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Abstract

SUMO is a posttranslational modifier that can modulate protein activities, interactions, and localizations. As the GFP-Smt3p
fusion protein has a preference for subnucleolar localization, especially when deconjugation is impaired, the nucleolar role
of SUMO can be the key to its biological functions. Using conditional triple SUMO E3 mutants, we show that defects in
sumoylation impair rDNA maintenance, i.e., the rDNA segregation is defective and the rDNA copy number decreases in
these mutants. Upon characterization of sumoylated proteins involved in rDNA maintenance, we established that Top1p
and Top2p, which are sumoylated by Siz1p/Siz2p, most likely collaborate with substrates of Mms21p to maintain rDNA
integrity. Cohesin and condensin subunits, which both play important roles in rDNA stability and structures, are potential
substrates of Mms21, as their sumoylation depends on Mms21p, but not Siz1p and Siz2p. In addition, binding of cohesin
and condensin to rDNA is altered in the mms21-CH E3-deficient mutant.
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Introduction

SUMO covalently modifies substrate proteins and can modulate

their activities [1,2]. Similar to the ubiquitination pathway,

sumoylation requires E1, E2, and E3 steps to conjugate SUMO

to substrates [1,2]. In budding yeast, genes encoding SUMO

(SMT3) as well as SUMO E1 (UBA2, AOS1) and E2 (UBC9) are

essential [3–7], indicating that sumoylation regulates key processes

in cell survival. Indeed, recent studies have shown that sumoyla-

tion participates in multiple cellular pathways, many of which are

intranuclear, such as transcription, DNA repair, and nuclear

domain organization [1,2,8].

Despite the importance of sumoylation in cell physiology, only a

handful of substrates have been studied in detail, partly due to the

low abundance of sumoylated fractions of a given protein [9–11].

Nevertheless, recent studies have revealed several salient features

of sumoylation. Proteomic research showed that multiple proteins

in the same protein complexes or biochemical pathways are

sumoylated; such ‘‘clustered’’ SUMO modifications raise the

possibility that sumoylated versions of cellular proteins may

cooperate for specific functions [12–17]. This could provide an

explanation for the low level of modification for the majority of

SUMO substrate proteins. The putative cooperation may also be

reflected in specific subnuclear localization of sumoylated proteins

[11,18–21]. The recent characterization of SUMO-binding

domains within proteins localized to nuclear subdomains suggests

that SUMO modification is recognized by receptor-like proteins,

thus providing a mechanism for subnuclear domain organization

by SUMO [22–26]. This targeting role of SUMO, and its

potential ensuing ability to establish a novel set of protein-protein

contacts, may be key to its essential biological roles.

In S. cerevisiae, one prominent subnuclear domain relevant to

SUMO biology is the nucleolus, as our previous results showed

that the green fluorescent protein (GFP) fusion to Smt3p has a

preference for nucleolar localization when deconjugation is

impaired [11]. In the present study, we examine the potential

cooperation of several chromosomal proteins known to be

involved in the stability of ribosomal RNA genes (rDNA). Among

these proteins are two topoisomerases, Top1 and Top2, which

facilitate rDNA transcription and replication. Top1 and Top2 are

sumoylated by two paralogous SUMO E3s, Siz1 and Siz2, which

are responsible for the majority of sumoylation in yeast. The third

SUMO E3, Mms21, is a subunit of the Smc5/Smc6 complex,

which also binds to rDNA and maintains its stability [27–29]. The

relevant substrates of Mms21p E3 activity in rDNA maintenance

are not known. We examined conditional triple mutants lacking

E3 activities of Siz1, Siz2, and Mms21 and found that rDNA

stability is severely impaired in these mutants. Furthermore, the

Mms21p E3 activity is essential in the absence of Top1p and

sumoylated Top2p. Thus, our results show that Top1p and Top2p
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most likely cooperate in the rDNA maintenance pathway with

Mms21p substrates, including the Structural Maintenance of

Chromosomes (SMC) complexes cohesin and condensin.

Results

SUMO Is Prominently Enriched in the Nucleolus
We recently showed that the bulk of sumoylated proteins are

concentrated in a subnucleolar area reminiscent of rDNA

chromatin, if the nuclear desumoylation enzyme Smt4p is

inactivated by the smt4 gene deletion [11]. This observation

suggested that the SUMO pathway may play a major role in the

nucleolus. Therefore, we closely examined strains expressing GFP-

Smt3p under the native SMT3 promoter, as a sole source of

SUMO. To monitor the GFP-Smt3p (HFG-Smt3) modification

biochemically we also generated a shorter fusion (with the

extended S-tag, HFS-Smt3). Similar patterns of conjugated

protein bands were observed for both strains, except bands shifted

accordingly to the tag size (Figure 1A). Both the HFS-Smt3 and

HFG-Smt3 strains had the wild type doubling time (not shown),

indicating that HFS-Smt3p and HFG-Smt3p fulfill key functions

of SUMO.

In wild type cells, the GFP-Smt3p signal was nuclear with a

gradient-like appearance (Figure 1B, insert). This subnuclear

pattern of localization depends on SUMO conjugation, as GFP-

Smt3p was uniformly filling the whole nucleus in ubc9 mutants

(Figure 1B). In contrast, in slx5D or slx8D mutants, which

accumulate poly-sumoylated targets, similarly to smt4D strains

[23–25], GFP-Smt3p was concentrated in several foci located in

the nucleolus (Figure 1B, 1C). These results suggest that in wild

type a large portion of sumoylated nuclear proteins is localized in

the nucleolus, at least transiently.

