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Abstract

Alternative splicing is an evolutionary innovation to create functionally diverse proteins from a limited number of genes.
SNAP-25 plays a central role in neuroexocytosis by bridging synaptic vesicles to the plasma membrane during regulated
exocytosis. The SNAP-25 polypeptide is encoded by a single copy gene, but in higher vertebrates a duplication of exon 5
has resulted in two mutually exclusive splice variants, SNAP-25a and SNAP-25b. To address a potential physiological
difference between the two SNAP-25 proteins, we generated gene targeted SNAP-25b deficient mouse mutants by
replacing the SNAP-25b specific exon with a second SNAP-25a equivalent. Elimination of SNAP-25b expression resulted in
developmental defects, spontaneous seizures, and impaired short-term synaptic plasticity. In adult mutants, morphological
changes in hippocampus and drastically altered neuropeptide expression were accompanied by severe impairment of
spatial learning. We conclude that the ancient exon duplication in the Snap25 gene provides additional SNAP-25-function
required for complex neuronal processes in higher eukaryotes.
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Introduction

The evolution of more advanced organisms has required

adaptation of genomes to be able to generate new gene functions.

The original genome sequence analyses of different organisms

surprisingly revealed that the number of genes in the human

genome is only around 30,000, versus 20,000 in much simpler

organisms such as the nematode Caenorhabditis elegans [1,2].

However, a closer examination of these 30,000 identified human

genes suggested that as many as one third of them might be false

and the number of protein-coding genes in humans are close to the

19,000 found in the domestic dog [3,4]. Instead the increased

protein complexity of higher eukaryotes appears to be the

consequence of the same gene encoding several functional

proteins. This has been accomplished by duplication of genes or

gene segments and transcriptional and post-transcriptional

regulation. The major contribution to protein diversity is

alternative splicing and some 40–60% of all mammalian genes

generate more than one protein [5,6]. Interestingly, as many as

10% of all genes in mammals contain tandemly duplicated exons,

suggesting that exon duplication followed by functionally diverging

mutations have been a fast and successful evolutionary mechanism

to increase protein variety [7,8]. Duplicated exons are often

subjected to mutually exclusive alternative splicing, incorporating

only one of the two exons in the resulting polypeptide [8].

Regulated membrane fusion forms the basis for synaptic

transmission but is also fundamental for appropriate release of

hormones and modulatory neuropeptides [9–13]. One of the final

steps prior to vesicle fusion with the plasma membrane is the

formation of a trans-membrane soluble N-ethylmaleimide-sensitive

factor (NSF) attachment protein receptor (SNARE) complex [14,15].

This specialized SNARE complex is bridging vesicles to the plasma

membrane during regulated exocytosis and consists of three

compartmentally defined proteins: The vesicle-associated

VAMP2/synaptobrevin, a protein with a plasma membrane anchor

syntaxin 1a, and the cytoplasmic synaptosomal-associated protein of

25 kD, SNAP-25, that associates with membranes through

palmitoylation. The three SNARE proteins are held together by

strong protein-protein interactions, whereby the cytoplasmic

domains form a four a-helix coiled-coiled bundle [16]. The detailed

mechanisms mediating regulated exocytosis are still not fully

elucidated but the current hypothesis is that SNARE proteins

operate at the actual fusion event and have intrinsic capabilities to

perform membrane fusion [17,18]. A possibility is that the SNARE

proteins are candidates for adjusting thresholds for synaptic plasticity

in more advanced neuronal systems. They form the central fusogenic

core at the plasma membrane. It is notable that the number of

SNARE proteins, and alternative isoform variants, have increased

through evolution and their expression is strictly regulated both

anatomically and temporally [19–23].
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In higher vertebrates SNAP-25 is expressed as two develop-

mentally regulated and complementary distributed splice variants

termed SNAP-25a and SNAP-25b [23]. The alternative splicing is

an obligate choice between two closely spaced tandemly arranged

exon 5 sequences, and nine of 206 amino acids in the two

polypeptides differ. The alternative splicing modifies a domain of

the SNAP-25 protein spanning a quartet of cysteine residues that

are substrates for post-translational palmitoylation and required

for membrane targeting [24,25]. In mouse brain, SNAP-25a

precedes SNAP-25b expression during development, but by the

second postnatal (PN) week SNAP-25b becomes the major splice

variant, concomitantly with a dramatic increase in SNAP-25

expression [26]. In fact, in adult mouse brain the SNAP-25b

transcript represents more than 90% of total SNAP-25 mRNA

[26]. Targeted disruption of the mouse Snap25 gene has

demonstrated that complete removal of SNAP-25 results in total

absence of evoked neuroexocytosis and embryonic lethality [27].

Separate overexpression of the two SNAP-25 isoforms in

embryonic adrenal chromaffin cells from these SNAP-25 knock-

out (KO) mice showed that the SNAP-25b isoform had a higher

capability to stabilize the pool of primed vesicles than SNAP-25a,

since the burst of Ca2+-evoked catecholamine release differed [28].

Recently, genome-wide scans and linkage analysis have indicated

an association between polymorphisms in the human SNAP-25

gene and vulnerability to develop attention deficit hyperactivity

disorder, ADHD [29,30]. In humans, different SNAP-25 alleles

also demonstrate inheritance correlated to intelligence [31,32].

To specifically explore the physiological importance of the exon 5

duplication in the Snap25 gene we used a novel approach by

developing SNAP-25b KO/SNAP-25a knock-in mouse mutants.

The exon 5b was genetically eliminated and replaced with a second

supplementary exon 5a, to maintain alternative splicing and normal

expression levels, but allowing only SNAP-25a to be expressed. The

SNAP-25b deficient mouse mutants exist in two versions, neo-

containing with a Tkneo marker retained and neo-excised with the

selection gene removed. Based on results from electrophysiological,

behavioral and immunohistochemical experiments we conclude,

that under physiological conditions, mice deficient in SNAP-25b

have developmental defects, impaired short-term synaptic plasticity,

a seizure-prone phenotype and malfunctioning cognitive perfor-

mance. We suggest that the ancient duplication in the Snap25 gene

followed by regulated alternative splicing between two similar but

distinct exon 5 sequences is required for accurate synaptic function

during development. Furthermore, a balanced expression of the two

isoforms is a prerequisite for maintaining an operational neuronal

network also during adulthood in advanced organisms.

Results

Mouse Mutants Not Expressing SNAP-25b
In the Snap25 gene, exon 5a and 5b are closely spaced and differ in

only nine of 39 amino acids [23,26]. To develop mouse mutants that

only express SNAP-25a, a gene targeting vector with an additional

exon 5a sequence, replacing the mouse exon 5b sequence, was

generated (Figure 1A). The vector construct spanning two exon 5a

sequences arranged in tandem and exon 6 from the mouse Snap25

gene also contained a Tkneo selection cassette flanked by loxP

recombination sites (Figure 1A). Only the exon 5b sequence was

changed to encode the exon 5a amino acids, and the original splicing

signals for expression of the downstream exon 5 were kept intact.

Three independent mouse lines were backcrossed on C57BL/6NCrl

(B6) mice for at least ten generations, thus establishing fully congenic

strains. After intercrossing of heterozygous animals we found a

mendelian distribution of genotypes (24% homozygous mutants of

125 mice), strongly indicating that our introduced genetic changes

did not give rise to a prenatal lethal phenotype. However, after the

second PN week all homozygous SNAP-25b deficient mice exhibited

neurological defects and were sacrificed.

Thus, we have developed a SNAP-25b deficient mouse mutant by

replacing exon 5b with an additional exon 5a equivalent, thereby

preventing expression of SNAP-25b but not the alternative splicing.

SNAP-25 in Neo-Containing SNAP-25b Deficient Mice
We previously demonstrated that targeted insertion of a Tkneo

selection cassette in the Snap25 gene impaired alternative splicing

and repressed total gene expression [33]. Initially, we therefore

investigated the level of SNAP-25 mRNA and protein expression

in brain of neo-containing SNAP-25b deficient mutants and wild-

type (WT) littermates at PN14. Semi-quantitative RT-PCR

analysis demonstrated that neo-containing SNAP-25b deficient

mice expressed approximately 50% of the SNAP-25 mRNA levels

present in WT littermates (Figure 1B). In order to determine the

relative ratio of SNAP-25a and SNAP-25b mRNA expression in

brain at PN14, isolated RNA from homozygous and heterozygous

SNAP-25b deficient mutants and WT littermates was subjected to

an RT-PCR assay based on the presence of exclusive restriction

enzyme sites in exons 5a and 5b. At PN14, SNAP-25b levels were

five times higher than SNAP-25a in WT mice, heterozygous neo-

containing mutants had equal amounts of both SNAP-25 mRNA

isoforms, while homozygous neo-containing SNAP-25b deficient

mutants only expressed SNAP-25a (Figure 1C).

