developmental and cell cycle related roles of CLK-2. Temperature sensitive (ts)
clk-2 mutants accumulate genomic instability and show a delay of embryonic cell cycle timing. This delay partially depends
on the worm p53 homolog CEP-1 and is rescued by co-depletion of the DNA replication checkpoint proteins ATL-1 (C.
elegans ATR) and CHK-1. In addition, clk-2 ts mutants show a spindle orientation defect in the eight cell stages that lead to
major cell fate transitions. clk-2 deletion worms progress through embryogenesis and larval development by maternal
rescue but become sterile and halt germ cell cycle progression. Unlike ATL-1 depleted germ cells, clk-2–null germ cells do
not accumulate DNA double-strand breaks. Rather, clk-2 mutant germ cells arrest with duplicated centrosomes but without
mitotic spindles in an early prophase like stage. This germ cell cycle arrest does not depend on cep-1, the DNA replication, or
the spindle checkpoint. Our analysis shows that CLK-2 depletion does not phenocopy PIKK kinase depletion. Rather, we
implicate CLK-2 in multiple developmental and cell cycle related processes and show that CLK-2 and ATR have antagonising
functions during early C. elegans embryonic development.
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Introduction

CLK-2/TEL2 is a DNA damage checkpoint gene which is

essential for viability in budding yeast, C. elegans and vertebrates.

DNA damage checkpoints are essential for maintaining genome

stability in response to DNA damage and act by coordinating

DNA repair and by triggering a transient cell cycle arrest, or

apoptosis of affected cells. The loading of a pair of highly

conserved PI3 kinase-related kinases (PIKKs), ATM and ATR, to

sites of DNA damage acts at the apex of DNA damage response

pathways [1]. These kinases have overlapping substrate specificity

and phosphorylate multiple targets including the kinases Chk1 and

Chk2 [2,3]. The first C. elegans clk-2 allele initially referred as rad-5

(mn159), was isolated in a screen for C. elegans mutants

hypersensitive for ionizing irradiation [4]. C. elegans clk-2

temperature sensitive mutants are embryonic lethal at the

restrictive temperature of 25uC [5–7]. However, the cause of this

embryonic lethality is not known. At the ‘‘permissive temperature’’

of 20uC both known clk-2 temperature sensitive alleles lead to a

slow growth phenotype that is particularly evident in the clk-2

(qm37) allele, which also shows a reduction in cyclic behaviours

such as pharyngeal pumping [5,6]. Furthermore, both alleles are

defective in various DNA damage responses including DNA

damage-induced germ cell apoptosis and cell cycle arrest when

propagated at 20uC [5,6]. CLK-2/TEL2 has been implicated in

S-phase regulation and DNA damage checkpoint responses in

fission yeast [8,9], and human CLK-2/TEL2 is required for the

DNA replication checkpoint and for DNA crosslink repair [10].

Human and yeast CLK-2/TEL2 directly bind to all PI3K-related

protein kinases (PIKKs) and are considered to be required for

maintaining their stability [8,9].

Here we use the C. elegans experimental system to assess the

essential functions of CLK-2 during development and cell cycle

control. In worms cell cycle progression in early embryos occurs

very rapidly, with alternating M and S phases and an apparent

lack of gap phases [11]. The timing and pattern of cell division and

differentiation is invariant and has been fully characterized [12].

Aberrant embryonic development can therefore be traced by cell
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lineage analysis and resolved at a cellular level [13]. A relatively

high level of DNA damage is tolerated during rapid embryonic cell

divisions, possibly as a result of natural selection that favours a

rapid pace of replication at the expense of genome integrity [14].

Only high levels of DNA damage or replication failure lead to a

DNA damage checkpoint-dependent slowing of cell cycle

progression [14]. Interestingly, the DNA damage checkpoint is

used during early embryogenesis to contribute to the asymmetry of

the first zygotic cell division [15]. In contrast to this, cell

proliferation is much slower in the C. elegans germline and DNA

damage checkpoint signalling is much more sensitive [11]. The

germline is the only proliferative tissue in adult worms. The gonad

contains various germ cell types that are arranged in an ordered

distal to proximal gradient of differentiation [16,17]. The distal

end of the gonad is comprised of a mitotic stem cell compartment,

which is followed by the transition zone where entry into meiotic

prophase occurs. Proximal to the transition zone most germ cells

are in meiotic pachytene and subsequently complete meiosis and

concomitantly undergoing oogenesis in the proximal gonad. DNA

replication failure and DNA double strand breaks lead to a

prolonged cell cycle arrest of mitotic germ cells and to apoptosis of

meiotic pachytene germ cells [18]. In this DNA damage response

pathway CLK-2 and ATL-1 act as upstream DNA damage

signalling molecules, while the worm p53 like gene cep-1 is only

required for apoptosis [19,20]. Thus, CLK-2 and ATL-1 are part

of sensitive germ cell DNA damage checkpoint pathways that

ensure the faithful transmission of genetic information from one

worm generation to the next.

C. elegans clk-2 ts mutants show that CLK-2 is required for

embryonic development [6,7]. As these mutants show an increased

level of DNA damage in germ cells at the restrictive temperature,

the embryonic lethality might be caused by the accumulation of

DNA damage that ultimately may result in the death of the

embryo [21]. Given that ATR stability depends on CLK-2 [8,9],

the depletion of CLK-2 might phenocopy the atl-1 (worm ATR)

mutant phenotype, which is germline sterility associated with

massive levels of DNA double strand breaks [22]. Furthermore,

given that CLK-2 is required for the stability of all PIKKs clk-2

mutations might mimic the phenotype of depleting other PIKKs

such as TOR-1, implicated in nutrient sensing [23] and SMG1, a

kinase involved in nonsense-mediated mRNA decay [24]. Finally,

loss of CLK-2 function might result in distinct developmental

defects not directly predicted from failing to maintain normal

levels of PIKKs or from potential DNA replication and/or DNA

damage signalling defects. In this study, we assess the essential

defects associated with clk-2 by analysing embryonic cell divisions

by cell lineage analysis and by exploiting the C. elegans germline

system. We show that clk-2 mutants exhibit defects in early

embryonic development and in germline cell cycle progression.

These phenotypes do not overlap with reported C. elegans PIKK

deletion phenotypes.

