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Abstract

Systemic lupus erythematosus (SLE) is a genetically complex disease with heterogeneous clinical manifestations. A
polymorphism in the STAT4 gene has recently been established as a risk factor for SLE, but the relationship with specific SLE
subphenotypes has not been studied. We studied 137 SNPs in the STAT4 region genotyped in 4 independent SLE case series
(total n = 1398) and 2560 healthy controls, along with clinical data for the cases. Using conditional testing, we confirmed the
most significant STAT4 haplotype for SLE risk. We then studied a SNP marking this haplotype for association with specific
SLE subphenotypes, including autoantibody production, nephritis, arthritis, mucocutaneous manifestations, and age at
diagnosis. To prevent possible type-I errors from population stratification, we reanalyzed the data using a subset of subjects
determined to be most homogeneous based on principal components analysis of genome-wide data. We confirmed that
four SNPs in very high LD (r2 = 0.94 to 0.99) were most strongly associated with SLE, and there was no compelling evidence
for additional SLE risk loci in the STAT4 region. SNP rs7574865 marking this haplotype had a minor allele frequency
(MAF) = 31.1% in SLE cases compared with 22.5% in controls (OR = 1.56, p = 10216). This SNP was more strongly associated
with SLE characterized by double-stranded DNA autoantibodies (MAF = 35.1%, OR = 1.86, p,10219), nephritis (MAF = 34.3%,
OR = 1.80, p,10211), and age at diagnosis,30 years (MAF = 33.8%, OR = 1.77, p,10213). An association with severe
nephritis was even more striking (MAF = 39.2%, OR = 2.35, p,1024 in the homogeneous subset of subjects). In contrast,
STAT4 was less strongly associated with oral ulcers, a manifestation associated with milder disease. We conclude that this
common polymorphism of STAT4 contributes to the phenotypic heterogeneity of SLE, predisposing specifically to more
severe disease.
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Introduction

Systemic lupus erythematosus (SLE) (OMIM 152700) is a

disabling and chronic autoimmune disease with remarkable

heterogeneity. The eleven classification criteria for SLE estab-

lished by the American College of Rheumatology [1] – any four of

which can confirm classification as SLE – include arthritis, renal

disease, mucocutaneous manifestations, photosensitivity, neuro-

logical disorders, production of a variety of autoantibodies, and

hematological disorders. Many of these characteristics are

correlated, and may indicate different underlying disease mech-

anisms. SLE also has an established but complex genetic

component [2]. Understanding the relationships between SLE

risk genes and subtypes of the disease may help to elucidate disease

mechanisms and pathways.

Recently, a polymorphism of the STAT4 gene on chromosome

2q has been strongly implicated in the risk for both SLE and

rheumatoid arthritis [3]. We investigated whether variation in
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STAT4 contributes to the heterogeneity of SLE. Using 4

independent SLE case series, a large set of healthy controls, and

two independent sets of genotypes for the STAT4 region on these

subjects, we have found strong evidence that this is the case. In

particular, we have found that the STAT4 susceptibility polymor-

phism is associated with more severe disease manifestations,

including nephritis and early disease onset. It is also strongly

associated with SLE characterized by double-stranded DNA

autoantibody production.

Methods

Subjects
SLE cases were obtained from four sources. Patients from the

University of California, San Francisco (UCSF) were participants

in the UCSF Lupus Genetics Project and were recruited from

UCSF Arthritis Clinics and private rheumatology practices in

northern California, as well as by nationwide outreach [4]. SLE

patients contributed by the Autoimmune Biomarkers Collabora-

tive Network (ABCoN) [5] were recruited from the Hopkins Lupus

cohort [6]. A third case series was part of the Multiple

Autoimmune Disease Genetics Consortium (MADGC) collection

[7]. Finally, a fourth set of cases recruited from the Pittsburgh

Lupus Registry were obtained from the University of Pittsburgh

[8]. Only subjects of self-described European descent were

retained. Unrelated controls of European ancestry were from the

New York Health Project (NYHP) [9] (http://www.amdec.org/

amdec_initiatives/nycp.html). The study populations are a super-

set of those recently used to establish a link between SLE and

STAT4 [3], with the addition of the University of Pittsburgh cases

and more than doubling the number of NYHP controls (see

Table 1). The Institutional Review Boards of all investigative

institutions approved these studies, and all cases and controls gave

written informed consent.