Western blotting of protein homogenates from PN14-15

homozygous neo-containing SNAP-25b deficient mouse brains

revealed that SNAP-25 protein levels were also lower in mutants

when compared to WT littermates (Figure 1D). SNAP-25b

deficient mice expressed approximately 80% of normal SNAP-

25 protein levels. Thus, there was no direct correlation between

SNAP-25 mRNA and protein levels (compare Figures 1B and 1D).

The protein levels of the cellular SNAP-25 homolog, SNAP-23,

and the binding partner to SNAP-25, syntaxin 1, were not

Author Summary

In evolution, duplication of genes or gene segments
appears to be an efficient way to add diverse functions in
more complex organisms. The SNAP-25 protein plays an
important role in mediating the release of neurotransmit-
ters and hormones. SNAP-25 exists as two variants: SNAP-
25a, which is present in early development, and SNAP-25b,
which is most abundant from early adulthood and
onwards. We have developed mouse mutants that only
express SNAP-25a, but retain normal SNAP-25 levels by
replacing the SNAP-25b segment in the Snap25 gene with
an additional SNAP-25a copy. We show that SNAP-25b is
required for early postnatal development and that a
balanced expression of the two proteins is a prerequisite
for maintaining an operational neuronal network during
adulthood. Mice that only have SNAP-25a develop
seizures, and show learning deficits and anxiety. Synaptic
plasticity is impaired, and structural changes are observed
in areas that are connected to such behavioral functions. In
man, SNAP-25 function has been linked to behavioral and
neuropsychiatric disorders, including attention deficit
hyperactivity disorder, ADHD. Our present findings using
genetic elimination of SNAP-25b suggest that even small
alterations in the regulation of the Snap25 gene, resulting
in a disturbed balance between SNAP-25a and SNAP-25b,
lead to nervous system dysfunction.

SNAP-25 Isoforms and Neuronal Function
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Figure 1. Generation of SNAP-25b Deficient Mouse Mutants. (A) Schematic diagram demonstrating the targeting construct and the
development of a modified Snap25 allele with eliminated SNAP-25b expression. The mouse genomic sequence was derived from the WT Snap25
gene and addition of an additional exon 5a was performed using PCR. A Tkneo selection gene, surrounded by loxP repeats, was inserted at the EcoRI
(E) site located downstream of the two tandemly arranged exons 5a and upstream of exon 6. Letters denote restriction sites: E, EcoRI; H, HindIII; P, PstI;
S, SacI; X, XbaI. (B) Total SNAP-25 mRNA level in mouse brain at PN14 was investigated by semi-quantitative RT-PCR. Levels of SNAP-25 mRNA,
quantified relative to GAPDH mRNA levels, were determined in neo-containing SNAP-25b deficient mutants (KO) and compared to WT littermates.
SNAP-25 mRNA in neo-containing SNAP-25b deficient mutant brain was significantly reduced to 55.562.7% compared to WT (mean6S.E.M., n = 6
mice for each genotype, each sample repeated three times, *p = 0.0312, Wilcoxon’s signed-rank test). (C) A semi-quantitative RT-PCR restriction
enzyme assay was used to determine relative levels of SNAP-25a and SNAP-25b isoform mRNAs in WT (+/+), neo-containing heterozygous (+/2) and
neo-containing homozygous (2/2) mutant brains at PN14. A PvuI restriction site exclusive for exon 5a and a StyI site only present in exon 5b was
used to determine relative levels of SNAP-25a and SNAP-25b. WT mice had 16.761.9% SNAP-25a mRNA, neo-containing heterozygous mutants
51.661.7% SNAP-25a mRNA, and homozygous SNAP-25b deficient mutants only, the SNAP-25a mRNA isoform (n = 5 mice of each genotype, run in
two replicates, mean6S.E.M., ***p,0.0001, Student’s t-test). (D) Western blotting was used to analyze synaptic protein levels in brain at PN14-15,
standardized against a-tubulin. The level of SNAP-25 protein in neo-containing SNAP-25b deficient mutants was 80.763.6% compared to WT
(mean6S.E.M., *p = 0.0312, Wilcoxon’s signed-rank test), whereas expression of SNAP-23 protein was 98.963.5% (p = 1, n.s.) and that of syntaxin 1
protein 107.664.9% (p = 0.4375, n.s.), compared to WT animals. The levels of SNAP-25 protein differed significantly in neo-containing SNAP-25b

SNAP-25 Isoforms and Neuronal Function
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significantly different in mutants compared to control animals

(Figure 1D). Immunohistochemical analysis of SNAP-25 showed a

similar appearance in homozygous neo-containing SNAP-25b

deficient mutant and WT mouse brain at PN14, and no obvious

pathological changes were observed (Figure 1E).

Together, our results demonstrate that homozygous neo-

containing SNAP-25b deficient mouse mutants only express

SNAP-25a and that total SNAP-25 mRNA and protein levels

are reduced. Unexpectedly, despite that neo-containing SNAP-25b

deficient mutants express only 50% of normal SNAP-25 mRNA

levels, protein levels of SNAP-25 are only reduced to 80% of WT

littermates.

Neo-Containing SNAP-25b Deficient Mutants Die Young
Neo-containing SNAP-25b deficient mutants exhibited a severe

phenotype that included a reduced gain in body weight after the

first PN week (Figure 1F). The growth-deficiency was not due to an

inability of mutants to feed properly, as dissection revealed

stomachs filled with milk (data not shown). To further investigate

developmental defects, bone growth was analyzed in PN14

mutants and WT littermates. Bone development was determined

by measuring the hypertrophic, proliferative and reserve zones in

hind limb sections (Figure 1G). In both the femur and tibia, the

hypertrophic zones were significantly reduced in homozygous neo-

containing SNAP-25b deficient mutants when compared to WT

littermates. The proliferative and reserve zones were not

significantly different (Figure 1G). Around PN10 homozygous

SNAP-25b deficient mice were easily identified by their smaller

size and extreme activity with hyperactive episodes. From PN11,

neo-containing SNAP-25b deficient mutants exhibited frequent

episodes with tremors and seizure activity and were therefore

sacrificed at PN14-17. The early PN development also appeared

postponed, indicated by that eye opening occurred approximately

one day later compared to WT littermates and that the SNAP-25b

deficient mutants also demonstrated inability to respond to sound

concurrently in time when WT littermates acquired that ability.

Heterozygous neo-containing SNAP-25b mutants were indistin-

guishable from WT littermates during early PN development.

Our results show, that homozygous neo-containing SNAP-25b

deficient mice, lacking SNAP-25b expression and having a

moderate reduction in total levels of SNAP-25 protein, exhibit

severe developmental and behavioral defects.

Removal of the Selection Gene, Tkneo, Reduces the
Severity of the Phenotype

The reduced SNAP-25 expression in neo-containing SNAP-25b

deficient mutants could be due to the presence of the Tkneo

selection gene. Therefore, neo-containing heterozygous SNAP-25b

deficient mutants were crossbred with a global Cre transgene [34].

The Tkneo gene was excised and the Cre transgene was thereafter

crossed out from the neo-excised SNAP-25b deficient mutants

(Figure 2A).

Neo-excised SNAP-25b mutants were backcrossed onto a B6

background for more than ten generations. Intercrosses using

heterozygous breeding pairs indicated the expected mendelian

distribution (28% homozygous mutants born out of 222 mice).

Unlike neo-containing homozygous SNAP-25b deficient mutants,

the growth of neo-excised homozygous mutants between PN5 and

15 was not severely affected. No difference in body weight was

observed between mutants and WT littermates when genders were

mixed. However, when females were analyzed separately they

demonstrated a small but significant reduction in body weight

(Text S1, Figure S1A and S1B). After the first PN weeks the body

weights were normalized and no significant differences were

observed in adult females (data not shown). Neo-excised SNAP-25b

deficient mutants also demonstrated spontaneously occurring

seizures although less frequent and not prior to young adulthood.