Results

Embryonic Cell Cycle Delay in clk-2 Mutants Depends on
atl-1/chk-1

We wished to determine why clk-2 mutants fail to complete

embryogenesis. We therefore started our analysis by following the

embryonic development of the two available recessive clk-2

thermosensitive (ts) mutants, mn159 and qm37, (Figure S1) by cell

lineage analysis using 4D microscopy. Analysis of clk-2 mutant

lineages at the restrictive temperature of 25uC revealed that

asymmetric cell divisions occurred normally during the first three

embryonic cell cycles as previously reported [5,6] but that cell

division timing of all cells was delayed compared to wild type

(Figure 1A, B, Table S1). This delay was more pronounced in clk-2

(qm37) than in clk-2 (mn159) (Figure 1B, Table S1). In the depicted

recordings, the wild type embryo is at the 4-cell stage 11 min after

cytokinesis of the P0 cell while the clk-2 (mn159) embryo is about to

reach the three cell stage with the AB cell approaching cytokinesis

(Figure 1C). The depicted clk-2 (qm37) embryo is at the two cell

stage with the AB blastomere just having undergone nuclear

envelope breakdown (Figure 1C). Thirty-one minutes after P0

cytokinesis wild type embryos are at the 8-cell stage while both clk-

2 mutants are in the 6-cell stage. We next aimed to determine the

cause of the cell cycle delay associated with clk-2 mutants. Given

that clk-2 (mn159) worms show increased DNA double strand

breaks in the mitotic zone of the adult C. elegans germline at the

restrictive temperature [22], we reasoned that the cell cycle delay

in clk-2 (mn159) and (qm37) embryos might be due to excessive

DNA damage, potentially resulting from compromised DNA

replication. We therefore tested whether RAD-51 foci, which are

indicative of processed DNA double strand breaks or stalled

replication forks [25], accumulate in clk-2 embryos at the

restrictive temperature. We indeed observed increased levels of

RAD-51 foci in embryos examined between the 100 and 200 cell

stage in both clk-2 (mn159) (2.1460.62 foci/nucleus n = 7

embryos) and clk-2 (qm37) (0.9760.19 foci/nucleus n = 8) mutants

compared to wild type (0.260.02 foci/nucleus n = 6) (Figure 2A).

These results indicate that clk-2 mutants display a delay in

embryonic cell cycle timing and increased genomic instability.

Given the delay in cell division timing and the accumulation of

RAD-51 foci in clk-2 mutants, we asked if the delay is due to the

activation of the DNA replication checkpoint. Previous studies

showed that the ATL-1/CHK-1 checkpoint is needed for sensing

replication failure in C. elegans embryos [15]. Furthermore, the

ATL-1/CHK-1 checkpoint contributes to developmental asym-

metry by being in part responsible for the DNA replication delay

in the P1 cell. Co-depletion of atl-1 and chk-1 is needed to fully

inactivate the DNA replication checkpoint [15]. We observed that

Author Summary

PI3K-related protein kinases (PIKKs) ATM and ATR are
essential upstream components of DNA damage signalling
pathways, while TOR-1 acts as a nutrient sensor. CLK-2/
TEL2 is a conserved gene initially implicated in budding
yeast telomere length regulation and uncovered in the
same genetic screen as the yeast TEL1 ATM like kinase.
CLK-2/TEL2 was first implicated in DNA damage response
signalling by C. elegans genetics, a function confirmed in
yeast and human cells. In addition, CLK-2/TEL2 is essential
for cellular and organismal survival from yeasts to
vertebrates, but the essential phenotypes were not
defined. A direct interaction between CLK-2/TEL2 and all
PI3K-related protein kinases and the reduction of PIKK
protein levels upon CLK-2/TEL2 depletion lead to the
widely discussed notion that CLK-2/TEL2 mutants might
phenocopy PIKK depletion phenotypes. We take advan-
tage of embryonic lineage analysis and germline cytology
to dissect developmental and cell cycle related functions
of CLK-2. CLK-2 depletion does not phenocopy PIKK kinase
depletion. We rather link CLK-2 to multiple developmental
and cell cycle related processes and show that CLK-2 and
ATR have antagonising functions during early C. elegans
embryonic development. Furthermore, we implicate CLK-2
in a distinct cell lineage decision and show that its
depletion leads to a novel germline cell cycle arrest
phenotype.
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upon atl-1/chk-1 depletion cell cycle timing is faster beyond

the first embryonic cell division (Figure 2B, Table S1). We

therefore conclude that the ATL-1/CHK-1 pathway acts in

normal C. elegans early embryonic development to slow down cell

cycle progression. As expected, atl-1/chk-1 (RNAi) rescued the

prolonged cell cycle delay associated with depleting the DIV-1

DNA polymerase primase alpha-subunit [15] (Figure 2B, Table

S1). Importantly, RNAi-mediated atl-1/chk-1 depletion largely

rescued the delay in cell division timing associated with both clk-2

mutants (Figure 2B, Table S1). Our results thus indicate that clk-2

Figure 1. Delayed cell divisions in clk-2 mutant embryos. A) Diagram of early C. elegans development. The newly formed C. elegans zygote
undergoes a sequence of asymmetric and asynchronous cell divisions to produce the six founder cells called AB, MS, E, C, D and P4 [12,58]. The first
cleavage gives rise to the larger anterior founder cell AB and the smaller posterior cell P1. The AB cell begins a second symmetric cleavage, followed
by the cleavage of P1 to produce EMS and P2. The division of EMS produces the E and the slightly larger MS founder cells. Shortly after the division of
EMS, P2 divides to give rise to the C founder cell and P3. B) Lineage analysis of wild type and clk-2 embryos. Horizontal lines indicate the time of cell
division, while the vertical lines indicate the duration of the cell cycle for each blastomere during the first, second and third rounds of embryonic cell
divisions. The names of the individual cells are indicated in the wild type panel. 0 min corresponds to the end of the P0 cytokinesis and is indicated by
the horizontal dashed, black line. Average cell cycle times of five embryos are shown. Error bars indicate standard error of the mean (SEM) of
accumulated cell cycle times. The cell cycle timing of individual cells is shown in Table S1. C) Nomarski images of early wild type and clk-2 embryos
undergoing the second and third round of mitotic divisions. All embryos are shown with anterior to the left and dorsal up. Scale bar: 10 mm.
doi:10.1371/journal.pgen.1000451.g001
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(mn159) and clk-2 (qm37) mutations result in increased DNA

damage, which triggers the ATL-1/CHK-1 checkpoint.

It has previously been shown that embryonic lethality associated

with dut-1 (RNAi), which leads to the misincorporation of uracil

during DNA replication is partially rescued by clk-2 (RNAi) and

chk-1 (RNAi) as well as by the clk-2 (mn159) mutation [26]. These

results hint towards a checkpoint function of CLK-2 in embryonic

cell divisions. We therefore assessed if CLK-2 functions in DNA

damage checkpoint signalling in embryos and asked if the cell

cycle delay caused by div-1 (RNAi) depends on clk-2. We found

that the delay in S-phase progression of the P1 cell caused by div-1

(RNAi) is partially rescued by both clk-2 ts alleles (Table S2). These

results suggest that CLK-2 has a checkpoint function in early

embryos. However, the AB cell cycle delay is not rescued likely

due to the above described cell cycle delay associated with clk-2 ts

mutations.

The Cell Cycle Delay of clk-2 Mutants Depends on cep-1
It was reported that CLK-2 and CEP-1, the single C. elegans p53

homolog, cooperate in pathways leading to germ cell apoptosis

upon treatment with ionizing irradiation (IR) [19,20]. cep-1

mutants are defective in IR induced apoptosis but are wild type

for IR induced cell cycle arrest and DNA repair suggesting that

CEP-1 acts downstream of CLK-2 in the DNA damage response

pathway. Derry et al. also observed that a cep-1 deletion partially

rescues the slow growth phenotype associated with clk-2 (mn159)

and clk-2 (qm37) [27]. We first confirmed the reported partial

rescue of the slow growth phenotype of clk-2 (mn159) and (qm37)

by the cep-1 (lg12501) deletion (Figure S2A/B) [27].

