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Abstract

The assembly of the mitotic centromere has been extensively studied in recent years, revealing the sequence and regulation
of protein loading to this chromosome domain. However, few studies have analyzed centromere assembly during
mammalian meiosis. This study specifically targets this approach on mouse spermatocytes. We have found that during
prophase I, the proteins of the chromosomal passenger complex Borealin, INCENP, and Aurora-B load sequentially to the
inner centromere before Shugoshin 2 and MCAK. The last proteins to be assembled are the outer kinetochore proteins
BubR1 and CENP-E. All these proteins are not detected at the centromere during anaphase/telophase I and are then
reloaded during interkinesis. The loading sequence of the analyzed proteins is similar during prophase I and interkinesis.
These findings demonstrate that the interkinesis stage, regularly overlooked, is essential for centromere and kinetochore
maturation and reorganization previous to the second meiotic division. We also demonstrate that Shugoshin 2 is necessary
for the loading of MCAK at the inner centromere, but is dispensable for the loading of the outer kinetochore proteins BubR1
and CENP-E.

Citation: Parra MT, Gómez R, Viera A, Llano E, Pendás AM, et al. (2009) Sequential Assembly of Centromeric Proteins in Male Mouse Meiosis. PLoS Genet 5(3):
e1000417. doi:10.1371/journal.pgen.1000417

Editor: Gregory P. Copenhaver, The University of North Carolina at Chapel Hill, United States of America

Received December 3, 2008; Accepted February 10, 2009; Published March 13, 2009

Copyright: � 2009 Parra et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants BFU2008-00300, BFU2006-06655 and SAF-2008-03172 from Ministerio de Ciencia e Innovación. RG has been
supported by a Fundación Francisco Cobos and Ministerio de Ciencia e Innovación predoctoral fellowships. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mayte.parra@uam.es

Introduction

Accurate chromosome segregation in mitosis is crucial to

maintain a diploid chromosome number. Errors in chromosome

segregation result in aneuploid daughter cells which are prone to

become malignant. The centromere is the chromosome domain

that directs this segregation process since it is involved in relevant

events such as sister-chromatid cohesion, the spindle assembly

checkpoint (SAC), the attachment to spindle microtubules (MTs)

and chromosome movements [1–4].

The centromere is structurally divided into the kinetochore and

the inner centromere domains. The kinetochore is a proteinaceus

structure at the centromere surface mostly involved in the

attachment of spindle MTs, chromosome movements and SAC

regulation [2,3,5]. In vertebrates, this domain is subdivided into

three distinct regions: the inner, the central and the outer

kinetochore plates [2,3,6]. The inner kinetochore plate is formed

by the chromatin subjacent to the kinetochore, in which histone

H3 is replaced by CENP-A [7,8], and additional constitutive

proteins that appear at kinetochores throughout the cell cycle. On

the other hand, the outer kinetochore plate and the fibrous corona,

detected only in prometaphase, are mainly composed of MT

motor proteins, such as CENP-E and cytoplasmic dynein, as well

as SAC proteins, as for instance Bub1, BubR1, Mad1 and Mad2

[2,3,5,6].

The inner centromere domain is the region spanning between

sister kinetochores. Several proteins with different functions have

been localized in this region [9]. Some proteins like CENP-B are

constitutive, while many others are incorporated to the inner

centromere at specific cell cycle stages. This is the case for the

chromosomal passenger complex (CPC) proteins INCENP, the

kinase Aurora-B, Survivin and Borealin/Dasra. The CPC has

been involved in many different functions such as chromatin

modifications (through the phosphorylation of histone H3),

correction of kinetochore attachment errors, the SAC, the

assembly of a stable bipolar spindle, and completion of cytokinesis

[9,10]. Another group of inner centromere proteins are the

cohesin complexes that maintain sister chromatids tightly

associated until their segregation in anaphase [11,12]. Cohesin

complexes are located between sister chromatids along their entire

length, but interestingly, during mitosis most of them are released

from chromosome arms during prophase/prometaphase [13],

while the centromeric ones are protected until the metaphase/

anaphase transition [14]. It has been proposed that two proteins

placed at the inner centromere, shugoshins SGOL1 and/or

SGOL2, protect centromeric cohesin complexes from cleavage by

separase until the onset of anaphase [15,16]. Additionally, the MT

depolymerizing kinesin MCAK is also found at this domain [17–

19] and is involved in the correction of improper kinetochore-MTs

attachments [17,20].
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The precise sequence of loading of proteins to the centromere

and the kinetochore is largely unknown. While constitutive

proteins of the inner kinetochore are present all along the cell

cycle, some of the inner centromere proteins are loaded during

prophase and most outer kinetochore proteins are assembled

during prometaphase after nuclear envelope breakdown. There-

after, most of these proteins are released from the centromere and

the kinetochore after the inactivation of the SAC during anaphase

[21,22]. CENP-A has a crucial role in centromere specification

and kinetochore assembly since most kinetochore proteins need,

either directly or indirectly, its presence to be properly

incorporated to the kinetochore [3,22,23]. In this context,

CENP-A is needed for the incorporation of the constitutive inner

kinetochore proteins CENP-C, -H and -I, at least in mouse and

Caenorhabditis elegans [24]. These constitutive proteins are in turn

needed for the loading of the outer kinetochore proteins CENP-E,

CENP-F and SAC proteins [22,24,25]. These outer kinetochore

proteins also present a precise loading sequence. For instance,

Bub1 and BubR1 are necessary for the correct loading and

function of CENP-E and other SAC proteins [26,27].