In conclusion, in vivo excising of Tkneo from the targeted Snap25

gene rescues the most severe developmental defects observed in

homozygous neo-containing SNAP-25b deficient mice.

SNAP-25b Deficient Mutants Exhibit No Reduction in
SNAP-25 Expression

Contrary to homozygous neo-containing animals, neo-excised

SNAP-25b deficient mutants showed SNAP-25 mRNA levels

similar to WT littermates at PN14-15 (Figure 2B). SNAP-25b

mRNA in WT mice was, as expected, five times higher than

SNAP-25a (Figure 2C). In heterozygous neo-excised mutants the

relative SNAP-25a/SNAP-25b mRNA ratio was 2:1, while SNAP-

25b was absent in homozygous neo-excised mutants. In neo-excised

mutants SNAP-25 protein expression was moderately but

significantly increased to 111% compared to WT (Figure 2D).

SNAP-23 and syntaxin 1 protein levels were not altered from levels

observed in control littermates.

Our results demonstrate that removal of Tkneo restores SNAP-25

expression and moderately increases total SNAP-25 protein levels in

brain of homozygous neo-excised SNAP-25b deficient mutants.

SNARE Complexes from Neo-Excised SNAP-25b Deficient
Mutants Are Less Stable Than Those from WT Mouse
Brain

In adult brain of WT mice, both splice variants of SNAP-25 are

expressed but SNAP-25b is the predominant isoform comprising

90–95% of total SNAP-25 mRNA [26]. To investigate if the

stability of SNARE complexes was altered in the brain of our neo-

excised SNAP-25b deficient mutants compared to WT mice, we

analyzed SDS-resistant SNARE complexes at different tempera-

tures (Figure 2E). Adult brain tissue homogenates only containing

SNAP-25a (neo-excised SNAP-25b deficient mutants, KO) or

predominantly SNAP-25b (WT) were incubated at different

temperatures, either 4uC or heated, prior to gel electrophoresis

and Western blotting. In non-heated samples, several immunore-

active bands were observed in SNAP-25b deficient and in WT

brain homogenates (Figure 2E). Except for a SDS resistant

deficient mutants compared to WT littermates, but not the levels of SNAP-23 and syntaxin 1 proteins (n = 6 mice of each genotype, run in three
replicates). (E) Representative images of SNAP-25 immunoreactivity in coronal sections at low magnification (i, iii) and in the hippocampus at higher
magnification (ii, iv). No obvious differences in immunoreactivity pattern was observed between neo-containing SNAP-25b deficient (iii, iv) and WT (i,
ii) mice at PN14 (n = 2 mice of each genotype, and three levels were analyzed from each animal). Identical microscope settings were used for WT and
KO (neo-containing SNAP-25b deficient mutants) images. Scale bar = 1 mm for the low magnification and 200 mm for the high magnification figures.
(F) Weight curves of homozygous neo-containing SNAP-25b deficient mutants compared to WT littermates between PN5 to PN15. Body weight gain
was significantly reduced in young neo-containing SNAP-25b deficient mutants when compared to WT (***p,0.0001, two-way repeated measures
ANOVA, n = 7 mice of each genotype). (G) Bone growth is affected in neo-containing SNAP-25b deficient mice. Mean6S.E.M. thickness of the
hypertrophic, proliferative, and reserve zones in femur and tibia in WT (black bars) and neo-containing SNAP-25b deficient (white bars) PN14 mice.
*p,0.05 (n = 4). Data was analyzed with unpaired Student’s t-test.
doi:10.1371/journal.pgen.1000278.g001

SNAP-25 Isoforms and Neuronal Function
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complex observed at ,97 kD, identified as the ternary SNARE

complex, additional intermediate complexes were detected. At

4uC and stepwise increasing temperatures (70uC–90uC) the ratio

of the quantified protein band migrating at ,28 kDa (free SNAP-

25) to higher molecular weight SNAP-25 containing complexes

indicated that the stability of SNARE complexes was reduced in

SNAP-25b deficient mouse brain. Quantification of immunoreac-

tive bands from WT and neo-excised SNAP-25b deficient mutants

mice showed that the percentage of total SNAP-25 still present in

the ternary complex differed significantly at 80uC, 85uC and 90uC
[at 80uC, 71.267.2% and 44.068.0% (*p,0.05); at 85uC 59.867

and 36.963.4 (*p,0.05), and at 90uC 48.3612.3 and 4.562.2

Figure 2. In vivo Excision of the Tkneo Gene Results in Altered Gene Expression. (A) A schematic diagram demonstrating the in vivo excision of
the Tkneo gene. Heterozygous neo-containing SNAP-25b deficient females were mated with heterozygous Prm1Cre males. Male offspring carrying both
the mutation in the Snap25 gene and the Cre transgene were mated with B6 females. In vivo excision was demonstrated by PCR, and the Cre transgene
was crossed out from the confirmed neo-excised SNAP-25b deficient mice. (B) To investigate total SNAP-25 mRNA levels in mouse brain of neo-excised
SNAP-25b deficient mutants at PN14-15, the same radioactive semi-quantitative RT-PCR assay as for neo-containing mouse mutants (see Figure 1B) was
used. Total SNAP-25 mRNA levels (SNAP-25a + SNAP-25b) in neo-excised SNAP-25b deficient mice brain at PN14-15 were 117.366.8% of WT (n = 6 mice
for each genotype, repeated three times each, mean6S.E.M., *p = 0.0625, Wilcoxon’s signed-rank test). (C) SNAP-25a/SNAP-25b mRNA ratio at PN14 were
for WT littermates 17.561.2% and 82.561.2%, respectively (mean6S.E.M., ***p,0.0001 Student’s t-test), in heterozygous neo-excised SNAP-25b
mutants 68.962.1% SNAP-25a and 31.162.1% SNAP-25b (***p,0.0001), and in homozygous neo-excised SNAP-25b deficient mice 100% SNAP-25a
(n = 5 mice for each genotype, repeated twice). (D) Protein levels in brain at PN14-15. In neo-excised SNAP-25b deficient mice, there was 110.962.3%
(*p = 0.0312) SNAP-25 protein, 106.464.2% (p = 0.3125, n.s) SNAP-23, and 99.463.5% (p = 0.8438, n.s.) syntaxin 1 relative to WT expression levels (n = 6
mice for each genotype, run in three replicates, mean6S.E.M., Wilcoxon’s signed-rank test). (E) Immunoblot demonstrating temperature dependence
and stability of the ternary SDS resistant SNARE complex in neo-excised SNAP-25b deficient (KO) and WT mouse brain cortex. The samples separated in
lanes 1–5 (from left to right) are from adult WT brain cortex, and the preparations in lanes 6–10 are from neo-excised SNAP-25b deficient mutants (KO
only expressing SNAP-25a). The high molecular weight ,97 kD complex was identified as SNAP-25 in ternary SNARE complex, while the band migrating
as ,28 kDa is free SNAP-25 protein. KO brain homogenates heated to 80uC showed 4468% SNAP-25 still present in ternary complex compared to 4uC
samples, significantly lower than for SNAP-25 in WT brain (71.267.2, *p = 0.01). At 85uC and 90uC, the difference in percentage of SNAP-25 remaining in
complex between WT and KO was as following: 59.867 and 36.963.4 (*p = 0.018), and 48.3612.3 and 4.562.2 (**p = 0.0081), respectively. All
experiments were repeated at least three times. Results were analyzed with unpaired Student’s t-test and summarized as mean6S.E.M.
doi:10.1371/journal.pgen.1000278.g002

SNAP-25 Isoforms and Neuronal Function
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(**p,0.01)]. The ternary complex almost disappeared in SNAP-

25b deficient brain preparations treated at 90uC while the WT

samples still showed a strong immunoreactive signal containing

48.3% of total SNAP-25 in non-disassociated complex (Figure 2E).

Boiling of the samples resulted in the loss of all immunoreactive

bands except the monomeric SNAP-25 in both neo-excised SNAP-

25b deficient and WT mice.

Our results demonstrate that SNARE complexes isolated from

brain of adult neo-excised SNAP-25b deficient mutants are less

stable than SNARE complexes from adult WT mice.