Given the rescue of the clk-2 slow growth phenotype by cep-1 we

wondered if cep-1 (lg12501) would suppress the embryonic cell

cycle delay of clk-2 mutants. cep-1 (lg12501), which results in a

slightly slower developmental rate compared to wild type, partially

rescued the embryonic cell cycle delay associated with both clk-2

alleles (Figure 2C, Table S1). In contrast, the cell cycle delay in div-

1 embryos was not rescued by cep-1 (lg12501) (Figure 2C, Table

S1). This may indicate that distinct DNA lesions occurring in clk-2

mutant embryos but not a general failure of DNA replication as it

occurs in div-1 mutations leads to the activation of a cep-1

dependent checkpoint during early C. elegans embryogenesis. In

addition, we found that clk-2 (mn159) or (qm37); cep-1 (lg12501)

double mutants develop to a later embryonic stage and often arrest

in morphogenesis stage, with clear signs of tissue differentiation

such as the formation of the pharynx or the appearance of gut

granules. This late arrest never occurs in either clk-2 single mutant

or atl-1/chk-1 (RNAi) depleted clk-2 embryos (Figure 3A, B).

Given the rescue of the clk-2 mutant cell cycle delay by a cep-1

deletion, we asked if CEP-1 might be modified in clk-2 mutant

worms and assayed for changes in its abundance by western

blotting. We found that the levels of CEP-1 protein were markedly

increased in extracts prepared from synchronised adult clk-2

(mn159) and clk-2 (qm37) worms compared to wild type, indicating

that the checkpoint triggered by clk-2 mutations leads to the

accumulation of CEP-1 (Figure 3C). This accumulation of CEP-1

likely results from increased CEP-1 in embryos. CEP-1 germline

levels are not increased in clk-2 mutants (data not shown) and

besides embryonic and germline expression CEP-1 is only

expressed in very few cells in the pharynx [19] (data not shown).

In summary, we show that deleting cep-1 partially rescues the slow

growth phenotype associated with clk-2 mutants and that CEP-1

accumulates in clk-2 mutants. It will be interesting to determine the

mechanism of CEP-1 accumulation and if other embryonic defects

also lead to CEP-1 accumulation.

Figure 2. DNA double strand break accumulation in clk-2 worms and attenuation of clk-2 cell cycle delay by atl-1/chk-1 (RNAi) and
cep-1. A) Wild type and clk-2 embryos were stained with anti RAD-51 antibodies (red) and DAPI (blue). Scale bar: 10 mm. B) Cell cycle timing is
advanced in atl-1/chk-1 (RNAi) embryos (blue) and atl-1/chk-1 (RNAi) suppresses the cell cycle delay associated with clk-2 and div-1 mutants. C) The
cep-1 (lg12501) deletion partially rescues the clk-2 cell cycle delay but does not rescue the div-1 cell cycle delay.
doi:10.1371/journal.pgen.1000451.g002

Figure 3. Genetic interactions between cep-1 and clk-2. A)
Representative clk-2 and clk-2 atl-1/chk-1 (RNAi) and cep-1; clk-2
embryos. B) Ratio of embryos entering and arresting at the
morphogenesis stage. C) Immunoblot of wild type and clk-2 extracts
with CEP-1 and a-tubulin antibodies. Lysates are from staged adult
worms raised at 25uC.
doi:10.1371/journal.pgen.1000451.g003
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A Spindle Orientation Defects Leads to Cell Fate
Transformation of clk-2 Mutants

We speculated that there might also be phenotypes occurring in

early clk-2 (mn159) and clk-2 (qm37) embryos that are not linked to

the cell cycle delay of clk-2 mutants. Indeed, our lineage analysis

revealed that 2 out of 7 clk-2 (mn159) and 6 out of 12 clk-2 (qm37)

mutant embryos recorded at 25uC exhibit a distinct lineage defect

(Figure 4). We found an abnormal spindle rotation of the ABar cell

(the anterior right granddaughter of the AB founder cell) at the 8-

cell stage in clk-2 mutants. In the six clk-2 (qm37) embryos showing

the abnormal spindle rotation ABar divided on average 4866u off

the a-p axis placing ABarp towards the ventral side of the embryo.

In five wild-type embryos ABar divided on average by 54614u off

the a-p axis placing ABarp towards the dorsal side of the embryo.

The ABar spindle in the six affected clk-2 (qm37) embryos thus

derived 102u from wild type. This abnormal rotation gives rise to

mispositioned ABarp and ABara daughters at the 12 cell stage,

bringing ABarp instead of ABara in contact to the MS blastomere

(Figure 4, Videos S1, S2, and S3). The MS blastomere emits an

inductive signal which in wild type is part of the left versus right

cell fate decision (Figure 4, arrows, Videos S1, S2, and S3) [28–

30]. As a consequence cell fates of the early founder cells are

changed in the clk-2 mutants, the ABara and ABarp blastomeres

adopt the fates of their left counterparts, ABala and ABalp,

respectively (data not shown). This change in cell fate identity leads

to embryonic death. A failure of the ABar blastomere to rotate the

spindle properly can be taken as an indication that spindles are

generally not polarised properly [31], which is a hallmark of

mutants in mom-2 (wnt) and mom-5 (frizzled) [32]. Future work will

reveal, if clk-2 influences the Wnt pathway directly or if the

observed clk-2 phenotype is independent of this pathway.

clk-2 Is Required for Germ Cell Proliferation
To further assess potential developmental and cell proliferation-

associated defects of clk-2 mutants, we analysed the germline of clk-

2 mutants. clk-2 ts mutants are deficient in responding to DNA

damaging agents [5] at the ‘‘permissive temperature’’ of 20uC and

shifting clk-2 (mn159) mutants to 25uC at the L4 stage leads to the

accumulation of DNA damage in affected germ cells [22].

However, these studies were done with the clk-2 ts alleles. As it

is not clear whether they act as null alleles at 25uC we analysed a

clk-2 deletion allele.

The clk-2 (tm1528) deletion allele provided by the Japanese C.

elegans knockout consortium lacks part of the 59 region, the first

three exons, and a part of the fourth exon (Figure S1A). Western

blotting with a CLK-2 specific antibody provided by Simon

Boulton failed to detect any CLK-2 protein in clk-2 (tm1528) worm

extracts (Figure S1B). We found that the major phenotype

Figure 4. Lineage defects in clk-2 mutant embryos. The left panels and middle panel show DIC images of representative focal planes of 8 and
12-cell stage wild type and clk-2 embryos, respectively. The polarity of ABar and ABpr divisions is indicated by arrowheads. The right panel visualises
the 12 embryonic cells in a 3D-model. The inductive signal from MS to ABara (in wild type) and ABarp (in clk-2 mutants) is indicated by arrows in the
middle and right panels. The grey ball represents the MS cell, turquoise represents ABara and pink ABarp. AB and MS are founder cells. a: anterior, p:
posterior, l: left, r: right.
doi:10.1371/journal.pgen.1000451.g004
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associated with the clk-2 (tm1528) deletion mutant kept at 20uC is

