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Abstract

PML is a progressive and mostly fatal demyelinating disease caused by JC virus infection and destruction of infected
oligodendrocytes in multiple brain foci of susceptible individuals. While JC virus is highly prevalent in the human
population, PML is a rare disease that exclusively afflicts only a small percentage of immunocompromised individuals
including those affected by HIV (AIDS) or immunosuppressive drugs. Viral- and/or host-specific factors, and not simply
immune status, must be at play to account for the very large discrepancy between viral prevalence and low disease
incidence. Here, we show that several amino acids on the surface of the JC virus capsid protein VP1 display accelerated
evolution in viral sequences isolated from PML patients but not in sequences isolated from healthy subjects. We provide
strong evidence that at least some of these mutations are involved in binding of sialic acid, a known receptor for the JC
virus. Using statistical methods of molecular evolution, we performed a comprehensive analysis of JC virus VP1 sequences
isolated from 55 PML patients and 253 sequences isolated from the urine of healthy individuals and found that a subset of
amino acids found exclusively among PML VP1 sequences is acquired via adaptive evolution. By modeling of the 3-D
structure of the JC virus capsid, we showed that these residues are located within the sialic acid binding site, a JC virus
receptor for cell infection. Finally, we go on to demonstrate the involvement of some of these sites in receptor binding by
demonstrating a profound reduction in hemagglutination properties of viral-like particles made of the VP1 protein carrying
these mutations. Collectively, these results suggest that a more virulent PML causing phenotype of JC virus is acquired via
adaptive evolution that changes viral specificity for its cellular receptor(s).
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Introduction

JC virus (JCV) is highly prevalent in the human population with

over 70% of people showing anti-JCV antibody responses and up

to 40% of the population displaying persistent viral shedding in the

urine (reviewed in [1]). These epidemiological data indicate that

the virus establishes chronic infection in a large fraction of the

human population. Though normally asymptomatic, factors

leading to immune deficiency, such as HIV or immunosuppressive

drug therapy, can trigger an uncontrolled infection and replication

of JCV in oligodendrocytes causing their death and resulting in

progressive multifocal leukoencephalopathy (PML). Despite such a

high infection rate and viral occurrence, JC virus causes PML in a

very small fraction of immune deficient patients, including 4–5%

of AIDS patients [2] and less than 1% of patients with

lymphoproliferative diseases [3]. No pharmaceutical treatment

option for PML currently exists and the only chance for patient

survival is afforded by reconstitution of the patient’s own immune

response via HAART in AIDS or via drug tapering in

pharmaceutically immunocompromised individuals. Identification

of genetic and environmental risk factors influencing the

development of PML is of great importance both for finding of

therapeutic interventions and for the development of early

diagnostic methods to help reducing the risks associated with

immunosuppressive therapies.

Both host and viral genetics may contribute to PML. Earlier

studies focusing on viral genetic factors identified duplications and

rearrangements in the regulatory region of the viral genome [4–8].

Several studies also reported presence of several mutations in VP1

protein in the JC virus isolated from PML patients [8–10]. No

comprehensive analysis of an association of changes in protein

coding genes of JC virus with PML has been reported.

Pathogenicity of viruses ranging from influenza virus [11,12] to

the mouse polyomavirus [13,14], a close relative of human JCV,
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was shown to be determined by amino acid sequences involved in

the binding of a viral capsid protein to sialylated glycan receptors.

Changes in the affinity and specificity of the virus for its cellular

receptor(s) affect viral infectivity and transmission, hence playing a

crucial role in virulence. For example, a study of the mouse

polyomavirus showed that VP1 amino acid changes rather than

changes in the non-coding regulatory region are responsible for

the increased pathogenicity of the virus [15,16].

Consequently, we focused on VP1 protein and its relationship to

PML. We relied on methods of molecular evolution to determine

the presence of putative adaptive changes in the VP1 amino acid

sequence associated with PML. The advantage of this approach

over simple statistical association of sequence variants with the

disease, is that it takes into account the phylogenetic relationship of

viral strains and also allows identification of functionally significant

amino acid positions by examining the rate of sequence evolution.

