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Abstract

One of the earliest morphogenetic processes in the development of many animals is epiboly. In the zebrafish, epiboly
ensues when the animally localized blastoderm cells spread, thin over, and enclose the vegetally localized yolk. Only a few
factors are known to function in this fundamental process. We identified a maternal-effect mutant, betty boop (bbp), which
displays a novel defect in epiboly, wherein the blastoderm margin constricts dramatically, precisely when half of the yolk
cell is covered by the blastoderm, causing the yolk cell to burst. Whole-blastoderm transplants and mRNA microinjection
rescue demonstrate that Bbp functions in the yolk cell to regulate epiboly. We positionally cloned the maternal-effect bbp
mutant gene and identified it as the zebrafish homolog of the serine-threonine kinase Mitogen Activated Protein Kinase
Activated Protein Kinase 2, or MAPKAPK2, which was not previously known to function in embryonic development. We
show that the regulation of MAPKAPK2 is conserved and p38 MAP kinase functions upstream of MAPKAPK2 in regulating
epiboly in the zebrafish embryo. Dramatic alterations in calcium dynamics, together with the massive marginal constrictive
force observed in bbp mutants, indicate precocious constriction of an F-actin network within the yolk cell, which first forms
at 50% epiboly and regulates epiboly progression. We show that MAPKAPK2 activity and its regulator p38 MAPK function in
the yolk cell to regulate the process of epiboly, identifying a new pathway regulating this cell movement process. We
postulate that a p38 MAPKAPK2 kinase cascade modulates the activity of F-actin at the yolk cell margin circumference
allowing the gradual closure of the blastopore as epiboly progresses.
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Introduction

Early embryonic development is marked by cellular movements

that ultimately generate the shape of the embryo in a process

known as morphogenesis. One of the earliest morphogenetic

events in many animals is the process of epiboly, whereby

embryonic tissues spread and thin [1–5]. In the zebrafish embryo,

three distinct cell layers lying at the animal pole of the embryo

undergo epiboly: the enveloping layer (EVL) and yolk syncytial

layer (YSL), both of which are extraembryonic, and an

intermediate deep cell layer that forms the embryo proper

(Fig. 1). About 1 hour after the mid-blastula transition, the

morphogenetic process of epiboly begins. The deep blastomeres

radially intercalate, while the underlying yolk moves animalward

in a process called doming. At completion of this initial phase of

epiboly, an inverted bowl-shaped blastoderm covers ,50% of the

yolk surface, referred to as the 50% epiboly stage (Fig. 1). During

the second phase of epiboly, the deep cells begin gastrulation cell

movements converging dorsally and undergoing involution/

ingression movements to form the germ layers [5]. At the same

time, epiboly continues with all three cell layers spreading over the

yolk to the vegetal pole of the embryo, ultimately resulting in the

complete internalization of the yolk [6]. The morphogenetic

process of epiboly also occurs in numerous other vertebrates and

invertebrates, including amphibia, sea urchins, and C.elegans [1–

4].

The YSL actively participates in epiboly. Within the YSL,

microtubule organizing centers associated with the yolk syncytial

nuclei (YSN) extend microtubule arrays vegetally into the cortical

yolk cytoplasmic layer (YCL) (Fig. 1). Ablation of microtubules

with UV treatment or nocodazole slows or arrests epiboly

progression [7,8]. Studies of YSN movements suggest that

movement of blastomeres and YSN are coordinated [9]. Although

the mechanism remains unknown, E-cadherin is required for the

coupling of the deep cells to the YSL and EVL in coordinating this

movement between tissue layers in zebrafish [10–12]. In Xenopus

fibronectin-integrin cell adhesion interactions act in radial

intercalation during epiboly [13]. As the EVL and blastoderm

cells move over the yolk, the yolk cell membrane is actively

removed via endocytosis [14]. Also within the YSL is an actin
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band, first identified in Fundulus heteroclitus, which is required for

epiboly movements and is postulated to close the blastopore (the

uncovered vegetal yolk surface) as epiboly progresses (Fig. 1) [15–

17].

Although epiboly is a fundamental morphogenetic process, only

a handful of factors have been identified regulating this process.

To identify additional molecular regulators, we investigated the

zebrafish maternal-effect mutant, betty boop (bbp), which displays a

novel defect in epiboly [18,19]. In bbp mutants the leading edge of

the blastoderm constricts dramatically at 50% epiboly causing the

yolk cell to burst. This defect in epiboly is not seen in other

mutants or by pharmacological treatments, suggesting that a novel

aspect of epiboly is affected. Through whole blastoderm

transplants and mRNA microinjection rescue, we determined

that Bbp functions in the yolk cell. Consistent with it having a

novel function in epiboly, we found that microtubules, actin band

formation and endocytosis in the YSL appear normal prior to the

onset of the phenotype. We positionally cloned the bbp mutant

gene and identified it as the zebrafish homolog of Mitogen

Activated Protein Kinase Activated Protein Kinase 2 (MAP-

KAPK2). Mutation of the p38 MAP kinase phosphorylation sites

in MAPKAPK2 implicates p38 in regulating MAPKAPK2

function. Expression of a dominant-negative p38 MAP kinase

demonstrates that it functions in a similar manner to MAPKAPK2

in epiboly. Furthermore, we found a dramatic increase in calcium

release in bbp mutants, possibly reflecting altered actin contraction.

Thus, we identified the p38 MAPAPK2 pathway as a new

regulator of the fundamental morphogenetic process of epiboly.

We propose that the p38 MAPKAPK2 kinase cascade modulates

actin contraction at the blastoderm margin to close the blastopore

during normal epiboly progression.

Results

bbp Mutants Display Precocious Blastopore Constriction
In a maternal-effect screen, we identified a mutant, bbp, which

displays a striking morphogenesis defect in epiboly [18]. bbp

mutant embryos appear to develop normally until 50% epiboly

(Fig. 2 A,B); however, just as the blastoderm cells reach 50%

epiboly, the equator constricts around its circumference, causing

the yolk cell to burst (Fig. 2 B0). This defect is a 100% penetrant,

maternal-effect phenotype, in which all embryos from homozy-

gous females are mutant (hereafter called bbp mutant embryos),

irrespective of their paternal genotype. Time-lapse microscopy of

mutant (n = 9) and wild-type (WT) (n = 9) embryos (Fig. 2 C–D)

shows that bbp embryos undergo abnormal shimmying movements

periodically during blastula stages. That is, rapid, abnormal

movements of large regions of the blastoderm, which increase in

amplitude until the constriction and bursting of the yolk (Video

S1).

We investigated if defects in patterning could account for the bbp

phenotype. We found that the expression of goosecoid (Fig. 3 A, D),

a dorsal organizer marker, and no tail (Fig. 3 B, E), a mesodermal

marker, was normal in bbp embryos (n = 10, 13 respectively).

Analysis of bmp4 and eve1 expression in ventral and ventrolateral

regions, as well as foxb1.2 [20] in dorsal regions confirmed that

patterning is normal in bbp embryos (data not shown). Thus, the

defect in bbp appears to be specific to the morphogenetic process of

epiboly.

Proper epiboly progression depends on microtubules that are

present in the yolk cell [7,8]. We analyzed microtubule array

formation in the YCL (yolk cytoplasmic layer) at 50% epiboly just

prior to bursting. Anti-tubulin stainings showed that microtubules

are properly formed and robust in mutant embryos (Fig. 3 F,

n = 23), similar to WT embryos (Fig. 3 C, n = 17). Thus,

microtubule array formation does not appear defective in bbp

embryos.

As epiboly progresses, the yolk cell membrane adjacent to the

advancing blastoderm cells is removed via endocytosis. This

process decreases the yolk cell membrane during epiboly, as the

deep cells, EVL and YSN move over the yolk cell, and may drive

their vegetal movement [14,16]. We found that bbp mutant (n = 8)

and WT (n = 10) embryos both internalized Rhodamine-dextran

dye (Fig. 3 G,H), indicating that endocytosis was normal and is

unlikely the cause of the epiboly defect.