Triple SUMO E3 Mutants Are Defective in rDNA
Segregation and Maintenance

All three known S. cerevisiae SUMO E3 activities have been

implicated in the regulation of rDNA maintenance and nucleolar

stability: siz1D siz2D strains exhibit 60% of wild-type levels of the

rDNA copy number [11], while the mms21-11 mutation leads to

fragmentation of the nucleolus [28]. In order to elucidate the role

of SUMO E3s in nucleolar maintenance, we examined strains

conditionally lacking E3 activity, because the combination of siz1D

siz2D and the mms21-CH mutation (i.e. mutated cysteine and

histidine in the SP-RING-like domain of Mms21p) was lethal (not

shown). To this end, we introduced the siz1D440 allele [9] into the

siz1D siz2D mms21-CH triple mutant. The protein encoded by

siz1D440 retains the SP-RING domain and E3 activity in vitro but

lacks the regulatory domain and fails to localize properly in vivo [9].

This mislocalization may be the reason for the temperature

sensitivity of the siz1D440 siz2D mms21-CH strain (called E3-ts

thereafter; Figure 2A).

The E3-ts strain stopped growing after one or two divisions at

37uC (Figure 2B, 2C). It exhibited a 2.5-fold decrease in rDNA

content (as determined by quantitative polymerase chain reaction,

qPCR, Figure 2C) while the bulk of DNA replication was

completed (Figure 2D). The decrease of the rDNA copy number in

E3s-ts was more severe than in siz1D siz2D or mms21-CH strains

[11] (and Figure 2C), suggesting that all three E3s are required to

maintain rDNA stability. Furthermore, 42% of the E3s-ts cells

with separated nuclei had unsegregated rDNA (Figure 2E); and

most cells’ nucleoli were highly variable in size and did not acquire

the characteristic crescent shape (Figure 2F). These results show

that lacking all three SUMO E3 activities dramatically affects

nucleolar stability.

To verify this conclusion, we analyzed E3-shut-off strains

expressing Siz2p or Siz1p under the GAL-promoter in siz1D siz2D
mms21-CH cells. As expected, such strains could not grow on a

medium containing glucose (Figure 2G). A correlation of SUMO E3

levels and rDNA copy number was found upon analysis of these

strains: constant SIZ2 overexpression induced doubling of the

rDNA copy number, while SIZ2 shut-off resulted in an efficient loss

of extra rDNA (Figure 2H). This loss was likely due to

missegregation of rDNA, as it coincided with cell division after a

prolonged arrest in dextrose (around 9 h). Thus, the results obtained

with both types of conditional E3 mutants suggest that SUMO

conjugations mediated by Siz1p, Siz2p, and Mms21p are important

for proper rDNA segregation and/or copy number control.

Genetic Interactions between mms21-CH, top1, and top2
Mutations Suggests a Common Pathway in rDNA
Maintenance

Due to the large number of sumoylated nucleolar proteins

[30,31], it is not feasible to analyze all of them simultaneously.

However, it is known that, among SUMO substrates, Top1 and

Top2 topoisomerases are involved in the maintenance of tandem

rDNA array stability [32]. Moreover, we have previously shown

that top2DC and top2-SNM alleles, with either complete or partial

loss of in vivo Top2p sumoylation, respectively [20,33] (and

unpublished data), result in a decrease of the rDNA copy number

[11]. Consistent with the role of Top2 sumoylation in rDNA

regulation, Top2DC ChIP from nocodazole-arrested cells (sumoy-

lation levels of Top2p are maximal in mitosis [33]) showed a

strong peak towards the end of the 35S RNA gene, which was not

present in wild type (Figure 3A). The specific location of this

enrichment may indicate possible impediments to Pol I transcrip-

tion and/or DNA replication, which are characteristic of more

penetrant top2 mutants [34].

While the Figure 3A results, as well as previous work [11],

suggest that sumoylation levels affect both the localization and

function of Top2p in rDNA, the healthy growth rate of the top2DC

strain indicates the existence of some redundant activities. One

candidate is Top1p, which is able to alleviate DNA replication and

transcription constraints induced by top2 mutants [34–37]. The

other candidate is Mms21p; as its SUMO E3 activity may play a

role in counteracting replication stress upon DNA damage

[29,38]. To investigate whether sumoylation of Top2p has any

Author Summary

Disruption of the SUMO (small ubiquitin-like modifier)
pathway by mutations is lethal in mammals and in
budding yeast; however, the essential nature of its role
remains unknown, mainly because only a small fraction of
most substrate proteins is SUMO-modified. We argue that
the clustering of SUMO modifications among subunits of
multiprotein complexes or within biochemical pathways
indicates that SUMO-modified fractions of target proteins
may have specific cooperative activities, distinct from the
functions of individual unmodified proteins. SUMO conju-
gation-mediated functions in nucleolar processes can
potentially be examples of such specific cooperative
pathways, as we show that SUMO conjugates have a
strong preference for nucleolar localization in budding
yeast. Moreover, we demonstrate that stable maintenance
of the nucleolar DNA and nucleolus is dependent on the
putative functional interaction between the sumoylation
of topoisomerases I and II (by Siz1p/Siz2p) and substrates
of Mms21p SUMO-conjugating activity.

Cooperative Sumoylation in rDNA Maintenance

PLoS Genetics | www.plosgenetics.org 2 October 2008 | Volume 4 | Issue 10 | e1000215



redundancy in rDNA maintenance with either Top1p or

sumoylation mediated by Mms21p, we combined top2DC, top1D,

and mms21-CH mutations in pairs and examined cell growth and

rDNA levels in each double mutant. In all cases we uncovered

some synthetic phenotype. The interaction was relatively mild

between top1D and either top2DC (Figure 3B) or mms21-CH

(Figure 3C), but strong for top2DC and mms21-CH, resulting in a

tight ts-phenotype in this double mutant (Figure 3D, only

revertants grow at 37uC). With respect to rDNA copy number,

the mms21-CH mutation was epistatic to either top1D or top2DC

mutations (Figure 3F), however the top2DC mms21-CH strain

showed ample signs of nondisjunction and/or loss of nucleolar

material in cell divisions at a nonpermissive temperature

(Figure 3E, 3F). In contrast, chromosome III loss was not

increased in the top2DC mms21-CH diploid (data not shown).