Neo-Excised SNAP-25b Deficient Mutants Demonstrate a
Reduction of Facilitated Release

SNAP-25 is essential for evoked synaptic transmission [27] and

its activation is dependent on cytoplasmic free Ca2+-concentra-

tions [35]. The different stability of SNARE complexes found in

neo-excised SNAP-25b deficient mutants compared to WT mice

(Figure 2E) and that SNAP-25b demonstrates an increased

association with plasma membrane fractions compared to

SNAP-25a (see Text S1, Figure S2) suggest that SNAP-25a and

SNAP-25b are differently associated with SNARE complexes close

to, or immediately upstream of fusion. Therefore, we compared

paired-pulse facilitation (PPF, Figure 3E) of AMPA receptor-

mediated synaptic transmission in young WT, neo-containing and

neo-excised SNAP-25b deficient mice (KO) at the Schaffer collateral-

CA1 pyramidal neuron synapses of the hippocampus [36,37]. Two

stimulus frequencies were used, 0.2 and 0.5 Hz and the interpulse

interval (IPI) varied between 40 and 300 ms. Neo-containing SNAP-

25b deficient mouse mutants (n = 8 cells in 6 mice) showed a

reduction (*p,0.05) in PPF at 0.2 Hz compared to WT mice (n = 9

cells in 5 mice, Figure 3A). A decrease was also observed at 0.5 Hz

for these mice (*p ,0.05, n = 7 cells in 7 mice) compared to WT

littermates (n = 9 cells in 7 mice, Figure 3C). Furthermore, neo-

excised SNAP-25b deficient mouse mutants demonstrated a clear

reduction in PPF at 0.2 Hz (*p ,0.05, SNAP-25b KO: n = 9 in 4

mice; WT: n = 9 cells in 5 mice, Figure 3B) but not at 0.5 Hz

(p = 0.085; n.s., SNAP-25b KO: n = 9 cells in 6 mice; WT: n = 9 cells

in 7 mice, Figure 3D) compared to WT mice.

Finally, we compared the PPF-ratios obtained from homozy-

gous neo-containing and neo-excised SNAP-25b deficient animals.

No significant differences were found at either 0.2 (p = 0.92, n.s.) or

0.5 Hz (p = 0.48, n.s.). All recorded neurons were responsive to the

presynaptic stimulation and there was no obvious rundown or

difference in baseline responses, in contrast to what is seen in

complete SNAP-25 KO mice [38].

Our results demonstrate that absence of SNAP-25b reduces PPF

at Schaffer collateral-CA1 synapses in PN12-16 mice during low-

frequency stimulation.

Neo-Excised SNAP-25b Deficient Mouse Mutants
Demonstrate Cognitive Impairment

In view of the above findings, we investigated the potential role

of SNAP-25b in behavioral functions partly related to changes in

long-term plasticity in the hippocampus and amygdala. The mice

were examined in the elevated plus maze, a behavioral test

primarily designed for analyzing anxiety-related behavior. Homo-

zygous neo-excised SNAP-25b deficient mutants spent less time in

the open arms compared to the corresponding control group

(***p,0.001, Figure 4A) and more time in the closed arms during

the 5 min observation period (***p,0.001, Figure 4C). The total

number of arm entries did not differ between mutants and control

animals, which indicates that there were no differences in overall

motor activity between the two groups (Figures 4B and 4D).

Acquisition and retention of spatial learning, which involve

hippocampal mechanisms, were studied in the Morris water maze

task. In the pre-training phase, there was no overall significant effect

of genotype (p = 0.09, n.s.) in the latency to navigate to the visible

platform compared to the corresponding control group (Figure 4E).

However, a subsequent post-hoc analysis showed that homozygous

neo-excised SNAP-25b female mice had a significant higher latency

compared to the control mice on day 2 and on day 4 (p,0.05).

Spatial acquisition was examined during five days of training and

revealed highly significant differences between the groups with

regard to escape latency (p,0.001, Figure 4F), indicating that neo-

excised SNAP-25b deficient mice were impaired in their ability to

acquire the spatial learning task compared to WT controls. In

addition, neo-excised SNAP-25b deficient mutants had a longer swim

distance compared to controls (p,0.001, Figure 4H). There were no

overall differences with regard to swim speed between neo-excised

SNAP-25b deficient mutants and the control groups (Figure 4G).

The analysis of percent swimming along the wall in the water tank,

e.g. thigmotaxis revealed that both neo-excised SNAP-25b deficient

males and females displayed a much higher thigmotactic behavior

than the control animals (p,0.001).

Young neo-containing SNAP-25b deficient mutants demonstrated

periods with profound hyperactivity in their home cages, a behavior

not observed in neo-excised SNAP-25b deficient mutants. Locomotor

activity in adult neo-excised SNAP-25b deficient mutants was

investigated in computerized locomotor cages. Analyses of sponta-

neous locomotor activity during the 60 min recording revealed that

for all measures, e.g. motility, locomotion and rearing, the neo-

excised SNAP-25 deficient mutants had lower (p,0.01) locomotor

activity than WT controls. Female mutants demonstrated a low

activity level already during the first 10 min of recording, i.e. during

the initial exploration of the locomotor cage (data not shown).

In summary, neo-excised SNAP-25b deficient mice, irrespective of

gender demonstrate a higher anxiety index, a severe impairment in

spatial learning with females being most severely affected, and a

lower locomotor activity when compared to WT controls.

Pathological Changes Develop in Hippocampus by Age
In young neo-containing and neo-excised SNAP-25b deficient

mouse mutants no obvious difference in structural and morpholog-

ical appearance of the brain was observed by histological and

immunohistochemical analysis (Figure 1E, and data not shown).

However, in the stratum lucidum (SLu) of the CA3 region of 4-

month-old neo-excised SNAP-25b deficient mutants, SNAP-25-

positive (+) mossy fibers had expanded and formed large bundles

(compare Figure 5E and 5F), separating the synaptophysin+ nerve

endings into island-like structures (Figure 5G and 5H). These

morphological differences observed with immunohistochemistry

were also evident in neo-excised SNAP-25b deficient mouse mutants

at 2 months of age and appeared to progress with age. The CA1 and

cerebellum were unaffected at all ages analyzed (data not shown).

Thus, the absence of SNAP-25b results in progressing pathological

changes in brain areas important for cognitive functions.

Change in Expression of Neuropeptides, BDNF, and
Doublecortin

Epileptic activity causes dramatic changes in peptide expression

in the hippocampal formation (HF), in particular affecting the

granule cell-mossy fiber system, termed ‘epilepsia peptidergic

profile’ [39–42]. Since we observed seizure activity in our mouse

mutants, we examined with immunohistochemistry the expression

of cholecystokinin (CCK), neuropeptide Y (NPY) and brain-

derived neurotrophic factor (BDNF) in the HF of 8-week-old neo-

excised SNAP-25b deficient mutants and WT littermates.
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Numbers of doublecortin (DCx)+ migrating neuronal precursor

cells were also inspected, as seizures may increase neurogenesis.

WT mice displayed a wide expression of CCK immunoreac-

tivity (-ir) in the HF, being strongest in SLu and supragranular

layer of the dentate gyrus (DG) (Figure 6A and 6E). Double-

labeling experiments demonstrated that CCK+ terminals partially

overlapped with SNAP-25-ir in SLu (Figure 6I–6K); however,

SNAP-25-ir had a wider distribution in this layer. CCK-ir in SLu

was virtually absent in homozygous neo-excised SNAP-25b

deficient mutants (Figure 6B and 6F, c.f. Figure 6A and 6E), but

was increased in cortex (Figure 6B). NPY+ fibers and interneurons

were fairly evenly distributed in the WT mouse HF (Figure 6C),

but NPY-ir was strongly increased in SLu and the polymorph layer

of neo-excised SNAP-25b deficient mutants (Figure 6D and 6H, c.f.

Figure 6C and 6G). NPY+ terminals/fibers in SLu of mutant mice

overlapped with SNAP-25, although SNAP-25-ir had a more

extensive distribution (Figure 6L). Diffuse NPY-ir was increased in

the molecular layer of the DG, with lower levels in cortex of neo-

excised SNAP-25b deficient mice (Figure 6C, c.f. Figure 6D).