Kinetochore proteins are also needed to recruit proteins to the

inner centromere. There is an ongoing controversy over whether

CENP-A is required for the localization of Aurora-B. While some

studies support that Aurora-B needs CENP-A for its loading [28–

30], other reports suggest that this loading is independent of

CENP-A [31]. CENP-A also seems to condition the localization of

MCAK [30]. Additionally, Bub1 is necessary for the accurate

localization of MCAK [30], the stability and correct positioning of

CPC, and the binding of Shugoshin to the inner centromere [32].

Regarding the CPC, different studies have revealed that Borealin,

INCENP, Aurora-B and Survivin form a complex in which each

subunit seems to be necessary for the loading of the others [9], and

the immunodepletion of any of them caused the removal of the

others [33]. Borealin might be the key protein, since it can bind

DNA in vitro [31] and Dasra-A, the Borealin-related protein in

Xenopus, is necessary for the loading of the other CPC proteins

[34]. However, other proteins like INCENP, which can bind the

histone variant H2Az [35], or Aurora-B, which may be recruited

at the centromere through the phosphorylation of CENP-A by

Aurora-A [28], may be also important for CPC loading.

Alternatively, it has also been suggested that SGOL2 is needed

for the correct loading of the CPC proteins in yeast since, in its

absence, Aurora-B can not be targeted to the centromeres [36,37].

Moreover, SGOL2 is needed for the loading of MCAK at

centromeres in human cells [38].

The diverse pathways leading to the recruitment of outer

kinetochore and inner centromere proteins have been mainly

studied in mitotic chromosomes, whereas little information is

available regarding the assembly of centromeres and kinetochores

during mammalian meiosis. Previous reports have shown that in

male mouse meiosis, INCENP is loaded at the pericentromeric

chromatin before Aurora-B [39], and that MCAK is loaded after

Aurora-B [19]. In this study, we have analyzed the loading

sequence of the inner centromere proteins Borealin, INCENP,

Aurora-B, SGOL2, and MCAK, and the outer kinetochore

proteins CENP-E and BubR1, during both male mouse meiotic

divisions. Additionally, we have used a knockout mouse for Sgol2 to

analyze the influence of this protein in the loading of MCAK and

the outer kinetochore proteins CENP-E and BubR1. Our results

lead us to present a working model for the sequential assembly of

centromere and kinetochore proteins during meiosis.

Results

Sequential Loading of CPC Proteins
The constitutive kinetochore proteins revealed by an anti-

centromere autoantibody are located at kinetochores from the

beginning of meiosis [40]. However, most of the inner centromere

and outer kinetochore proteins are loaded at different times during

both meiotic divisions. In order to delineate the loading sequence

of the CPC proteins Borealin, INCENP, and Aurora-B we made

double immunolabelings on spermatocytes. Unfortunately, we

were unable to detect Survivin even though we used several

antibodies.

The double immunolabeling of INCENP and SYCP3, a

structural component of synaptonemal complex lateral elements,

allowed us to determine previously that INCENP labels the

synaptonemal complex central element from zygotene up to mid/

late pachytene when it begins to relocalize to heterochromatic

chromocenters, while Aurora-B appears at chromocenters later in

diplotene [39]. In this study we compared the relative loading of

these two proteins with Borealin.