not embryonic lethality but germline sterility (Figure 5A, see

below) and that the same phenotype occurs when the clk-2

(tm1528) deletion mutant is kept at 25uC (data not shown). The clk-

2 (tm1528) phenotype is recessive (data not shown). Given that clk-

2 (tm1528) worms go through embryogenesis whereas clk-2

(mn159) and (qm37) worms arrest during embryogenesis at the

restrictive temperature, we assume that clk-2 (tm1528) worms are

rescued by maternal contribution. To ascertain that the missing

embryonic lethality of the clk-2 (tm1528) mutant is indeed caused

by the maternal supply we reviewed the phenotype of clk-2

(mn159) and clk-2 (qm37) worms by shifting those mutants to 25uC
at the L1 stage. Under these conditions we found that clk-2 (qm37)

worms are 100% sterile similar to clk-2 (tm1528) worms, while the

weaker allele mn159 does not lead to sterility (Figure 5A). Both ts

alleles, as well as the deletion, lead to a protruding vulva

phenotype (pvl) (Figure 5A). This phenotype is often associated

with sterile germlines and general problems in postembryonic cell

cycle progression [33]. clk-2 (qm37) and clk-2 (tm1528) gonades are

significantly smaller in size than those of wild type and clk-2

(mn159) mutants and clk-2 (qm37) and (tm1528) gonads showed a

dramatic reduction of germ cell numbers (Figure 5B, Figure S3).

This reduction in germ cell numbers and germline sterility was

also obtained upon clk-2 RNAi in the weaker clk-2 (mn159) mutant,

further indicating that the clk-2 (qm37) and clk-2 (tm1528) germline

phenotypes represent the clk-2 null phenotype (Figure 5B). These

results are in contrast to a previous report which stated that no

sterility of clk-2 (qm37) germlines was observed [6].

The reduced germ cell number raised the question whether

CLK-2 is required for germ cell proliferation or germ cell

differentiation. To address this question we performed a time

course analysis of germline development in wild type and clk-2

(tm1528) worms. We found that both strains have similar numbers

of germ cells up to the L4 stage at which point germlines of clk-2

(tm1528) worms stop proliferating (Figure 5C). To further assess if

this phenotype is caused by a proliferation defect we took

advantage of gld-2 (q497) gld-1 (q485) double mutants which have

germlines that do not enter meiosis and are thus entirely

proliferative. Comparing gld-2 (q497) gld-1 (q485) germlines to

gld-2 (q497) gld-1 (q485); clk-2 (tm1528) triple mutant germlines we

found that germ cell numbers are dramatically reduced in the

triple mutant indicating that clk-2 has a role in germ cell

proliferation rather than in germ cell differentiation (Figure 5D).

In addition, clk-2 (tm1528) and clk-2 (qm37) germ cells are larger

than wild type. This phenotype, which is reminiscent of arrested

mitotic germ cells after ionizing irradiation, indicates that cells

might stop cell division but continue with cellular growth [18]

(Figure 5B, arrowheads). In summary, our data suggest that CLK-

2 is required for cell cycle progression in germ cells.

clk-2 Germ Cells Arrest in an Early Prophase-Like Stage
Independent of Checkpoint Activation

Given that clk-2 mutations lead to a DNA damage checkpoint

dependent delay of embryonic cell cycle progression (Figure 2B) and

given that clk-2 (mn159) germ cells showed elevated levels of RAD-51

foci indicative of faulty replication when shifted to the restrictive

temperature at the L4 stage [22], we suspected that the germ cell

cycle arrest of the clk-2 (tm1528) mutant might be due to the

activation of the DNA damage checkpoint. We therefore examined if

RAD-51 foci occur in the mitotic compartment of clk-2 (tm1528)

germ cells. To our surprise we found that like in wild type germ cells,

RAD-51 was mainly localized in the cytoplasm of clk-2 (tm1528)

germ cells and did not form nuclear foci (Figure 6A, Video S4,

Table 1). In contrast, clk-2 (mn159) shifted to the restrictive

temperature of 25uC at the L1 or the L4 stage accumulated RAD-

51 foci (Figure 6A, Video S6, Table 1) while clk-2 (qm37) formed

fewer foci (Video S5, Table 1). Thus RAD-51 foci accumulate mostly

Figure 5. clk-2 is required for germ cell proliferation. A) Fertility
and Pvl phenotype of various clk-2 mutants. clk-2 (mn159) and (qm37)
were grown at 25uC, clk-2 (tm1528) was grown at 20uC. B) Nomarski DIC
images of adult mitotic germlines. The distal tip cell is to the right of each
germline. Arrowheads depict individual germ cell nuclei which are
enlarged in clk-2 (tm1528), clk-2 (qm37) and in irradiated wild type animals.
C) Number of germ cell nuclei per gonad arm in clk-2 (tm1528) (n = 10) and
wild type (n = 10) worms. Worms were synchronised by L1 starvation,
transferred to seeded NGM plates and grown at 20uC, fixed at indicated
time points and stained with DAPI. Error bars represent SD. D). Images of
gld-2 (q497) gld-1 (q485) (left) and gld-2 (q497) gld-1 (q485); clk-2 (tm1528)
(right) gonads stained with DAPI. Loss of CLK-2 results in a reduction of
mitotic germ cells. Worms were grown at 20uC. Scale bar: 10 mm.
doi:10.1371/journal.pgen.1000451.g005
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in the weak clk-2 (mn159) allele as reported previously [22], while less

foci formation is observed in clk-2 (qm37) and only very few RAD-51

foci can be found in clk-2 (tm1528) (Table 1).

The defect in RAD-51 foci formation in clk-2 (tm1528) might be

due to a cell cycle arrest outside of S-phase or due to a failure to

process DNA double strand breaks, which is needed for RAD-51

focus formation. To test whether DNA double stand break

processing is defective in clk-2 (tm1528) mutants we tested whether

focus formation occurred after inducing DNA double strand

breaks by exposing worms to ionizing irradiation. Irradiation-

induced RAD-51 focus formation indicated that double strand

break processing occurs normally in clk-2 (tm1528) worms

(Figure 6B). Summing up, these results indicate that the clk-2

(tm1528) deletion does not lead to excessive DNA damage and that

CLK-2 is not needed for DNA double strand break processing.

To further analyse the cell cycle arrest associated with CLK-2

depletion, we asked if clk-2 (tm1528) germ cells arrest in a distinct

cell cycle stage. To facilitate this analysis we first established G2

Figure 6. RAD-51 foci do not accumulate in clk-2 (tm1528) germlines. A) Representative images of fixed germlines from adult worms stained
with anti-RAD-51 antibody (red) and DAPI (blue). Wild type and clk-2 (tm1528) were analysed after growth at 20uC, clk-2 (mn159) and (qm37) were
analysed 24 hours after reaching the L4 stage upon shifting to 25uC at the L1 stage. Scale bar: 10 mm. Representative inserts depict mostly
cytoplasmic RAD-51 staining in wild type and clk-2 (tm1528) germlines. B) RAD-51 nuclear foci formation in wild type and clk-2 (tm1528) mitotic
germlines upon ionising irradiation.
doi:10.1371/journal.pgen.1000451.g006
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and M phase cell cycle markers. Prior to mitotic entry Cdk1 is kept

inactive by Tyr-15 phosphorylation [34,35]. An antibody

recognizing Tyr-15 phosphorylation of mammalian Cdk1 cross

reacts with the corresponding phospho-epitope of C. elegans NCC-

1/CDK-1. Phospho-NCC-1/CDK-1 can be detected until late

prophase in worm embryonic divisions [36]. To confirm that

phospho-NCC-1 is indeed indicative of G2/M arrested germ cells,

we irradiated wild type germlines and found that all germ cells

arrested in G2 with high levels of NCC-1P-Tyr15 (Figure 7A). We

observed NCC-1 Tyr-15 phosphorylation in only few wild type

and clk-2 (mn159) mitotic germ cells but found that all clk-2

(tm1528) cells and clk-2 (qm37) cells showed high levels of NCC-1

Tyr-15 phosphorylation even in the absence of ionizing irradiation

(Figure 7A).