BDNF-ir was weak in SLu and polymorph layer of the WT

Figure 3. Short-term Plasticity Analyzed in SNAP-25b Deficient Mouse Mutants. Paired-pulse facilitation (PPF) is reduced at Schaffer
collateral-CA1 pyramidal cell synapses in both neo-containing and neo-excised SNAP-25b deficient slices. PPF (PPF ratio = EPSC2/EPSC1) was recorded
in the whole-cell voltage clamp mode as a function of the interpulse interval (IPI) at two different frequencies in slices from PN12-16 animals. Error
bars indicate S.E.M. (A) Reduced PPF at 0.2 Hz in neo-containing SNAP-25b deficient mutants compared to WT mice (*p,0.05). (B) Reduced PPF at
0.2 Hz in neo-excised SNAP-25b deficient mice compared to WT (*p,0.05). (C) Reduced PPF at 0.5 Hz in neo-containing SNAP-25b deficient mutants
compared to WT (*p,0.05). (D) PPF at 0.5 Hz in neo-excised SNAP-25b deficient mice compared to WT (p = 0.085 n.s.). (E) An example of a typical PPF
trace of Schaffer collateral-CA1 EPSCs from a neo-containing SNAP-25b deficient mutant mouse recorded at 70 ms IPI. Statistical comparisons of PPF
ratios between WT and SNAP-25b deficient mice were made with two-way repeated measurements analysis of variance, ANOVA.
doi:10.1371/journal.pgen.1000278.g003
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(Figure 6M and 6O), but increased in mutant mice (Figure 6N and

6P). In WT mice, DCx+ cell bodies were distributed as a single

layer in the DG subgranular zone (SGZ), while DCx+ processes

had an even localization in the molecular and granular cell layers

(Figure 6Q and 6S). The number of DCx+ cell bodies was

increased by 140% in the SGZ of neo-excised SNAP-25b deficient

mice, including cells migrating through the granular cell layer,

with a large increase in DCx+ fibers in the molecular layer

(Figure 6R and 6T, c.f. Figure 6Q and 6S and Text S1, Figure S3).

No seizures were observed in juvenile neo-excised mutants prior to

weaning, and in 3-week-old animals the expression of neuropep-

tides and BDNF did not differ compared to WT littermates (data

not shown).

In conclusion, deletion of SNAP-25b results in dramatic

alterations in neuropeptide levels in the HF, which together with

increased levels of BDNF and DCx may provide an environment

that promotes neuroprotection/neuroproliferation in response to

disrupted synaptic transmission and seizure activity in neo-excised

SNAP-25b deficient mutants.

Discussion

The protein sequences of the two splice variants of SNAP-25,

SNAP-25a and SNAP-25b, are remarkably well conserved in

higher eukaryotes and demonstrate 100% amino acid identity in

human, mouse and chicken [23,26,43]. Duplicated exon 5

Figure 4. Elevated Plus Maze Test and the Morris Water Maze Task. (A-D) Anxiety-like behavior in the elevated plus maze test. Time spent on
open arms (A) (***p,0.001), time spent on closed arms (C) (***p,0.001), and number of crossings to the open (B) and closed arms (D). Each value
represents the mean (6S.E.M.) from the four groups of animals. The homozygous neo-excised SNAP-25b deficient females (n = 4), the neo-excised
SNAP-25b deficient male mice (n = 5), WT females (n = 5), and WT males (n = 5). (E–H) Spatial learning in the Morris water maze. Latency of the four
experimental groups to locate a visible platform placed randomly within the water tank (E). The latency to find the hidden platform (F) as well as
swim speed (G) and swim length (H) are shown. The results are presented as mean values6S.E.M. (average over four trials per session), from neo-
excised SNAP-25b deficient mutant females (n = 4), SNAP-25b deficient males (n = 5), WT females (n = 5), and WT males (n = 5). The mutants differed
from the control groups during the five days of training, both regard to escape latency and swim distance (p,0.001). Data from the behavioral
testing was analyzed by non-parametric statistics using Kruskal-Wallis ANOVA followed by the Mann-Whitney U test as the post-hoc test.
doi:10.1371/journal.pgen.1000278.g004
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sequences have also been described in bony fish [44] but not in

cartilaginous fishes as the ray Torpedo marmorata or in the fruit fly

Drosophila melanogaster [45]. The Torpedo SNAP-25 protein shares

81% and the Drosophila protein 61% amino acid identity with the

mouse SNAP-25b protein, respectively [45]. Thus, the duplication

of exon 5 in the Snap25 gene must have occurred during early

bony fish development more than 400 million years ago, when

cartilaginous and bony fish divided and arose from the Placoderms,

the first primitive jawed fishes [46]. Although bony fish appear to

have rather immature brain structures, the sensory and motor

coordinating functions are well developed. After the original

duplication event, subsequent accumulation of mutations, pre-

sumably in both exon 5a and 5b, have resulted in the two similar

but distinct SNAP-25 proteins present in all higher vertebrates.

We asked ourselves if the ancient duplication of exon 5, followed

by mutually exclusive splicing, and resulting in increased protein

diversity of the SNAP-25 protein was a prerequisite for the

development of more intricate neuronal functions found in higher

vertebrates. We now show that expression of SNAP-25b is

important for early postnatal development and synaptic plasticity.

Moreover, genetic elimination of SNAP-25b results in progressive

morphological and neurochemical changes in CNS and impair-

ment of cognitive function in adult animals. However, in brains of

homozygous neo-containing SNAP-25b deficient mutants SNAP-

Figure 5. Brain Pathology Develops in Adult Neo-excised SNAP-25b Deficient Mice. (A–B) Cresyl violet stained coronal sections of adult WT
(A) and neo-excised SNAP-25b deficient (B) mice at the level of the hippocampus. The box indicates the CA3 area that is shown at higher
magnification in (C–H). Scale bars = 1 mm. (C–H) Representative images of synaptophysin (green) and SNAP-25 (red) (E,F) immunoreactivity in the
hippocampus of 4-month-old WT (left column) and neo-excised SNAP-25b deficient mutants (right column), and double immunofluorescence images
(G,H). Scale bar = 50 mm (n = 3 animals of each genotype, each brain analyzed at least at three different levels).
doi:10.1371/journal.pgen.1000278.g005
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25 protein levels were reduced by 20%, indicating that the Tkneo

gene suppressed gene expression. Reduced SNAP-25 protein levels

in absence of SNAP-25b are lethal, as demonstrated in the

homozygous neo-containing SNAP-25b deficient mutants. The

phenotype becomes evident already in the second PN week with

characteristic tremors and increased activity, including hyperactive

episodes and reduced growth; all signs of uncontrolled neuro-

transmitter and hormonal release. The neo-excised SNAP-25b

deficient mutants, with restored levels of SNAP-25 expression,

escaped the critical early PN period with minor defects. Thus, the

increased vulnerability in neo-containing SNAP-25b deficient

mutants is the result of both lack of the SNAP-25b isoform and

reduced levels of protein, underlining the importance of a

balanced expression of SNAP-25 isoforms.

Figure 6. SNAP-25, CCK, NPY, BDNF, and DCx Immunoreactivity in the Hippocampal Formation of Adult Neo-excised SNAP-25b
Deficient and WT Mice. (A) CCK-ir in HF of WT mice, shown at higher magnification in (E). In SNAP-25b deficient mice (B), CCK-ir disappears in
PoDG and SLu, higher magnification in (F). (C) NPY-ir in WT HF, shown at higher magnification in (G). (D) Increased NPY-ir in PoDG, Mol, and SLu of
SNAP-25b deficient (KO) mice, the latter at higher magnification in (H). Confocal micrographs of double-staining experiments taken from WT (I-K), and
neo-excised SNAP-25b deficient (L) mice. CCK- (I) and SNAP-25-ir (J) in fibers/terminals of SLu in WT mice. Arrowheads in (J) point to strong SNAP-25+