These results indicate that some targets of Mms21p sumoylation

may have rDNA activities redundant with sumoylated Top2p.

The fact that at least some growth inhibition was observed in

cells with all double combinations of top1D, top2DC and mms21-CH

mutations (Figure 3B, 3C, 3D) may indicate some functional

redundancy between the three corresponding activities disrupted

by these mutations. To test this, we constructed the triple top1D
top2DC mms21-CH mutant and found that such a combination was

lethal even at permissive temperatures (Figure 3G). Next, we

constructed the triple top1D top2-SNM mms21-CH mutant, which

has only trace sumoylation of Top2p in vivo (in contrast to a

complete lack of sumoylation in Top2DC) [20] (and unpublished

results), and showed that it had a severe inhibition of growth

(Figure S1). These two results (Figure 3G and Figure S1) are

consistent with the hypothesis that Top1p activity becomes

essential when both the Mms21 E3 activity and Top2p

sumoylation are blocked. To understand whether such a function

of Top1p is itself related to Top1 sumoylation, we examined the

genetic interactions of top1KR3, which lacks three major Top1p

sumoylation sites [39], with mms21-CH and top2DC. The triple

top1KR3 top2DC mms21-CH mutant had a severe synthetic growth

phenotype (Figure 3H) as well as prominent rDNA loss (Figure 3F).

This result indicates that Top1p activity in rDNA could be also

SUMO-dependent. It also complements the conclusions based on

Figure 3G and Figure S1, suggesting that Top1p, sumoylated

targets of Mms21p, and sumoylated Top2p may act together in

rDNA maintenance.

Condensin and Cohesin Are Directly Regulated by
Mms21-Mediated Sumoylation

While the specific targets of Mms21 E3 activity are not well

characterized, especially in the unchallenged (i.e. no DNA

damage) cell cycle, one can hypothesize (based on the Figure 3

results) that these substrates include proteins complementing

topoisomerase activities in the nucleolar organizer. SMC com-

Figure 1. Smt3p conjugates are enriched in the nucleolus. (A) Alternative tagging of Smt3p expressed at the native levels enables the
identification of sumoylated proteins. Total sumoylated proteins were purified by IMAC from the strains expressing wild-type levels of poly-His/FLAG-
tagged Smt3p (HF-Smt3, 924-YPH499b), poly-His/FLAG/S-tag-Smt3p (HFS-Smt3, 1008-YPH499), and poly-His/FLAG/GFP-Smt3p (HFG-Smt3, 1014-
YPH499. Sumoylated proteins here and thereafter are separated by PAGE and detected by Western-blotting using the anti-FLAG antibody. Arrows
indicate the proportional size shifts between the free SUMO forms. Molecular weight markers (61000) are shown on the left. (B) GFP-SUMO
localization as a function of conjugation/de-conjugation. The wild type (1014-YPH499b), ubc9-1 (1cYT630), and slx5D (1dYT631) strains expressing
GFP-Smt3p as in (A) were incubated at 32uC (semi-permissive for ubc9-1) for 5 h and imaged live. The insert shows gradient-like distribution of SUMO
typical for wild type, which is noticeable at higher magnifications. Scale bars here and elsewhere are 5 mm. (C) SUMO conjugates are concentrated in
the nucleolus in slx8D cells. The wild type (1014-YPH499) and slx8D (1aYT629) strains co-expressing GFP-Smt3p and Nop1p-mRFP were incubated at
30uC; cell images were captured live.
doi:10.1371/journal.pgen.1000215.g001
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Figure 2. Conditional E3 mutants exhibit defects in rDNA segregation and maintenance. (A) Characterization of a conditional SUMO E3
mutant (E3-ts). The conditional E3 strain (1YT632, siz1D, siz2D mms21-CH) contains siz1-440 encoding a truncated Siz1p that lacks the COOH-terminal
region. The control strains shown are wild type (WT, W303-1A) and a siz1D siz2D mms21-CH strain (1cYT628) bearing a full-length SIZ1 plasmid. 10-
fold serial culture dilutions were spotted on YPD plates and incubated for 2 days at indicated temperatures. (B) E3-ts cells arrest within two cell
divisions at the restrictive temperature. The strains as in (A) were grown exponentially in YPD at 30uC and shifted to 37uC at zero timepoint. Cell
aliquots were removed at each subsequent time point and cells were counted using a haemocytometer. (C) E3-ts cells lose viability and rDNA copies
at non-permissive temperature. The three strains as in (A) were grown in YPD at 30uC or shifted to 37uC for 5 hours to determine cell viability by
plating assay. The relative rDNA copy number (shown adjacent to viability bars) was determined for wild type and the siz2D mms21-CH siz1-440 strain
as in [11] and normalized to wild type value at 30uC. (D) The majority of E3-ts mutant cells have replicated DNA. Exponentially growing cells (as in A)
were shifted to 37uC for 5 hours, and DNA content was analyzed by FACS. (E) The nucleolar segregation defect in E3-ts cells at a non-permissive
temperature. Haploid E3-ts cells were incubated at 37uC for 5 hours, stained with DAPI and examined microscopically. Strains were as in 1A, except
they contained the nucleolar marker Nop1p-mRFP. The numbers above the bars indicate the fraction of anaphase cells, which have segregated DAPI
signals but unsegregated nucleoli (the micrograph shows an example). (F) E3-deficient cells have altered nucleolar morphology. The SIZ1 (NOP1-
1cYT628) and siz1-440 (NOP1-1YT632) strains were treated as in (E). While all SIZ1 cells have proper nucleolar morphology (Nop1-mRFP marker),
nucleolar material is more dispersed in E3-ts cells. Similar results were obtained using another nucleolar marker Sik1p-mRFP (not shown). (G) SIZ1 or
SIZ2 transcription shut-off in the siz1D siz2D mms21-CH strain leads to growth arrest. Cultures of triple-mutant (siz1D siz2D mms21-CH) strains carrying