Results/Discussion

JCV VP1 gene sequences were downloaded from GenBank

(Table S1) and used to construct a phylogenetic tree for a random

subset of sequences isolated from healthy individual and full-length

sequences isolated from distinct PML patients (Figure 1A). We

used the PhyML maximum likelihood method [17] with F84

substitution model [18,19]. Application of several methods

incorporated in the PHYLIP package such as maximum likelihood

method, distance-based and parsimony-based methods of phylo-

genetic reconstruction produced similar results. Viral sequences

isolated from PML patients do not cluster on the phylogenetic tree

and are broadly distributed among viral types and geographic

origins of the samples (Figure 1A). This is further supported by the

Slatkin-Maddison test for group separation (p = 0.38) [20]. In

agreement with earlier studies [8,21,22], PML causing viruses are

not limited to a specific viral phylogenetic type.

Next, we analyzed sequences from viruses isolated from PML

patients as well as those from healthy subjects with the goal of

determining whether PML associated evolutionary selective

pressure is acting on the viral VP1 gene. This analysis utilized

the PAML package [23] designed to identify the presence of

codons evolving under positive selection. PAML evaluates multiple

evolutionary models using the parametric likelihood ratio test. We

tested several models including a model of neutral evolution, a

nearly neutral model allowing for purifying (i.e. negative) selection,

and a heterogeneous model that allows some codon positions to

evolve under positive selection and other codon positions to evolve

under negative selection or neutrally (Table 1). We also tested a

number of more complex models.

In the case of VP1 sequences from JCV isolated from healthy

subjects, the nearly neutral evolutionary model involving a mixture

Author Summary

JC virus is a highly prevalent human polyomavirus.
Infection with this virus is generally benign and asymp-
tomatic despite viral persistence in the kidney of many
people. However, in immunocompromised individuals,
very rarely, the infection can progress to become a
potentially deadly brain disease called Progressive Multi-
focal Leukoencephalopathy (PML). The discrepancy be-
tween very high viral prevalence and low incidence of PML
suggests that there could be some unique viral character-
istics that regulate the progression from the asymptomatic
infection to the PML. Identification of such factors will help
us to understand the basis of PML development and
hopefully will lead to the creation of new diagnostic and
treatment tools for managing PML. In this work, we
demonstrate that the part of the viral surface protein that
is thought to be responsible for viral interaction with
cellular receptors and infection acquires specific mutations
that appear to be critical for the development of PML.
These mutations are found more frequently than by simple
chance and therefore are thought to be ‘‘positively
selected.’’ Based on these results, we hypothesize that
the specific mutations in the viral VP1 protein that we have
identified are critical for the evolution of JC virus to the
version associated with PML.

Figure 1. Phylogenetic distribution of PML associated viruses. (A) Broad phylogenetic distribution of PML causing JC viruses. Tree branches
(labeled by GI numbers) corresponding to PML causing viruses are marked by red stars, viruses isolated from healthy subjects are marked by green
stars. The tree is constructed based on DNA sequences of VP1 gene using maximum likelihood method. Only one sequence per patient was included.
(B) Phylogenetic distribution of mutations in the codon 269. The tree represents VP1 genes (labeled by GI numbers) of viruses isolated from PML
patients. Mutations in Ser269 codons are indicated by text inserts. Circles on branches reflect aLRT support. Position 269 was masked prior to
constructing the tree to avoid attraction of branches with mutations of this codon.
doi:10.1371/journal.pgen.1000368.g001

PML Selected Mutations in JC Virus VP1 Protein

PLoS Genetics | www.plosgenetics.org 2 February 2009 | Volume 5 | Issue 2 | e1000368



of neutrally evolving codons and codons under purifying selection

clearly outperformed the purely neutral model (p-value 7.061026).

However, no statistical support was found for more complex

models including models with positive selection. In contrast, for

VP1 sequences isolated from PML patients, allowing codons to

evolve under positive selection resulted in a highly significant

increase in the model likelihood (Table 1). The model with three

categories of sites including sites evolving under purifying

selection, neutral sites and sites under positive selection explained

the data significantly better than the nearly neutral model limited

only to neutral sites and the sites under purifying selection (p-value

2.561027). More complex models did not show significant

improvement over the simplest model with three categories of

codons.