The clk-2 prophase arrest phenotype might be caused by a

direct prophase defect or alternatively by replication defects which

could trigger a checkpoint-dependent late G2/M cell cycle arrest.

To assess these possibilities, we depleted atl-1/chk-1 in clk-2

(tm1528) worms. The efficiency of atl-1/chk-1 (RNAi) depletion

was confirmed by observing germ cell micronuclei [22] and by the

embryonic lethality of the progeny of RNAi depleted wild type

worms (data not shown). We found that all cells of clk-2 (tm1528)

atl-1/chk-1 (RNAi) germlines were NCC-1 Tyr-15 phosphoryla-

tion-positive (Figure 7B). We therefore conclude that cell cycle

arrest is unlikely to be mediated by activation of the ATL-1/CHK-

1 DNA damage checkpoint (Figure 7B).

To further analyze the cell cycle stage of clk-2 (tm1528) germ

cells we also used antibodies against phosphorylated histone H3

(P-H3). In C. elegans P-H3 staining can be observed in cells from

prophase/early prometaphase to late telophase [37]. When wild

type gonads were stained with anti-P-H3 antibody only 2–5 nuclei

per gonad arm were stained and all stained cells displayed a

metaphase-like morphology. While we observed the same

phenotype for clk-2 (mn159) worms grown at 25uC, all germ cells

were P-H3 positive in clk-2 (qm37) worms propagated at 25uC and

in clk-2 (tm1528) worms (Figure 7C). However, P-H3 positive cells

did not show a metaphase-like morphology. Rather, in most nuclei

chromosomes appear to be partially condensed but not aligned at

the metaphase plate suggesting a prophase or very early pro-

metaphase arrest. This arrest neither depends on atl-1/chk-1

(Figure 7D), nor on cep-1 (Figure S4). Thus while cep-1 and atl-1/

chk-1 are required for delaying cell cycle progression in clk-2

embryos, the germ cell cycle arrest observed in clk-2 (tm1528)

mutants does not depend on either of these genes.

Given the early prophase arrest we also assessed centrosome

behaviour in clk-2 (tm1528) germ cells. Centrosome duplication

occurs during S-phase and centrosomes split during late G2 phase.

In prophase, centrosome maturation is an essential prerequisite for

the assembly of the mitotic spindle, and centrosomes can be

visualized through the accumulation of a and c-tubulin (for review

see, [38]). Increased a-tubulin nucleation is followed by the

formation of mitotic spindles [38]. When gonads were immuno-

stained for c-tubulin [39] to label centrosomes we found that

centrosome duplication occurs normally in clk-2 (tm1528) worms

(Figure 8A). Furthermore, double immunostaining for c-tubulin

and a-tubulin (Figure 8B) showed that several wild type germ cells

exhibited accumulated a-tubulin, indicative of centrosome matu-

ration and imminent spindle formation. In contrast, no a-tubulin

accumulation and no spindle formation could be observed in clk-2

(tm1528) germ cells, although germ cells with duplicated and

separated centrosomes were present (Figure 8B). These results

raise the possibility that the prophase-like cell cycle arrest

phenotype of clk-2 (tm1528) germ cells might be due to the

activation of the spindle assembly checkpoint, which responds to

defects in spindle formation and kinetochore-microtubule attach-

ment and blocks anaphase progression until correct bi-orientation

has occurred [40]. We therefore tested if the RNAi depletion of

the C. elegans MAD1 spindle checkpoint gene ortholog mdf-1 [41]

rescues the cell cycle arrest phenotype observed in clk-2 (tm1528)

worms. Even though both wild type and clk-2 (tm1528) strains

displayed the typical previously described pre-meiotic like

morphology of mdf-1 (RNAi) germ cells [41] (Figure 8C), mdf-1

(RNAi) clk-2 (tm1528) germ cells still uniformly stained P-H3

positive (Figure 8C). In summary, our analysis of clk-2 germlines

suggests that clk-2 is essential for cell proliferation and that cells

deficient in CLK-2 arrest in prophase without forming a mitotic

spindle. The CLK-2 cell cycle arrest phenotype is independent of

DNA damage and spindle checkpoint activation.

Discussion

In aiming to define the developmental and cell cycle-related

functions of clk-2, we found multiple roles of this conserved gene

(summarized in Table 2). Aided by C. elegans cell lineage analysis,

we found spindle orientation defects that can lead to cell fate

transformations. Furthermore, dsDNA breaks accumulate in clk-2

point mutations and embryonic cell cycle progression is retarded

starting from the very first cell division. During early embryonic

cell divisions the CLK-2 cell cycle delay can be rescued by

depleting the ATL-1/CHK-1 pathway. CEP-1 accumulates in clk-

2 mutants and deletion of cep-1 partially rescues the cell cycle delay

associated with clk-2 point mutations. Analysis of the clk-2 (tm1528)

deletion reveals that these worms progress through embryogenesis

(due to maternal rescue), but then halt cell cycle progression in the

germline. This arrest phenotype, which occurs at an early

prophase-like stage, appears to be independent of DNA damage

and spindle checkpoint activation.

clk-2 Mutant Worms Do Not Phenocopy PIKK Depletion
It has recently been shown that CLK-2/TEL2 interacts with all

PIKKs in budding and fission yeast as well as in mammals

[8,9,42,43]. CLK-2/TEL2 depletion leads to reduced levels of

PIKKs, and using CLK-2/TEL2 mouse knockout lines it was

shown that the half life of PIKKs is reduced in those cell lines [9].

This finding together with the notion that PIKK dependent

checkpoint signalling is reduced in cells lacking CLK-2/TEL2 led

to the hypothesis that CLK-2/TEL2 might function in checkpoint

signalling by regulating PIKK kinase levels. Given the conserva-

Table 1. Quantification of RAD-51 foci in wild type and clk-2
germlines.

