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Abstract

LIN-35 is the sole C. elegans representative of the pocket protein family, which includes the mammalian Retinoblastoma
protein pRb and its paralogs p107 and p130. In addition to having a well-established and central role in cell cycle regulation,
pocket proteins have been increasingly implicated in the control of critical and diverse developmental and cellular
processes. To gain a greater understanding of the roles of pocket proteins during development, we have characterized a
synthetic genetic interaction between lin-35 and slr-2, which we show encodes a C2H2-type Zn-finger protein. Whereas
animals harboring single mutations in lin-35 or slr-2 are viable and fertile, lin-35; slr-2 double mutants arrest uniformly in
early larval development without obvious morphological defects. Using a combination of approaches including
transcriptome profiling, mosaic analysis, starvation assays, and expression analysis, we demonstrate that both LIN-35 and
SLR-2 act in the intestine to regulate the expression of many genes required for normal nutrient utilization. These findings
represent a novel role for pRb family members in the maintenance of organ function. Our studies also shed light on the
mechanistic basis of genetic redundancy among transcriptional regulators and suggest that synthetic interactions may
result from the synergistic misregulation of one or more common targets.
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Introduction

The Retinoblastoma protein, pRb, was among the first

recognized tumor suppressor proteins [1–3], and loss or repression

of pRb function is thought to play a causative role in most human

cancers [4–8]. The role of pRb as a tumor suppressor has been

largely attributed to its functions in cell cycle regulation, which it

carries out in conjunction with its two family members, p107 and

p130, collectively known as the pocket proteins [9–11]. Pocket

proteins act primarily as transcriptional repressors and physically

associate with diverse array of transcription factors [12]. The most

thoroughly characterized of these interactions is with E2F family

members, which leads to the repression of E2F-target genes, a

group that includes many genes required for entry and progression

through S-phase [13–16]. Correspondingly, LIN-35, the sole

pocket protein ortholog in C. elegans, carries out analogous cell

cycle functions during larval stages of development [17–21].

In addition, a growing number of studies have demonstrated

non2cell cycle roles for pRb family members, which in some cases

may prove relevant to the tumor-suppressing activity of pocket

proteins [12,19,22,23]. In the case of LIN-35, the majority of these

functions are revealed only when LIN-35 activity is compromised

in specific mutant backgrounds. This phenomenon can be

explained on the basis of genetic or functional redundancy, a

widespread feature of eukaryotic genomes, which is attributable to

the complex and overlapping nature of many regulatory networks.

The first described, and still most thoroughly characterized,

genetically redundant function of LIN-35 is its role restricting

epidermal cells from inappropriately acquiring vulval cell fates

[22,24,25]. More specifically, when lin-35, a member of the class B

group of synthetic multivulval (SynMuv) genes, is simultaneously

inactivated with individual members of the SynMuv A or C classes

[24,26], hyperinduction of vulval cells is observed. In contrast,

single mutants in most SynMuv genes, including lin-35, do not

display observable defects in vulval development.

LIN-35 also redundantly regulates pharyngeal and vulval

morphogenesis [27–29], asymmetric cell divisions [30], cell fates

in the somatic gonad [31], larval growth and development

[30,32,33], and the promotion of cell death [34]. Furthermore,

lin-35 functions non-redundantly in the control of germline gene

repression [35] and germline apoptosis [36] and to modulate

sensitivity to RNAi [35,37]. In addition, transcriptome profiling

has suggested potential roles for LIN-35 in intestinal and neuronal

development, although direct evidence for functions in these

tissues has been lacking [21]. Here we describe a novel role for

LIN-35 in the intestine of C. elegans. Specifically, we find that LIN-

35, in conjunction with the Zn-finger protein SLR-2, acts within

intestinal cells to regulate the expression of genes required for

proper nutrient utilization.