Four codon positions (corresponding to amino acids 55, 60, 267

and 269) were identified as evolving under positive selection in the

PML sampling of full length sequences (Table 1). Bayesian

posterior probabilities for positive selection computed by PAML

were above 0.5 for these codon positions. The posterior

probability for positive selection in codon 269 was close to 1. To

increase the power of analysis, we added partial VP1 sequences

from JC virus isolated from PML patients. The addition of partial

sequences revealed signal of positive selection in codon 265

(Table 1).

Interestingly, we never observed two VP1 mutations in the same

JCV isolate. Analysis by the Spidermonkey [24] method revealed

epistatic interactions between positions 55 and 269 and between

position 60 and 269 (with posterior probabilities 0.88 and 0.70

respectively). This may reflect ‘‘diminishing return’’ epistatic

interactions, i.e. subsequent mutations are not beneficial and

possibly detrimental on the background of a single mutation.

All substitutions in these five codons are clearly associated with

PML. At least 52% of JC viruses (or 36 out of 69 sequences,

including partial sequences) isolated from PML patients have at

least one of these mutations, whereas none of these substitutions

have been observed in 253 full length viral sequences from healthy

subjects (Table S2). The strongest signal of positive selection in the

PML sample was detected for the codon encoding amino acid at

position 269. Figure 1B shows that multiple independent

mutations of Ser269 to aromatic residues phenylalanine and

tyrosine were observed in VP1 from PML associated viruses. The

existence of multiple independent mutations is not an artifact of

phylogenetic reconstruction because lineages with mutant variants

are separated by multiple branches with over 90% support by

bootstrap analysis and support of the likelihood ratio test

implemented in PhyML [17]. These lineages correspond to

different, previously identified, phylogenetic types of JC virus

and are from diverse geographic locations [21,22].

To get an insight into a functional role of the five identified

amino acid positions, we constructed a three-dimensional

molecular model of the JC virus VP1 bound to NeuNAc–(a2,3)–

Gal–(b1,3)–[(a2,6)-NeuNAc]–Glc-NAc tetrasaccharide based on

the crystal structure of MPyV VP1/oligosaccharide complex [25].

The structural model shown in Figure 2A suggests that all PAML-

identified amino acids are clustered on the surface of the VP1

protein at the sialic acid binding site and are likely to be involved

in sialic acid binding. Additionally, we predicted that L55F,

K60M, S267F, and S269F substitutions may induce steric clashes

with the modeled saccharide leading to a decrease in the affinity of

the interaction. Affinity to sialic acid was related to viral

pathogenicity in multiple studies of flu virus, mouse polyomavirus,

and mouse minute virus [11–14,26]. Particularly, pathogenicity of

mouse polyomavirus, a close relative of the JC virus, was mapped

to a VP1 amino acid substitution at position 296 [13], a position

orthologous to position 269 in human JC virus that showed the

strongest signal of positive selection in PML-causing viral isolates

in our study. As shown in Figure 2B, serine 269 of the human JC

virus and valine 296 of the mouse polyomavirus occupy identical

locations in the sialic acid binding pocket.

We note that positions 61, 66, 123, 129, 223 and 271 are all

limited to the PML sample (Table S2) and also line up with the

sialic acid binding pocket (Figure 2B). It is possible that those

residues went undetected by the PAML analysis due to the small

sample size and that the development of PML is accompanied by

positive selection for amino acids involved in sialic acid binding in

a majority of cases. The length of the phylogenetic tree in our

analysis is short thus limiting power to detect positive selection

[27,28]. Likelihood ratio test for detecting positive selection using a

short tree is conservative [27], and Bayes Empirical Bayes analysis

is of limited power [28]. Thus, additional PML-specific VP1

mutations can also be positive selected. Mutations at residue 107

are also found exclusively in the PML sample. However, it did not

show evidence of positive selection according to PAML and is not

located in the sialic acid binding pocket.

Table 1. Codons under positive selection in the PML sample.