Genotype
Temperature
raised at

Number of RAD-51
foci/100 nuclei

wild type 20uC 2+/21

clk-2 (mn159) 20uC 5.7+/22.5

clk-2 (qm37) 20uC 4.5+/21.8

clk-2 (tm1528) 20uC 3.3+/22.8

clk-2 (mn159) 25uC shifted as L1 106.1+/230.1

clk-2 (qm37) 25uC shifted as L1 24.3+/213.6

clk-2 (mn159) 25uC shifted as L4 43.1+/213.6

clk-2 (qm37) 25uC shifted as L4 20.0+/28.0

Errors represent SD, for each genotype and condition tested 20 mitotic germ
cells close to the distal tip cells were counted in 10 animals each.
doi:10.1371/journal.pgen.1000451.t001
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Figure 7. clk-2 (tm1528) and clk-2 (qm37) mitotic germ cells arrest in a distinct cell cycle stage. A) CDK-1/NCC-1 P-Tyr15 staining. Germlines
of wild type, clk-2 (tm1528), as well as clk-2 (qm37) and clk-2 (mn159) (shifted to 25uC at the L1 stage) were stained with NCC-1 P-Tyr15 antibody (red)
and DAPI (blue). B) CDK-1/NCC-1 P-Tyr15 staining after atl-1/chk-1 RNAi depletion in wild type and clk-2 (tm1528) worms C) PhosphoH3 staining.
Germlines of wild type and clk-2 (mn159, qm37 and tm1528), propagated as described in A) were stained with phospho-H3 antibody (red) and DAPI
(blue). D) Phospho-H3 staining of wild type and clk-2 (tm1528) depleted of atl-1/chk-1 by RNAi. Efficiency of atl-1/chk-1 RNAi depletion was confirmed
by observing micronuclei and by scoring dead embryos in the next generation [22] (data not shown). For each representative picture shown in
Figure 7 at least 15 germ lines were analysed.
doi:10.1371/journal.pgen.1000451.g007

C. elegans CLK-2/TEL2 Cell Cycle Defects

PLoS Genetics | www.plosgenetics.org 10 April 2009 | Volume 5 | Issue 4 | e1000451



tion of the CLK-2 PIKK interaction it is likely that this interaction

also occurs in C. elegans, albeit we could not confirm this since we

were unable to generate specific CLK-2 and ATR antibodies

suitable for immunoprecipitation from worm extracts (data not

shown). Nevertheless, our genetic results suggest that, at least in C.

elegans, CLK-2 depletion does not phenocopy PIKK depletion

phenotypes (summarized in Table 2). atl-1/ATR and clk-2

mutations have opposite phenotypes during embryonic develop-

ment and a clk-2 deletion, unlike atl-1 depletion [22], does not lead

to mitotic germ cell catastrophe. Concerning ATM, this worm

PIKK is primarily involved in responding to UV-induced DNA

damage where, like CLK-2 it is required for UV-induced

apoptosis [44]. Furthermore, an atm-1 deletion only shows weak

defects in responding to ionizing irradiation [44], unlike clk-2

(qm37) and clk-2 (mn159) point mutations. Similarly, clk-2 deleted

worms do not resemble worms depleted for tor-1, which arrest in

Figure 8. Centrosome duplication occurs but spindle formation is abolished in clk-2 (tm1528). A) Images of fixed mitotic germlines of
adult worms stained with c-tubulin (red) and DAPI (blue). Arrowheads indicate centrosomes. Germ cells with one as well as two centrosomes can be
found as indicated in the representative magnified panels. B) Germlines were stained for a-tubulin (green), and c-tubulin (red) and DAPI (blue). In
contrast to wild type, no mitotic spindles can be observed in clk-2 (tm1528) as indicated in the representative magnified panels. C) mdf-1 (RNAi) does
not abolish phospho-H3 staining (red) of clk-2 germlines. mdf-1 RNAi depletion was confirmed by the premeiotic like appearance of germ cells (data
not shown) [41]. For each representative picture shown in Figure 8 at least 15 germ lines were analysed.
doi:10.1371/journal.pgen.1000451.g008
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the L3 larval stage and show concomitant gonadal and intestinal

degradation [45]. It is possible that partial tor-1 depletion which

results in a slow growth phenotype and enhanced longevity [46],

overlaps with the clk-2 (qm37) phenotypes that include a slow

growth and a relatively weak longevity phenotype [6,7,21].

However, the enhanced life span of clk-2 (qm37) worms is rather

weak and clk-2 (tm1528) life span is dramatically reduced

compared to wild type (data not shown). Our evidence suggesting

that CLK-2/TEL2 might not predominately act by regulating

PIKK stability is also supported by recent evidence from the

budding yeast system. While steady state levels of the budding

yeast ATR homologue TEL1 are somewhat reduced in tel2-1

mutants, it was shown that TEL2 is required for the loading of

TEL1 to sites of DNA damage [47]. In addition, the finding that

TEL2 binding to the budding yeast MEC1 ATM like kinase is lost

in tel2-1 mutants while MEC-1 remains functionally intact [48],

points towards the possibility that CLK-2 be able to regulate ATM

and ATR PIKKs by mechanisms not directly related to TEL2

PIKK interaction.

Is CLK-2 Required for DNA Replication in the Embryo?
We observed that cell cycle progression in early clk-2 mutant

embryos is generally delayed and is associated with DNA damage

accumulation (for summary see Table 2). The clk-2 cell cycle delay

is partially suppressed by atl-1/chk-1 and cep-1 deletion. These

results are surprising in the light of previous reports suggesting that

CLK-2 and ATL-1 might act together in C. elegans DNA damage

response signalling in germ cells [22]. These two proteins might

thus act in different pathways during C. elegans embryogenesis. Our

results suggest that ATL-1 is active in clk-2 ts mutants. Thus even if

there is a reduced level of ATL-1 protein in clk-2 mutant worms,

enough ATL-1 is left to cause a cell cycle delay.

In embryos depleted for DNA replication factors cell cycle

progression is delayed starting from the very first cell cycle and

upon division of the zygote the posterior daughter, referred to as

the P1 cell, is particularly strongly affected [49]. This delay

depends on the ATL-1/CHK-1 dependent DNA damage

checkpoint. The relatively weak replication defect of CLK-2 could

be due to partial loss of function in the clk-2 (mn159) or (qm37)

point mutants or due to CLK-2 being required for faithful DNA

replication rather than replication per se.

Our genetic analysis implicates the C. elegans p53-like gene cep-1 in

the cell cycle delay associated with clk-2 mutants during embryonic

cell divisions. Interestingly, deleting cep-1 alleviates the cell cycle

delay of clk-2 mutants but does not have an effect on the delay caused

by div-1 mutants. Thus distinct DNA replication defects caused by

div-1 and clk-2 depletion might lead to differential checkpoint

activation. Our results implicate cep-1 in an embryonic DNA

integrity checkpoint. Future studies will be required to address how

cep-1 can slow embryonic cell cycle progression and which exact

replication defects trigger CEP-1 accumulation.

CLK-2 Is Required for C. elegans Germ Cell Cycle
Progression

Despite a possible role of clk-2 in embryonic DNA replication, clk-2

(tm1528) germ cells still undergo replication and do not display overt

signs of genome instability. Analysis of clk-2 (tm1528) deletion mutants

reveals that these worms progress through embryogenesis due to

maternal rescue but then halt cell cycle progression in the germline.