Cooperative Sumoylation in rDNA Maintenance
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plexes are obvious candidates: they change the topological state of

DNA [40], the Smc5p/Smc6p complex and condensin are

essential for rDNA maintenance and segregation [27,41], and

cohesin is apparently involved in the rDNA amplification pathway

[42]. Incidentally, some subunits of the three SMC complexes can

be sumoylated [12,13,15], although only Smc5p sumoylation is

partially dependent on Mms21p [28]. Furthermore, all SMC

proteins contain multiple potential sumoylation sites (Figure 4A).

These considerations prompted us to examine whether the

sumoylation of SMC proteins contributes to rDNA maintenance.

First, we assayed the comparative extent of SMC proteins’

sumoylation. Using the alternative tagging of Smt3p with

variable-length tags (HF and HFS, Figure 1A), we investigated

the sumoylation levels of all six SMC proteins and showed that

they were SUMO-modified in mitosis (Figure 4 B, C, D). The HFS

versus HF tag super-shifts of gel-retarded SMC bands established

their identity as products of sumoylation; therefore we limited the

subsequent analysis to the HF-tagged Smt3p only. In most cases,

more than two sumoylated bands were evident, indicating that

SMC proteins were SUMO-modified at multiple sites or they were

polysumoylated (Figure 4 B, C, D). In the case of condensin, which

is known to interact with topoisomerases functionally [43,44], but

showed the weakest sumoylation (Figure 4C), we detected

reproducible SUMO modifications of non-SMC subunits as well

(Figure S2).

Next, we examined whether sumoylation of SMC proteins in

nocodazole-arrested cells depends on Mms21p or Siz1p/Siz2p.

We found that, while Top1p sumoylation was wholly dependent

on Siz1p/Siz2p (Figure 5A), Mms21p was responsible for

sumoylation of Smc1p, Smc3p (Figure 5B), Smc2p (Figure 5D),

and partially of Smc4p and Ycs4p (data not shown). Concurrently,

siz1D siz2D double mutants had no effect on sumoylation of

Smc2p (Figure 5D), Smc1p and Smc3p (data not shown).

Sumoylation of Smc5p was a combination of Siz1p/Siz2p and

Mms21p activities; and the Smc6p sumoylation was largely

dependent on Siz1p/Siz2p (data to be published elsewhere).

These results show that mitotic SUMO-modifications of cohesin

and condensin are largely dependent on Mms21p. In the

experiments in vitro, recombinant Mms21p failed to sumoylate

either condensin or cohesin bound to chromatin (data not shown),

indicating that the Smc5/Smc6 holocomplex is most likely

required for Mms21 SUMO E3 activity, which is consistent with

the stoichiometric binding of Mms21p to the Smc5/Smc6

complex in vivo [28,29].

The above results suggest that sumoylation of cohesin and

condensin (among other Mms21p substrates) could possibly

mediate some of the rDNA-specific functions conferred by the

Mms21p E3 activity. If this is the case, the mms21-CH mutation

may have an effect on the distribution of cohesin and condensin in

rDNA. Therefore, we tested the enrichment of cohesin and

condensin at rDNA in mms21-CH cells by ChIP. In wild type, both

Smc1p and Smc4p had well-defined peaks of rDNA enrichment

(Figure 5C, 5E), as was expected [41,45,46]. In mms21-CH cells,

condensin retained proper enrichment at its RFB and the 35S

RNA gene (59) peaks, both of which are important for rDNA

condensation and segregation [45,47–49] (Figure 5E). However,

the 5S rRNA gene-neighboring peaks of both cohesin (Figure 5C)

and condensin (Figure 5E) were eliminated, suggesting that

Mms21p E3 activity controls the binding of both complexes to

the 5S rRNA gene.

Condensin Sumoylation Is Essential in the Absence of
Top1p and Sumoylated Top2p

As the role of cohesin in rDNA appears to be nonessential [42],

we turned our attention to condensin sumoylation. To further

understand the function of sumoylation of condensin subunits we

generated a set of mutations replacing six putative acceptor lysine

residues with arginine in Smc2p and four in Smc4p (smc2KR6 and

smc4KR4 alleles). Both alleles displayed reduced sumoylation

(Figure S3), however neither had growth defects at 30uC or

37uC. Nevertheless, the combination of the two yielded temper-

ature sensitivity (Figure 5F). We then attempted to recapitulate the

lethality of the top1D top2DC mms21-CH triple mutant (Figure 3G)

with top1D, top2DC, and smc2KR6/smc4KR4 alleles. Tetrad analysis

of diploid strains (YT660) homozygous for top1D and heterozygous

for both smc2KR6 and top2DC showed that the triple combination

of smc2KR6, top1D, and top2DC was already lethal: no top2DC

alleles were found in 120 examined smc2KR6/top1D spores. Thus,

condensin sumoylation apparently acts in a pathway that is

genetically redundant (and possibly molecularly cooperative in

wild type) with Top1p and SUMO-dependent Top2p activities.

However, one caveat of this interpretation is that we cannot

exclude the possibility that smc2KR6, as a result of multiple lysine

residue substitutions, may affect other aspects of Smc2p function

besides sumoylation.