Mutations Full length sequence set (n = 28) Partial sequence set codons 43–287 (n = 42)

P-value for the positive selection test

2.561027 3.561026

Position WT Mutant Bayes Empirical Bayes posterior probability

55 L F 0.82 0.94

60 K M,E,N ,0.5 0.94

265 N D,T ,0.5 0.85

267 S F,L 0.80 0.92

269 S F,Y,C 1.00 1.00

VP1 sequences isolated from PML patients and random subsets of sequences isolated from healthy subjects were further analyzed using PAML [23]. We examined
multiple models of sequence evolution incorporated in PAML including purely neutral model (M0), nearly neutral model (M1), model with positive selection (M2) and
additional more complex models (M3–M8). We used likelihood ratio test (LRT) to compare the difference between models M1 and M2 to test for positive selection. P-
values for positive selection in three datasets are shown together with Bayesian posterior probabilities for each codon position. Residues with Bayes Empirical Bayes
posterior probabilities exceeding 0.5 are shown.
doi:10.1371/journal.pgen.1000368.t001

PML Selected Mutations in JC Virus VP1 Protein
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In order to experimentally verify the role that these substitutions

play in sialic acid binding by the VP1 capsid, we recombinantly

produced viral like particles (VLP) from VP1 protein encoded by

several different naturally occurring viruses. We generated VLPs

from viral VP1 sequences encoding substitutions with one of the

two strongest signals of positive selection identified by PAML, one

with phenylalanine at position 269 (F269) and another one with

phenylalanine at position 55 (F55). As controls we used two

different VP1 genes that do not harbor any of the identified PML-

associated mutations, one from a healthy individual (WT) and

another one from a PML patient (Mad-1) (Table S3). Viral

hemagglutination of red blood cells (RBCs) has been shown to be a

reliable measure of sialic acid binding by polyomaviruses [16,29].

We tested all four VLPs in a hemagglutination assay. Strikingly,

both F55 and F269 variants displayed more than 8000-fold lower

HA activity than either control VLP (Table 2). Specifically, the

F55 variant completely failed to agglutinate human type O RBCs

even at 200 mg/ml, the highest concentration tested, and the F269

variant displayed very low HA activity as it caused hemaggluti-

nation only at concentrations above 25 mg/ml. At the same time

both L55 and S269 carrying variants (WT and Mad-1) caused

hemagglutination of RBCs at concentrations down to 0.375 ng/ml

and 6.25 ng/ml, correspondingly. We note that the F55 mutant

has the single amino acid difference with its corresponding wild

type variant (WT). Therefore the change in hemagglutination can

be specifically attributed to this amino acid replacement. In

addition to the change in position 269 the F269 mutant variant has

two additional amino acid positions that are different from its

corresponding control variant (Mad-1). Both of those amino acid

changes are not PML specific (Table S3 and Table S2) and are

unlikely to explain the difference in hemagglutination. While the

Mad-1 isolate had originated from a PML patient [30] it does not

contain any of the PML-specific mutation which correlates well

with its ability to hemagglutinate RBCs. The lack of PML-genic

mutations in this PML isolate suggests that VP1 mutations are not

an exclusive mechanism leading to PML development.

Although we do not know at the moment how these amino acid

substitutions affect viral infectivity per se, it is reasonable to assume

that a virus harboring such substitutions is adequately infectious as

it was sufficiently abundant in the CNS of PML patients to be

isolated. Therefore, it is tempting to speculate that changes in

Figure 2. Structural model of JCV VP1/NeuNAc–(a2,3)–Gal–(b1,3)–[(a2,6)-NeuNAc]–Glc-NAc tetrasaccharide complex. (A) A model of
JCV VP1 basic pentamer in complex with NeuNAc–(a2,3)–Gal–(b1,3)–[(a2,6)-NeuNAc]–Glc-NAc tetrasaccharide. Surfaces of five chains of JCV VP1 are
shown in different colors. The RG motif essential for binding of core sialic acid is shown in blue. PML-associated mutated residues confirmed by PAML
(Table 1) are shown in red (L55, K60, S265, S267, S269). Additional mutations unique to PML-isolated samples (Table S2) are shown in green (S61, D66,
S123, H129, V223 and Q271). (B) A close-up view of NeuNAc–(a2,3)–Gal–(b1,3)–[(a2,6)-NeuNAc]–Glc-NAc tetrasaccharide/JCV VP1 complex. The color
scheme is as described in panel (A). Location of V296 of MPyV VP1 which is predicted to be equivalent to S269 of JCV VP1 is shown in yellow mesh.
doi:10.1371/journal.pgen.1000368.g002

Table 2. Residues 55 and 269 in VP1 protein play very
important role in hemagglutination of RBCs by Viral Like
Particles (VLPs).