Clinical data for the cases was obtained from medical records

which were reviewed and tabulated at each institution. We chose

to examine the ACR criteria [1] (http://www.rheumatology.org/

publications/classification/SLE/sle.asp) and age at diagnosis,

categorizing the age at diagnosis for association analyses. The

mean and median for age at diagnosis were 34 and 32,

respectively; we chose a cutoff for early diagnosis of under 30

years of age versus greater than or equal to 30 years of age. We

also chose to examine production of autoantibodies to double-

stranded DNA (anti-dsDNA), as this is typically associated with

severe disease and this was available in the clinical data from all

sites. Finally, we used more detailed nephritis information

available for the UCSF and ABCoN cohorts, namely a

characterization of those patients with severe nephritis as defined

by end-stage renal disease or histopathologic evidence of severe,

progressive renal disease on renal biopsy.

Genotyping and SNP Selection
Genotype data were obtained from two parent studies (see

Table 1). The four SLE case series and 1762 NYHP controls were

genotyped using the Illumina HumanHap550 array as part of a

genome-wide association study of SLE [10]. In addition, three of

the case series (UCSF, ABCoN, and MADGC) and 1243 NYHP

controls were genotyped for 67 SNPS in the STAT1/STAT4

region of chromosome 2q as part of a case-control study of STAT4

and two systemic autoimmune diseases, rheumatoid arthritis and

SLE [3]. Selection and genotyping of these 67 fine-mapping SNPs

was done by the National Institute for Arthritis and Musculoskel-

etal and Skin Diseases (NIAMS), using Sequenom MassARRAY

Technology as previously described [3]. From the Illumina 550K

panel, 91 contiguous SNPs from the STAT1/STAT4 region,

extended with flanking regions 200kb on either side, were selected;

of these, 45 were contained in the same region as the 67 SNPs,

with 21 of those being identical. Coverage of these SNPs was

analyzed using Tagger [11] in Haploview [12] with an r2 threshold

Author Summary

Systemic lupus erythematosus is a chronic disabling
autoimmune disease, most commonly striking women in
their thirties or forties. It can cause a wide variety of clinical
manifestations, including kidney disease, arthritis, and skin
disorders. Prognosis varies greatly depending on these
clinical features, with kidney disease and related charac-
teristics leading to greater morbidity and mortality. It is
also complex genetically; while lupus runs in families,
genes increase one’s risk for lupus but do not fully
determine the outcome. It is thought that the interactions
of multiple genes and/or interactions between genes and
environmental factors may cause lupus, but the causes
and disease pathways of this very heterogeneous disease
are not well understood. By examining relationships
between subtypes of lupus and specific genes, we hope
to better understand how lupus is triggered and by what
biological pathways it progresses. We show in this work
that the STAT4 gene, very recently identified as a lupus risk
gene, predisposes specifically to severe manifestations of
lupus, including kidney disease.

Table 1. Summary of available genotype and phenotype data* by cohort and genotyping platform.

Illumina 550K
genotyped

Sequenom
genotyped

Genotyped on both
platforms

Genotyped on either
platform

Phenotype data
available

UCSF** cases 611 583 580 614 614

ABCoN** cases 330 347 330 347 345

MADGC** cases 116 105 103 118 118

U. Pittsburgh cases 319 0 0 319 319

Total cases 1376 1035 1013 1398 1396

NYHP** controls 1762 1243 445 2560 N/A

*After removal of duplicate samples and first-degree relatives, but prior to other quality control filters.
**UCSF = University of California, San Francisco; ABCoN = Autoimmune Biomarkers Collaborative Network; MADGC = Multiple Autoimmune Disease Genetics Consortium;
NYHP = New York Health Project.
doi:10.1371/journal.pgen.1000084.t001
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of 0.8 and pairwise tagging, based on the HapMap Phase II data

from CEU (CEPH residents of Utah with ancestry from northern

and western Europe) with minor allele frequency .0.05.

Duplicate genotyping enabled an analysis of SNP concordance

between the two genotyping methods, and inclusion of genotypes

that were called by either method. Conflicting genotype calls were

dropped from analyses when using combined data.

Statistical Analysis
Subjects were first removed for whom there was evidence of

duplication or relatedness in the Illumina 550K data, using IBS

estimation in PLINK [13] (http://pngu.mgh.harvard.edu/

purcell/plink). For the choice of which sample to remove,

preference was first based on availability of phenotype data, and

then on overall genotyping call rate. SNPs were removed from

analysis that had a minor allele frequency less than 5%, greater

than 10% missing genotypes, or Hardy-Weinberg equilibrium

p,0.001 in controls.