We found that Borealin appeared at chromocenters during

pachytene when INCENP was still only present at synaptonemal

complexes (Figure 1A and 1B). The chromocenters represent

clustered centromere heterochromatic regions that are clearly

discerned after DAPI staining, and located at the nuclear

periphery. However, since we have projected different focal planes

through the spermatocytes, some chromocenters appear in the

middle of the nuclei (Figure 1A and 1B). In other pachytene

spermatocytes, Borealin and INCENP colocalized at chromocen-

ters whereas INCENP was also visualized at synaptonemal

complexes (Figure 1C and 1D). Taking into account these results

we considered that Borealin first appeared at early pachytene,

while INCENP began to redistribute from synaptonemal com-

plexes to chromocenters in mid pachytene. These proteins

colocalized at centromeres from mid pachytene up to late

anaphase I. The labeling of INCENP at synaptonemal complexes

became undetectable at late pachytene (Figure 1E and 1F) as

previously reported [39]. Although INCENP was present at

chromocenters in late pachytene, Aurora-B was not detected at

this stage (Figure 1E and 1F). Aurora-B became first detectable at

Author Summary

The centromere is a chromosome domain essential for the
correct partitioning of chromosomes during mitotic and
meiotic cell divisions. The characterization of the centro-
meric proteins and their sequential assembly have been
extensively studied in mammalian mitosis, since defective
chromosome segregation is associated with birth defects
and cancer. However, few studies have analyzed the
centromere assembly during meiosis, a special cell division
leading to the production of haploid gametes. Here, we
analyze the sequence of loading of several centromeric
and kinetochoric proteins during male mouse meiosis. We
show that during both meiotic divisions, the proteins of
the chromosomal passenger complex Borealin, INCENP,
and Aurora-B load sequentially to the inner centromere
before Shugoshin 2 and MCAK. The outer kinetochore
proteins BubR1 and CENP-E are the last ones to be
assembled. We also demonstrate, using a knockout mouse
for Sgol2, that the inner centromeric protein Shugoshin 2 is
dispensable for the loading of the outer kinetochore
proteins BubR1 and CENP-E, but necessary for the
assembly of MCAK. This study shows that the analysis of
the behavior of different centromere proteins during
meiosis can offer new insights concerning centromere
organization.

Assembly of Meiotic Centromeres
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chromocenters later, during early diplotene, colocalizing with

INCENP (Figure 1G and 1H). From diplotene onwards, the three

CPC proteins colocalized.

Loading of the Inner Centromere Proteins SGOL2 and MCAK
We next studied the timing of centromere loading of SGOL2

and MCAK, which are present at the inner centromere in

metaphase I [19,41]. We have previously analyzed the time of

appearance of SGOL2 at centromeres by double immunolabeling

with the cohesin subunit RAD21, which labels cohesin axes that

are coincident with the synaptonemal complex lateral elements,

and can then be used to accurately stage prophase I spermatocytes

[42]. Likewise, we have already analyzed the loading time of

MCAK by double immunolabeling with SYCP3. These studies

showed that SGOL2 and MCAK were loaded at centromeres by

late diplotene [19,41]. However, we did not know the relative

loading sequence of these two proteins. Since we had found that

Aurora-B was the last CPC protein loaded at centromeres, we

used it as a marker to ascertain the loading time of SGOL2 and

MCAK. During early diplotene, when Aurora-B labeled the

chromocenters, no labeling was found for SGOL2 (Figure 2A and

2B) or MCAK (data not shown). However, SGOL2 became

detectable at centromeres later, by late diplotene, as dotted signals

close to or inside the Aurora-B labeled chromocenters (Figure 2C

and 2D). On the other hand, when spermatocytes where double

immunolabeled for SGOL2 and MCAK, some of them only

showed SGOL2 labeling (Figure 2E and 2F), while in other ones

both proteins colocalized at centromeres (Figure 2G and 2H). Thus,

SGOL2 is loaded at centromeres during late diplotene, and MCAK

loads later at very late diplotene or in early diakinesis. The location

of SGOL2 and MCAK was identical, indicating that these two

proteins colocalized at the inner centromere. Interestingly, at the

time SGOL2 and MCAK were loaded to the centromere, the CPC

proteins, which in previous stages occupied the entire chromocen-

ters, had changed their distribution. Thus, from late diplotene up to

early diakinesis, and concomitantly with ongoing chromosome

condensation, the CPC proteins appeared as more discrete signals

that colocalized with MCAK and SGOL2 (Figure 3).

Loading of the Outer Kinetochore Proteins CENP-E and
BubR1

We also analyzed the loading of the outer kinetochore proteins

CENP-E and BubR1 [43,44]. Taking into account bivalent

condensation, we had reported that during male mouse meiosis

CENP-E was first detectable at kinetochores during late

diakinesis/early prometaphase I [39,40]. However, there are not

data about the relative loading sequence of CENP-E and BubR1.

These proteins were first found at kinetochores once the CPC

proteins and SGOL2 and MCAK had been recruited to the inner

centromere. In early diakinesis spermatocytes, when MCAK was

already loaded at the inner centromere, neither CENP-E nor

BubR1 could be detected at kinetochores (Figure 2I and 2J).