fibers. (K) Double-staining of CCK- (green) and SNAP-25-ir (red) in WT SLu. (L) NPY-ir, lacking in fibers/terminals of WT SLu, is highly expressed in neo-
excised SNAP-25b deficient mutants. In homozygous neo-excised SNAP-25b deficient mice, SNAP-25-ir fibers in SLu are often thicker (arrowheads in
(L) compared to WT mice [(L) cf. (J,K)]. Insets in (K,L) show respective photomicrographs at higher magnification. (M) BDNF-ir in WT HF, the PoDG, and
SLu shown at higher magnification in (O). (N) Increased BDNF-ir in PoDG and SLu of mutant mice, the DG shown at higher magnification in (P). (Q)
Strong DCx+ cell bodies in SGZ of WT DG, shown at higher magnification in (S). (R) Increased number of cell bodies randomly distributed in SGZ and
granular cell layer of neo-excised SNAP-25b deficient mutants, with higher levels of DCx+ fibers in Mol, shown at higher magnification in (T).
Arrowheads in (T) point to DCx+ cell bodies in the granular cell layer. Cx, cortex; DG, dentate gyrus; LMol, lacunosum Mol; Mol, molecular layer of DG;
Or, oriens layer of HF; PoDG, polymorph layer of DG; Py, pyramidal layer of HF; Rad, stratum radiatum of HF; SGrDG, supragranular layer of DG; SGZ,
subgranular zone of DG; SLu, stratum lucidum of HF. Scale bars: (D = A–C = 500 mm), (H = E–G = 200 mm), (I = J–L = 50 mm), (K, inset = L inset = 10 mm),
(M = N = 500 mm), (O = P = 200 mm), (Q = R = 100 mm), (S = T = 50 mm). WT (n = 2), SNAP-25b mutant mice (n = 2).
doi:10.1371/journal.pgen.1000278.g006
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SNARE Complexes in Adult SNAP-25b Deficient Mouse
Mutants Are Less Stable and Demonstrate a Different
Cellular Localization Than Those in WT Mouse Brain

In the SNARE complex with syntaxin and VAMP, SNAP-25

contributes with two amphipathic a-helices to the four-helix-

coiled-coiled SNARE structure [16]. The nine amino acids that

distinguish SNAP-25b from SNAP-25a encompass a region in the

SNAP-25 protein that spans the last part of the N-terminal

SNARE motif and the first part of the linker that separate the N-

and C-terminal a-helices. Substitutions of two non-conservative

amino acid differences in the SNAP-25a protein to resemble the

SNAP-25b sequence followed by transient overexpression in

mouse chromaffin SNAP-25 deficient cells changed the secretion

capability of SNAP-25a to become similar to that of SNAP-25b

[47]. In addition, it has been established that SNAP-25b

containing SNARE complexes are more stable than those

containing SNAP-25a [16], and that SNAP-25b when overex-

pressed, is more efficient in driving fusion of catecholamine-

containing vesicles from chromaffin cells [28]. We took advantage

of the fact that homozygous neo-excised SNAP-25b deficient

mutants only express SNAP-25a instead of predominantly SNAP-

25b as in adult WT mouse brain. We have now been able to show

for the first time that ex vivo SNARE complexes in brain

homogenates from neo-excised SNAP-25b deficient mutants

dissociated at lower temperatures than WT SNARE complexes

(mostly holding SNAP-25b). In this respect our attention was

drawn to a SNAP-25b mouse mutant named the ‘‘blind-drunk

mouse’’ (Bdr) with retinal degeneration (caused by choice of the

background strain) and a mild phenotype with ataxia and

impaired sensorimotor gating due to a dominant mutation in

SNAP-25b [48]. The Bdr mouse expresses a SNAP-25 protein

with even higher affinity for syntaxin than WT SNAP-25b. The

SNAP-25b(Bdr) SNARE complexes, apparently more stable than

complexes with WT SNAP-25b, result in impairment of both

spontaneous and evoked release from cortical neurons and lack of

facilitation during trains of high-frequency stimulation [48]. The

outcome from studies of SNAP-25b(Bdr), SNAP-25b and SNAP-

25a containing complexes suggest that the difference in secretory

phenotype might be dependent on the difference in complex-

stability; and possibly on the interaction with accessory factors due

to the presence of different amino acids exposed on the surface of

the N-terminal amphipathic a-helix.

SNAP-25a and SNAP-25b also exhibit differences in the linker

region between the N- and C-terminal SNARE motifs, where a

quartet of cysteines, implicated in membrane anchoring of the

protein, exists in two different contexts [23-25]. We hypothesized

that a difference in plasma membrane association between SNAP-

25a and SNAP-25b also could add to the phenotype observed in

our mutants. Therefore we performed sucrose density gradient

fractionation of brain homogenates from adult neo-excised SNAP-

25b deficient mutants (only expressing SNAP-25a) and WT

littermates (predominantly expressing SNAP-25b). In agreement

with our assumption the mutants only had around 80% of the

SNAP-25 protein levels found in WT plasma membrane fractions.

Instead, in mutant brain more SNAP-25 was detected in low-

density fractions, representing soluble protein and/or protein

associated with small intracellular organelles. This difference in

subcellular localization of the two SNAP-25 isoforms might

contribute to the phenotype of the mutants. Whether that depends

on the ability of the two isoforms to associate with membranes due

to the altered organization of the cysteine residues that are

substrates for palmitoylation, or, whether SNAP-25a and SNAP-

25b reside in complex with additional secretory factors that guide

the subcellular localizations needs to be further investigated.

Short-Term Synaptic Plasticity Is Impaired in SNAP-25b
Deficient Mice

To explore a possible effect on presynaptic mechanisms we

studied PPF at Schaffer collateral-CA1 pyramidal synapses. We

observed a reduction of PPF in young neo-containing and neo-

excised SNAP-25b deficient mutants during low-frequency

stimulation (0.2 Hz), suggesting a specific effect of SNAP-25b-

deficiency. During higher frequency stimulation (0.5 Hz), when

Ca2+ may be expected to be elevated during longer time periods in

the stimulated presynaptic terminals, a reduction of the PPF-ratio

was observed in neo-containing experiments while there was only a

non-significant tendency to a reduction in neo-excised SNAP-25b

deficient mice. Whether this is a result of the presumed higher

average Ca2+-concentration or due to other factors will need to be

investigated in future studies.

Normally, only few synaptic vesicles are ‘‘fusion-competent’’

and require no further modifications prior to exocytosis.

Remaining vesicles close to the site of fusion need to be ‘‘primed’’,

that is undergoing ATP- and Ca2+-dependent maturation steps in

order to be mobilized to the fusion-competent state [49]. It has

been demonstrated that there is a 2–3 fold higher ability of SNAP-

25b to keep vesicles in the primed state than SNAP-25a, a feature

not due to facilitated priming but rather dependent on a lower de-

priming rate [28,50,51]. Furthermore, SNAP-25b has been

suggested to sustain the exocytotic bursts in a more efficient way

than SNAP-25a in flash photolysis experiments with caged Ca2+ in

chromaffin cells [28]. The results from the above mentioned

investigations indicate that SNAP-25 is not only involved in the

membrane fusion reaction but is also likely to play regulatory roles

prior to exocytosis, such as in mobilization, docking and priming

of vesicles [28,38,47]. Thus, the results from our PPF studies on

SNAP-25b deficient mutants may represent an effect of reduced

stability and availability of primed vesicles and are in line with the

suggested weaker exocytotic bursts by synapses with SNAP-25a-

containing SNARE complexes. Interestingly Bronk et al. [38]

showed that there is no synaptic facilitation in the few cultured

SNAP-25 KO hippocampal neurons that respond to extracellular

stimulation. It may be that the two isoforms of SNAP-25 differ in

their ability to sustain Ca2+-dependent types of facilitation

including PPF. At physiological levels of SNAP-25 expression

and elevated Ca2+-concentrations the replacement of SNAP-25b

by SNAP-25a does not affect synaptic release enough to result in a

statistically significant effect. However, there was a tendency to a

reduction that needs to be investigated further.

Elimination of SNAP-25b Expression Impairs Cognitive
Function, Triggers Morphological Changes, and Induces
Neuroprotective Mechanisms

SNAP-25b is normally highly expressed in brain areas involved

in cognitive function, such as the HF. Therefore we examined

mutants in behavioral tasks dependent on hippocampal mecha-

nisms. Neo-excised SNAP-25b deficient mutants demonstrated a

higher anxiety index compared to WT mice, however, without

alterations in overall locomotor activity in the elevated plus maze.