Viral variant Minimum HA VLP concentration, ng/ml

WT1 0.08

55F .200,000

WT2 (Mad-1) 6.25

269F 50,000

Hemagglutination was conducted as described in Materials and Methods using
serial dilutions of VLPs starting from 200 mg/ml. VLPs were added to type O RBC
and incubated at 4uC for 3 hours. Agglutination is visualized by the lack of a
round pellet formed by the settling of RBCs out of suspension. F55 is a VP1
variant with phenylalanine at the position 55 (AAT09831), F269 is a VP1 variant
with phenylalanine at the position 269 (BAE0011). WT (AAQ88264) and Mad-1
(P03089) are VP1 variants with leucine and serine at positions 55 and 269
respectively.
doi:10.1371/journal.pgen.1000368.t002

PML Selected Mutations in JC Virus VP1 Protein
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glycan specificity would allow JCV to loose its specificity to sialated

glycans expressed outside of the CNS (e.g. RBCs). Thus, such a

virus would avoid getting trapped on ‘‘pseudoreceptors’’ in the

periphery and travel unhindered from sites of viral shedding to

enter the brain. Mutated virus must still maintain its specificity to

glycans expressed on oligodendrocytes. This would be consistent

with the observation from the mouse polyomavirus model where a

mutation in a position orthologous to position 269 of JCV affected

viral ability to bind RBCs and also lead to the dramatic increase in

viral dissemination through the animal with a lethal outcome

[15,16]. Furthermore, there are several reports of JCV detection in

tonsils of many asymptomatically infected individuals [31,32].

Although this observation was taken as a support for the JCV

infection of tonsil cells, it could be alternatively explained by the

viral trapping in lymphoid tissues. That would be consistent with

JCV binding to sialic acid in the tonsil tissue [33].

An alternative but not mutually exclusive hypothesis would be

that PML associated VP1 mutations increase JCV tropism for

brain white matter cells leading to the increased viral infectivity

and replication in oligodendrocytes. Finally, another non-mutually

exclusive explanation of the role these mutations in PML might be

immune-escape by the virus. It is theoretically possible that out of

the polyclonal immune response directed against the VP1

molecule only a limited number of antibodies directed against

the cell receptor binding site (i.e. sialic acid) would provide

protection against the spread of the viral infection. Mutation of an

amino acid within an epitope crucial for the protective immunity

could allow virus to bind to its target cells and spread uninhibited.

Given the large number of mutations that are specific for PML it is

likely that not a single mechanism but rather a multiplicity plays a

role in PML etiology in different PML cases.

How do these mutations occur in PML and why, despite a very

high prevalence of JCV, do only a small proportion of immune

deficient patients develop PML? Absence of clustering of the

mutations on the viral phylogenetic tree suggests that they arise

independently in individual patients rather than persist in the general

populations as pathogenic viral variants. It is worth noting that this

hypothesis appears to be strongly supported by the original

observation of Loeber and Dorries [6] where the investigators

reported the isolation of two viral strains from kidney and brain of the

same PML patient. The genome of the virus isolated from the brain

was almost identical to that isolated from the kidney with two

exceptions; presence of phenylalanine instead of leucine in position 55

and a rearrangement of the regulatory region. Previously no

significance could be attached to the L55F mutation and that

observation led to the generation of the hypothesis on the sole

importance of viral control region rearrangement in ‘‘PML-genic’’

adaptation of the virus. Based on our findings we would like to

propose that VP1 mutations play a very significant role in the

mechanism of PML emergence. Once a specific mutation affecting

sialic acid binding occurs it allows virus to spread to the brain and

infect oligodendrocytes. The fact that the mutant virus was not

detected in the kidney [6] may suggest that that particular change in

glycan binding does not offer any selective advantage to the mutated

virus in kidney. The mutations might have occurred and hence

allowed the virus to establish the residence in the brain under the

conditions of immune suppression shortly or long before the PML.