Discussion

While temperature-sensitive alleles of the SUMO pathway

genes (ubc9-1, ulp1-333, smt3-331) show severe cell cycle defects,

the requirement of SUMO for cell viability in budding yeast is

largely unexplained. However, the persistently low levels of target

modifications by SUMO is a likely indicator that sumoylated

fractions of proteins have biological roles that are distinct from the

non-sumoylated pools of the same proteins. Considering the

enrichment of sumoylated proteins at some nuclear subdomains, it

is plausible that the essential roles of SUMO include specific

activities of sumoylated proteins at these subnuclear regions, such

as the centromere [20,50] and the nucleolus [11]. In our previous

and current work we showed that the SUMO conjugates became

predominantly nucleolar when the removal of conjugates was

compromised (Figure 1B, 1C and [11]). Furthermore, the

population of cells that breaks through the metaphase arrest

induced by SUMO E3 dysfunction is prone to nucleolar

nondisjunction (Figure 2E), which might account for the rDNA

loss in these triple E3-deficient cells (Figure 2C, 2H). Thus,

nucleolar proteins, particularly ones functioning in rDNA

chromatin, can be key targets of SUMO in the nucleus.

What essential rDNA functions might require SUMO? Three

key factors are known to contribute to the stability of rDNA arrays:

(1) silencing, i.e. suppression of sister chromatid recombination

and ensuing formation of extrachromosomal rDNA [51,52]; (2)

amplification controls maintaining the optimal size of the rDNA

array [42,51]; and (3) proper rDNA segregation [27,45,53–55].

Topoisomerases probably participate in all of these processes and,

with respect to SUMO, our previous work suggests that lacking

either pGAL:SIZ1 (10aYT633) or pGAL:SIZ2 (11aYT634) were plated on media containing either galactose (Gal) or glucose (Dex), and incubated for 3
days at 30uC. (H) The levels of SUMO E3 activity affect rDNA stability. Cultures of wild type or triple-mutant strain (siz1D siz2D mms21-CH) carrying
pGAL:SIZ2 (11aYT634) were processed for rDNA copy number analysis as in [11] after a shift from galactose media to dextrose. The pGAL:SIZ2 cells
break through the metaphase arrest after about 9 h in glucose (data not shown).
doi:10.1371/journal.pgen.1000215.g002
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Figure 3. mms21-CH exhibits genetic interactions with top1 and top2 mutations affecting topoisomerase sumoylation. (A) The rDNA
binding pattern of Top2pDC differs from that of Top2p. Wild type TOP2 (1033-W303) and top2DC (1035-W303) strains, both alleles HA-tagged, were
analyzed by ChIP/qPCR using the probes covering the whole rDNA repeat as described in [45]. The cells were arrested by nocodazole for 3 hr at 30uC
prior to chromatin cross-linking and extraction. (B) Genetic interactions of top1D and top2DC. Wild type strain (WT, W303-1A) was compared for
growth fitness with the following strains: HA-tagged TOP2 (1033-W303), top2DC (1035-W303), top1D TOP2 (1aYT624), and top1D top2DC (1aYT625).
Incubation was for 2 days. (C) Genetic interaction between top1D and mms21-CH. Experimental conditions were as in (B); wild type, top1D, mms21-CH
(17-YT635) and top1D mms21-CH (22aYT636) strains were compared. The small colony size was noticeable for the double mutant at both 30uC and
37uC. (D) Genetic interaction between top2DC and mms21-CH. The mms21-CH (17-YT635), wild type (W303), TOP2 (tagged copy, 1033-W303), top2DC
(1035-W303), mms21-CH TOP2 (15cYT636), and mms21-CH top2DC (16cYT637) strains were incubated for 2 days. The mms21-CH top2DC double
mutant had tight growth arrest at 37uC (colonies growing at 37uC were top2DC excision revertants). (E) Nucleolar defects in the top2DC mms21-CH
mutant. mms21-CH top2DC (16cYT637) cells expressing a nucleolar marker (Sik1p-mRFP) were shifted to 37uC and stained with DAPI. More than 95%
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Top2p sumoylation can lead to rDNA defects, as the rDNA array

stability was reduced to a similar degree in top2DC, top2-SNM, or

siz1Dsiz2D cells [11]. Thus, we proposed a hypothesis [11] that the

top1D top2DC double mutant essentially phenocopies the rDNA

destabilization phenotype of more severe top1D top2 double

mutants [32].

In the present work we made the first step in testing the more

general idea that other sumoylation targets cooperate with

sumoylated Top2p in maintaining rDNA stability. In the process

we uncovered an important pathway controlled by Mms21p in the

unchallenged cell cycle. Indeed, analysis of the mms21-CH top2DC

double mutant showed that the combined deficiency in Top2p

sumoylation and in Mms21p SUMO E3 function do lead to strong

rDNA segregation defects (Figure 3E). These defects are

exacerbated by the loss of Top1p activity or Top1p sumoylation

in corresponding triple mutants (Figure 3F, 3G. 3H). While at this

Figure 4. SMC proteins are sumoylated. (A) Predicted sumoylation sites in topoisomerases and SMC proteins. Sumoylation sites were predicted
with the SUMOplotTM algorithm (Abgent). Vertical blue lines indicate the positions of potential sumoylation sites: dark - a high score for predicted
sites (.0.9), light - lower scores (0.8–0.9). (B–D) SUMO modifications of the six SMC protein complexes are revealed by differential Smt3p tagging.
Each of the SMC proteins was tagged with 5xHA; strains also contained differentially tagged Smt3p as indicated. Cells were treated with nocodazole
prior to conjugate purification by IMAC. The arrows indicate un-conjugated forms of tagged SUMO. Sumoylated SMC proteins were detected
according to the principle in Figure 1A by anti-HA antibody, except for Smc2p (specific anti-Smc2 antibody).
doi:10.1371/journal.pgen.1000215.g004