This finding is consistent with the profound thigmotaxis observed

in the computerized measurements obtained in the water maze

task. In the Morris water maze task, homozygous neo-excised

SNAP-25b deficient mutants were severely impaired in their

ability to acquire the spatial learning task. This impairment cannot

simply be explained by visual or motor disturbances although

there was a trend for female neo-excised SNAP-25b deficient

mutants to perform less well in the visible platform test. The failure

of the mutants to consistently improve their performance in the
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visible platform test is probably related to the same mechanisms as

those underlying the deficiency in spatial learning. It is important

to stress that the mutants did not display impaired swim

performance since they did not differ from WT in their swim

speed. However, unlike the WT mice, the mutants displayed a

high level of thigmotaxis in the water maze task. This suggests that

the deficiency in spatial learning in the mutants could partly be

related to their anxious phenotype evidenced by their profound

thigmotaxis and/or related to attention deficits observed in the

visible platform test.

Both neo-containing and neo-excised SNAP-25b deficient mutants

demonstrate spontaneously occurring convulsive seizures and

freezing behavior. The neo-containing SNAP-25b mutants are most

severely affected with frequent attacks debuting around PN12-13,

whereas in neo-excised SNAP-25b deficient mutants seizure activity is

rare prior to young adulthood. These behavioral impairments were

paralleled by increasingly pronounced anatomical and immunohis-

tochemical changes, which are only observed after the debut of

seizure activity. In neo-excised SNAP-25b deficient mice, mossy fibers

appear notably enlarged and swollen with certain areas almost devoid

of synaptophysin immunoreactivity, suggesting a locally decreased

density of functional nerve endings. Increased NPY expression in

mossy fibers after seizures is believed to be neuroprotective by

dampening excitatory activity, while BDNF can regulate NPY

expression [52,53]. Both NPY and BDNF have been suggested to

promote dentate SGZ neurogenesis [54,55], and their elevated

expression may contribute to the increase in DCx+ migrating

neuronal precursor cells observed in our mutants. It has been

reported that cells generated in the adult dentate gyrus mature into

functional neurons that integrate into hippocampal circuitry [55,56],

and it was recently shown that newly generated neurons after epilepsy

exhibit dampening characteristics [57]. Taken together, it is

conceivable that pathology develops in the SNAP-25-expressing

mossy fiber area in response to aberrant presynaptic plasticity and

synaptic contacts. However, a detailed ultrastructural study will be

required to determine any alterations in synaptic morphology.

Conclusions
We here demonstrate the physiological importance of the

ancient exon 5 duplication in the Snap25 gene. The functions of

SNAP-25a and SNAP-25b appear to complement each other in

tuning the presynaptic exocytotic machinery towards different

modes of release. For complex neuronal circuitries this modulation

of release is necessary, and is also instrumental in protecting highly

plastic brain areas from accumulating degenerative morphological

changes with age. The development of higher brain functions

during evolution has been complemented with expanding number

of gene products, sometimes by gene duplications but primarily by

increasing protein diversity and complexity via alternative splicing.

The importance of alternatively spliced isoforms from other genes

has previously been extensively analyzed in vivo, by hindering

expression of selected exons using gene targeted mouse models

[58]. This is the first time an exon knock-out/knock-in of tandem

duplicated exons has been performed. We specifically investigated

the physiological importance of removing one isoform while

preserving total expression levels of the protein by a simultaneous

knock-in of an extra copy of the remaining exon variant.

Interestingly, a growing amount of reports are connecting

SNAP-25 function with a wide variety of behavioral and

neuropsychiatric disorders, as well as linking it with cognitive

capability in humans [29–32]. Our present findings in the SNAP-

25b deficient mouse mutants suggest that even small alterations in

the strictly regulated temporal and anatomical expression of

SNAP-25 isoforms could add to these variations.

Methods

Generation of SNAP-25b Mutant Knock-Out Mice
To generate SNAP-25b deficient mouse mutants a targeting

vector was generated where the exon 5b, located downstream of

exon 5a in the Snap25 gene, was substituted with an additional

exon 5a. A Tkneo gene surrounded by loxP repeats was introduced

into the vector [34] (Figure 1A). Homologous DNA recombination

in embryonic stem cells (ES cells) was performed using standard

procedures [59]. Chimeras that demonstrated germline transmis-

sion were chosen for establishing SNAP-25b KO mouse lines (see

Text S1). Three mouse lines, bred independently from each other

for at least ten generations on C57BL/6NCrl (B6) mice, were

termed ‘‘neo-containing’’ as the Tkneo gene inserted into the

targeting vector was still present in the modified Snap25 gene. Two

of the neo-containing lines were crossed with the Protamine-Cre

recombinase transgene Prm1Cre [34], resulting in in vivo excision

of the Tkneo gene. The neo-excised lines were bred independently

onto B6 background until congenic, and the PrmCre1 transgene

crossed out. Genotyping was routinely performed by PCR and by

Southern blotting when necessary. In vivo expression of the

introduced chicken exon 5a was demonstrated by RT-PCR (Text

S1). All animal breeding and studies were done in accordance with

the guidelines from local ethical committees.

RNA Analysis
Mouse brains, minus the cerebellum, were isolated after terminal

CO2 anesthesia and frozen in liquid N2. Total RNA was isolated

from brain (PN14-15) using the GenElute Mammalian Total RNA

kit (Sigma). For quantification of total SNAP-25 mRNA; 1 mg RNA,

10 mm of each primer and a trace of [a32P] dCTP (3000 mCi/mmol,

PerkinElmer Life Sciences) were used in 25 ml reactions with the

SuperScript III RT-PCR System (Invitrogen). Semi-quantitative

RT-PCR was performed with 20 cycles of amplification and SNAP-

25 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

primers in the same reaction (see Text S1 for primer sequences

and PCR programs). The RT-PCR products were separated on an

8% polyacrylamide Tris-borate EDTA (TBE) gel that was dried, and

detected using a phosphoimager (BAS-1500, Fujifilm). Signal

intensities were quantified in Image Gauge V3.45 (Fujifilm).

Determination of SNAP-25a/b mRNA ratio expression was

essentially performed as described [26] (and Text S1). Statistical

analyses were made using Wilcoxon’s signed-rank test.

Western Blotting
Mouse brains were homogenized in (in mM): 20 HEPES, 1

MgCl2, 250 D-sucrose, 2 EDTA and protease inhibitor cocktail

(Roche Diagnostics GmbH), pH 7.4. For whole cell homogenates

cells were lyzed with 1% NP-40 (Sigma) and 5 mg protein was run on

10% Tris-glycine/NU-PAGE gels (Novex, Invitrogen) followed by

Western blotting. Primary antibodies used were a rabbit polyclonal

antibody against SNAP-25 from Synaptic Systems (1:20,000

dilution), a rabbit polyclonal anti-SNAP-23 (1:1000, Synaptic

Systems), mouse monoclonals anti-syntaxin 1, HPC-1 (1:50,000

and 1:100,000) and anti-a-tubulin, clone DM 1A (1:45,000), both

from Sigma. Secondary antibodies were horseradish peroxidase-

conjugated anti-rabbit and anti-mouse immunoglobulins (IgGs) from

Dako Corporation and Rockland. Statistical analyses were made

using Wilcoxon’s signed-rank test for paired data.

Determination of Stability of SNAP-25a and SNAP-25b
Containing SNARE Complexes

Pulverized adult WT and homozygous neo-excised SNAP-25

deficient (KO) mouse brain tissues were homogenized in buffer
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described for whole cell homogenates. SDS sample buffer [0.5M

Tris-HCl (pH 6.8), 20% glycerol, 4% SDS, 10% 2-mercaptoethanol

and 0.05% Bromophenol Blue] was added to equal amounts (20–

40 mg) of WT and KO homogenate before heating treatment at 70,

75, 80, 85, 90 and 100uC (boiling), or kept at 4uC, for 20 min.

Treated samples were immediately loaded and separated on 10%

Bis-Tris NU-PAGE gels (Invitrogen). SMI81 antibody (1:500,000)

was used to detect immunoreactivity of bands migrating as ternary

SNARE complex or solitaire SNAP-25 protein. To measure the

grade of disassembly of heat-resistant SNARE complex in WT and

SNAP-25b KO tissue, percentage monomeric SNAP-25 protein of

total SNAP-25 in ternary complex at 4uC was calculated and

compared with the value calculated at a certain temperature. All

experiments were performed at least three times. Results were

analyzed with unpaired Student’s t-test.