Results

lin-35/Rb and slr-2 Are Genetically Redundant
A previously described genetic screen was used to identify genes

that function redundantly with lin-35 [20]. Briefly, we chemically

mutagenized lin-35(n745) mutants that carry an unstable extra-

chromosomal array (kuEx119), which expresses wild-type lin-35

together with the sur-5::GFP marker. Following F2 clonal
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selection, we identified strains with synthetic interactions by the

presence of visible phenotypes in progeny that failed to inherit the

array. One allele, ku297, defines a locus that we have designated as

slr-2 (for synthetic with lin-35/Rb). slr-2 single mutants are largely

indistinguishable from wild type, although we observed weak-to-

moderate elongation defects at low frequencies (the Dpy

phenotype). In contrast, lin-35; slr-2 double mutants exhibit

uniform early-larval arrest (Figure 1A, 1B, Table 1). To verify

that phenotypic alleviation by kuEx119 was specifically due to

rescue of lin-35 activity, we used RNAi to knock down the

expression of lin-35 from the array. This resulted in animals that

arrested in early larval development despite the presence of the

array (Figure 1A, 1B, inset), confirming that the interaction was

specific to lin-35 and slr-2.

slr-2 Encodes the C2H2 Zinc Finger Y59A8B.13
We mapped ku297 to an ,82-kb region of LGV that contains

nine genes, including a predicted C2H2-type Zn-finger protein,

Y59A8B.13 (Figure 2A). Given the established role of lin-35/Rb in

transcriptional regulation as well as our previous findings that lin-

35 displays synthetic genetic interactions with other transcriptional

regulators, we focused on Y59A8B.13 as a candidate locus. The

large size of the Y59A8B.13 genomic locus along with the presence

of multiple repetitive elements within this region precluded our

amplification and cloning of the Y59A8B.13 locus from C. elegans.

We therefore turned to the Y59A8B.13 ortholog from C. briggsae,

CBG05648, which though strongly conserved at the amino acid

level with Y59A8B.13, comprises a smaller and non-repetitive

genomic region (Figure 2B). Injection of a PCR product spanning

the complete predicted CBG05648 locus together with a sur-

5::RFP plasmid into lin-35; slr-2; kuEx119 hermaphrodites led to

the generation of RFP-marked extrachromosomal arrays in seven

independent strains. Strikingly, all seven strains were strongly

rescued for the lin-35; slr-2 larval-arrest phenotype by arrays

containing the C. briggsae Y59A8B.13 ortholog (Figure 1C–E). This

result is consistent with previous findings demonstrating the ability

Author Summary

Genetic or functional redundancy is a widespread feature
of eukaryotic genomes and may be largely attributable to
the complex and overlapping nature of many regulatory
networks. Despite the prevalence and importance of this
phenomenon, the mechanistic bases underlying genetic
redundancy have remained elusive, particularly within the
context of multicellular developing organisms. To gain a
deeper understanding of this phenomenon, we have
focused on a synthetic genetic interaction between lin-
35, a C. elegans member of the pRb/pocket-protein tumor
suppressor family and slr-2, a Zn-finger protein. Whereas
single mutants in either lin-35 or slr-2 develop normally,
lin-35; slr-2 double mutants display a highly penetrant
synthetic growth arrest during early larval development.
We show that this arrest is specifically due to an inability to
utilize standard nutrient sources. Using a wide range of
approaches including transcriptome profiling, mosaic
analysis, and expression analysis, we demonstrate that
both LIN-35 and SLR-2 act within the intestine to regulate
the expression of many genes that function in nutrient
utilization. We also show that the basis of the synthetic
interaction between lin-35 and slr-2 is not merely due to
regulon overlap, but likely results from the synergistic
misregulation of multiple shared transcriptional targets in
the intestine.

Figure 1. lin-35 and slr-2 are genetically redundant. (A, B) DIC (A) and corresponding GFP fluorescence (B) images of lin-35(n745); slr-2(ku297)
hermaphrodites. The large adult GFP+ animals carry the kuEx119 extrachromosomal array, which expresses wild-type lin-35 along with the sur-5::GFP
marker. Arrows indicate sibling progeny that failed to inherit the kuEx119 array and are arrested in early larval development. The inset (A, B) shows a
larval-arrested lin-35; slr-2; kuEx119 double mutant following lin-35(RNAi) treatment. (C2E) DIC (C) and corresponding GFP (D) and RFP (E)
fluorescence images of lin-35(n745); slr-2(ku297) adult hermaphrodites carrying either the kuEx119 lin-35 (D) or CBG05648–sur-5::RFP (E) rescuing
arrays. Note that whereas sur-5::GFP is nuclear, the sur-5::RFP marker is cytosolic and nuclear. CBG05648 is the C. briggsae ortholog of slr-2/Y59A8B.13.
Scale bars: in A, B 100 mm; in C, 200 mm for C–E.
doi:10.1371/journal.pgen.1000059.g001

LIN-35 and SLR-2 Control Intestinal Functions
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of C. briggsae genes to rescue corresponding mutants in C. elegans

[38]. Based on these findings, as well as additional data presented

below, we conclude that Y59A8B.13 is SLR-2. Our results also

underscore the utility of trans-species rescue approaches in cases

where technical limitations may preclude the use of the

endogenous locus.