It was unclear if the primary cause of the bursting of bbp

embryos is the marginal constriction or a loss of yolk membrane

integrity, which secondarily leads to the buckling of the blastoderm

margin. To distinguish between these possibilities, we incubated

WT and bbp embryos in hypertonic media to stabilize the yolk

membrane in an attempt to prevent it from failing during the

manifestation of the phenotype. The hypertonic medium caused

no defects in WT embryos (Fig. 3 N) and stabilized the yolk

membrane of bbp mutants, as evident by the lack of yolk globules

protruding through the membrane (Fig. 3 K, L arrowheads).

Importantly, despite the stabilized membrane, bbp embryos

continued to constrict around their circumference at 50% epiboly

in the hypertonic medium without causing the yolk to burst (Fig. 3

L, n = 56). Eventually the blastoderm pinched off from the vegetal

yolk and healed, and the embryo continued to develop to 1 day

post fertilization (dpf) (Fig. 3 M). This result indicates that the

bursting phenotype results from a mechanical constriction, rather

than from a yolk membrane integrity defect.

It is thought that a slow and controlled constriction of an actin

ring present in the YSL closes the blastopore as epiboly progresses

in the Fundulus embryo [15]. Similarly, in zebrafish a punctate

actin band forms just vegetal to the blastoderm/EVL margin in

the yolk cell at the 50% epiboly stage [16]. This actin band

coincides with the region of yolk cell membrane endocytosis [16]

and the marginal constriction of EVL cells during epiboly [21].

Phalloidin staining shows that an F-actin band forms in the YSL

and at the EVL margin of bbp embryos (Fig. 3 J, n = 15), as in WT

Author Summary

One of the earliest cell movement processes in the
development of many animals is epiboly. In the zebrafish,
epiboly ensues when the blastoderm cells spread over and
enclose the yolk cell. Only a few factors are known to
function in this fundamental process. We identified a
maternal-effect mutant, betty boop (bbp), which displays a
novel defect in epiboly, wherein the blastoderm margin
constricts dramatically, precisely when half of the yolk cell
is covered by the blastoderm, causing the yolk cell to
burst. We demonstrate that Bbp functions in the yolk cell
to regulate epiboly. We positionally cloned the bbp mutant
gene and identified it as the serine-threonine kinase
Mitogen Activated Protein Kinase Activated Protein Kinase
2, or MAPKAPK2, which was not previously known to
function in embryonic development. We show that the
regulation of MAPKAPK2 is conserved within a p38 MAP
kinase pathway, thus identifying a new pathway in the
regulation of this fundamental cell movement process. We
postulate that a p38 MAPKAPK2 kinase cascade modulates
F-actin contraction at the yolk cell margin circumference,
allowing the gradual closure of the cells over the yolk cell
as epiboly progresses.
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embryos (Fig. 3 I, n = 20). However, it remains unclear if the F-

actin functions normally during epiboly.

We investigated the timing of the marginal constriction in bbp

mutant embryos to distinguish between two alternative defects.

One possibility is that the vegetal-ward movement of the

blastoderm is arrested in bbp embryos, while blastopore closure

is unaffected, thus causing the observed marginal constriction as

the blastopore gradually tries to close in the absence of vegetal-

ward cell movement. Such a constriction defect is seen in a subset

of embryos in which microtubule function is blocked [7,8] and in

embryos depleted of Mtx2, a presumptive transcription factor

acting in the yolk cell to regulate epiboly [22,23]. Alternatively, the

marginal constriction could arise due to too rapid closing of the

blastopore, i.e. precocious blastopore closure, caused by unregu-

lated actin constriction. We found that the margin does not

constrict gradually over a ,3 hour period as in WT, but instead

occurs rapidly within a 20 to 30 minute period in bbp mutants

(Fig. 2 and Video S1). This result is consistent with a model in

which the blastopore closes precociously in bbp mutants through

an unregulated marginal F-actin constriction.

We examined the behavior of the yolk syncytial nuclei (YSN) in

bbp mutant embryos to determine if YSL morphogenesis is

affected. Below the blastoderm at 50% epiboly, the internal YSN

(I-YSN) are widely distributed, while at the margin the external

YSN (E-YSN) are more densely packed [7–9]. In time-lapse

analysis of fluorescently labeled nuclei, we observed a normal

distribution of the I-YSN during epiboly in bbp mutant and WT

embryos. However, following a strong shimmying movement and

coincident with the onset of the marginal constriction shortly

before bbp mutants burst, the I-YSN withdrew from the location of

a strong shimmying movement and collapsed into a small area of

the I-YSL (Fig. 3 O–V, Video S2, S3). The E-YSN remained in

place until the yolk cell burst minutes later. Thus, YSN epiboly

movements appeared normal in bbp mutants until 50% epiboly,

when strong shimmying movements and the marginal constriction

likely cause them to behave abnormally secondarily.

bbp Mutants Display Aberrant Calcium Dynamics
During early epiboly stages, calcium levels are low throughout

the embryo; however, beginning at 50% epiboly calcium levels

become dynamic and are required for formation of the yolk cell

actin band and epiboly progression [16,24–26]. We investigated if

calcium dynamics are altered in bbp mutants during epiboly, which

could reflect a change in the yolk cell F-actin function. We

examined calcium dynamics by ratiometric imaging with the

fluorescent calcium indicator, Fura-2. Time-lapse microscopy and

transient composite analysis of calcium activity showed a dramatic

increase in calcium release in bbp mutants (n = 7) compared to WT

embryos (Video S4 and S5). During early epiboly when doming of

the yolk occurs, calcium activity is maintained at a sustained level

Figure 1. Schematic of epiboly progression. Epiboly begins when the yolk (yellow) domes toward the animal pole (top), concomitant with radial
intercalation of the deep cells of the blastoderm (green) to cover 30% of the embryo surface. At 30% epiboly, the yolk syncytial nuclei (YSN, dark-
green circles) are maintained within the yolk syncytial layer (YSL) beneath the blastoderm and are associated with microtubules (black lines, surface
view) that are oriented toward the vegetal pole within the very thin cortical, yolk cytoplasmic layer (YCL, light blue in cross-section). The enveloping
layer (EVL, pink) forms a thin epithelial-like sheath on the surface of the deep cells and is connected to the YSL at the cell margin. The YCL cannot be
distinguished from the yolk when viewed from the lateral surface. At 50% epiboly, the EVL and deep cells cover 50% of the embryo and lie more
vegetally than the YSN, masking the YSN in the lateral surface view. An actin band (turquoise) forms in the YSL just vegetal to the margin at 50%
epiboly and likely functions as a contractile mechanism to close the blastopore throughout the remainder of the epiboly process. By 75% epiboly, the
YSN are located beneath the blastoderm, as well as vegetal to it (surface view). The blastopore is the exposed vegetal yolk, which continually
decreases in circumference as epiboly progresses.
doi:10.1371/journal.pgen.1000413.g001
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in WT embryos (Fig. 4 A, arrowhead), whereas in age-matched bbp

embryos, ectopic calcium release activity was observed (Fig. 4 B,

arrowheads). This ectopic release increased in frequency and

intensity as epiboly progressed (Fig. 4 C, arrowheads) until

eventual bursting. Analysis of calcium flux throughout early

epiboly in a composite pseudo-colored image shows low calcium

activity at the margin in WT (Fig. 4 D), which is clearly increased

in bbp embryos (Fig. 4 E, F). Thus the increased calcium release

may lead to increased contraction of F-actin at the yolk margin

and the dramatic constriction observed in bbp mutant embryos.