of cells were inviable after 4 hours at 37uC, and a high proportion (up to 40%) of cells had no nucleoli (asterisks). In some cases of delayed cytokinesis,
the putative sequence of nucleolar missegregation and diminution could be traced (arrows). (F) Relative rDNA copy number in mms21-CH,
topoisomerase mutants and combination mutants. The rDNA copy number was determined by qPCR as in [11] and normalized to the wild-type
levels. At least four independent clones were analyzed for each genotype. Strains are as in (B), (C), (D), and (H). (G) top1D top2DC mms21-CH triple
mutant is inviable. Three representative tetrads incubated at 30uC for 3 days are shown, where spores were allowed to germinate after dissection of
the diploid (YT638) homozygous for mms21-CH and heterozygous for both top1D and top2DC. More than 30 tetrads were dissected. Inviable spores
were top1D top2DC mms21-CH triple mutants, as was deduced from the genotypes of sibling spore clones. (H) Cells with reduced Top1p sumoylation
require both Top2p sumoylation and Mms21 E3 activity for optimal growth. top1KR3 (EJY457), mms21-CH (17-YT635), top1KR3 mms21-CH (21cYT639),
and top1KR3 mms21-CH top2DC (22cYT640) strains were analyzed as in (B). The corresponding relative rDNA copy number is shown in (F).
doi:10.1371/journal.pgen.1000215.g003
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junction we cannot attribute the lethality of top1D top2DC mms21-

CH either exclusively to the loss of sumoylation or solely to rDNA

dysfunction, it does raise the possibility that Siz1/Siz2-sumoylated

Top1p and Top2p cooperate with Mms21-sumoylated proteins in

rDNA maintenance. Additionally considering that the mitotic

sumoylation of cohesin and condensin largely depends on

Mms21p (Figure 5), and that there is a synthetic lethality between

top1D, top2DC and smc2KR6 mutations, one can hypothesize that

activities of sumoylated pools of condensin and cohesin are either

redundant or cooperative with topoisomerases in rDNA.

More extensive experiments on the individual Mms21p

substrates are needed to elucidate their molecular roles in this

Figure 5. mms21-CH affects sumoylation and rDNA binding of cohesin and condensin. (A) Top1p sumoylation requires Siz1p/Siz2p. SUMO
conjugates were purified from Siz+ (924-1111-W303) or siz1D siz2D (DD,1aYT641) strains with tagged Top1p (TOP1:5HA) and SUMO (HF-SMT3). Top1p
was detected by the anti-HA (16B12) antibody. (B) Sumoylation of Smc1p and Smc3p is dependent on Mms21p. SUMO conjugates were purified from
wild-type MMS21 (SMC1: 924-1131-W303, SMC3: 924-1133-W303) or mms21-CH (SMC1: 1YT645, SMC3: 1YT644) cells. Smc1p and Smc3p were detected
by anti-HA antibody. (C) Smc1p lacking sumoylation exhibits altered rDNA binding. Wild type (924-1131-W303) and mms12-CH (1YT645) strains, both
carrying HA-tagged Smc1p, were arrested by nococodazole and analyzed by ChIP/qPCR using the set of probes covering the whole rDNA repeat [45].
Only the probes relevant to the known cohesin enrichment peak [42,61] and negative controls are shown. (D) Sumoylation of Smc2p is dependent on
Mms21p but not on Siz1p/Siz2p. SUMO conjugates were purified from wild type, siz1D siz2D (DD, 1bYT642) and mms21-CH (1cYT643). Smc2p was
detected by the specific anti-Smc2p antibody [41]. (E) Smc4p has reduced enrichment at the 5S rRNA gene in mms12-CH. The wild type (924-1134-
W303) and mms12-CH (1YT646) strains, both carrying HA-tagged Smc4p, were arrested by nocodazole for 3 hr at 30uC and analyzed by ChIP/qPCR
using the set of probes covering the whole rDNA repeat as described in [45]. Only the probes relevant to the known condensin enrichment peaks [45]
and negative controls are shown. (F) Mutations of potential sumoylation sites of Smc2p and Smc4p lead to synergistic growth defects. Wild type
(W303), smc2KR6 (1146-YT656), smc4KR4 (1YT657), and double-mutant smc2KR6 smc4KR4 (1YT658) strains were tested for growth at 30uC and 37uC.
doi:10.1371/journal.pgen.1000215.g005
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pathway. Top1p and Top2p are needed for both efficient

transcription and DNA replication, and the Mms21p E3 activity

is important to confront DNA replication-induced stress

[29,36,38]; therefore it is possible that due to strong rDNA

transcription and its asymmetric replication the resolution of

transcription and replication impediments in top1D top2DC cells

specifically requires Mms21p SUMO E3 activity. Although it

remains to be tested at the molecular level, this idea is consistent

with the fact that Top2p and Top1p co-localize with the Smc5p/

Smc6p complex and replication/transcription landmarks genome-

wide [36,56], particularly at rDNA (S. D., to be published

elsewhere).

The putative cooperation between distinct sumoylation targets

(being either different proteins or different E3-specific sumoylation

sites) of Siz1p, Siz2p, and Mms21p in the nucleolus may extend

beyond rDNA itself. For example, many proteins involved in

ribosome biogenesis are found to be sumoylated [30]; such

‘‘clustered’’ SUMO conjugations may be important for nucleolar

integrity as well. In addition, we previously reported that condensin

is enriched at the tRNA genes [57], which are transcribed by RNA

Pol III. The Mms21-regulation of cohesin’s and condensin’s binding

(Figure 5) to the 5S rRNA gene (also transcribed by Pol III) may

point to a novel SUMO-controlled function common to Pol III

genes, such as their recruitment to the nucleolus [58]. Further work

is needed to examine these possibilities.