Using a combination of approaches, we identified a full-length

cDNA corresponding to slr-2 that was trans-spliced at the 59 end to

the SL1 spliced leader sequence (Figure S1) [39]. We note that our

cDNA-derived sequence for slr-2 differed from WormBase

predictions in the location of several exons. That the translation

of slr-2 is likely to proceed from the second 59 ATG is suggested by

sequence alignments with the closely related C. briggsae and C.

remanei orthologs (Figure 2B). All three proteins show strong

sequence identity within the N-terminal Zn-finger regions but are

divergent in their C-terminal domains (Figure 2B). The translation

of slr-2 also predicts what appears to be an acidic domain in the C

terminus, consistent with SLR-2 functioning as a transcriptional

regulator.

Sequencing of the entire slr-2 genomic region in ku297 mutants

revealed a single mutation within the splice acceptor site preceding

exon six (Figure 2A) [40]. This mutation, which affects the

terminal invariant nucleotide, would be predicted to strongly

disrupt splicing between exons five and six (e5–e6), leading to

aberrant splicing between exons five and seven (e5–e7). The

resultant transcript would contain a frameshift followed by a

premature stop codon at the eleventh nucleotide of exon 7, leading

to the deletion of the C-terminal 250 amino acids of SLR-2. We

confirmed this prediction by quantitative real-time PCR analysis,

in which we observed a ,1000-fold decrease in transcript

abundance of the e5–e6 product versus the e4–e5 control (data

not shown). Furthermore, we observed an e5–e7 splicing product

that was ,80 bp shorter than wild type, consistent with the

absence of the 83-bp sixth exon (data not shown). Taken together,

these data demonstrate that processing of the normal slr-2

transcript is dramatically reduced in ku297 mutants, suggesting

that ku297 likely represents a strong loss-of-function or null allele.

Consistent with this interpretation, when placed over a regional

deficiency that removes the entire slr-2 locus, slr-2/yDf4,

transheterozygotes displayed no exacerbation of the weak Dpy

phenotype associated with slr-2 single mutants and were viable and

fertile.

Transcriptome Analysis of slr-2 Mutants Reveals
Functions Associated with the Intestine

As our analysis of arrested lin-35; slr-2 larvae failed to reveal any

obvious morphological defects, we undertook transcriptome

profiling as a means for shedding light the basis of the double-

mutant phenotype. Our rationale for this approach stemmed in

part from the known roles of LIN-35 and pRb family members in

transcriptional control, as well as the presence of four Zn fingers

and an acidic domain in SLR-2, which strongly suggest that it too

may function as a transcriptional regulator. Thus, we reasoned

that the observed genetic redundancy could be due to the

misregulation of targets that are common to both regulators. More

specifically, we had previously observed two major classes of genes

affected in lin-35 mutants at larval stages: cell cycle control and

intestinally expressed genes [21]. We therefore hypothesized that

SLR-2 may co-regulate genes in either or both of these classes.

Because lin-35; slr-2 mutants arrest in early larval development,

we focused on the late L1 stage for our microarray analysis.

Transcriptome profiling was carried out on three independent

biological replicates using Affymetrix GeneChips and established

procedures [21]. Our analysis identified ,1,700 genes that are

differentially regulated in slr-2(ku297) mutants as compared with

identically staged wild-type animals (Figure S2). We further

verified expression changes for 29 of these targets by qRT-PCR,

thus validating findings from the microarray data (Figure S3 and

Table S1).

In common with our previous findings for lin-35, the slr-2 data

set showed strong overrepresentation of intestine-enriched/

intestine-specific genes (p,0.001) as previously identified using a

serial analysis of gene expression (SAGE) approach [41]; 261 genes

were common to both data sets (Figure 3A, categories I and II;

Figure S4, also see Materials and Methods). A comparison of

differentially regulated genes in slr-2 and lin-35 single mutants also

revealed a statistically significant overlap (p,0.001); 261 genes

were present in both data sets (Figure 3, categories I and IV;

Figure S5). Furthermore, although lin-35 and slr-2-responsive

genes showed opposite trends in their directionality of regulation

(70% of lin-35 targets were upregulated versus 20% of slr-2

targets), the correlation coefficient calculated for common targets

was 0.58, indicating a moderate-to-strong correlation. In addition,

76% of genes common to both data sets showed expression

changes in the same direction; the common data set contained an

approximately equal mixture of up- and downregulated genes.