In order to choose loci to examine for phenotype analyses, we

performed allelic and conditional tests. These analyses were

performed separately for the 91 SNPs from the Illumina 550K

panel and the 67 Sequenom SNPs, since they contained

overlapping but different sets of SNPs (Table S1) and subjects

(Table 1), and large amounts of missing data could bias haplotype

estimation. We also analyzed the full set of 137 SNPs together

using only the subset of subjects who were genotyped on both

platforms. For each analysis, subjects were removed that had less

than 90% genotyping. We first conducted allelic tests of cases and

controls using PLINK [13] and selected those that had p,0.005;

at this first screening stage we used a liberal p-value, considering

that there are well over 10 independent haplotype blocks in the

complete region. To eliminate redundant SNPs having effects only

due to linkage disequilibrium, we then performed conditional

analysis using WHAP [14] (http://pngu.mgh.harvard.edu/

purcell/whap).

SNP rs7574865 was chosen for phenotype analysis based on the

allelic and conditional analyses (see Results). SNP rs7574865 was

genotyped on both platforms with a very high rate of concordance

(see Results), so genotypes from both platforms were combined for

the phenotype analysis of rs7574865; the single subject for whom

the calls conflicted was dropped. We first performed case-only

analyses (e.g. presence of renal disorder versus no renal disorder)

to establish which subphenotypes are associated with rs7574865

variation. We then performed case-control analyses (e.g. SLE with

renal disorder versus controls) to examine the risk that is conferred

by rs7574865 on subtypes of SLE characterized by each of those

subphenotypes. In both sets of analyses, first bivariate odds ratios

(ORs) and 95% confidence limits were determined for each

subphenotype. To correct for variability among strata when

combining data from different cohorts, we used Mantel-Haenszel

tests and combined ORs. In order to investigate the possibility of

associations with unknown but common underlying disease

mechanisms, principal components analysis (PCA) was performed

using all subphenotypes except severe nephritis (a subclass of

nephritis, and available only for the UCSF and ABCoN case

series). Values for the first two principal components (PCs) were

evaluated as above as additional subphenotypes, categorized by

positive or negative.

To address the concern that case-control studies may give

spurious associations due to undetected population admixture or

population substructure differences between cases and the

controls, we utilized ancestry data for the Illumina 550K

genotyped subjects. Ancestry was derived from ancestry-informa-

tive markers (AIMs) contained in the Illumina 550K panel. First a

set of 235 AIMs was used to estimate percent European ancestry,

using STRUCTURE [15]. For those subjects with .90%

European ancestry, another set of 1409 EUROSTRUCTURE

[16] AIMs was used to estimate percent Northern European

versus Southern ancestry. Finally, a subset of 1253 subjects (751

cases and 502 controls) was identified that was homogeneous

based on the first four PCs determined by PCA using the 550K

panel and EIGENSTRAT[17] software. Minimum covariance

determinant (MCD) estimators of PC location and scatter were

calculated using R [18]; outliers were then determined using

robust Mahalanobis distance. The procedure was applied in two

steps, first using both cases and controls (significance level

a= 0.05), and then using the case-only robust estimators of

location and scatter (a= 0.10), which led to a more homogeneous

case-control sample set. The lgc was decreased from 1.256 to

1.045 for the homogeneous set when assessed using the 550K

panel (see Figure S1).

We analyzed the associations between $90% European versus

,90% European and $90% Northern European versus ,90%

Northern European ancestry and rs7574865 in controls, using an

allele-based exact test. We also reanalyzed all tests using the

homogeneous subset of subjects. Finally, in multivariate analysis

we adjusted for ancestry, sex, and disease duration. For this

multivariate analysis, ancestry was a 3-category variable as follows:

1) ,90% European, 2) $90% European and $90% Northern

European, and 3) $90% European and ,90% Northern

European. We chose this coding due to the highly skewed

distribution of continuous ancestry, and the collinearity between

the European and Northern European variables.

Since we are examining associations for 13 phenotypes, the issue

of multiple testing must be considered. However, since these are

not independent phenotypes, a simple Bonferroni correction of

a= 0.05/13 = 0.004 is clearly overly conservative, while an

unadjusted a= 0.05 is clearly liberal. For this reason we have

chosen to present unadjusted p-values so that these may be directly

interpreted by the reader.

Stata 9.2 (http://www.stata.com/) was used for correlations,

odds ratios and p-values, Mantel-Haenszel tests and combined

ORs, phenotype principal components analysis, and multivariate

logistic regressions.

Results

Subjects and Phenotypes
The numbers of independent cases and controls in each cohort

and a summary of available genotype and phenotype data are

listed in Table 1. For overlapping SNPs, including rs7574865,

there were 1396 genotyped cases with phenotype data, and 2560

genotyped healthy controls. A summary of subphenotypes by

cohort is presented in Table 2. There were significant differences

among the cohorts for all phenotypes except neurologic disorder

and age at diagnosis less than 30 years old.