Since no viral replication was detected in brains of asymptomatic

individuals we believe it is unlikely that compartmentalized evolution

(i.e. intra CNS) prior to PML development could account for the

presence of mutated VP1 in CNS of PML patients. However, the

issue of JCV latency in normal brain still remains controversial so it is

still formally possible that non-mutated virus had entered the brain

and mutations arose in the brain and not periphery, e.g. kidney.

It appears that the healthy immune system effectively controls

viral activation in the brain. However, as soon as the immune

system fails in the misfortunate individual harboring such a

mutated virus, the virus begins actively proliferating in oligoden-

drocytes causing PML. It is also possible that a healthy immune

system efficiently suppresses newly developed mutants in their

peripheral site (e.g. kidney) and prevents them from spreading and

infecting new target cells. Thus the timing of PML development

may be mutation limited and the interplay with environmental or

host genetic factors contributed to the non-deterministic develop-

ment of PML. Alternatively, PML development may be controlled

by interactions of VP1 mutations with additional genetic

alterations of the virus including rearrangement of the viral

regulatory region as it might give the virus additional selective

advantage in increasing viral replication in oligodendrocytes.

Altogether our findings suggest that JCV VP1 mutations

affecting its receptor specificity may be responsible for PML

pathology. These results pave the way for the discovery of novel

anti-polyomavirus therapeutics and diagnostics of diseases caused

by these viruses. The exact role that these mutations play in

etiology of PML as well as how and where they arise requires

further extensive investigation that would involve VP1 sequence

analysis of longitudinal and time matching samples from different

organs (e.g. urine, blood, CSF) and from a variety of PML

patients.

Materials and Methods

Sequence Analysis
35 full length VP1 sequences of JC viruses isolated from PML

patients and 253 full length VP1 sequences of JC viruses isolated

from healthy subjects were downloaded from Genbank. In

addition, 20 partial VP1 sequences were available from Genbank

enabling the analysis of the total of 55 sequences for positions 43–

287. In addition to these 55 VP1 sequences isolated from PML

patients Table S1 also contains information from twelve more

partial sequences available from a publication by Sala et al. [34].

We note that all viral samples isolated from PML patients

originated from brain or CSF tissues except one sample isolated

from kidney (Table S1). All viral samples isolated from healthy

subjects originated from urine. Multiple sequence alignments were

constructed using TCoffee [35]. A number of PML sequences

were isolated from the same individual. Since we were studying

evolution of viral sequences we accepted same patient isolated

sequences for our analysis as long as they differed from each other

by $1 nucleotide. However, we excluded identical ‘‘clonal’’

sequences from our analysis. This resulted in the final set of 28 full-

length VP1 sequences and 42 partial VP1 sequences isolated from

PML patients. All information on the origin and clonality of

sequences is contained in Table S1. Phylogenetic trees were built

using the PhyML maximum likelihood method [17] with F84

substitution model [18,19] and using several methods included in

the PHYLIP package (Felsenstein, J. 2005. PHYLIP version 3.6.

Distributed by the author. Department of Genome Sciences, University of

Washington, Seattle). VP1 sequences isolated from PML patients and

random subsets of sequences isolated from healthy subjects were

further analyzed using PAML [23]. We examined multiple models

of sequence evolution (M0–M8). We used likelihood ratio test for

difference between models M1 and M2 to test for positive

selection. Residues with Bayes Empirical Bayes posterior proba-

bilities exceeding 0.5 in the analysis of either full-length or partial

set are reported in Table 1. We used Spidermonkey [24] to

analyze epistatic interaction. Spidermonkey was run through the

Datamonkey web server [36]. Slatkin-Maddison test was used to

PML Selected Mutations in JC Virus VP1 Protein
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evaluate separation of PML-casing JC viruses and JC viruses

isolated from healthy subjects [20]. We used HyPhy package to

compute the Slatkin-Maddison test [37]. The significance of group

separation was determined using the permutation test (1000

permutations).

Hemagglutination Assay
Hemagglutination assay was performed as previously described

[38,39]. Briefly, human type O blood was washed twice and

suspended in Alsever’s buffer (20 mM sodium citrate, 72 mM

NaCl, 100 mM glucose, pH 6.5 adjusted with acetic acid) at a

final concentration of ,0.5%. Serial two-fold dilutions of VLPs

were prepared in Alsever’s buffer and an equal volume of RBCs

was added into each well of a 96-well ‘‘U’’ bottom microtiter plate

and incubated at 4uC for 3–6 hr. Minimum HA concentration is

the lowest concentration of VLP protein that still agglutinated

RBCs.