The YSL Is the Critical Domain of Bbp Function
The Bbp protein may function in the yolk cell, deep cells or

EVL. To determine the embryonic domain in which Bbp

functions, we performed whole blastoderm transplants to separate

yolk, YSL, and YCL structures from the deep cells of the

blastoderm and EVL [27]. WT blastoderms were then placed on

bbp yolks, and vice versa (Fig. 5 A). Chimeric embryos containing

WT yolk and mutant blastoderm completed epiboly (Fig. 5 B–B90,

n = 5) and were viable through at least 6 dpf (data not shown). In

contrast, chimeric embryos containing mutant yolk and WT

blastoderm constricted at the equator and burst at 50% epiboly

(Fig. 5 C–C0, n = 7), similar to bbp embryos. These data indicate

that Bbp functions in the yolk cell to regulate epiboly, consistent

with it modulating the closing of the blastopore via actin

constriction within the yolk cell.

bbp Encodes MAPKAPK2
To identify the molecular nature of bbp, we mapped the bbp

mutation to the centromere of chromosome 11 using SSLP (simple

sequence length polymorphic) markers [28] in bulk segregational

analysis of homozygous mutant versus WT sibling adult female

fish. The interval was narrowed by fine recombination mapping

using more than 1100 meiotic events to a 900 kb interval based on

the Sanger Centre zebrafish genome sequence (www.ensembl.org/

Danio_rerio). Ten novel ESTs and one known cDNA were

present in the critical interval. RT-PCR of ovary cDNA identified

7 ESTs and the one known cDNA as maternally-supplied RNAs

(data not shown). Systematic sequencing of these genes from WT

and bbp mutant ovary cDNA identified a non-sense mutation

(Fig. 6A) in the known serine-threonine kinase gene, Mitogen

Activated Protein Kinase Activated Protein Kinase 2 (MAP-

KAPK2). Sequence analysis of the genomic region of the parental

mutagenized fish demonstrated that this mutation did not exist in

the background and thus was induced by the ENU mutagenesis.

The mutation introduces a premature stop codon, predicting a

carboxy-terminal 33 amino acid truncation, which removes an

identified nuclear localization signal and a p38 docking domain

(Fig. 6A) [29,30]. The MAPKAPK2 transcript is present

maternally in the egg and is found ubiquitously in the blastoderm

through the 50% epiboly stage (data not shown, Fig. 6C,D).

The bbp phenotype could be rescued by injection of 20 pg of

WT MAPKAPK2 mRNA at the 1-cell stage (n.500, 100%

rescue), demonstrating that MAPKAPK2 is the gene defective in

bbp mutants. This is among the first maternal-effect mutant genes

to be cloned positionally in a vertebrate. Importantly, injection of

WT MAPKAPK2 mRNA into the YSL at the 512- to 1000-cell

stage rescued the constriction defect and the calcium defect of bbp

mutant embryos, confirming that MAPKAPK2 is required in the

yolk cell (n = 20, 100% rescued). Injection of 1.5 ng of mutant

MAPKAPK2 mRNA (75-fold overexpression compared to WT

mRNA) had no rescuing activity (n = 75). Furthermore, injection

of mutant MAPKAPK2 mRNA (250 pg to 1.25 ng, n.50) into

WT embryos caused no phenotypic consequences, indicating that

the mutant protein is inactive and has no dominant-inhibitory

activity when overexpressed. In conjunction with rescuing

amounts of MAPKAPK2 mRNA, we injected a translation

blocking morpholino to MAPKAPK2 into bbp mutant embryos.

Rescue was inhibited by the morpholino (n = 17, 100% no rescue;

100% rescued by mRNA injection alone), suggesting that it can

block translation. However, morpholino injection alone into WT

embryos did not phenocopy bbp (n = 14), possibly due to

maternally-supplied MAPKAPK2 protein or high maternal levels

of transcript.

MAPKAPK2 is a well-characterized direct target of p38 MAP

kinase (MAPK). p38 MAPK activates MAPKAPK2 by phosphor-

ylating key residues on MAPKAPK2. MAPKAPK2 has been

extensively studied in cell culture, including structure function

analysis, and the identification of nuclear and cytoplasmic targets

[31]. However, very few of the results from these cell culture

studies have been tested in an animal model.

Subcellular Localization of Bbp Mutant MAPKAPK2
Studies of mammalian MAPKAPK2 in cell culture show that

the protein is localized to the nucleus under basal conditions, but

upon phosphorylation by p38 MAPK, an overriding nuclear

export signal (NES) stimulates its export to the cytoplasm

[29,30,32,33]. The carboxy-terminal truncation of MAPKAPK2

in bbp mutants results in loss of the NLS (Fig. 6A), suggesting that

the mutant protein may be constitutively localized to the

cytoplasm and fail to phosphorylate nuclear targets, thus causing

its loss of function. To address this question, we examined the

subcellular localization of myc-tagged WT and Bbp MAPKAPK2

proteins in embryos. The myc-fusion did not compromise

MAPKAPK2 activity, as it fully rescued the bbp mutant phenotype

(Fig. 6E, n = 108, 100% rescued). We found that WT myc-

MAPKAPK2 predominantly localized to the nucleus, with

additional weak localization in the cytoplasm, consistent with

previous studies in mammalian cells (Fig. 6F, n = 12). Bbp myc-

MAPKAPK2 showed increased localization to the cytoplasm and

the cell cortex. Surprisingly, a significant amount of the mutant

fusion protein remained in the nucleus, despite loss of the NLS

(Fig. 6G, n = 10). GFP-fusions to WT and the Bbp mutant proteins

behaved similarly, except that the WT GFP-fusion was found

exclusively in the nucleus (data not shown). The inability of the

mutant fusion proteins to rescue the mutant phenotype (myc-Bbp,

n = 14; GFP-Bbp, n = 14) despite their nuclear localization,

indicates that other properties of MAPKAPK2 are deficient in

the Bbp protein. These results also suggest that interacting factors

or additional features of MAPKAPK2 can localize it to the nucleus

in the absence of the NLS.

Bbp MAPKAPK2 Lacks Kinase Activity
We next investigated the kinase activity of the mutant protein to

determine if it was constitutively active in the cytoplasm or

otherwise misregulated. We analyzed the phosphorylation status of

a well-established cytoplasmic substrate of MAPKAPK2, heat

shock protein 27 (HSP27) [31]. Antibodies specific to the

Figure 2. bbp embryos constrict at the margin at 50% epiboly, bursting the yolk. Still images of WT and bbp embryos at the 1000-cell stage
(A, B), 50% epiboly (A9, B9), and 50% epiboly at the burst (A0, B0). bbp embryos constrict just as they reach 50% epiboly. (C and D) Selected frames
from time-lapse movies of WT and bbp embryos showing that the constriction occurs rapidly once the embryos have reached 50% epiboly.
doi:10.1371/journal.pgen.1000413.g002
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phosphorylated form of HSP27 did not detect the endogenous

zebrafish protein in embryos. Therefore, we analyzed the activity

of WT and Bbp MAPKAPK2 in transfected HeLa cells. We first

confirmed that the subcellular localization of the proteins in HeLa

cells recapitulated that seen in intact embryos (data not shown).

We next examined their ability to induce phosphorylation of

HSP27. As shown in Fig. 6J (top panel), the Bbp protein was

expressed at levels comparable to the WT protein, suggesting that

the stability of the mutant protein is not grossly affected.

Expression of WT MAPKAPK2 induced robust phosphorylation

of endogenous HSP27 (Fig. 6J, bottom panel). Unexpectedly, Bbp

was significantly impaired in its ability to induce phosphorylation

of HSP27, despite the fact that its kinase domain is intact, as well

as the three predicted MAPK phosphorylation sites (Fig. 6A, J).

These results indicate that the Bbp mutant protein is defective in

its kinase activity, causing its loss-of-function phenotype.

To test directly if MAPKAPK2 kinase activity is required for it

to regulate epiboly, we generated a myc-tagged full-length kinase

dead protein by changing the critical lysine in the catalytic domain

to a methionine (K73M) [34], and assayed activity in both cell

culture and zebrafish embryos. As expected, kinase-dead MAP-

KAPK2 failed to induce phosphorylation of HSP27 in a HeLa cell

culture assay (Fig. 6I, bottom panel). In bbp mutant embryos,

injection of 200 pg of the kinase dead MAPKAPK2, although

stably expressed in the embryo (Fig. 6K), failed to rescue the

mutant phenotype (n = 99, Fig. 6B), in contrast to the WT protein

(Fig. 6E). These results demonstrate that the kinase activity of

MAPKAPK2 is required for its function in epiboly, indicating that

the Bbp mutant protein fails to phosphorylate a critical target in

the yolk cell that regulates epiboly.

p38 MAPK Required for MAPKAPK2 Function
The carboxy-terminal region truncated in Bbp also contains a

p38 docking site, which is important for p38 to phosphorylate

MAPKAPK2 efficiently [35,36]. The lack of kinase activity of the

Bbp mutant protein may be due to failure of p38 to efficiently

phosphorylate and thus activate the Bbp protein. To investigate if

p38 regulates MAPKAPK2 activity, we mutated the three p38

phosphorylation sites of MAPKAPK2 [29,30,37–39]. Based on the

mammalian MAPKAPK2 structure, zebrafish MAPKAPK2 is

expected to be phosphorylated on Threonine 202, Serine 252, and

Threonine 315 by p38 MAPK (Fig. 6A). We mutated these three

residues of zebrafish MAPKAPK2 to Alanines, any two of which

when mutated in cell culture cause a failure in MAPKAPK2

activation [37]. In contrast to these cell culture studies, we found

that the T202A/T315A double mutant MAPKAPK2 rescued bbp

mutant embryos (40 pg, 15/16 rescued; 90 pg, 47/47 rescued).