Some of these phenotypes are highly correlated; in particular

anti-dsDNA is a subcriterion for the ACR immunologic criterion,

and is associated with renal disease. Pairwise correlation

coefficients, for those pairs having r.0.1, are shown in Table 3.

All p-values for these pairs were #0.0001. In principal

components (PC) analysis of the phenotype data, the top 3

components of the first PC are anti-dsDNA, the immunologic

criterion, and renal disease. The top 3 components of the second

PC are malar rash, photosensitivity, and discoid rash. Variables

corresponding to the first and second PCs were included in

phenotype analyses (see Methods).

Specificity of STAT4 for Severe SLE Manifestations
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SNP Coverage, Concordance, and Merging
Of the 67 Sequenom SNPs (shown with the study genotypes in

Figure 1A), 62 passed quality control filters, including MAF

$5%. These 62 SNPs had 86% coverage of the common

variation (MAF $5%) in the STAT1/STAT4 region. In the

Illumina 550K panel (shown with the study genotypes in

Figure 1B), 77 out of 91 SNPs passed quality control and had

83% coverage of the extended region obtained by adding flanking

markers 200kb on either side of the Sequenom STAT1-STAT4

region. A complete list of SNPs on both platforms passing our

quality control criteria, along with their MAF and percentage

genotyped, is provided in Table S1.

We examined the concordance between calls for the 21

overlapping SNPs and 1458 subjects who were genotyped using

both methods. Results for this are shown in Supplementary Table

S2. The average and minimum agreement were 99.90% and

99.65%, respectively. In particular for SNP rs7574865, the

agreement was 99.93%. Given this high rate of concordance, we

chose to merge genotype data for rs7574865 for the phenotype

analyses (see below).

Table 2. SLE phenotype status by cohort.

Phenotypes* UCSF** ABCON** MADGC** U. PITTSBURGH p-value***

Anti-nuclear autoantibodies 572/598 (95.7%) 328/343 (95.6%) 109/118 (92.4%) 314/319 (98.4%) 0.018

Arthritis 460/614 (74.9%) 251/345 (72.8%) 101/118 (85.6%) 289/319 (90.6%) 2.9E-10

Immunologic disorder 359/614 (58.5%) 272/345 (78.8%) 83/118 (70.3%) 236/319 (74.0%) 7.3E-11

Photosensitivity 484/614 (78.8%) 224/345 (64.9%) 94/118 (79.7%) 187/317 (59.0%) 5.5E-11

Hematologic disorder 387/614 (63.0%) 238/345 (69.0%) 65/118 (55.1%) 164/317 (51.7%) 3.2E-05

Anti-dsDNA autoantibodies{ 284/587 (48.4%) 184/344 (53.5%) 59/118 (50.0%) 136/319 (42.6%) 0.047

Malar rash 282/614 (45.9%) 197/345 (57.1%) 67/118 (56.8%) 133/283 (47.0%) 0.0026

Oral ulcers 189/614 (30.8%) 207/345 (60.0%) 47/118 (39.8%) 173/318 (54.4%) 1.6E-20

Serositis 185/614 (30.1%) 168/344 (48.8%) 49/118 (41.5%) 140/316 (44.3%) 2.0E-08

Diagnosis,30 years 233/605 (38.5%) 137/344 (39.8%) 36/90 (40.0%) 129/319 (40.4%) 0.94

Renal disorder 143/614 (23.3%) 116/345 (33.6%) 37/118 (31.4%) 96/318 (30.2%) 0.0033

Severe nephritis{ 71/614 (11.6%) 38/345 (11.0%) NA NA 9.6E-05

Discoid rash 39/614 (6.4%) 56/345 (16.2%) 18/118 (15.3%) 15/283 (5.3%) 1.6E-07

Neurologic disorder 60/614 (9.8%) 30/345 (8.7%) 10/118 (8.5%) 29/317 (9.2%) 0.95

*See http://www.rheumatology.org/publications/classification/SLE/sle.asp for phenotype definitions.
**See Table 1 cohort definitions.
***Global exact test for association between phenotype status and cohort membership.
{Historical presence of positive anti-dsDNA test.
{Presence of end-stage renal disease or histopathologic evidence of severe, progressive renal disease on renal biopsy.
doi:10.1371/journal.pgen.1000084.t002

Table 3. Correlation coefficient rho for phenotype pairs with rho.0.1 and first two principal components.