During zygotene and pachytene, BubR1 was detected as large

nucleoplasmic masses (Figure S1A–S1D). A double immunolabel-

ing of BubR1 and fibrillarin, a nucleolar protein, demonstrated

that the BubR1 nuclear masses corresponded to nucleoli lying in

the nucleoplasm or associated to the sex body (Figure S2A and

S2B). From diplotene up to early diakinesis, BubR1 was visualized

at the disintegrating nucleoli and numerous smaller aggregates in

the nucleoplasm (Figures S1E–S1H and S2C and S2D). However,

these smaller BubR1 aggregates did not colocalize with either the

kinetochores, as revealed by an ACA serum (Figure S1E–S1H), or

the inner centromere protein MCAK (Figure 2I and 2J). BubR1

was first detected onto kinetochores at late diakinesis. During this

stage, identified by the absence of a sex body typical of the

pachytene and diplotene stages, and showing condensed bivalents,

BubR1 was no longer detected at small nucleoplasmic aggregates

(Figure S1J and S1K). BubR1 appeared as plates or dots near the

Figure 1. Loading of CPC proteins in prophase I spermatocytes. (A–D) Early and mid pachytene spermatocytes double immunolabeled for
Borealin (green) and INCENP (red). INCENP appears at synaptonemal complex stretches (arrows). Both proteins colocalize at chromocenters
(arrowheads) only in mid pachytene. (E–H) Late pachytene and early diplotene spermatocytes double immunolabeled for INCENP (green) and Aurora-
B (red). Both proteins colocalize at chromocenters (arrowheads) in early diplotene. The spermatocytes shown are projections of several focal planes,
and are counterstained with DAPI (blue). The sex body is indicated (XY). Scale bar 10 mm.
doi:10.1371/journal.pgen.1000417.g001
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larger MCAK signals (Figure 2K and 2L). Following BubR1

incorporation, CENP-E became loaded to kinetochores. CENP-E

was not detectable at late diakinesis (Figure 2M and 2N), but was

clearly found later at early prometaphase I kinetochores

colocalizing with BubR1 after nuclear envelope breakdown

(Figure 2O and 2P).

Loading of MCAK, BubR1, and CENP-E in the Absence of
SGOL2

A recent study proposes that SGOL2 is needed for the loading

of MCAK at the inner centromere of mitotic chromosomes [38].

We then analyzed whether MCAK, as well as BubR1 and CENP-

E, were loaded at the inner centromere and outer kinetochore,

respectively, in the absence of SGOL2 in male knockout mice for

Sgol2 [45]. Our results showed that MCAK, that is found at the

inner domain of wild-type metaphase I centromeres (Figure 4A

and 4B) [19], was not present at centromeres in metaphase I

Sgol22/2 spermatocytes. Instead, MCAK only appeared at one or

two round cytoplasmic aggregates (Figure 4C and 4D). By

contrast, BubR1 (Figure 4E–4H) and CENP-E (Figure 4I–4L)

loaded accurately to be present at the outer kinetochore in

metaphase I Sgol22/2 spermatocytes. Moreover, these two

Figure 2. Loading of SGOL2, MCAK, BubR1 and CENP-E. (A–D) Early and late diplotene spermatocytes double immunolabeled for Aurora-B
(green) and SGOL2 (red). SGOL2 first appears in late diplotene as discrete signals (arrows) at chromocenters (arrowheads). (E–H) Late diplotene and
early diakinesis spermatocytes double immunolabeled for SGOL2 (green) and MCAK (red). MCAK colocalizes with SGOL2 from early diakinesis on at
the centromeric regions (arrows) as revealed by the DAPI labelling. (I–L) Early and late diakinesis spermatocytes double immunolabeled for MCAK
(green) and BubR1 (red). In early diakinesis, BubR1 is present at the residual nucleolus (Nu) and at small nucleoplasmic aggregates (arrows). BubR1 is
first detected as small signals (arrow) adjacent to the MCAK-labeled centromeres in late diakinesis. (M–P) Late diakinesis and early prometaphase I
spermatocytes double immunolabeled for BubR1 (green) and CENP-E (red). CENP-E loads to the kinetochores by early prometaphase I, where the
condensed bivalents start to be discerned with the DAPI staining. All spermatocytes shown are projections of several focal planes, and are
counterstained with DAPI (blue). Scale bar 10 mm.
doi:10.1371/journal.pgen.1000417.g002
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proteins, that are involved in the regulation of the SAC, appeared

enriched at kinetochores of unaligned bivalents in both wild-type

(Figure 4E, 4F, 4I, and 4J) and Sgol22/2 (Figure 4G, 4H, 4K, and

4L) metaphase I spermatocytes.

Reloading of Centromeric Proteins during the Second
Meiotic Division

During male mouse meiosis, the CPC proteins INCENP and

Aurora-B, and also CENP-E, relocalize from the centromeres to

the spindle midzone during late anaphase I [39], whereas SGOL2

and MCAK disappear from centromeres during the telophase I/

early interkinesis transition [19,41], and BubR1 is lost from

kinetochores during anaphase I/telophase I (Figure S1M–S1T).

Accordingly, all these proteins were not present at the centromeres

in early interkinesis nuclei and need to be reloaded to the

centromere in preparation for the second meiotic division.