Importantly, lin-35 and slr-2-responsive genes displaying overlap

with the SAGE dataset (Figure 3, categories I, II, and III) also

showed evidence of intestinal gene enrichment and intestine-

associated functions according to several additional lines of

evidence. Based on meta-array functional clustering [42], the

only mountains showing strong overrepresentation (p,0.001) were

those associated with the intestine, amino acid metabolism, and

lipid metabolism (Figure S6A). In addition, available data from the

C. elegans expression database (http://gfpweb.aecom.yu.edu),

showed that, on average, 78% of genes were expressed in the

intestine and 38% showed intestine-specific expression (Figure

Table 1. slr-2 interactions with SynMuv genes

Strain %Larval arrest (n)

slr-2 1 (360)

lin-35 1 (213)

lin-35;slr-2 100 (1000)

dpl-1 7 (181)

dpl-1;slr-2 83 (798)

hpl-2 0 (118)

hpl-2;slr-2 2 (444)

lin-9 2 (101)

lin-9;slr-2 7 (308)

lin-15b 0 (184)

lin-15b;slr-2 0 (187)

lin-36 0 (154)

lin-36;slr-2 3 (165)

lin-37 1 (228)

lin-37;slr-2 5 (319)

lin-53 0 (120)

lin-53;slr-2 3 (179)

lin-15a 0 (170)

lin-15a;slr-2 1 (250)

For information on specific alleles, see Materials and Methods.
doi:10.1371/journal.pgen.1000059.t001

LIN-35 and SLR-2 Control Intestinal Functions
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S6B). Similar results were also obtained from an examination of in

situ hybridization data available on the NEXTDB database

(http://nematode.lab.nig.as.jp/db2/index.php) (Figure S6C).

Moreover, genes found to overlap between lin-35 and slr-2 only

(Figure 3, category IV), also showed a specific overrepresentation

of intestine and metabolic mountains (p,0.001), a finding further

corroborated by data available through the expression databases

(Figure S6A-C). Thus, genes implicated in intestinal and metabolic

functions are statistically and uniquely overrepresented among the

common targets of lin-35 and slr-2, including many genes not

previously identified by SAGE analysis.

A previous analysis of intestine-specific/enriched genes identified

a single over-represented motif (TGATAA), corresponding to the

binding site of the intestinal regulator, ELT-2 [41]. This motif is

present in the proximal enhancer regions of 23.3% of genes (using

multiple random sampling) in the intestine-specific/enriched dataset

used in our above analysis. Using cluster analysis, we independently

identified this motif among lin-35 responsive genes [21], and have

observed a high frequency of this motif (33–62%) in categories I–IV

of overlapping genes from our current analysis (Figure 3A and Figure

S6D). This finding is further consistent with our above analysis,

indicating that intestine-associated genes our enriched in our dataset.

Consistent with the misregulation of intestinal genes, slr-2 mutants

exhibited repression of several important metabolic pathways,

including the TOR and insulin signaling networks (Table S1),

suggesting that slr-2(ku297) mutants experience metabolic stress [43].

Figure 2. Identification of the slr-2 locus. (A) The 82.3-kb genomic region that encompasses the area defined by SNP mapping to harbor the slr-2
locus, along with the verified gene structure of slr-2, based on the analysis of slr-2 cDNAs. Also indicated are the locations of the Zn-finger and acidic
domains and the molecular lesion identified in ku297 mutants. The lesion alters the conserved splice acceptor site preceding exon six and effectively
abolishes splicing between exons five and six. (B) An alignment of the predicted C. elegans SLR-2 peptide (based on the slr-2 cDNA), together with its
putative orthologs in C. briggsae (CBG05648) and C. remanei. The arrow indicates the location of the frameshift in ku297 mutants.
doi:10.1371/journal.pgen.1000059.g002

LIN-35 and SLR-2 Control Intestinal Functions
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In contrast to intestinal genes, genes with cell cycle functions

were not overrepresented in the slr-2 data set (Figure S3).