This arrest is distinct from the cell cycle arrest induced by DNA

damage and does not require the ATL-1/CHK-1 DNA damage

checkpoint and CEP-1. Similarly, this arrest does not require the

spindle checkpoint. It will be interesting to assess if the cell cycle arrest

is due to the requirement of clk-2 in G2 cell cycle progression or due

to the activation of a further checkpoint such as the p38 stress

activated checkpoint [50]. clk-2 (tm1528) worms arrest in a phospho-

histone H3 positive pro-metaphase like stage with partially condensed

chromosomes, while DNA damage leads to a G2 arrest characterized

by high levels of phosphorylated CDK-1 Tyr 15 and the absence of

phosphorylated histone H3 in wild type worms. Interestingly, CDK-1

Tyr 15 is still phosphorylated in these arrested germ cells, indicating

that these cells arrest with low CDK-1 activity. Thus our data suggest

that there might be an uncoupling of mitotic events in clk-2 (tm1528)

germ cells. Clk2/Tel2 has also been shown to be required for cellular

proliferation in mouse embryonic fibroblasts. The arrest after CLK-

2/TEL2 depletion is not uniform in TEL2 deficient MEFs. These

cells arrest with an increased proportion of cells with a 2N or 4N

DNA content, and a reduced S and M phase index, and were

reported to show a ‘senescence-like flattened morphology’ [8]. Thus

CLK-2/TEL2 might have additional functions in mammalian cells

that are not directly related to cell cycle regulation. Alternatively, a

cell cycle regulatory function of CLK-2/TEL2 might not be

uniformly needed in all cell types.

Our analysis of clk-2 mutant phenotypes reveals distinct CLK-2

functions in embryonic cell cycle progression and in germ cell

cycle progression. The clk-2 (tm1528) null allele results in the most

severe germline phenotype. At present we do not know if clk-2 ts

alleles are completely inactive when shifted to the restrictive

temperature during early embryonic cell cycle progression.

Indeed, as is the case for the germ cell cycle arrest phenotype, a

Table 2. Summary of clk-2 phenotypes.

clk-2 (mn159) 20uC clk-2 (mn159) 25uC clk-2 (qm37) 20uC clk-2 (qm37) 25uC clk-2 (tm1528) atl-1

DNA damage response
signalling

defective defective defective defective defective defective

RAD51 focus accumulation
embryo

wild type
(nearly no foci)

elevated wild type elevated n.d n.d

RAD51 focus accumulation
germ line

slightly elevated (nearly
no foci)

elevated slightly elevated moderately elevated wild type elevated

Embryonic cell cycle timing wild type delayed wild type delayed wild type advanced

ABar spindle orientation wild type partially defective wild type partially defective n.d n.d

Germ cell cycle progression wild type wild type wild type defective defective defective

clk-2 DNA damage signalling defects were described previously [5] and (Arno Alpi and Sandra Moser, unpublished observations). n.d. not documented but presumed to
be wild type.
doi:10.1371/journal.pgen.1000451.t002
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complete inhibition of clk-2 might result into earlier or more severe

defects during embryonic cell divisions potentially resembling the

clk-2 (tm1528) germ cell cycle arrest phenotype. We extensively

tried RNAi to completely inhibit clk-2 during embryogenesis using

both RNAi injection and feeding procedures but never found a

phenotype stronger than the phenotype of either clk-2 ts allele

propagated at 25uC (data not shown). clk-2 RNAi injections did

not result in any phenotype [5], and only the RNAi feeding

construct introduced by the Nilsen laboratory worked for RNAi

feeding. Only, when we analyzed clk-2 mutants kept at 25.5uC
combined with clk-2 (RNAi) we observed more severe defects as

seen in clk-2 (qm37) and clk-2 (mn159) mutants at the restrictive

temperature. Under these conditions we observe a further delay of

cell cycle progression (particularly in the P lineage) as compared to

clk-2 ts mutants kept at the restrictive temperature (Figure S5). This

delay appears as atl-1 independent. ATL-1 dependence was,

however, difficult if not almost impossible to study due to severely

abnormal cell divisions (data not shown), that often resulted in cell

divisions where only one daughter cell received an intact nucleus.

Even without atl-1 (RNAi) treatment, nuclei often appeared as

disorganized and at times fragmented under DIC optics (Figure

S5), but we never observed uniform defects starting from the very

first cell cycle, further complicating a detailed analysis (data not

shown). Obviously, these findings will raise the question as to how

CLK-2 might affect early embryonic cell divisions, which will be

the subject of further studies. These studies will however, require

new clk-2 alleles as we currently can not rule out the possibility of

off target effects associated with clk-2 RNAi that might

unspecifically enhance clk-2 mutant defects.

At present, we can only speculate if the developmental, cell cycle

related and DNA damage response pathway defects associated with

clk-2 mutations are due to a single molecular defect. We, indeed,

favour an alternative model according to which CLK-2 affects

multiple molecular processes. Our analysis which is based on an

allelic series of clk-2 mutants with increasing strength clearly

indentifies distinct functions associated with CLK-2 during

embryonic and germ cell cycle progression as well as during

embryonic development. It was recently shown that TEL2/CLK-2

belongs to the ARM repeat superfamily of structurally related

proteins [47] (Alexander Schleiffer, personal communication).

Tandem ARM repeats fold together into a superhelical fold to

form a surface for protein–protein interactions (for review see,

[51,52]). ARM repeat proteins are structurally related to proteins

containing tandem HEAT motifs [51]. The demonstrated interac-

tions between Tel2/CLK-2 and the HEAT repeat containing

PIKKs suggests that TEL2/CLK-2 might act as an adaptor protein

that impinges on multiple signalling pathways besides PIKKs

through ARM/HEAT domain mediated protein-protein interac-

tions. Our dissection of CLK-2 phenotypes in C. elegans is likely to

stimulate future studies in mammalian cells addressing develop-

mental and cell cycle-related functions of CLK-2/TEL-2.

Material and Methods

Strains
C. elegans strains were maintained at 20uC unless otherwise

stated as described [53]. The following strains were used: clk-2

(mn159) [5], clk-2 (qm37) [54], cep-1 (lg12501) [55], gld-2 (q497) gld-

1(q485) (gift of Tim Schedl), div-1 (or148) [49], clk-2 (tm1528) was

generated and kindly provided by Shohei Mitani. The clk-2

(tm1528) deletion strain was backcrossed 5 times to reduce

background mutations and balanced with hT2 [bli-4 (e937) q418]

by crossing to JK2689 [pop-1 (q4645) dpy-5 (e61)/hT2 [bli-4 (e937)

q418] to generate TG56 clk-2 (tm1528)/hT2 [bli-4 (e937) q418].

Further strains used were TG58 cep-1 (lg12501); clk-2 (qm37),

TG57 cep-1 (lg12501); clk-2 (mn159), TG59 cep-1 (lg12501); div-1

(or148), TG60 gld-2 (q497) gld-1 (q485)/hT2 [bli-4 (e937) q418]; clk-

2 (tm1528)/hT2 [bli-4 (e937) q418].

RNAi Analysis
RNAi was performed by using the feeding procedure [56].

RNAi-expressing bacteria were seeded on NGM agar plates

containing 3 mM IPTG and 50 mg/ml ampicillin, and worms

were added as L4 larvae the following day. Animals were fed

with bacteria carrying an empty L4440 feeding vector [57] or

atl-1, chk-1 [15] and mdf-1 feeding (MRC geneservice) constructs.

Phenotypes were observed in F1 animals. F1 animals in the L4

stage were placed onto RNAi plates. F2 embryos were analysed

after 24 h of incubation, and F1 animals were analysed after 48 h

to observe germline phenotypes.