Interkinesis nuclei are characterized by the presence of a

variable number of chromocenters at their internal regions

(Figure 5). As occurred during prophase I, the first detectable

proteins in interkinesis were the CPC ones. In this sense, we found

that INCENP was loaded at chromocenters before Aurora-B

(Figure 5A–5D). Afterwards, these two proteins colocalized at the

heterochromatic chromocenters (Figure 5C and 5D). Then, we

compared the labelings of Aurora-B and SGOL2. SGOL2 was

targeted to the centromere after the loading of Aurora-B as during

prophase I (Figure 5E–5H). Interestingly, Aurora-B labeled the

entire chromocenters, while the SGOL2 signals were inside them

(Figure 5G). Following the SGOL2 loading (Figure 5I and 5J),

MCAK was detected at the centromeric regions as small spots

inside the chromocenters and colocalizing with SGOL2 (Figure 5K

and 5L). As during prophase I, we observed that the distribution of

the CPC proteins dramatically changed once MCAK was detected

at the chromocenters. Thus, they concentrated inside the

chromocenters to appear as small spots that colocalize with

MCAK and SGOL2 (data not shown). The last proteins loaded to

the centromeric region after MCAK were the outer kinetochore

proteins BubR1 and CENP-E (Figure 5M–5P). Interestingly,

BubR1 appeared only at nucleoli in most interkinesis nuclei, but

during the late interkinesis/prophase II transition it relocalized

onto kinetochores (Figure S3).

Discussion

Loading of CPC Proteins
In this study we have analyzed the loading sequence of different

inner centromere and outer kinetochore proteins in male mouse

meiosis. Our observations lead us to propose a sequence of

assembly for those proteins (Figure 6). The first group of proteins

that we have detected at the centromeric region, excluding the

kinetochoric constitutive ones detected by the ACA serum, are the

CPC proteins. During prophase I, these proteins are loaded at the

inner centromere between early pachytene and early diplotene.

Although it has been previously established that during mitosis the

presence of all CPC subunits is necessary for the assembly of the

complex at the inner centromere [9], we have detected that during

meiosis Borealin, Aurora-B and INCENP are loaded in a precise

sequence. Thus, Borealin was the first CPC protein that we found

at the heterochromatic chromocenters during early pachytene,

followed by INCENP and Aurora-B during mid pachytene and

early diplotene, respectively. It has been described that Borealin

can bind DNA in vitro [31], but it is still unknown if it has any

affinity for centromeric DNA. However, Borealin could initiate the

sequence of CPC assembly to the inner centromere during

meiosis. In this sense, it might bind to the pericentromeric DNA

and trigger the loading of the remaining CPC proteins. The next

CPC protein in the meiosis assembly sequence, INCENP, presents

an N-terminal domain that binds Borealin and Survivin that when

depleted prevents their association to the inner centromere

[31,46]. Thus, during meiosis INCENP could also interact with

Borealin, and presumably also Survivin, by its N-terminal domain.

We have to highlight that INCENP is initially detected at the

central element of the synaptonemal complex during zygotene,

and relocalizes to the centromeric region by mid pachytene [39].

We do not know whether INCENP may play any specific role at

the synaptonemal complex or is just waiting to be assembled at the

inner centromere. Finally, the last CPC protein to be loaded at the

pericentromeric chromatin is Aurora-B which is described to bind

the C-terminal domain of INCENP [33]. This fact suggests that

once INCENP is targeted to the inner centromere, Aurora-B

would then be loaded.

The sequential loading of the CPC proteins that we have

observed during meiosis contrasts with the proposed simultaneous

presence of the four CPC proteins for assembling the complex

during mitosis [9]. These apparent differences might be due to the

long duration of prophase I, in relation to the relatively shorter

mitotic one, which allows to accurately analyze the sequential

loading of the three CPC proteins. Nevertheless, it is likely that the

entire CPC complex is assembled once all the subunits have been

accurately loaded.

Building the Inner Centromere
During male mouse meiosis SGOL2 appears at the inner

centromere during late diplotene [19,41] to protect centromeric

cohesin complexes from cleavage by separase during the

metaphase I/anaphase I transition [45,47]. We have found that

during late diplotene SGOL2 appears inside the chromocenters

where Borealin, INCENP and Aurora-B are present. This result

Figure 3. Aurora-B and MCAK labeling in late diplotene (A, B)
and early diakinesis (C, D) spermatocytes. Spermatocytes are
double immunolabeled for Aurora-B (green) and MCAK (red), and
counterstained with DAPI (blue). The Aurora-B signals at chromocenters
(arrowheads) concentrate with ongoing chromosome condensation
from late diplotene up to early interkinesis when it then colocalizes with
MCAK. The sex body is indicated (XY). Scale bar 10 mm.
doi:10.1371/journal.pgen.1000417.g003
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demonstrates that the interaction area of SGOL2 within the

centromeric region is smaller than the targeting zone for the CPC

proteins. Interestingly, after the SGOL2 loading, the CPC proteins

then change their distribution to become restricted to a smaller area

that at that time colocalizes with SGOL2. It has been recently

proposed that during fission yeast mitosis and budding yeast meiosis

Sgo2 and Sgo1 are required, respectively, for the recruitment of

some CPC components to the centromere [36,37,48]. By contrast,

during Drosophila meiosis and in Xenopus egg extracts, the CPC

proteins promote the loading of the single Shugoshin MEI-S322

and xSgo to the inner centromere, respectively [49]. Likewise, in

HeLa cells the localization of SGOL2 is dependent on Aurora-B

[38]. In this sense, our results indicate that during mouse meiosis the

CPC proteins are loaded to centromeric heterochromatin without

the participation of SGOL2, but their redistribution from the

centromeric heterochromatin to the inner centromere occurs after

the loading of SGOL2.