Therefore, the genetic redundancy observed for lin-35 and slr-2

mutants is consistent with their combined effects on intestinal gene

misregulation and not to cell cycle defects (also see below). We also

note that in addition to intestinal genes, the lin-35 and slr-2 data

sets showed upregulation of ,15 common genes with attributed

neurological functions. Based on data presented below, it is

unlikely, however, that the misregulation of these genes contrib-

utes strongly to the double-mutant phenotype. Finally, we

observed the downregulation of several dpy genes in slr-2 mutants

(dpy-11, dpy-18, and dpy-21), which may account for the variable

morphogenetic defects observed in these animals.

lin-35 and slr-2 Carry Out Redundant Functions within
the Intestine

The larval-arrest phenotype of lin-35; slr-2 mutants, along with

the results of our transcriptome analysis, are consistent with LIN-

35 and SLR-2 acting within the intestine to control the expression

of gut-associated genes. To determine the precise tissue focus for

LIN-35 and SLR-2, we carried out a mosaic analysis [44–47]. This

method takes advantage of the inherent mitotic instability of most

extrachromosomal arrays and allows for the identification of

particular mosaic species, thereby enabling direct correlations to

be drawn between gene function and localized expression.

To assess the roles of lin-35 and slr-2 in the intestine, we first

measured the frequencies by which the C. elegans lin-35 (Ce–lin-35;

kuEx119) and C. briggsae slr-2 (Cb–slr-2; fdEx25) rescuing extra-

chromosomal arrays are spontaneously lost within the intestinal

lineage in lin-35 and slr-2 single mutants, respectively. Under these

non-selective conditions, intestinal loss was observed in 3.4% and

3.0% of adults carrying the Ce–lin-35 and Cb–slr-2 arrays,

respectively (Figure 4H). In contrast, loss of the Ce–lin-35 array

in intestinal cells was never observed in adult lin-35; slr-2 double

mutants, suggesting that expression of lin-35 from the array is

required within intestinal cells for rescue of larval arrest

(Figure 4H). Similar results were obtained for the Cb–slr-2 array,

indicating that slr-2 also acts within the intestine (Figure 4H).

One limitation to the above analysis is that the absence of

intestinal expression in mosaic animals could reflect loss of the

array in either the E blastomere (Figure 4D, 4E), which gives rise

exclusively to intestinal cells, or in EMS (Figure 4B, 4C) or P1,

which are progenitors of E but produce additional cell types

(Figure 4A). Thus we determined the frequency of E-specific losses

by examining array expression in additional relevant lineages of

intestinal mosaic animals. E-specific losses were found to account

for 36% of Ce–lin-35 intestinal mosaic animals (n = 11), which is

close to the expected frequency based on the lineage (i.e., the

failure to segregate the array during one of three possible cell

divisions or 33%). Thus of the total number of kuEx119 intestinal

mosaic animals (3.4%), we would expect that 36% had

experienced loss specifically within the E-cell lineage. This is

equivalent to ,1.2% (or 0.03460.36) of all animals carrying the

Ce–lin-35 array. Thus, if lin-35 is not required within the E-lineage,

we would expect to observe ,40 viable intestinal-mosaic adults

among the 3,228 lin-35; slr-2 animals assayed. The total absence of

intestinal-mosaic adults strongly indicates that lin-35 function is

indeed required in the intestine for rescue of lin-35; slr-2 mutants.

Correspondingly, E-specific losses accounted for 40% of Cb2slr-2

intestinal mosaic animals (n = 12). Thus, among the 1,254 lin-35;

slr-2; fdEx25 animals assayed, ,15 E-specific mosaic animals

would have been expected. As for lin-35, the complete absence of

intestinal mosaics in the adult population demonstrates that slr-2

activity is also required in the intestine (Figure 4H).

Figure 3. Comparative transcriptome profiles of lin-35 and slr-2 mutants with SAGE-derived intestinal-specific genes. (A) The overlap
in genes identified by the three independent analyses (also see text). Note the large overlap in genes misregulated in both lin-35 and slr-2 mutants
(p,0.001), as well as the strong correlation with both mutants and intestinal-specific genes (p,0.001) [21,41]. (B) Corresponding qRT-PCR data for a
selected subset of lin-35- and slr-2-regulated genes. Note the lack of correlation between lin-35 and slr-2 mutants in the misregulation of cell cycle
(cye-1), germline (pgl-3 and glp-1), and RNAi-associated (sago-2) genes. Other genes listed have functions ascribed to the intestine and metabolism
(also see text and Table S1).
doi:10.1371/journal.pgen.1000059.g003