However, injection of 150 pg of the triple phospho-mutant RNA,

although stably expressed (Fig. 6H, K), failed to rescue the mutant

phenotype (n = 70), indicating the importance of these three sites

in MAPKAPK2 function in epiboly. We also investigated the

activity of the MAPKAPK2 phosphorylation site mutants in our

Figure 3. Characterization of bbp phenotype. In situ hybridization of goosecoid (gsc) in WT (A) and bbp (D) and no tail (ntl) in WT (B) and bbp (E)
embryos at 50% epiboly. Microtubule array forms normally in bbp embryo (F) at the approach to 50% epiboly as in WT (C). G, H Internalization of
Rhodamine-dextran through endocytosis in the YSL at 50% epiboly in WT (G) and a bbp (H) embryo. Rhodamine-Phalloidin staining in WT (I) and bbp
(J) embryos at 50% epiboly. White brackets show punctate actin band in YSL, arrowheads indicate actin at EVL margin. Hypertonic Ringer’s solution
extended development of constricting bbp embryos. bbp embryo ni E3 medium constricts at 50% epiboly and yolk globules (black arrowheads) burst
through the yolk membrane (K). bbp embryo reared in hypertonic medium constricts, while maintaining yolk membrane integrity (L), allowing the
blastoderm to heal and survive to 24 hpf (M). Mutants can undergo gastrulation movements and generate a general body plan at 24 hpf. WT sibling
reared in hypertonic medium develops normally, shown at 50% epiboly (N). YSN of WT embryo labeled with Sytox Green (O–R); both I-YSN (bracket)
and E-YSN (arrowhead) change little during this short time interval. (S–V) bbp I-YSN are initially distributed normally under the blastoderm, but retract
rapidly to a small region of the I-YSL (arrow) when the margin constricts, just before yolk cell rupture.
doi:10.1371/journal.pgen.1000413.g003

Figure 4. Ectopic calcium release. Selected frames of ratiometric images of WT (A) and bbp at early epiboly (B) and bbp at 40% epiboly (C).
Algorithm of the calcium release representing the frequency and location of fluxes for the duration of the time course of early WT embryo in A (D),
early bbp embryo in B (E), and 40% epiboly bbp embryo in C (F). Composites represent data collected over 1 hour of imaging of an individual embryo.
doi:10.1371/journal.pgen.1000413.g004
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HeLa cell culture assay and found similar results to the bbp mutant

rescue data (Fig. 6I).

Thus, our results show that Ser252 is sufficient in the zebrafish

embryo and HeLa cells for MAPKAPK2 protein function,

contrasting previous studies in other cell culture systems. Consid-

ering that the three p38 phospho-residues are conserved in all

MAPKAPK2 genes, we postulate that one or more of these residues

is required to activate MAPKAPK2 depending on the cellular

context. Taken together, we postulate that the lack of kinase activity

of the truncated Bbp MAPKAPK2 is due to a loss of the p38

docking site in the Bbp mutant protein, resulting in an inability of

p38 to bind, phosphorylate, and thus activate the mutant protein.

To test directly if p38 MAPK could be the upstream activator of

MAPKAPK2, we investigated p38 function in epiboly progression

Figure 5. Whole blastoderm transplants show yolk cell domain of function. Embryos were injected with rhodamine-dextran (bbp) or sytox
green dye (WT) at the 1-cell stage. Blastoderms were separated from yolks and re-adhered creating chimeric embryos. (A) Schematic representation
of the blastoderm transplant. A chimeric embryo (B–B90) containing a WT yolk (B9) and bbp blastoderm (B0) progresses through epiboly properly (B90,
80% epiboly). A chimeric embryo (C–C0) containing a WT blastoderm (C9) and bbp yolk (C0) constricts at 50% epiboly, showing that Bbp functions in
the yolk cell during epiboly. Bright field images of chimeric embryos, B, C. WT derived tissue, B9, C9. bbp derived tissue, B0, C0. Merge of images at 80%
epiboly in B90.
doi:10.1371/journal.pgen.1000413.g005
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Figure 6. Zebrafish MAPKAPK2 protein schematic, sub-cellular localization, and kinase activity. (A) Top panel: Full length protein of 382
amino acids, with catalytic domain (red) adjacent to the carboxy-terminal regulatory domains (blue, purple). Residues T202, S252, and T315 (*) are
phosphorylated by p38 MAPK. K73M is the kinase dead mutation generated. The Q350 residue (black arrowhead) is mutated to a premature stop
codon in bbp, thus creating a truncated protein lacking the most carboxy-terminal regulatory domains (purple). Bottom panel: Scale representation of
carboxy-terminal regulatory domains, including the auto-inhibitory helix that slightly overlaps an NES, and the NLS that also contains residues
required for p38 MAPK docking (p38). (B) bbp embryo injected with kinase-dead full-length myc-tagged MAPKAPK2 (MK2), which does not rescue;
shown at 50% epiboly when the constriction initiated. (C,D) Wholemount in situ hybridization of MK2 (bbp) antisense and control sense probes at
50% epiboly in WT embryos. (E) bbp embryo injected with full-length myc-tagged MK2 mRNA at the 1-cell stage is rescued; shown at 75% epiboly. (F–
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by expressing a dominant negative p38a (DNp38) in WT embryos.

p38a is expressed maternally and throughout blastoderm stages in

the zebrafish [40,41]. Microinjection of 250 pg of DNp38a

mRNA caused 60% of the embryos to display a phenotype

similar or identical to that of bbp mutant embryos (Fig. 7A,B,

n = 155). In time-lapse microscopy analysis shimmying movements

were observed in DNp38-injected embryos, similar to those seen in

bbp mutants. Likewise, at or slightly after 50% epiboly, the

blastoderm margin constricted strongly, followed by the yolk cell

bursting (Video S6). These results support a role for p38 MAPK in

regulating the activity of MAPKAPK2 in epiboly in the zebrafish.

Discussion

The coordination of cell movements during developmental

processes such as epiboly is not well understood. Although a

fundamental cell movement process, few molecular components

regulating epiboly have been described. Those that have been

described are isolated components, not yet integrated into gene

pathways. Here we identified a novel function for MAPKAPK2

and p38 MAPK in modulating this morphogenetic process in the

early zebrafish embryo. MAPKAPK2 is required to prevent the

premature constriction of the blastopore observed in bbp mutants.

p38 MAPK is also required in this process, since mutating the

three p38 MAPK phosphorylation sites in MAPKAPK2 abrogates

its function and a dominant negative p38 MAPK phenocopies the

bbp mutant phenotype. These results indicate that p38 MAPK

regulates MAPKAPK2 activity during epiboly in zebrafish

through the well-known MAP kinase cascade pathway.

Loss of MAPKAPK2 or p38 MAPK function causes premature

constriction of the blastoderm margin, which ruptures the yolk cell

and causes lethality. We can block yolk cell rupture by incubation

in hypertonic media (Fig. 3 L); however, the marginal constriction

persists in these conditions, indicating that the rupture and

constriction are not simply due to a defect in yolk cell membrane

integrity. We show that MAPKAPK2 functions within the yolk cell

and postulate that it modulates actin-based contractility to close

the blastopore during epiboly. The blastopore is at its greatest

circumference at 50% epiboly (Fig. 1). Following that stage, the

blastoderm cells migrate uniformly vegetally causing the blasto-

pore circumference to continuously decrease in a purse-string like

fashion until the blastopore is completely closed at 100% epiboly.