Germ Cell Counts
Worms at the indicated time post-L1 were stained by DAPI using

the following procedure. Animals were transferred to 100 ml M9

buffer and washed 36with M9 buffer and resuspended in 1 ml 96%

ethanol containing DAPI (200 ng/ml) for 1 h and rehydrated with

1 ml M9 buffer for 1 h. Worms were transferred into 3 ml of

mounting solution (90% glycerol, 20 mM Tris pH 8.0, 1 mg/ml p-

phenylenediamine) and mounted on slides. Germ cells were

identified by nuclear morphology according to DAPI staining.

Immunostaining
For the antibody staining, one day post-L4 adult gonads (for clk-

2 (tm1528) 48 h post L4) were dissected in EBT (25 mM HEPES

pH 7.4, 0.118 M NaCl, 48 mM KCl, 2 mM CaCl2, 2 mM

MgCl2, 0.1% Tween 20) on a slide coated with poly-lysine (Sigma)

and freeze-cracked. The slides were transferred to 220uC cold

methanol, for 5 minutes and washed three times in PBS for

10 minutes at RT. Slides were blocked for 30 minutes in 0.5%

BSA in PBST (PBS, 0.05% Triton-X100) and incubated overnight

at 4uC with the primary antibody (1/1000 in 3% BSA in PBST).

The next day, the gonads were washed three times in PBST each

for 5 minutes at RT and incubated with the secondary antibody

for 1 hour at room temperature. Gonads were washed three times

in PBST each for 10 minutes and mounted with 5 ml mounting

solution containing 0.5 mg/ml DAPI. Antibodies were used at the

following dilutions: anti-a-tubulin antibody DM1A (Sigma) was

used at 1/200, anti-c-tubulin 1/5000 (gift of Carrie Cowen, IMP

Vienna), anti PH3 1/400 (Upstate), anti RAD-51 1/200 [25], anti-

Cdk1 1/100 (pTyr15, Calbiochem). Secondary antibodies used

were anti-rabbit cy3 and anti-mouse FITC (1/1000, Jackson).

4-D Microscopy, Lineage Analysis, and Cell Cycle Timing
Methods for 4D-microscopy were described in [13]. Modifica-

tions of the 4D-microscope system are described in [31]. Embryos

were recorded at 25uC and stacks of 25 DIC-images, viewing

different focal planes of the developing embryo, were taken every

35 sec. The 4D-recordings were analysed using the SIMI Biocell

program (SIMI Reality Motion Systems, Unterschleissheim,

Germany; http://www.simi.com) [31,13]. Cell cycle timing was

determined by measuring the time between the two mitotic

divisions (completion of cytokinesis).

Fluorescence Microscopy
Deltavision microscopy was used to examine germlines using

either a 606 or a 1006, UPlanSApo objective (Olympus; NA

1.40), Soft-WoRx software (Applied Precision), and a CoolSnap
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HQ (Photometrics) OCD camera. Three-dimensional datasets

were computationally deconvolved, and regions of interest were

projected onto one dimension.

Western Blotting
Protein samples were resolved by SDS-PAGE analysis and

transferred to polyvinylidine difluoride membrane (PVDF, Milli-

pore). Membranes were blocked in 5% powdered milk, diluted in

PBS Tween, then probed with primary antibody diluted in

blocking solution for 3 hours. Primary antibodies were anti-CEP-1

(1/100 [55] ) and anti-CLK-2 (1/1000 gift of S. Boulton).

Antibody binding was detected using anti-rabbit or anti-goat IgG

coupled to horse radish peroxidase (Jackson) and proteins were

visualized using ECL (Amersham) and autoradiography.

Supporting Information

Figure S1 A) clk-2 gene structure and mutant alleles. B) Western

blotting with a CLK-2 specific antibody failed to detect any

protein in clk-2 (tm1528). The asterisk indicates a non-specific

band that cross reacted with the CLK-2 antibody. Protein extracts

were prepared from adult clk-2 (tm1528) worms.

Found at: doi:10.1371/journal.pgen.1000451.s001 (1.81 MB EPS)

Figure S2 cep-1 (lg12501) partially suppresses the slow growth

phenotype of clk-2 (mn159) and clk-2 (qm37). Adults were allowed

to lay embryos for 4 h and the relative proportion of animals in

L2, L3 and L4 larval stages was determined after 56 h at 20uC (A)

or 48 h at 23uC (B). Error bars represent SD and are derived from

three independent measurements.

Found at: doi:10.1371/journal.pgen.1000451.s002 (1.37 MB EPS)

Figure S3 Germ cell proliferation is reduced in clk-2 (qm37)

worms. Representative images of dissected germlines stained with

DAPI. Worms were shifted to 25uC at the L4 stage and fixed and

stained with DAPI at the indicated time points.

Found at: doi:10.1371/journal.pgen.1000451.s003 (6.59 MB EPS)

Figure S4 CEP-1 does not affect the germ cell cycle arrest

associated with clk-2 mutations. Germlines of cep-1 (lg12501), cep-1

(lg12501); clk-2 (qm37) and cep-1 (lg 12501); clk-2 (tm1528) mutants

were propagated as described in Figure 7A and were stained with

phospho-H3 antibody (red) and DAPI (blue). Scale bar: 10 mm.

Found at: doi:10.1371/journal.pgen.1000451.s004 (2.70 MB EPS)

Figure S5 clk-2 (RNAi) phenotypes in clk-2 (mn159) and clk-2

(qm37) mutants. A) representative pictures as described in

Figure 1C. B) lineage analysis as described in Figure 1B.

Found at: doi:10.1371/journal.pgen.1000451.s005 (14.85 MB

EPS)

Table S1 Cell cycle timing of all cell cycles recordings depicted

in Figures 1 and 2. Errors represent SEM, n = 5.

Found at: doi:10.1371/journal.pgen.1000451.s006 (0.08 MB

DOC)

Table S2 AB and P1 cell cycle timing of wild type and clk-2

mutant worms with and without div-1 (RNAi) treatment. S-phase

length was determined as the period of time between cytokinesis

and nuclear envelope breakdown as described [15]. M-phase

length was determined as the time between nuclear envelope

breakdown and cytokinesis as described [15]. Errors represent

SEM, n = 6.

Found at: doi:10.1371/journal.pgen.1000451.s007 (0.03 MB

DOC)

Video S1 Video depicting early embryonic development of wild

type embryo shown in Figure 4.

Found at: doi:10.1371/journal.pgen.1000451.s008 (0.44 MB

MPG)

Video S2 Video depicting early embryonic development clk-2

(mn159) embryo shown in Figure 4.

Found at: doi:10.1371/journal.pgen.1000451.s009 (0.43 MB

MPG)

Video S3 Video depicting early embryonic development clk-2

(qm37) embryo shown in Figure 4.

Found at: doi:10.1371/journal.pgen.1000451.s010 (0.56 MB

MPG)

Video S4 Video scanning through Z-stacks of representative

picture clk-2 (tm1528) shown in Figure 6.

Found at: doi:10.1371/journal.pgen.1000451.s011 (0.20 MB

MPG)

Video S5 Video scanning through Z-stacks of representative

picture clk-2 (qm37) shown in Figure 6.

Found at: doi:10.1371/journal.pgen.1000451.s012 (0.25 MB

MPG)

Video S6 Video scanning through Z-stacks of representative

picture clk-2 (mn159) shown in Figure 6.

Found at: doi:10.1371/journal.pgen.1000451.s013 (0.31 MB

MPG)
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