Phenotypes* 1st PC** 2nd PC**
Renal
disorder

Immunologic
disorder

Anti-dsDNA
autoantibodies

Hematologic
disorder Serositis

Malar
Rash

Photo-
sensitivity

Renal disorder 0.59 0.21

Immunologic disorder 0.76 20.24 0.22

Anti-dsDNA autoantibodies 0.80 20.19 0.28 0.65

Hematologic disorder 0.36 - 0.15 0.10 0.14

Serositis 0.20 0.34 - - - -

Malar rash 0.14 0.66 0.10 - - - -

Photosensitivity 20.22 0.48 - 20.15 20.11 - - 0.19

Oral ulcers 20.10 0.34 - - - - 0.11 0.11 -

Age at diagnosis 20.50 20.39 20.28 20.17 20.20 20.13 20.11 20.19 -

Discoid rash - 0.42 - - - - - - 0.12

Anti-nuclear autoantibodies 0.17 20.12 - - 0.13 - - - -

Neurologic disorder 0.20 0.21 - - - - - - -

Significance is p,0.0001 for all pairs shown. Blank cells are given in the lower triangular matrix.
*See http://www.rheumatology.org/publications/classification/SLE/sle.asp for phenotype definitions.
**PC = principal component.
doi:10.1371/journal.pgen.1000084.t003
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Allele Tests and Conditional Analysis
Table 4 contains allelic p-values before and after conditioning

on the most significant SNP, for those with initial allelic p-values of

0.005 or less. We did four separate conditional analyses: (A)

subjects and SNPs genotyped on the Illumina 550K; (B) the

genetically homogeneous subset of subjects (see Methods) typed on

the Illumina 550K; (C) subjects and SNPs genotyped on the

Sequenom platform; and (D) all SNPs for those subjects that were

genotyped on both platforms. In the Illumina 550K panel,

rs7574865 (circled in Figure 1B) was the most significant SNP in

both the full set of subjects and the homogeneous subset (see

Methods). In the Sequenom 67-SNP set and in the combined set,

the 4 top SNPs were in high LD (D’ = 0.97 to 0.99, r2 = 0.94 to

0.99) and made up a 4-marker haplotype for which the

components could not be independently analyzed (circled in

Figure 1A). Of the estimated individual haplotypes of these 4

markers, over 99% were either CGTC or TTCG, so that any one

SNP fully determined the other 3 in the vast majority of subjects.

The conditional p-values of Table 4 test the significance of each

SNP conditional on the values of the top SNP(s) which are given in

bold. While there were some results of borderline significance, they

were neither strong nor consistent across the different analyses.

The only compelling evidence after conditioning was for the 4-

locus haplotype above. Since any of the 4 SNPs serves as a marker

of this haplotype and rs7574865 is contained in both genotyping

sets, we chose to carry out phenotype analysis using this marker for

maximum power.

Ancestry Variability of rs7574865
We examined the minor allele frequencies for rs7574865 (Table

S3) in controls, for subsets as determined by STRUCTURE

analyses (see Methods). There were 130 controls with ,90%

European ancestry, for whom the minor allele frequency was

26.9%, versus 22.4% in the complementary 1601 controls with

$90% European ancestry (p = 0.11). (The minor allele frequencies

of the HapMap populations are 33%, 28%, 16%, and 21%, for the

Figure 1. Haploview linkage disequilibrium map of D’ for 67 Sequenom STAT1/STAT4 SNPs in 2278 study subjects. (A) Green markers
are in STAT1 and STAT4 genes as indicated. Four SNPs comprising the top SLE risk haplotype, from allelic and conditional analyses (Table 4 (C)), are
circled. (B) Haploview linkage disequilibrium map of D’ for 91 Illumina 550K STAT1/STAT4 extended region SNPs in 3138 study subjects. Green
markers are in STAT1 and STAT4 genes as indicated. The top SLE risk SNP rs7574865 from allelic and conditional analyses (Table 4 (A)) is circled.
doi:10.1371/journal.pgen.1000084.g001

Specificity of STAT4 for Severe SLE Manifestations
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HCB, JPT, YRI, and CEU populations, respectively.) The minor

allele frequencies were very similar, 22.1% and 22.6% respective-

ly, for subjects of either ,90% or $90% Northern European

ancestry; thus we did not observe a Northern-Southern European

gradient for rs7574865. Analyses were repeated with the

homogeneous subset of cases and controls (n = 1253) as described

in Methods.