Electron microscopy studies in Fundulus reveal an actin ring in the

YSL adjacent to the blastoderm margin that is postulated to act as

the strings during blastopore closure [15]. In zebrafish an F-actin

band is first evident at 50% epiboly in a similar location in the

YSL [16]. This actin band is associated with an active form of

myosin, phosphorylated-myosin 2 [17], indicating the presence of

an actin-myosin contractile activity in the YSL margin. This actin

band is also associated with endocytosis [16], which removes the

yolk membrane as the advancing blastoderm/EVL cells move

vegetally over the yolk during epiboly and may be a driving force

in their vegetal movement. The most intense region of this F-actin

band associates with the leading edge of the EVL cells and is

implicated, together with the Misshapen kinase in regulating the

constriction of the marginal edge of EVL cells as they advance

vegetally [17].

Pharmacological inhibitors of actin or myosin can slow the later

stages of epiboly in zebrafish, implicating actin function in epiboly

progression [16]. Higher doses of these inhibitors can arrest

epiboly, but also cause either a dissociation of the EVL and

blastoderm cells or yolk herniation due to loss of the vegetal actin

mat that maintains the yolk integrity [16,42]. We tested several

actin or myosin inhibitors (cytochalasin B and D, Latrunculin A

and B, blebbistatin) for their ability to suppress the marginal

constriction in bbp mutants at 50% epiboly, however, none of them

can suppress the phenotype at doses that slow epiboly in WT

embryos (data not shown). Higher doses of some inhibitors can

arrest epiboly in WT embryos and block the very strong

constriction in bbp mutants; however, due to the many other roles

that actin plays in development, including cytokinesis, cell

adhesion, and general cell integrity, higher doses arrest develop-

ment in general and cause lethality (data not shown), precluding

our ability to block specifically the yolk cell constriction.

Loss of Mtx2, a predicted transcription factor, by morpholino

knockdown in zebrafish results in reduction of the YSL punctate

actin band and arrest in the vegetal movement of cells at the 50%

epiboly point [22,23]. Interestingly, mtx2 morphants also constrict

around the margin with a very similar phenotype to bbp mutants

[23]. However, the temporal progression of the constriction in

mtx2 morphants coincides with the normal timing of blastopore

closure in a WT embryo. That is, the margin constricts as if

epiboly were progressing normally, although the cells fail to move

vegetally. This contrasts the marginal constriction in bbp mutant

embryos, which occurs rapidly during a 20 to 30-minute window,

rather than over a 3-hour time period. The reduced punctate actin

band in mtx2 morphants may result in epiboly arrest. While the

remaining strong F-actin at the EVL margin may mediate the

marginal constriction observed in mtx2 morphants and may be

precociously activated in bbp mutant embryos.

In zebrafish, endogenous calcium release activity, as well as a

requirement for calcium during epiboly, supports the importance

of calcium signaling in epiboly progression [16]. Calcium levels are

H) Anti-myc antibody staining of WT (bbp/+) embryos expressing WT (F), bbp (G), and a non-phosphorylatable T202A/S252A/T315A triple mutation
(H) of myc-tagged MK2 (100 pg mRNA injected). I. Western blot of HeLa cell extracts expressing a vector control (lane 1), full-length myc-tagged MK2
(lane 2), truncated myc-tagged Bbp MK2 (lane 3), full-length kinase dead myc-tagged MK2 (lane 4), T202A/T315A myc-tagged MK2 (lane 5), T202A/
S252A/T315A myc-tagged MK2 (lane 6). (J) Western blotting of HeLa cell extracts expressing a vector control (lane 1), full-length untagged MK2 (lane
2), or truncated untagged Bbp MK2 (lane 3). (I, J) HeLa cell extract blots were probed for total MK2 protein (MK2) (top panels), total HSP27 protein
(middle panels), and phosphorylated HSP27 protein (bottom panels). (K) Western blot probed with anti-myc of embryo extracts either uninjected
(lane 1) or expressing myc-tagged MK2 constructs, as described in I.
doi:10.1371/journal.pgen.1000413.g006

Figure 7. Microinjection of DNp38a mRNA phenocopies bbp.
WT embryos microinjected with 250 pg of DsRed2 mRNA (A) or DNp38a
mRNA (B), which causes a bbp phenocopy.
doi:10.1371/journal.pgen.1000413.g007
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low during early epiboly [24–26,43], but increase and become

dynamic from 50 to 100% epiboly. Spikes of calcium are evident

in the yolk cell beginning at 50% epiboly, followed by waves of

calcium that traverse the blastoderm margin from 65% epiboly to

blastopore closure [16,24]. Loss of calcium causes a loss of the yolk

cell actin band and a blockage in epiboly progression [16].

Considering that calcium positively regulates actin contraction

[44], the dramatic increase in calcium release observed in bbp

mutant embryos (Fig. 4) is consistent with increased actin

contraction causing the abnormal morphogenesis movements.

During early epiboly when calcium release is normally infrequent,

we observed striking calcium dynamics in bbp mutants, coincident

with the abnormal shimmying movements observed prior to 50%

epiboly, suggesting abnormal F-actin contractile movements prior

to 50% epiboly. Furthermore, we observed increased and

sustained levels of calcium at the margin, when morphological

constriction is apparent. The constriction phenotype is remarkable

in its precise timing at specifically the 50% epiboly point in all

mutant embryos, coincident with the timing of robust F-actin band

formation at the YSL margin. We postulate that only when the F-

actin band fully forms at 50% epiboly in conjunction with EVL

marginal F-actin does the abnormal calcium regulation cause

lethality through an unregulated F-actin constrictive force.

One well characterized target of MAPKAPK2, HSP27, plays a

positive role in actin polymerization when phosphorylated by

MAPKAPK2 [45–49]. Our studies suggest that actin polymerizes

normally in bbp mutants, since the yolk cell actin band forms at

50% epiboly in bbp mutants. To our knowledge, there are no

known MAPKAPK2 targets that inhibit actin-myosin contraction

or calcium release. Thus, our results suggest a novel target of

MAPKAPK2 that normally restricts sustained actin constriction to

regulate tissue morphogenesis.

Although well studied in cell culture, MAPKAPK2 has been

little studied in model organisms. While a MAPKAPK2 gene exists

in both Drosophila and C. elegans, no mutant alleles have been

reported. RNAi screens in Drosophila cell culture suggest a role

for the fly homolog in cell cycle progression and cell shape

regulation [50,51].

In the mouse a targeted mutation of MAPKAPK2 is viable and

fertile, but exhibits defects in mediating inflammatory responses

[52–54]. Double mutants of MAPKAPK2 and the closely related

MAPKAPK3 in the mouse display more severe defects in the

inflammatory response, but do not exhibit developmental

abnormalities, although they are widely expressed in development

[55]. The third less related subfamily member, MAPKAPK5,

exhibits an incompletely penetrant embryonic lethal phenotype in

the mouse [56]. Generation of double and triple mutants of these

MAPKAPKs will be required to reveal potential overlapping

functions. Zebrafish have a duplicate MAPAPK2 gene that is not

expressed until 3 dpf (E. Brito and DSW, unpublished observa-

tion). Zygotic roles for MAPKAPK2 in zebrafish development

may be masked by the duplicate homolog or by the activity of

homologs of the other family members MAPKAPK3 and/or

MAPKAPK5, since MAPKAPK2/bbp homozygous zygotic mu-

tants in zebrafish are viable to adulthood, with no obvious

developmental defects.

The dramatic cell movements driving epiboly are crucial to the

development of the body plan of anamniote vertebrates. We show

that the p38 MAPK pathway is a critical component in regulating

this process within the teleost yolk cell. Future studies will be

required to reveal the mechanism by which this pathway regulates

blastopore closure in this fundamental cell movement process. The

early requirement for MAPKAPK2 and the accessibility of the

zebrafish embryo will provide an excellent in vivo model for

investigating the function and regulation of MAPKAPK2, which

has primarily been studied in cell culture. In particular

understanding the role of MAPKAPK2 during zebrafish epiboly

will be valuable in the identification of MAPKAPK2 inhibitors to

modulate the inflammatory response that MAPKAPK2 mediates

in chronic inflammatory conditions in humans.

Materials and Methods

Ethics Statement
The animal work in this study was approved by the Institutional

Review Board of the University of Pennsylvania School of

Medicine.

Phenotypic Characterization
All analyses were performed with the bbpp58cd allele [18].