Viral-Like Particles
Genes encoding the VP1protein from JC virus strains

BAE00117, AAT09831 and AAQ88264 were created synthetically

and cloned into the Gateway pDEST8 (Invitrogen) shuttle vector

for transfer into the pFASTBAC baculovirus expression system for

baculovirus expression in SF9 cells. Purification of VLPs was

performed from roughly 100 grams of frozen cell pellets from

5 liters of culture. Cells were resuspended in 500 ml of PBS

containing 0.1 mM CaCl2. The cells are disrupted by passing the

cell suspension twice through a Microfuidics Microfluidizer. Cell

debris was removed by pelleting at 80006G for 15 minutes. The

supernatant volume was adjusted to 720 ml with PBS/CaCl2 and

loaded onto 5 ml 40% sucrose cushions. Virus-like particles were

twice pelleted through the sucrose cushions in a SW28 rotor at

100,0006G for 5 hours. The VLP pellets were resuspended in

PBS/CaCl2 and then treated with 0.25% deoxycholate for 1 hour

at 37uC followed by the addition of 4 M NaCl/0.1 mM CaCl2 for

1 hour at 4uC. Precipitated material was removed by centrifuga-

tion at 80006G for 15 minutes. The resulting supernatant was

concentrated and buffer exchanged by ultrafiltration through a

Pelicon-2 500,000 MWCO membrane (Millipore). The concen-

trated VLPs were applied to the center of a 25–40% step gradient

of Optiprep (Sigma) and banded at 190,000 g for 17 hours in a

type 50.2 rotor. VLP bands were collected and then concentrated

and buffer exchanged in an Amicon stirred cell with a 300,000

MWCO membrane. VLP quality was determined by gel

electrophoresis and electron microscopy (Figure S1). Protein

concentration was determined by the Micro BCA assay (Pierce).

Electron microscopy was performed at the Department of Cell

Biology at Harvard Medical School. VLP samples were placed on

carbon grids, briefly washed in water and negatively stained with

uranyl acetate and allowed to dry. The grids were viewed and

imaged on a Technai G2 Spirit BioTWIN TEM.

Molecular Modeling of JCV VP1/Tetrasacharide Complex
A homology model of the JCV VP1 protein pentameric unit was

built with MODELER [40] using the structure of MPyV VP1

(Protein Data Bank ID: 1VPS [25] as a template. The model of

NeuNAc–(a2,3)–Gal–(b1,3)–[(a2,6)-NeuNAc]–Glc-NAc tetrasac-

charide was build based on the structure of NeuNAc–(a2,3)–

Gal–(b1,3)–[(a2,6)-NeuNAc]–Glc-NAc bound to MPyV VP1 [25].

The model of the JCV VP1/NeuNAc–(a2,3)–Gal–(b1,3)–[(a2,6)-

NeuNAc]–Glc-NAc tetrasaccharide was extensively refined in

CHARMM [41] and was analyzed using PyMOL visualization

software (The PyMOL Molecular Graphics System (2002)

DeLano Scientific, Palo Alto, CA, USA. http://www.pymol.org).

Accession Numbers
The National Center for Biotechnology Information (NCBI)

(http://www.ncbi.nlm.nih.gov/sites/entrez?db = protein) Protein

database accession numbers for JCV VP1 sequences from non-

PML patients.