Phenotype Case-Only Analysis
We first examined each subphenotype for association with

rs7574865 within the SLE cases. In unadjusted results (Table S4),

only one phenotype showed borderline evidence for heterogeneity

of association among the four SLE case series (p = 0.04 for

immunologic disorder); thus we retained combined Mantel-

Haenszel odds ratios and p-values. The most significant associa-

tions were with anti-dsDNA autoantibodies and the first principal

component, OR = 1.44 (95% CI 1.23–1.70), p = 1025, and

OR = 1.43 (95% CI 1.21–1.70), p = 361025, respectively. Severe

nephritis, available on a smaller subset of cases, had the highest

OR = 1.50 (95% CI 1.11–2.01), p = 0.0075. There was also

support for associations with immunologic criteria (OR = 1.24,

p = 0.017), renal disorder (OR = 1.23, p = 0.024), age at diagnosis

under 30 (OR = 1.22, p = 0.018), and an inverse association with

oral ulcers (OR = 0.80, p = 0.0087).

Table 5 contains case-only analyses, for phenotypes having

unadjusted p,0.05, repeated first on the homogeneous subset of

Table 4. Allelic and conditional tests for all SNPs with p,0.005.

SNP
Single-marker
Allelic P-value

Single-marker
Allelic OR

P Conditioned on
top SNP(s) in bold

A) Illumina 550K n = 3132 rs3821236 3.1E-08 1.40 0.73

rs16833215 0.00042 1.21 0.45

rs1517352 0.00028 1.21 0.025

rs10168266 1.4E-08 1.41 0.81

rs7601754 0.00015 0.77 0.062

rs10931481 1.9E-07 1.32 0.050

rs7574865 8.2E-14 1.54 NA

rs6752770 0.0029 1.18 0.60

rs2356350 0.0052 1.16 0.55

B) Illumina 550K, Homogeneous subset n = 1252 rs3821236 0.0011 1.40 0.71

rs10168266 0.0034 1.34 0.38

rs7601754 0.0016 0.71 0.039

rs10931481 0.0021 1.31 0.058

rs7574865 2.9E-06 1.57 NA

C) Sequenom STAT4 fine map n = 2083 rs1547550 0.0032 1.21 0.10

rs16833177 0.0032 1.25 0.88

rs7601754 0.00054 0.75 0.075

rs11889341 1.3E-08 1.49 NA

rs12998748 0.0021 0.71 0.084

rs6434435 0.0034 0.78 0.22

rs10931481 9.2E-06 1.34 0.56

rs13011805 0.0024 0.72 0.092

rs7574865 1.1E-08 1.50 NA

rs8179673 2.2E-08 1.48 NA

rs10181656 1.1E-08 1.50 NA

rs16833260 4.7E-05 1.30 0.29

rs6752770 0.0015 1.24 0.37

D) Illumina 550K and Sequenom combined
for subjects having both typing n = 1351

rs10168266 0.0032 1.36 0.50

rs11889341 0.00019 1.44 NA

rs10931481 0.0010 1.34 0.75

rs7574865 0.00021 1.44 NA

rs8179673 6.9E-05 1.47 NA

rs10181656 5.1E-05 1.48 NA

rs16833260 0.0033 1.30 0.51

Allelic odds ratios (ORs) and p-values from PLINK, p-values conditional on bold SNPs from Whap [14]. Subjects with ,90% genotyping are excluded for each analysis. For
(C) and (D), the four top SNPs in bold are indistinguishable, i.e. any one fully determines the others in .99% of haplotypes.
doi:10.1371/journal.pgen.1000084.t004
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subjects (see Methods), and also using multivariate adjustment for

ancestry, sex, and disease duration. There is consistency in odds

ratios throughout and these analyses continue to support the

aforementioned phenotypic associations with rs7574865. Some

associations are even stronger in the homogeneous subset analysis,

for example severe nephritis (OR = 1.79 [95% CI = 1.20–2.67],

p = 0.0039), renal disease (OR = 1.48 [95% CI = 1.16–1.88],

p = 0.0016), and oral ulcers (OR = 0.62 [95% CI = 0.49–0.79],

p = 0.0001).

Subphenotype-Control Analysis
Table 6 shows our primary results, the risk of SLE characterized

by each subphenotype versus healthy controls. This illustrates a

spectrum of minor allele frequencies for certain subphenotypes of

SLE, with the most extreme being severe nephritis, MAF = 38.1%

(OR = 2.12 [95% CI = 1.58–2.83], p = 461027), anti-dsDNA auto-

antibodies, MAF = 35.1% (OR = 1.86 [95% CI = 1.63–2.13],

p = 6610220), and the first principal component, MAF = 35.0%

(OR = 1.85 [95% CI = 1.62–2.12], p = 10219). In contrast, controls

had a MAF of only 22.5% and cases as a whole had a MAF of

31.1%. SNP rs7574865 is also associated with higher risk for SLE

with renal disorder (OR = 1.80, MAF = 34.3%), diagnosis under 30

years old (OR = 1.77, MAF = 33.8%), and immunologic disorder

(OR = 1.67, MAF = 32.6%). There is also strong evidence that the

STAT4 risk allele is less frequent in SLE with oral ulcers,

MAF = 28.8%, which is generally associated with milder disease.