After the loading of SGOL2, and concomitantly with the

relocalization of the CPC proteins, we detected the incorporation

of MCAK to centromeres. MCAK, Aurora-B and SGOL2 have

been involved in the correction of inaccurate merotelic attachments

in mitosis [38] and meiosis [19,41]. Thus, the relocalization of the

CPC and the loading of MCAK could involve a reorganization of

the centromere in preparation for microtubule interactions. The

temporal localization of SGOL2 may indicate its key role in such

centromere reorganization, and/or in the recruitment of other

inner centromere proteins like MCAK. Indeed, it has been reported

that in HeLa cells SGOL2 recruits MCAK to the inner centromere

[38]. Our results on Sgol22/2 spermatocytes support that SGOL2

also recruits MCAK during mouse meiosis since in mutant

spermatocytes MCAK never localizes to the inner domain, as

occurs in Sgol22/2 mouse embryonic fibroblasts [45]. In this

respect, we have found that in the absence of SGOL2 and MCAK,

bivalents align accurately at the metaphase I plate and meiosis

progression is not blocked. Consequently, it is uncertain whether

MCAK has an essential role during at least meiosis I.

Outer Kinetochore
We have found that BubR1 is recruited at kinetochores at late

diakinesis after the loading of all the studied inner centromere

proteins. This is followed by the incorporation of CENP-E onto

kinetochores during prometaphase I. These results thus suggest that

during mouse meiosis, as occurs in mitosis, the outer kinetochore

proteins are loaded on maturing kinetochores once the inner

centromere has been completely organized. Indeed, the inhibition

of Aurora-B function during mitosis impairs the loading of BubR1,

MAD2 and CENP-E to the outer kinetochore [50]. Furthermore, it

has been demonstrated that the Aurora-B/INCENP complex

induces the localization of MPS1, BUB1, BUB3, and CENP-E to

the kinetochores in CSF Xenopus egg extracts [51].

The sequence of loading that we found for BubR1 and CENP-E

in meiosis seems to be consistent with previous reports in mitosis.

Figure 4. Distributions of MCAK, BubR1 and CENP-E in wild-type and Sgol22/2 prometaphase I and metaphase I spermatocytes. (A–
D) Metaphase I spermatocytes double immunolabeled for MCAK (green) and kinetochores (ACA, red). MCAK is accurately located at the inner
centromere domain below the closely associated sister kinetochores (inset) in wild-type (WT) spermatocytes, but delocalized as one or two
cytoplasmic aggregates (arrowheads) in Sgol22/2 spermatocytes. (E–H) Prometaphase I spermatocytes double immunolabeled for BubR1 (green) and
kinetochores (ACA, red). In both wild-type and Sgol22/2 spermatocytes, BubR1 preferentially labels the kinetochores (arrows) of unaligned bivalents.
(I–L) Prometaphase I spermatocytes double immunolabeled for CENP-E (green) and kinetochores (ACA, red). CENP-E appears enriched at kinetochores
(arrows) of unaligned bivalents. Both BubR1 and CENP-E appear at the outer kinetochore above the ACA signals (insets in E–L). All spermatocytes
shown are projections of several focal planes, and are counterstained with DAPI (blue). Scale bar 10 mm.
doi:10.1371/journal.pgen.1000417.g004
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Thus, although CENP-E is required to enhance the recruitment

and the activity of BubR1 [52], the previous presence of Bub1 and

BubR1 is necessary for CENP-E to be properly loaded to the outer

kinetochore [26,27].

Rebuilding the Centromere for Second Meiotic Division
All the proteins which we have tested in this study are released

from the inner centromere and the kinetochore at the end of

meiosis I between late anaphase I and the end of telophase I.