BAC66394, BAC66418, BAC66382, BAB11716, BAB11722,

AAK28466, AAK28460, AAK28478, BAC66400, BAC66388,

BAD06126, BAC66406, AAK97970, AAK97964, BAC81952,

BAC81958, AAM89309, AAM89303, BAC81922, BAC81916,

BAC81910, BAC81904, AAM89297, BAD11896, BAC81946,

BAE45426, BAE45360, BAD06120, BAE45432, BAA01962,

BAE45420, BAE45414, BAE45384, BAE45378, BAE45372,

AAK98036, BAE45402, BAE45408, BAE45396, BAE45444,

BAD06024, BAE75838, BAE75832, BAE75826, BAE75820,

BAE75814, AAK98030, AAK98024, AAK98018, AAK98010,

AAK98006, AAK98000, BAE45438, BAE45390, BAD06108,

BAD06102, BAD06096, BAD06090, BAD06084, BAD06048,

BAD06030, BAD06018, BAD06054, BAD06042, BAD06036,

AAG30857, BAE45366, AAN85455, BAD06150, AAN85449,

AAK98042, BAD06174, BAD06156, BAD06072, BAD06060,

AAN85473, BAC81840, BAF40841, BAF40835, BAF40829,

BAF40823, BAF40811, BAF40847, BAF40781, BAF40817,

BAF40799, BAF40793, BAF40787, BAF40745, AAN85467,

AAN85461, BAC81834, BAF40751, BAF40805, BAA01961,

BAD98972, BAD98966, BAD06227, BAC66430, BAC66412,

BAD91887, BAD21235, BAD27118, BAC66424, BAA01958,

BAB11710, BAD21265, BAD21259, BAD21253, BAD21241,

BAD21229, BAD21247, BAD21283, BAD21271, BAD21295,

BAD21289, BAA01959, BAA01960, BAD11848, BAD11842,

AAM89339, AAM89327, BAD11836, BAC81852, BAC81858,

BAD06144, AAG37198, AAM89315, BAD06138, BAD11890,

BAD11884, BAD11878, BAD11872, BAD11866, AAK97994,

BAB11698, BAC81940, BAC81964, AAK97946, BAD06066,

BAF40769, BAC81870, BAC81864, BAC81934, BAC66376,

BAC81874, BAC81846, AAK97940, BAC81898, BAC81892,

AAK97922, AAK97916, AAK97910, AAK97982, BAF40763,

BAD06078, AAK97958, BAD11860, BAF40757, BAD06162,

AAM89321, BAD11854, AAK97928, BAD11830, BAF40775,

BAB11704, BAC81928, AAK97988, BAD11902, BAD11824,

BAD06233, BAC81886, BAC81880, AAM89345, BAD06168,

AAM89333, BAD06132, BAC82365, AAK97952, BAA01964,

BAA01963, AAK97934, BAD06114, AAK97976, BAD21277,

AAR13077, BAE02908, AAR12957, AAR02463, AAR02457,

BAE03058, AAR89235, BAE02896, AAR89241, BAE02890,

BAE03064, BAE03070, BAE03082, AAG34673, AAG34667,

AAR89205, AAR89217, AAR13659, BAE03088, BAE03160,

AAQ88264, AAR89187, AAR89283, AAK28472, AAR06661,

AAR89253, AAR89247, AAR89199, AAR89193, AAR89229,

AAR89223, AAR89265, AAR32743, AAR89277, BAE03166,

BAE02920, BAE02914, BAE03112, BAE03106, BAE03100,

BAE03094, BAE03076, BAE02944, BAE02998, BAE02992,

BAE02986, BAE02980, BAE02974, BAE02968, BAE02962,

BAE03016, BAE02902, BAE03040, AAR89211, AAR89271,

BAE02956, BAE02938, BAE02932, BAE03148, BAE02950,

BAE03004, BAE03154, BAE03142, BAE03136, BAE03130,

BAE03124, BAE03118, BAE02926.

Supporting Information

Figure S1 Electron micrographs of Virus Like Particles (VLP)

used in hemagglutination assay. Purified VLP samples were placed

on carbon grids, briefly washed in water and negatively stained

with uranyl acetate and allowed to dry. The grids were viewed and
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imaged on a Technai G2 Spirit BioTWIN TEM.electron

microscope. The magnification bar represents 100 nm.

Found at: doi:10.1371/journal.pgen.1000368.s001 (0.43 MB TIF)

Table S1 JCV VP1 sequences from PML patients.

Found at: doi:10.1371/journal.pgen.1000368.s002 (0.34 MB

DOC)

Table S2 Amino acid variability of JCV VP1 sequences.

Found at: doi:10.1371/journal.pgen.1000368.s003 (0.11 MB

DOC)

Table S3 Amino acid variability of JCV VP1 sequences between

VLPs.

Found at: doi:10.1371/journal.pgen.1000368.s004 (0.03 MB

DOC)
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