Table 5. rs7574865 association with phenotype status of cases in homogeneous subset (n = 751) and multivariate analyses.

Phenotypes1 Homogeneous OR*
Homogeneous
p-value* Multivariate OR** Multivariate p-value**

Severe nephritis{ 1.79 (1.20–2.67) 0.0039 1.43 (1.05–1.94) 0.022

Renal disorder 1.48 (1.16–1.88) 0.0016 1.18 (0.98–1.42) 0.074

First PC{.0 1.42 (1.12–1.79) 0.0033 1.37 (1.15–1.63) 0.00047

Anti-dsDNA autoantibodies 1.40 (1.12–1.76) 0.0037 1.41 (1.19–1.67) 7.20E-05

Diagnosis ,30 years 1.35 (1.07–1.70) 0.012 1.22 (1.03–1.44) 0.020

Immunologic disorder 1.19 (0.94–1.52) 0.15 1.20 (1.00–1.44) 0.046

Oral ulcers 0.62 (0.49–0.79) 0.00010 0.81 (0.68–0.95) 0.012

1See Table 1 for phenotype definitions.
*Mantel-Haenzel odds ratio (OR) and p-value combined across cohorts.
**Multivariate logistic regression adjusting for sex; ancestry as a categorical variable (90% or greater Northern European, 90% or greater European but ,90% Northern
European, not 90% or greater European); and disease duration for all outcomes except age of diagnosis.
{UCSF and ABCoN only (see definitions Table 1): homogeneous n = 461, multivariate n = 790.
{First principal component of phenotypes (see Methods).
doi:10.1371/journal.pgen.1000084.t005

Table 6. rs7574865 MAFs and associations in subphenotype cases vs. controls.

All Subphenotype Cases and Controls Homogeneous Subset

Phenotypes1 MAF OR (95% CI) p-value MAF OR (95% CI) p-value

Severe nephritis* 38.1% 2.12 (1.58–2.83) 4.1E-07 39.2% 2.35 (1.54–3.56) 5.1E-05

Anti-dsDNA autoantibodies 35.1% 1.86 (1.63–2.13) 6.3E-20 33.6% 1.85 (1.47–2.32) 7.0E-08

First PC**.0 35.0% 1.85 (1.62–2.12) 1.2E-19 34.0% 1.88 (1.49–2.37) 3.8E-08

Renal disorder 34.3% 1.80 (1.53–2.13) 3.4E-12 36.0% 2.05 (1.58–2.65) 2.8E-08

Diagnosis ,30 years 33.8% 1.77 (1.53–2.04) 2.6E-14 34.0% 1.89 (1.48–2.41) 1.8E-07

No oral ulcers 33.0% 1.70 (1.50–1.93) 3.3E-16 33.9% 1.87 (1.51–2.33) 4.4E-09

Immunologic disorder 32.6% 1.67 (1.48–1.90) 2.3E-17 31.3% 1.66 (1.35–2.06) 1.1E-06

All cases 31.1% 1.56 (1.40–1.73) 1.1E-16 30.0% 1.56 (1.29–1.90) 3.0E-06

No renal disorder 29.8% 1.47 (1.30–1.65) 2.10E-10 27.5% 1.39 (1.13–1.71) 0.0016

Diagnosis $30 years 29.5% 1.44 (1.27–1.64) 1.50E-08 27.7% 1.40 (1.13–1.74) 0.0019

Oral ulcers 28.8% 1.40 (1.21–1.61) 4.70E-06 25.0% 1.22 (0.96–1.55) 0.10

No immunologic disorder 27.9% 1.34 (1.14–1.58) 0.00047 27.5% 1.39 (1.08–1.79) 0.010

No anti-dsDNA autoantibodies 27.3% 1.30 (1.13–1.49) 0.00018 26.7% 1.33 (1.06–1.67) 0.013

Controls 22.5% - - 21.5% - -

Results are 262 odds ratios with two-sided Fisher’s exact p-values.
1See Table 1 for phenotype definitions.
*Subset with nephritis detail (UCSF and ABCoN).
**First principal component of phenotypes.
doi:10.1371/journal.pgen.1000084.t006
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This analysis was repeated with the genetically-homogeneous

subset, again showing even stronger results for severe nephritis,

MAF = 39.2% (OR = 2.35 [95% CI 1.54–3.56]), and stronger

inverse results for oral ulcers, MAF = 25.0%, versus MAF = 30.0%

for all homogeneous cases and MAF = 21.5% for homogeneous

controls.