Materials and Methods

Strains and plasmids used in this study are listed in Tables 1 and

2. The E. coli strains TOP10 and BL21(DE3) were used for cloning

and protein purification, respectively. Culturing of yeast cells,

microscopy, and biochemical techniques were essentially as

described before [20]. Saccharomyces cerevisiae strains were either

isogenic to W303-1A or to YPH499 (S288c) as indicated in Table 2.

In order to replace the wild type SMT3 gene with the tagged

versions HFS-SMT3 (6xHis, FLAG, S-tag) and HFG-SMT3

(6xHis, FLAG, GFP), the targeting constructs were generated

based on the HF-SMT3::LEU2 (6xHis, FLAG-tagged SUMO)

integrative plasmid pAS924 [20]. The PCR-generated fragments

of S-tag and GFP were inserted into the SpeI site between the

SMT3 promoter and ORF in pAS924. The S-tag sequence had an

addition of the Protein A gene fragment (as a stuffer) from the

modified TAP-tagging vector [59]. To generate the SMT3

replacing fragments, the resulting plasmids pAS1008 (HFS-

SMT3) and pYT1014 (HFG-SMT3) were digested with NcoI/

BglII and SacI/BglII, respectively.

To purify His-tagged SUMO conjugates from yeast cells

carrying pAS924, pAS1008, or pYT1014 SMT3 gene

replacements, 50-ml cultures were harvested, cells were

disrupted by glass beads (15 min) in 500 ml lysis buffer

(0.1 M Tris pH 8.0, 6 M guanidine chloride, 0.5 N NaCl,

10 mM N-ethylmaleimide, NEM), and extracts were clarified

by centrifugation. The clarified protein extracts were incubat-

ed with nickel-charged Superflow NTA resin (QIAGEN) for

4 hrs. Incubated resin was washed once with the lysis buffer

and then three times with the washing buffer (25 mM Tris

pH 8.0, 0.3 M NaCl, 0.1% NP-40, 10 mM NEM). Bound

protein was eluted by boiling in 16 Laemmli sample buffer.

Conjugates and free SUMO were detected by anti-FLAG M2

antibodies (Sigma) after separation by polyacrylamide gel

electrophoresis (PAGE).

5xHA (hemagglutinin) tagging of Top1p, Smc1p, Smc2p,

Smc3p, Smc4p, Smc5p, and Smc6p was done by cloning the

PCR-generated fragments of the corresponding ORFs into the

integrative vector pTS901IU [60]. Plasmids can be linearized for

integration/replacement using a unique restriction site in the

inserted fragment. Details of construction are available upon

request. ChIP/qPCR analysis was as described [45].

Fluorescent microscopic imaging was performed on the Zeiss

AxioVert microscope equipped with epifluorescence. Z-stacks of

20 images were taken at 0.2 mM intervals.

Supporting Information

Figure S1 Genetic interaction between top1D,top2-SNM and

mms21-CH mutations. (Left panel) A sample of tetrad analysis for

the diploid strain (YT659) homozygous for mms21-CH and

heterozygous for top2-SNM and top1D Arrows point to triple

mutant clones. (Right panel) Surviving mms21-CH top2-SNM top1D
triple mutants have synthetic growth defect. Two independent

viable YT659 spores are shown for the triple mutant and for the

double mms21-CH top2-SNM mutant.

Found at: doi:10.1371/journal.pgen.1000215.s001 (0.47 MB PDF)

Figure S2 Non-SMC subunits of condensin are sumoylated in

mitosis. SUMO conjugates were purified by IMAC from

YCS5:5HA (1138-W303, 924-1138-W303) and YCS4:5HA

(1137-W303, 924-1137-W303). Total SUMO conjugates were

detected by anti-FLAG (M2) antibody. The arrows indicate the

free form of tagged SUMO.

Found at: doi:10.1371/journal.pgen.1000215.s002 (0.20 MB PDF)

Figure S3 Sumoylation levels of Smc2p and Smc4 in mitosis are

decreased in SUMO acceptor lysine mutants. SUMO conjugates

were purified by IMAC from smc2KR6 (1146-YT656) and smc4KR4

(1YT657) and corresponding wild type control strains. Total

SUMO conjugates were detected by anti-Smt3p antibody

(Abcam). The arrows indicate the free form of tagged SUMO.

Found at: doi:10.1371/journal.pgen.1000215.s003 (0.37 MB PDF)

Table 1. Plasmids.

Name Backbone Insert (targeting site) Makers Source

pAS924 pRS316 HF-SMT3 (Nco1+BglII) LEU2 URA3 [20]

pAS1008 pAS924 HFStag-SMT3 (NcoI+BglII) LEU2 URA3 This study

pYT1014 pAS924 HFGFP-SMT3 (SacI+BglII) LEU2 URA3 [11]

pYT1033 pTS901IU TOP2:HA (SpeI) URA3 [20]

pYT1035 pTS901IU top2DC:HA (AvrII) URA3 [20]

pYT1111 pTS901IT TOP1:HA (SalI) TRP1 This study

pYT1131 pTS901IU SMC1:HA (BglII) URA3 This study

pYT1133 pTS901IU SMC3:HA (BglII) URA3 This study

pYT1134 pTS901IU SMC4:HA (BglII) URA3 This study

pYT1135 pTS901IU SMC5:HA (BssHII) URA3 This study

pYT1136 pTS901IU SMC6:HA (HpaI) URA3 This study

pYT1137 pTS901IU YCS4:HA (Bgl II) URA3 This study

pYT1138 pTS901IU YCS5:HA (SpeI) URA3 This study

pYT1146 pTS904CU smc2KR6 URA3 This study

pYT1145 pTS901IU smc4KR4 URA3 This study

pT-115 pTS911CU pGAL:SIZ1 URA3 [62]

pT-203 pTS911CU pGAL:SIZ2 URA3 This study

pT-23 pTS910CU SIZ1:GFP URA3 [63]

pT-81 pTS910CU siz1D440:GFP URA3 [9]

doi:10.1371/journal.pgen.1000215.t001
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Table 2. Yeast strains.