Optimized fixation protocols for the cytoskeletal proteins were

followed. Tubulin was visualized using KMX-1 (Boerhinger

Mannheim) and F-actin with rhodamine-phalloidin (Molecular

Probes) as described [57]. Myc-tagged protein was visualized by

fixing embryos in 4% PFA in PBS, blocking with 5% BSA and

0.5% Tween-20 in PBS and staining with anti-myc monoclonal

antibody 9E10 (University of Pennsylvania, Cell Center Service

Facility), followed by confocal microscopy. In situ hybridization

was performed using gsc and no tail [58], eve1 [59], bmp4 [60], and

foxb1.2 (formerly fkd3) [20].

Endocytosis was analyzed by incubating manually dechorio-

nated embryos in 1% rhodamine-dextran (MW 10,000, Molecular

Probes) in E3 medium from sphere stage to 50% epiboly as

described [8,61]. Fixed embryos were analyzed by confocal

microscopy.

For yolk cell membrane integrity studies, WT and bbp embryos

were incubated in hypertonic Ringers solution (116 mM NaCl,

2.9 mM KCl, 0.8 mM MgSO4, 1.8 mM CaCl2, 5 mM HEPES)

from the 4-cell stage through 24 hpf.

Blastoderm Transplants
Whole blastoderm transplants were performed as previously

described [27]. Briefly, mutant and WT embryos were injected at the

one-cell stage with 1 nl 2.5% rhodamine-dextran (MW 10,000,

Molecular probes) and 1 nl 0.05 mM Sytox Green (Molecular

Probes), respectively, in 0.1 M KCl. Embryos were dechorionated

and kept in E3 medium until the 1000-cell stage. Transplants were

performed in 16 Ringers solution (116 mM NaCl, 2.8 mM Kcl,

5 mM HEPES, 1 mM CaCl2, pH 7.2) containing 1.6% whipped

and cleared chicken egg whites. Blastoderms were separated from

yolks using a glass knife and hybrid embryos formed by placing

blastoderms onto naked yolks using slight pressure until adhered, then

transferred to 1/36Ringers solution after 15 minutes and analyzed.

Mapping, Molecular Identification and Cloning of bbp
Genomic DNA was pooled from mutant and WT sibling

females, and the bbp mutation, p58cd [18], mapped to a

chromosomal position using SSLP markers spaced throughout

the genome, as described [19,28]. SSLP markers flanking the

mutation (z22766 and z22355) were used to genotype individual

fish. Fish were generated for fine mapping by crossing bbp2/+
females to bbp2/2 males. Both bbp2/+ and bbp2/2 females

were scored for recombination between markers z22766 and

z22355.

cDNA was made from ovary RNA purified from bbp2/2 and

bbp+/+ fish using Superscript II (Invitrogen). MAPKAPK2 (MK2)

cDNA was amplified using the primers: 59-CCATC-

GATGGGTGTTGCCAAAGAAAGAC-39 and 59-GCTCTA-
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GATCCACCGAGTTATTGCTTCC-39. The product was se-

quenced and cloned into Cla1 and Xba1 sites in pCS2+. Full-

length WT and bbp MK2 were cloned into a pCS2+ vector

containing six tandem copies of a myc epitope (gift of Dr. Peter

Klein), yielding an N-terminal myc-fusion protein. Kinase-dead

myc-MK2 (K73M) was made by site-directed mutagenesis using

the primers: 59-GTGGGGAGAAGCTCGCTTTAATGATG-

CTTCATGACTGCCCAAA-39 and 59-TTTGGGCAGTCAT-

GAAGCATCATTAAAGCGAGCTTCTCCCCAC-39. Non-

phosphorylatable myc-MK2 (T202A, S252A, T315A) was made

by site-directed mutagenesis using the following primers in three

subsequent reactions: 59-ACACACAACTCTCTGGCCGCCC-

CCTGCTATACTCCTTATTAT-39 with 59-ATAATAAGGAG-

TATAGCAGGGGGCGGCCAGAGAGTTGTGTGT-39 (T202A),

59-GAATCATGGATTGGCAATTGCTCCTGGTATGAAGA-

AACGAAT-39 with 59-ATTCGTTTCTTCATACCAGGAG-

CAATTGCCAATCCATGATTC-39 (S252A), and 59-CAAT-

CAATGGAGGTTCCACAGGCACCCCTACACACCAGCCGT-

39 with 59-ACGGCTGGTGTGTAGGGGTGCCTGTGGAA-

CCTCCATTGATTG-39 (T315A). DNp38a (T181A, Y183F)

was generated from a WT p38a cDNA in pCS2+ (gift of T.

Hirano) by site directed mutagenesis with the primers 59-

GACACACAGATGATGAGATGGCCGGCTTTGTGGCCA-

CAAGGTGGTATC-39 59-GATACCACCTTGTGGCCACAA-

AGCCGGCCATCTCATCATCTGTGTGTC-39. Capped mRNA

was produced from pCS2+ constructs with mMessage mMachine

(Ambion) and injected into embryos, as previously described [62].

A MK2 morpholino, GTTGGCGTTAGTCAACATCTCCCAC

(Gene Tools, Philomath, Oregon) was injected at 5 ng/nl in 0.1 M

KCl at the one-cell stage.

For in situ hybridization of MK2, a probe was generated from

the pCS2+MK2 vector digested with HinDIII and transcribed

with T7 polymerase. SacII digestion, followed by SP6 polymerase

synthesis generated the sense control probe.

Cell Culture and Western Blotting
HeLa cells were grown in Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with 10% fetal bovine serum (FBS),

penicillin and streptomycin, and GlutaMax (Gibco BRL) to a

density of 26105 per 35 mm plate at 37uC in 5% CO2. Cells were

transfected with tagged and untagged MK2 WT and mutant

plasmids, as described [63]. Cell lysates were analyzed by a standard

Western blot protocol using anti-MK2, anti-HSP27, anti-Phospho-

HSP27 (Assay Designs), and anti-Phospho-MK2 (Cell Signaling).

Zebrafish embryonic proteins were resolved as described [64] with

each lane containing 2 embryo equivalents. Western blotting was

performed with anti-myc monoclonal antibodies.

Imaging, Time-Lapse Microscopy and Confocal Analysis
Still images of live embryos and in situ hybridization were

captured with iVision (DVL Software). For time lapse-microscopy,

embryos were immobilized in individual chambers in 1% agarose in

E3 and covered by 3% methylcellulose in E3. Time-lapse movies

were created using OpenLab (Improvision, Beverly, MA). Confocal

analysis of tubulin and phalloidin staining, endocytosis, and

MAPKAPK2 localization was performed using a Zeiss confocal

and LSM510 software. For in vivo calcium imaging, 1-cell stage

embryos were microinjected with Fura-2 Dextran or Bis-Fura2

(Molecular Probes) and imaged as described [65]. Image pairs were

collected at 15-second intervals through epiboly stages. For rescue of

the calcium defect, MAPKAPK2 RNA (90 ng/ul) co-mixed with

Texas Red (TxR) or TxR alone as a control was injected in the yolk

cell below the blastoderm at the 512-cell stage. Periodically frames

were collected at 560 nm to locate the TxR lineage marker and in

vivo calcium imaging performed as above. For YSN labeling,

embryos were injected in the YSL at 1000-cell stage with 1 nL of

0.25 mM Sytox Green in 0.1 M KCl. Embryos were mounted in

0.12% low melt agarose. Images were acquired on a Zeiss Axiovert

200 and processed in Axiovision software. For time-lapse movies,

images were processed in Photoshop, ImageJ and Quicktime Pro.

Supporting Information

Video S1 Microinjection of DNp38a mRNA phenocopies bbp.

WT embryos microinjected with 250 pg of DsRed2 mRNA (A) or

DNp38a mRNA (B), which causes a bbp phenocopy.

Found at: doi:10.1371/journal.pgen.1000413.s001 (7.30 MB

MOV)

Video S2 bbp YSN display normal movements until marginal

constriction. Animal view of WT (left panel) and age-matched

mutant (right panel). I-YSN rapidly contract to a small area of the

I-YSL.

Found at: doi:10.1371/journal.pgen.1000413.s002 (1.03 MB

MOV)

Video S3 bbp YSN display normal movements until marginal

constriction. Lateral view of WT (left panel) and age-matched

mutant (right panel). I-YSN rapidly contract to a small area of the

I-YSL.