During this period, INCENP, Aurora-B and CENP-E, relocalize

to the spindle midzone and finally disappear [39,40], and SGOL2,

MCAK and BubR1 become undetectable [19,41]. We have

previously shown that SYCP3, a structural component of the

lateral elements of the synaptonemal complex, colocalizes with the

cohesin subunit RAD21 at the inner domain of metaphase I

centromeres. These proteins are released from the inner

centromere during interkinesis and are not visualized during

meiosis II, thus suggesting that they are not essential for

Figure 5. Loading of centromeric proteins throughout interkinesis. (A–D) Nuclei are double immunolabeled for INCENP (green) and Aurora-
B (red). All nuclei show INCENP at chromocenters (arrowheads), but only in some of them Aurora-B colocalizes with INCENP. (E–H) Nuclei double
immunolabeled for Aurora-B (green) and SGOL2 (red). Among all the nuclei where Aurora-B appears at chromocenters (arrowheads) only some of
them show SGOL2 as small signals (arrows) inside chromocenters. (I–L) Nuclei double immunolabeled for SGOL2 (green) and MCAK (red). MCAK
appears as small signals inside the chromocenters after, and colocalizing with SGOL2. (M, N) Nucleus double immunolabeled for MCAK (green) and
BubR1 (red). BubR1 is present as nucleoplasmic aggregates that do not colocalize with MCAK signals. (O, P) Nucleus double immunolabeled for MCAK
(green) and CENP-E (red). Both proteins colocalize inside chromocenters. All spermatocytes shown are projections of several focal planes, and are
counterstained with DAPI (blue). Scale bar 5 mm.
doi:10.1371/journal.pgen.1000417.g005
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centromere behavior during meiosis II [42]. By contrast, all the

proteins analyzed in this study are incorporated again at the

centromere during the interkinesis stage with the same loading

sequence as during meiosis I. This fact strongly suggests that the

structural assembly of the centromere follows a pattern that is

conserved in both meiotic divisions. However, important differ-

ences may be highlighted, since the assembly of the centromere

during meiosis I is initiated during late prophase I, while the

assembly for meiosis II takes place during interkinesis. This reveals

that the underestimated interkinesis is not just a resting stage

between the two meiotic divisions, but a crucial period during

mammalian male meiosis, for, at least, chromosome and

centromere reorganization for the second meiotic division.

Materials and Methods

Squashing of Seminiferous Tubules and
Immunofluorescence Microscopy

Testes from adult normal C57BL/6 and Sgol22/2 [45] male

mice were used. All animals were handled in strict accordance

with good animal practice as defined by the relevant national and/

or local animal welfare bodies, and all animal work was approved

by the UAM committee. Testes were removed, detunicated and

seminiferous tubules fixed for squashing and subsequent immu-

nofluorescence as previously described [40,53]. Seminiferous

tubules were fixed for 10 min in freshly prepared 2% formalde-

hyde in PBS (137 mM NaCl, 2.7 mM KCl, 10.1 mM Na2HPO4,

1.7 mM KH2PO4, pH 7.4) containing 0.1% Triton X-100

(Sigma). After 5 min, several seminiferous tubules fragments were

placed on a slide coated with 1 mg/ml poly-L-lysine (Sigma) with

a small drop of fixative, and gently minced with tweezers. The

tubules were then squashed and the coverslip removed after

freezing in liquid nitrogen. The slides were later rinsed three times

for 5 min in PBS, and incubated for 45 min at room temperature

or 12 h at 4uC with primary antibodies diluted in PBS. In double

labeling experiments, primary antibodies from different host

species were incubated simultaneously. Following three washes

in PBS for 5 min, the slides were incubated for 30 min at room

temperature with secondary antibodies. The slides were subse-

quently rinsed in PBS and counterstained for 3 min with 5 mg/ml

DAPI (49,6-diamidino-2-phenylindole). After a final rinse in PBS,

the slides were mounted with Vectashield (Vector Laboratories)

and sealed with nail polish.

Immunofluorescence image stacks were collected on an Olympus

BX61 microscope equipped with epifluorescence optics, a motor-

ized z-drive, and an Olympus DP70 digital camera controlled by

analySIS software (Soft Imaging System). Stacks were analyzed and

processed using the public domain ImageJ software (National

Figure 6. Loading sequence of different inner centromere and outer kinetochore proteins throughout mouse prophase I. A single
telocentric bivalent with homologs in light and dark grey is depicted. The kinetochores, as revealed with the ACA serum, are shown in red, and the
lateral elements of the synaptonemal complex are shown in green. The bivalent ends are shown associated to the nuclear envelope (single black line)
from early pachytene up to late diplotene. Borealin (pink) is the first CPC protein loaded at the pericentromeric heterochromatin, followed by INCENP
(light blue) and Aurora-B (orange). Note that INCENP relocalizes from the central element of the synaptonemal complex to the centromere during
mid pachytene. After the CPC complex is loaded, SGOL2 (fuchsia) and MCAK (dark blue) are subsequently recruited to the inner centromere. Finally,
the outer kinetochore proteins BubR1 (maroon) and CENP-E (black) assemble onto kinetochores. For details see text.
doi:10.1371/journal.pgen.1000417.g006
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Institutes of Health, USA; http://rsb.info.nih.gov/ij). Final images

were processed with Adobe Photoshop 7.0 software.