Strains Relevant genotype Source

Isogenic to W303-1A MATa ade2-1ura3-1trp1-1leu2-3,112 his3-11,15 can1-100 R. Rothstein

HF-W303 MATa HF-SMT3::LEU2 This study

HFS-W303 MATa HFStag:SMT3::LEU2 This study

HFG-W303 MATa HFGFP:SMT3::LEU2 This study

1aYT629 MATa NOP1:mRFP::URA3 HFGFP:SMT3::LEU2 slx8D::KanMX This study

1cYT630 MATa URA3 HFGFP:SMT3::LEU2 ubc9-1 (congenic) This study

1cYT628 MATa siz1::c.g.HIS3 siz2::LEU2 mms21-CH::HIS3 pT-23 / pTS910CU-SIZ1 This study

1YT632 MATa siz1::c.g.HIS3 siz2::LEU2 mms21-CH::HIS3 pT-81 / pTS910CU-siz1D440 This study

NOP1-1cYT628 MATa siz1::c.g.HIS3 siz2::LEU2 mms21-CH::HIS3 NOP1:mRFP::URA3 / pTS910CU-SIZ1 This study

NOP1-1YT632 MATa siz1::c.g.HIS3 siz2::LEU2 mms21-CH::HIS3 NOP1:mRFP::URA3 / pTS910CU-siz1D440 This study

10aYT633 MATa siz1::c.g.HIS3 siz2::LEU2 mms21-CH::HIS3 / pTS911CU-SIZ1 This study

11aYT634 MATa siz1::c.g.HIS3 siz2::LEU2 mms21-CH::HIS3 / pTS911CU-SIZ2 This study

1033-W303 MATa TOP2:HA::URA3 [11]

1035-W303 MATa top2DC:HA::URA3 [11]

15cYT636 MATa TOP2:HA::URA3 mms21-CH::HIS3 This study

16cYT637 MATa top2DC:HA::URA3 mms21-CH::HIS3 This study

17-YT635 MATa mms21-CH::HIS3 X. Zhao

18-22aYT636 MATa mms21-CH::HIS3 top1D0::kanMX (congenic) This study

YT638 MATa/a TOP1/top1D0::kanMX TOP2/top2DC:HA::URA3 mms21-CH::HIS3/mms21-CH::HIS3 This study

EJY457 MATa TOP1-K65,91,92R- HA-His8::HIS3 [ciru] [39]

21cYT639 MATa TOP1-K65,91,92R- HA-His8::HIS3 mms21-CH::HIS3 This study

22cYT640 MATa TOP1-K65,91,92R- HA-His8::HIS3 mms21-CH::HIS3 top2DC:HA::URA3 This study

1131-W303 MAT@ SMC1:HA::URA3 This study

924-1131-W303 MATa HF-SMT3::LEU2 SMC1:HA::URA3 This study

1008-1131-W303 MATa HFStag:SMT3::LEU2::LEU2 SMC1:HA::URA3 This study

1133-W303 MATa SMC3:HA::URA3 This study

924-1133-W303 MATa HF-SMT3::LEU2 SMC3:HA::URA3 This study

1008-1133-W303 MATa HFStag:SMT3::LEU2::LEU2 SMC3:HA::URA3 This study

1134-W303 MATa SMC4:HA::URA3 This study

924-1134-W303 MATa HF-SMT3::LEU2 SMC4:HA::URA3 This study

1008-1134-W303 MATa HFStag:SMT3::LEU2::LEU2 SMC4:HA::URA3 This study

1135-W303 MAT@ SMC5:HA::URA3 This study

924-1135-W303 MATa HF-SMT3::LEU2 SMC5:HA::URA3 This study

1008-1135-W303 MATa HFStag:SMT3::LEU2::LEU2 SMC5:HA::URA3 This study

1136-W303 MATa SMC6:HA::URA3 This study

924-1136-W303 MATa HF-SMT3::LEU2 SMC6:HA::URA3 This study

1008-1136-W303 MATa HFStag:SMT3::LEU2::LEU2 SMC6:HA::URA3 This study

640-YW0100s MATa SMC4:GFP::URA3 SIK1:mRFP::kanMX ubc9-1 This study

1111-W303 MATa TOP1:HA::TRP1 This study

924-1111-W303 MATa HF-SMT3::LEU2 TOP1:HA::TRP1 This study

1aYT641 MATa HF-SMT3::LEU2 TOP1:HA::TRP1 siz1::c.g.HIS3 siz2::LEU2 This study

1bYT642 MATa HF-SMT3::LEU2 siz1::c.g.HIS3 siz2::LEU2 This study

1cYT643 MATa HF-SMT3::LEU2 mms21-CH::HIS3 This study

1YT644 MATa HF-SMT3::LEU2 SMC3:HA::URA3 mms21-CH::HIS3 This study

1YT645 MATa HF-SMT3::LEU2 SMC1:HA::URA3 mms21-CH::HIS3 This study

1YT646 MATa HF-SMT3::LEU2 SMC4:HA::URA3 mms21-CH::HIS3 This study

Isogenic to BY4743 MATa ade2 his3 leu2 lys2 trp1 ura3 ATCC

1014-YPH499b MATa HFGFP:SMT3::LEU2 This study

1dYT631 MATa HFGFP:SMT3::LEU2 slx5D::KanMX This study

1035-BY4729 MATa top2DC:HA::URA3 [11]
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