Found at: doi:10.1371/journal.pgen.1000413.s003 (0.70 MB

MOV)

Video S4 WT embryos display controlled and consistent

calcium release during epiboly. Time-lapse movie of WT embryo

from early epiboly through 50% epiboly. Calcium release is

visualized by fura-2 and indicates the intensity of the release (stable

levels of calcium, cool colors indicating low intensity; dynamic

levels of calcium, warm colors indicating high intensity). WT

embryos maintain overall stable calcium release levels throughout

early epiboly.

Found at: doi:10.1371/journal.pgen.1000413.s004 (5.50 MB

MOV)

Video S5 bbp embryos display increasingly dynamic calcium

release prior to the bursting of the yolk. Time-lapse movie of bbp

embryo from early epiboly through bursting at 50% epiboly. Calcium

release is visualized by fura-2 and indicates the intensity of the release,

as in Movie 4. Ectopic calcium release increases dramatically over

time as seen by sparks of high intensity. Frequency and intensity of the

sparks increased simultaneously with the intensity of the shimmying

movements in the embryo and increased release at the cell margin,

culminating in the lethal bursting of the yolk.

Found at: doi:10.1371/journal.pgen.1000413.s005 (7.07 MB

MOV)

Video S6 DNp38a mRNA injection causes bbp phenocopy.

(Top 3 rows) 100 pg DNp38a mRNA injected embryos, (bottom

row) buffer control injected embryos. Nine of 12 DNp38 injected

embryos display yolk cell rupture phenotype. 5 minute intervals.

Found at: doi:10.1371/journal.pgen.1000413.s006 (9.31 MB

MOV)

Acknowledgments

We thank members of the Mullins laboratory and zebrafish community at

the University of Pennsylvania for helpful discussions. We thank P.S. Klein

for the myc-fusion plasmid, S. Maegawa for guidance with the whole

blastoderm transplant technique, J. Sanger for helpful advice on

cytoskeletal manipulation techniques, E. Howlett for assistance with

microscopy and T. Gupta, F. Marlow and S. Little for critical reading of

the manuscript.

MAPKAPK2 in Development

PLoS Genetics | www.plosgenetics.org 12 March 2009 | Volume 5 | Issue 3 | e1000413



Author Contributions

Conceived and designed the experiments: BAH SGdlTC YY DCS MMC

DSW MCM. Performed the experiments: BAH SGdlTC YY DCS CMF

DSW. Analyzed the data: BAH SGdlTC YY DCS CMF MMC DSW

MCM. Contributed reagents/materials/analysis tools: BAH SGdlTC YY

DCS CMF RD MMC DSW MCM. Wrote the paper: BAH DCS MMC

DSW MCM.

References

1. Keller RE (1980) The cellular basis of epiboly: an SEM study of deep-cell

rearrangement during gastrulation in Xenopus laevis. J Embryol Exp Morphol

60: 201–234.

2. Arendt D, Nubler-Jung K (1999) Rearranging gastrulation in the name of yolk:

evolution of gastrulation in yolk-rich amniote eggs. Mech Dev 81: 3–22.

3. Williams-Masson EM, Malik AN, Hardin J (1997) An actin-mediated two-step

mechanism is required for ventral enclosure of the C. elegans hypodermis.

Development 124: 2889–2901.

4. Solnica-Krezel L (2005) Conserved patterns of cell movements during vertebrate

gastrulation. Curr Biol 15: R213–228.

5. Warga RM, Kimmel CB (1990) Cell movements during epiboly and gastrulation

in zebrafish. Development 108: 569–580.

6. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages

of embryonic development of the zebrafish. Dev Dyn 203: 253–310.

7. Strahle U, Jesuthasan S (1993) Ultraviolet irradiation impairs epiboly in

zebrafish embryos: evidence for a microtubule-dependent mechanism of epiboly.

Development 119: 909–919.

8. Solnica-Krezel L, Driever W (1994) Microtubule arrays of the zebrafish yolk cell:

organization and function during epiboly. Development 120: 2443–2455.

9. D’Amico LA, Cooper MS (2001) Morphogenetic domains in the yolk syncytial

layer of axiating zebrafish embryos. Dev Dyn 222: 611–624.

10. Kane DA, Hammerschmidt M, Mullins MC, Maischein HM, Brand M, et al.

(1996) The zebrafish epiboly mutants. Development 123: 47–55.

11. Kane DA, McFarland KN, Warga RM (2005) Mutations in half baked/E-

cadherin block cell behaviors that are necessary for teleost epiboly. Development

132: 1105–1116.

12. Shimizu T, Yabe T, Muraoka O, Yonemura S, Aramaki S, et al. (2005) E-

cadherin is required for gastrulation cell movements in zebrafish. Mech Dev 122:

747–763.

13. Marsden M, DeSimone DW (2001) Regulation of cell polarity, radial

intercalation and epiboly in Xenopus: novel roles for integrin and fibronectin.

Development 128: 3635–3647.

14. Betchaku T, Trinkaus JP (1986) Programmed Endocytosis During Epiboly of

Fundulus heteroclitus. Amer Zool 26: 193–196.

15. Betchaku T, Trinkaus JP (1978) Contact relations, surface activity, and cortical

microfilaments of marginal cells of the enveloping layer and of the yolk syncytial

and yolk cytoplasmic layers of fundulus before and during epiboly. J Exp Zool

206: 381–426.

16. Cheng JC, Miller AL, Webb SE (2004) Organization and function of

microfilaments during late epiboly in zebrafish embryos. Dev Dyn 231:

313–323.

17. Koppen M, Fernandez BG, Carvalho L, Jacinto A, Heisenberg CP (2006)

Coordinated cell-shape changes control epithelial movement in zebrafish and

Drosophila. Development 133: 2671–2681.

18. Wagner DS, Dosch R, Mintzer KA, Wiemelt AP, Mullins MC (2004) Maternal

control of development at the midblastula transition and beyond: mutants from

the zebrafish II. Dev Cell 6: 781–790.

19. Dosch R, Wagner DS, Mintzer KA, Runke G, Wiemelt AP, et al. (2004)

Maternal control of vertebrate development before the midblastula transition:

mutants from the zebrafish I. Dev Cell 6: 771–780.

20. Odenthal J, Nusslein-Volhard C (1998) fork head domain genes in zebrafish.

Developement Genes and Evolution 208: 245–258.

21. Koppen M, Fernandez BG, Carvalho L, Jacinto A, Heisenberg CP (2006)

Coordinated cell-shape changes control epithelial movements in zebrafish and

Drosophila. Development 133: 2671–2681.

22. Bruce AE, Howley C, Dixon Fox M, Ho RK (2005) T-box gene eomesodermin

and the homeobox-containing Mix/Bix gene mtx2 regulate epiboly movements

in the zebrafish. Dev Dyn 233: 105–114.

23. Wilkins SJ, Yoong S, Verkade H, Mizoguchi T, Plowman, et al. (2008) Mtx2

directs zebrafish morphogenetic movements during epiboly by regulating

microfilament formation. Dev Biol 314: 12–22.

24. Creton R, Speksnijder JE, Jaffe LF (1998) Patterns of free calcium in zebrafish

embryos. J Cell Sci 111 (Pt 12): 1613–1622.

25. Gilland E, Miller AL, Karplus E, Baker R, Webb SE (1999) Imaging of

multicellular large-scale rhythmic calcium waves during zebrafish gastrulation.

Proc Natl Acad Sci U S A 96: 157–161.

26. Webb SE, Miller AL (2003) Calcium signalling during embryonic development.

Nat Rev Mol Cell Biol 4: 539–551.

27. Yamaha E, Kazama-Wakabayashi M, Otani S, Fujimoto T, Arai K (2001)

Germ-line chimera by lower-part blastoderm transplantation between diploid

goldfish and triploid crucian carp. Genetica 111: 227–236.

28. Knapik EW, Goodman A, Ekker M, Chevrette M, Delgado J, et al. (1998) A

microsatellite genetic linkage map for zebrafish (Danio rerio). Nat Genet 18:

338–343.

29. Ben-Levy R, Hooper S, Wilson R, Paterson HF, Marshall CJ (1998) Nuclear

export of the stress-activated protein kinase p38 mediated by its substrate

MAPKAP kinase-2. Curr Biol 8: 1049–1057.