Antibodies
Kinetochores were detected with a purified human anti-

centromere autoantibody (ACA) (Antibodies Incorporated, cat.

no. 15-235) at a 1:50 dilution. Borealin was detected with a rabbit

affinity-purified antibody against human Borealin (1647) kindly

provided by Dr. W.C. Earnshaw [46] at a 1:30 dilution. To detect

INCENP we used a polyclonal rabbit serum (pAb1186) raised

against chicken INCENP kindly provided by Dr. W.C. Earnshaw

[54], which also recognizes mouse INCENP [39], at a 1:100

dilution. Aurora-B kinase was detected with the mouse monoclo-

nal AIM-1 antibody (Transduction Labs) at a 1:30 dilution.

SGOL2 was detected with a rabbit polyclonal serum (K1059)

against the C-terminus of mouse SGOL2 kindly provided by Dr.

J.L. Barbero [19,41] at a 1:20 dilution. To detect MCAK we used

affinity-purified sheep and rabbit polyclonal antibodies against

human MCAK, kindly provided by Dr. L. Wordeman [18,55] at

1:40 and 1:200 dilutions, respectively. An affinity purified sheep

polyclonal antibody against human BubR1 (SBR1.1) kindly

provided by Dr. S.S. Taylor [56] was used at a 1:50 dilution.

CENP-E was detected using a polyclonal rabbit serum (pAb1.6)

that recognizes the neck region (amino acids 256–817) of human

CENP-E kindly provided by Dr. T. Yen [57], at a 1:100 dilution.

Fibrillarin was detected with a human anti-fibrillarin autoantibody

(S4) kindly provided by Dr. R. Benavente at a 1:200 dilution.

The secondary antibodies used were: donkey anti-human IgG

(Jackson) at a 1:150 dilution, donkey anti-rabbit IgG (Jackson) at a

1:150 dilution, donkey anti-mouse IgG (Jackson) at a 1:150

dilution, donkey anti-sheep IgG (Jackson) at a 1:40 dilution. All of

them were conjugated with either Texas Red or fluorescein

isothiocyanate (FITC).

Supporting Information

Figure S1 Distribution of BubR1 during meiosis I. Spermatocytes

are double immunolabeled for BubR1 (green) and kinetochores

(ACA, red). (A–D) Zygotene and pachytene spermatocytes. BubR1

only labels the nucleoli (arrowheads). (E–H) Diplotene and early

diakinesis spermatocytes. BubR1 appears at nucleoli (arrowheads)

and as small nucleoplasmic aggregates (arrows) that do not

colocalize with kinetochores. (I–L) Late diakinesis and prometa-

phase I spermatocytes. BubR1 appears at the kinetochores, and

during late diakinesis is still present at the disintegrating nucleolus

(arrowhead). (M, N) Prometaphase I spermatocyte. BubR1 appears

enriched at the kinetochores (arrows) of an unaligned bivalent. (O–

T) Metaphase I, anaphase I, and telophase I spermatocytes. BubR1

has mostly disappeared from kinetochores. All spermatocytes shown

are projections of several focal planes, and are counterstained with

DAPI (blue). Scale bar 10 mm.

Found at: doi:10.1371/journal.pgen.1000417.s001 (5.18 MB TIF)

Figure S2 Distribution of BubR1 at nucleoli during prophase I.

Spermatocytes are double immunolabeled for BubR1 (green) and

fibrillarin (red). (A, B) Pachytene spermatocyte. BubR1 colocalizes

with fibrillarin at nucleoli (arrowheads), but not at the single Cajal

body (CB). (C, D) Early diakinesis nucleus. BubR1 appears at a

single nucleolar remnant (arrowhead) colocalizing with fibrillarin,

and at numerous aggregates (arrows) in the nucleoplasm. The

spermatocytes shown are projections of several focal planes, and

are counterstained with DAPI (blue). Scale bar 10 mm.

Found at: doi:10.1371/journal.pgen.1000417.s002 (0.88 MB TIF)

Figure S3 Distribution of BubR1 during meiosis II. Spermato-

cytes and an early spermatid are double immunolabeled for

BubR1 (green) and kinetochores (ACA, red). (A, B) Interkinesis

spermatocyte. BubR1 labels nucleoli (arrowheads). (C, D)

Prophase II spermatocyte. BubR1 is located at the disintegrating

nucleolar masses (arrowhead) and at kinetochores. (E, F)

Prometaphase II spermatocyte. BubR1 is enriched at the

kinetochores of unaligned chromosomes. (G–L) Metaphase II,

anaphase II, and telophase II spermatocytes. BubR1 has mostly

disappeared from kinetochores. (M, N) Early round spermatid.

BubR1 is only detected at the nucleolus (arrowhead). All

spermatocytes shown are projections of several focal planes, and

are counterstained with DAPI (blue). Scale bar 10 mm.

Found at: doi:10.1371/journal.pgen.1000417.s003 (2.87 MB TIF)
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