Discussion

Genotype-phenotype associations between risk alleles and

disease subtypes may give insight into disease etiology and

mechanisms. Recent results show that rs7574865, a variant allele

of STAT4, confers an increased risk for both SLE and rheumatoid

arthritis (RA) [3,19], suggesting the involvement of common

pathways of pathogenesis among these two autoimmune diseases.

STAT4-deficiency is associated with accelerated renal disease and

increased mortality [20] in a murine lupus model, but with

protective effects for arthritis in knockout mice [21]. Since SLE is

an extremely heterogeneous disease, with multiple correlated

subphenotypes, we sought to investigate whether or not STAT4

appears to contribute to this phenotypic heterogeneity in human

SLE. We believe that our data provide compelling evidence that

STAT4 is associated with more severe SLE manifestations,

particularly with nephritis and with the production of autoanti-

bodies to double-stranded DNA. In contrast, other recently-

discovered SLE risk polymorphisms do not appear to be strongly

associated with severe disease manifestations [10].

There have been recent successes in the study of genotype-

phenotype associations in SLE and other autoimmune diseases.

For example, PDCD1 has been shown to be associated with lupus

nephritis and anti-phospholipid antibodies in ethnic subgroups [4],

and PTPN22 is primarily associated with anti-cyclic citrullinated

peptide (anti-CCP) [22] and rheumatoid factor (RF) [23]

autoantibody positive RA. The STAT4 gene has been shown to

be associated with both anti-CCP positive and negative RA [3]; it

has not yet been investigated in the context of SLE subphenotypes.

Replication of genotype-phenotype associations can be chal-

lenging [24]; a strength of our study is the inclusion of four

independent case series. Other strengths include the availability of

two overlapping genotype sets in the STAT4 region for most of the

subjects, including genome-wide data to facilitate ancestry

analysis, and of course the availability of detailed phenotype data

on all four of the case series.

A limitation of our study is that the subjects are of self-reported

European ancestry and primarily female. It could be insightful to

look at these associations in other populations, particularly since

SLE has higher prevalence among African-Americans and other

non-European populations [2]. The STAT4 gene has recently been

shown to be associated with RA in a Korean population [19];

however significant associations with subphenotypes – namely age

at onset, radiographic progression, and serologic status – were not

found.

Another limitation is the inherent difficulty in obtaining

accurate phenotype data. Differences between our 4 SLE cohorts

may be true differences in patient characteristics, perhaps as a

result of differences in selection, but could also be influenced by

different methods of assessment and accuracy of individual

records. However, although some of the phenotypes we examined

are related to disease activity, and may fluctuate naturally or as a

result of treatment, we classified SLE patients according to a

history of these specific phenotypes. We are encouraged by the fact

that our results were quite homogeneous across the different

cohorts. Also, any misclassification would presumably be non-

differential with respect to genotypes, thus diluting our results

rather than causing type I error.

Finally, it is important in genetic studies to protect against false

associations due to undetected population substructure. Indeed

there were some subjects in our cohort with sizeable non-

European ancestry, in spite of being self-reported European, and

those had a higher minor allele frequency for rs7574865.

However, reanalysis of a more homogeneous subset of subjects

of primarily northern European ancestry was very consistent with

our overall results. There is even stronger evidence in this subset

for relationships between the STAT4 rs7574865 SNP and nephritis

subphenotypes, and for an inverse relationship with oral ulcers.

Since the subphenotypes having the strongest risk conferred by

rs7574865 were highly correlated, we included clinical variables

based on principal components (PC) analysis to investigate the

possibility of common underlying effects. The first PC, associated

with the severe manifestations of anti-dsDNA antibodies, nephritis

and immunologic abnormalities, had similar associations as those

of its components. Severe nephritis was consistently the most

strongly associated subphenotype. The second PC, associated with

the milder skin disease manifestations of malar rash, photosensi-

tivity, and discoid rash, was not significantly associated with

rs7574865 in any analysis.

In summary, our study has identified multiple correlated

subphenotypes that are strongly associated with the STAT4 gene,

including nephritis, autoantibodies to double-stranded DNA, and

early age at diagnosis. The next challenge is identifying how these

correlated features fit into causal pathways, and therefore to help

elucidate the complex etiology of SLE.
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