30. Engel K, Kotlyarov A, Gaestel M (1998) Leptomycin B-sensitive nuclear export

of MAPKAP kinase 2 is regulated by phosphorylation. Embo J 17: 3363–3371.

31. Gaestel M (2006) MAPKAP kinases - MKs - two’s company, three’s a crowd.

Nat Rev Mol Cell Biol 7: 120–130.

32. Meng W, Swenson LL, Fitzgibbon MJ, Hayakawa K, Ter Haar E, et al. (2002)

Structure of mitogen-activated protein kinase-activated protein (MAPKAP)

kinase 2 suggests a bifunctional switch that couples kinase activation with nuclear

export. J Biol Chem 277: 37401–37405.

33. Underwood KW, Parris KD, Federico E, Mosyak L, Czerwinski RM, et al.

(2003) Catalytically active MAP KAP kinase 2 structures in complex with

staurosporine and ADP reveal differences with the autoinhibited enzyme.

Structure 11: 627–636.

34. Iyer GH, Moore MJ, Taylor SS (2005) Consequences of lysine 72 mutation on

the phosphorylation and activation state of cAMP-dependent kinase. J Biol

Chem 280: 8800–8807.

35. Lukas SM, Kroe RR, Wildeson J, Peet GW, Frego L, et al. (2004) Catalysis and

function of the p38 alpha.MK2a signaling complex. Biochemistry 43:

9950–9960.

36. Tanoue T, Adachi M, Moriguchi T, Nishida E (2000) A conserved docking

motif in MAP kinases common to substrates, activators and regulators. Nat Cell

Biol 2: 110–116.

37. Ben-Levy R, Leighton IA, Doza YN, Attwood P, Morrice N, et al. (1995)

Identification of novel phosphorylation sites required for activation of MAPKAP

kinase-2. Embo J 14: 5920–5930.

38. Engel K, Schultz H, Martin F, Kotlyarov A, Plath K, et al. (1995) Constitutive

activation of mitogen-activated protein kinase-activated protein kinase 2 by

mutation of phosphorylation sites and an A-helix motif. J Biol Chem 270:

27213–27221.

39. Stokoe D, Caudwell B, Cohen PT, Cohen P (1993) The substrate specificity and

structure of mitogen-activated protein (MAP) kinase-activated protein kinase-2.

Biochem J 296 (Pt 3): 843–849.

40. Krens SF, He S, Spaink HP, Snaar-Jagalska BE (2006) Characterization and

expression patterns of the MAPK family in zebrafish. Gene Expr Patterns 6:

1019–1026.

41. Fujii R, Yamashita S, Hibi M, Hirano T (2000) Asymmetric p38 activation in

zebrafish: its possible role in symmetric and synchronous cleavage. J Cell Biol

150: 1335–1348.

42. Zalik SE, Lewandowski E, Kam Z, Geiger B (1999) Cell adhesion and the actin

cytoskeleton of the enveloping layer in the zebrafish embryo during epiboly.

Biochem Cell Biol 77: 527–542.

43. Lee KW, Webb SE, Miller AL (2006) Requirement for a localized, IP3R-

generated Ca2+ transient during the furrow positioning process in zebrafish

zygotes. Zygote 14: 143–155.

44. Means AR (2000) Regulatory cascades involving calmodulin-dependent protein

kinases. Mol Endocrinol 14: 4–13.

45. Landry J, Huot J (1995) Modulation of actin dynamics during stress and

physiological stimulation by a signaling pathway involving p38 MAP kinase and

heat-shock protein 27. Biochem Cell Biol 73: 703–707.

46. Landry J, Huot J (1999) Regulation of actin dynamics by stress-activated protein

kinase 2 (SAPK2)-dependent phosphorylation of heat-shock protein of 27 kDa

(Hsp27). Biochem Soc Symp 64: 79–89.

47. Landry J, Lambert H, Zhou M, Lavoie JN, Hickey E, et al. (1992) Human

HSP27 is phosphorylated at serines 78 and 82 by heat shock and mitogen-

activated kinases that recognize the same amino acid motif as S6 kinase II. J Biol

Chem 267: 794–803.

48. Lavoie JN, Hickey E, Weber LA, Landry J (1993) Modulation of actin

microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat

shock protein 27. J Biol Chem 268: 24210–24214.

49. Pichon S, Bryckaert M, Berrou E (2004) Control of actin dynamics by p38 MAP

kinase - Hsp27 distribution in the lamellipodium of smooth muscle cells. J Cell

Sci 117: 2569–2577.

50. Bettencourt-Dias M, Giet R, Sinka R, Mazumdar A, Lock WG, et al. (2004)

Genome-wide survey of protein kinases required for cell cycle progression.

Nature 432: 980–987.

51. Kiger AA, Baum B, Jones S, Jones MR, Coulson A, et al. (2003) A functional

genomic analysis of cell morphology using RNA interference. J Biol 2: 27.

52. Kotlyarov A, Neininger A, Schubert C, Eckert R, Birchmeier C, et al. (1999)

MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis. Nat

Cell Biol 1: 94–97.

53. Lehner MD, Schwoebel F, Kotlyarov A, Leist M, Gaestel M, et al. (2002)

Mitogen-activated protein kinase-activated protein kinase 2-deficient mice show

MAPKAPK2 in Development

PLoS Genetics | www.plosgenetics.org 13 March 2009 | Volume 5 | Issue 3 | e1000413



increased susceptibility to Listeria monocytogenes infection. J Immunol 168:

4667–4673.

54. Shiroto K, Otani H, Yamamoto F, Huang CK, Maulik N, et al. (2005) MK22/

2 gene knockout mouse hearts carry anti-apoptotic signal and are resistant to

ischemia reperfusion injury. J Mol Cell Cardiol 38: 93–97.

55. Ronkina N, Kotlyarov A, Dittrich-Breiholz O, Kracht M, Hitti E, et al. (2007)

The mitogen-activated protein kinase (MAPK)-activated protein kinases MK2

and MK3 cooperate in stimulation of tumor necrosis factor biosynthesis and

stabilization of p38 MAPK. Mol Cell Biol 27: 170–181.

56. Schumacher S, Laass K, Kant S, Shi Y, Visel A, et al. (2004) Scaffolding by

ERK3 regulates MK5 in development. Embo J 23: 4770–4779.

57. Topczewski J, Solnica-Krezel L (1999) Cytoskeletal dynamics of the zebrafish

embryo. Methods Cell Biol 59: 205–226.

58. Schulte-Merker S, Ho RK, Herrmann BG, Nusslein-Volhard C (1992) The

protein product of the zebrafish homolog of the mouse T gene is expressed in

nuclei of the germ ring and the notochord of the early embryo. Development

116: 1021–1032.

59. Joly JS, Joly C, Schulte-Merker S, Boulekbache H, Condamine H (1993) The

ventral and posterior expression of the zebrafish homeobox gene eve1 is
perturbed in dorsalized and mutant embryos. Development 119: 1261–1275.

60. Chin AJ, Chen J-N, Weinberg ES (1997) Bone morphogenetic protein-4

expression characterizes inductive boundaries in organs of developing zebrafish.
Developement Genes and Evolution 207: 107–114.

61. Cooper MS, D’Amico LA (1996) A cluster of noninvoluting endocytic cells at the
margin of the zebrafish blastoderm marks the site of embryonic shield formation.

Dev Biol 180: 184–198.

62. Westerfield M (1995) The Zebrafish Book, 3rd Edition. Eugene, OR: University
of Oregon Press.

63. Robertson SE, Setty SR, Sitaram A, Marks MS, Lewis RE, et al. (2005) Erk
Signaling Regulates Clathrin-independent Endosomal Trafficking. Mol Biol

Cell.
64. Mintzer K, Runke G, Trout J, Whitman M, Mullins MC (2001) Lost-a-fin

encodes a type I BMP receptor, Alk8, acting maternally and zygotically in

dorsoventral pattern formation. Development 128: 859–869.
65. Slusarski DC, Corces VG (2000) Calcuim imaging in cell-cell signaling. Methods

Mol Biol 135: 253–261.

MAPKAPK2 in Development

PLoS Genetics | www.plosgenetics.org 14 March 2009 | Volume 5 | Issue 3 | e1000413