Histology and Immunohistochemistry
For histological analysis, mice were anesthetized with isoflurane

and transcardially perfused with PBS followed by freshly prepared

4% paraformaldehyde in PBS. Organs were post-fixed overnight,

dehydrated in graded ethanol and embedded in paraffin according

to standard procedures. 4 mm sections were stained with

hematoxylin-eosin or cresyl violet.

For immunohistochemistry of paraffin embedded tissue, sections

were collected on Superfrost Plus slides, deparaffinized (xylene),

dehydrated (ethanol) and boiled by microwaving for antigen

unmasking (see also Text S1). Antibodies used were mouse anti-

SNAP-25 (1:750, SMI 81, Sternberger Monoclonals), rabbit anti-

SNAP-25 (1:100, Synaptic Systems), mouse anti-synaptophysin

(1:200, SVP38, Sigma), and anti-mouse IgG-Alexa 488 or anti

rabbit IgG-Alexa 546 (1:250, Molecular Probes).

Neuropeptide immunohistochemistry was performed as described

[60] (see also Text S1). Antibodies used were mouse anti-SNAP-25

(1:750, 1:2,000 SMI 81, Sternberger Monoclonals), rabbit anti-

SNAP-25 (1:100, Synaptic Systems), mouse anti-synaptophysin

(1:200, SVP38, Sigma), chicken anti-BDNF (1:200, Promega) and

goat anti-DCx (1:100, Santa Cruz Biotechnology). For tyramide

signal amplification (TSA+, NEN Life Science Products) antibodies

used were rabbit anti-CCK (1:8,000), or rabbit anti-NPY (1:3,000)

(for details see Text S1). Corresponding secondary antibodies were

HRP-swine anti-rabbit IgG (1:200, Dako), FITC-donkey anti-

chicken, Cy3-donkey anti-goat and Cy3-donkey anti-mouse (all

1:100, and from Jackson ImmunoResearch Laboratories).

Determination of Growth Plate Zones in Hind Limb
Hind limb specimens were fixed in 4% formaldehyde in

phosphate buffer and embedded in paraffin. Sections, 4–5 mm

thick, were stained with hematoxylin and eosin. Growth plates of

tibia and femur were scanned using a Zeiss Axiovert 35M

microscope fitted with a LSR Astro Cam type TE3/A/S digital

camera. Images were analyzed using Concord software from Life

Science Resources Ltd. The width of the different zones was

determined at least in triplicate per section. Per sample, at least

two cross sections were measured. Data was analyzed with

unpaired Students t-test.

Electrophysiology
PN12-16 mice were terminally anesthetized with 100% CO2 and

sacrificed by decapitation. Brains were quickly removed and placed

in ice-cold low Ca2+/ high Mg2+ artificial cerebrospinal fluid (aCSF)

containing (in mM): 124 NaCl, 5 KCl, 1.24 NaH2PO4, 0.5 CaCl2,

10 MgSO4, 26 NaHCO3, and 10 glucose, and oxygenated with 95%

O2/5% CO2 (pH 7.4). Coronal hippocampal slices (350 mm thick)

were cut on a vibratome (Leica VT1000S, Leica Microsystems) and

transferred to regular aCSF (same composition as above but with

2.4 mM CaCl2 and 1.3 mM MgSO4) at RT. Patch-clamp electrodes

(6–10 MV) were filled with (in mM): 135 Cs-methane sulphonate, 10

HEPES, 1 EGTA, 4 Mg-ATP, 0.3 Na-GTP, 2–5 QX-314, and 8

NaCl (pH 7.25; osmolarity 270–280 mOsm). Whole-cell voltage

clamp (270 mV) recordings of evoked excitatory postsynaptic

currents (EPSCs) were obtained at RT from CA1 pyramidal

neurons of the hippocampus, visualized with differential interference

microscopy (DIC) using an Olympus BX50WI microscope. 50 mM

picrotoxin (Sigma-Aldrich) was added to the aCSF to block GABAA

receptor-mediated synaptic transmission. EPSCs were evoked by

stimulation of Schaffer collaterals with fine concentric Pt/Ir bipolar

stimulation electrodes (Fredrik Haer and Co.) placed in the stratum

radiatum. Paired stimuli were delivered at IPIs from 40 to 300 ms at

0.2 and 0.5 Hz and data was collected after at least 5 minutes of

baseline recording to make sure responses were stable. Statistical

comparisons of PPF ratios between WT and SNAP-25b deficient

mice were made with two-way repeated measurements analysis of

variance (ANOVA). For additional information, see Text S1.

Mouse Behavioral Analysis
The elevated plus maze analysis was performed as described

previously [61]. For the water maze task, the animals were

handled by the operator for a period of five days prior to the test

and spatial learning and memory were examined as described

before [62]. Locomotor activity was recorded by means of a multi-

cage red- and infrared-sensitive motion detection system as

described earlier for mice [61].

Data from the behavioral testing was analyzed by non-

parametric statistics using Kruskal-Wallis ANOVA followed by

Mann-Whitney U as the Post-hoc test.

Supporting Information

Figure S1 Weight curves of neo-excised SNAP-25b deficient

mouse mutants from PN5 to PN15. (A) Weight gain was not

reduced for neo-excised male mutants compared to male WT

littermates (n = 6 animals of each genotype). (B) Neo-excised female

SNAP-25b mouse mutants at the second PN week weigh less than

their WT littermates (**p,0.01, n = 6 females of each genotype).

Data was analyzed with two-way repeated measures ANOVA.

Found at: doi:10.1371/journal.pgen.1000278.s001 (1.30 MB TIF)

Figure S2 Sucrose density gradient fractionation of brain

homogenates from 2–5 months old neo-excised SNAP-25b deficient

and WT mice for comparison of subcellular localization of SNAP-

25a (KO) and SNAP-25b (WT) proteins. More SNAP-25a than

SNAP-25b protein could be found in low-density fractions, as shown

in the representative immunoblots. Neo-excised SNAP-25b deficient

mice (KO) had 80.463.4% (*p = 0.05) SNAP-25 in plasma

membrane (PM)-associated fractions using a polyclonal antibody,

whereas monoclonal antibody resulted in 86.565.5% PM-associated

protein (p = 0.1, n.s.). Mean6S.E.M., n = 3 for each genotype of

animals, and each gradient was run in triplicate for each antibody,

data was analyzed using Mann-Whitney U test.

Found at: doi:10.1371/journal.pgen.1000278.s002 (1.21 MB TIF)

Figure S3 Doublecortin-ir cells in the hippocampal dentate gyrus.

Number of DCx+ migrating neuronal precursor cells was increased

by 140% in the neo-excised SNAP-25b deficient (KO) mutants.

Number of cells was 298628 in the homozygous neo-excised SNAP-

25b deficient KOs, compared to 125620 in WT (two levels were

counted from each animal and in both hemispheres, n = 2 animals of

each genotype, Students t-test, mean6SD).

Found at: doi:10.1371/journal.pgen.1000278.s003 (1.39 MB TIF)
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Text S1 Supplementary information.

Found at: doi:10.1371/journal.pgen.1000278.s004 (2.98 MB

DOC)
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15. Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE (1993b) A

protein assembly disassembly pathway in vitro that may correspond to sequential

steps of synaptic vesicle docking, activation, and fusion. Cell 75: 409–418.

16. Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a

SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:

347–353.

17. Giraudo CG, Eng WS, Melia TJ, Rothman JE (2006) A clamping mechanism

involved in SNARE-dependent exocytosis. Science 313: 676–680.

18. Pobbati AV, Stein A, Fasshauer D (2006) N- to C-terminal SNARE complex

assembly promotes rapid membrane fusion. Science 313: 673–676.

19. Kloepper TH, Kienle CN, Fasshauer D (2007) An Elaborate Classification of

SNARE Proteins Sheds Light on the Conservation of the Eukaryotic

Endomembrane System. Mol Biol Cell 18: 3463–3471.

20. Elferink LA, Trimble WS, Scheller RH (1989) Two vesicle-associated membrane

protein genes are differentially expressed in the rat central nervous system. J Biol

Chem 264: 11061–11064.
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61. Beraki S, Aronsson F, Karlsson H, Ögren SO, Kristensson K (2005) Influenza A
virus infection causes alterations in expression of synaptic regulatory genes

combined with changes in cognitive and emotional behaviors in mice. Mol
Psychiatry 10: 299–308.
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