LIN-35 and SLR-2 Control Intestinal Functions
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The above results conclusively demonstrate that lin-35 and slr-2

are required in the E-cell lineage for rescue of double-mutant

lethality. However, these findings do not rule out the possibility that

these genes may be simultaneously required in another lineages, such

as MS and AB, which are essential for formation of the foregut

(Figure 4A). To address the role of MS, we specifically screened for

mosaic double-mutant animals in which the Ce–lin-35 array was

absent from the MS lineage but was present in E. In doing so, we

identified five lin-35; slr-2; kuEx119 viable adults in which the array

was absent from the entire MS lineage (Figure 4F, 4G). In addition,

we identified a number of rescued adults in which the Ce–lin-35 array

was missing from within sub-lineages of MS. Given that viable adults

were identified that lacked both lin-35 and slr-2 within the MS

lineage, these data demonstrate that neither lin-35 nor slr-2 are

required within MS for rescue of lin-35; slr-2 larval lethality.

Similarly, we identified viable double-mutant adults where expres-

sion patterns indicted the absence of the Ce–lin-35 array within the

AB.a (n = 4) and AB.p (n = 3) lineages, suggesting that neither lin-35

nor slr-2 activity are required within the AB lineage for the rescue of

double mutants. Taken together, these results indicate that lin-35

activity is not required in the foregut (or other lineages produced by

AB and MS) for rescue of lin-35; slr-2 double-mutants.

Previously, we and others have observed a redundant role for

lin-35 in the control of intestinal cell proliferation [17,20]. Given

the above indicated intestinal focus of the lin-35; slr-2 phenotype,

we examined staged double mutants for abnormalities in intestinal

nuclei number and DNA ploidy. We observed wild-type numbers

of intestinal nuclei in 54% of lin-35; slr-2 mutants (2061), although

46% contained 1–14 extra nuclei (Figure S7). This result

demonstrates that lin-35; slr-2 mutants undergo larval arrest

despite, in most cases, having normal numbers of intestinal nuclei.

As a control, we also examined intestinal nuclei numbers in larvae

containing a loss-of-function mutation in the APC component, fzr-

1, and observed 1–14 extra nuclei in 72% of these animals (Figure

S7). Given that only 2% of fzr-1 mutants undergo arrest during

larval development (n = 237), this result demonstrates that extra

intestinal nuclei per se do not cause larval arrest, a result that is

consistent with previous reports [17,20]. We also failed to detect

any difference in DNA ploidy between intestinal cells in wild type

and lin-35; slr-2 mutants (Figure S7C-D). Thus, growth arrest in

lin-35; slr-2 mutants due to intestinal-associated defects cannot be

attributed to overt cell cycle abnormalities.

lin-35; slr-2 Mutants Are Defective at Nutrient Utilization
The above findings indicate that lin-35; slr-2 double mutants are

likely to undergo early larval arrest as a result of intestinal-specific

gene misregulation. More precisely, malfunctioning of the intestine

in double mutants may lead to nutrient deprivation and

Figure 4. lin-35 and slr-2 act in the intestine. (A) Relevant cells and their progenitors from the embryonic lineage used in the mosaic analysis.
(B2G) DIC (B, D, F) and corresponding GFP fluorescence (C, E ,G) images of lin-35; slr-2; kuEx119 young adults. Arrows indicate the locations of the MS-
derived vpi cells; arrowheads, intestinal nuclei. (B, C) A representative EMS-mosaic animal where the kuEx119 array failed to be segregated to EMS.
Note the absence of GFP expression in E-derived intestinal cells as well as in MS-derived vpi cells and MS-derived cells of the posterior pharyngeal
bulb (left-most circular structure). (D, E) An E-mosaic animal. Note the presence of GFP expression in vpi cells as well as in posterior pharyngeal cells
(left). (F, G) An MS-mosaic animal. Note the presence of GFP expression in intestinal cells along with a lack of GFP expression in vpi and posterior-most
pharyngeal cells. (H) The frequency of array loss within the intestine for the C. elegans lin-35–GFP (kuEx119) and C. briggsae slr-2–GFP (fdEx25) arrays in
lin-35 and slr-2 single mutants, respectively. In contrast, note the complete absence of intestinal-mosaic animals for the same arrays in lin-35; slr-2
double mutants. Scale bars: in B, 10 mm for B–G.
doi:10.1371/journal.pgen.1000059.g004

LIN-35 and SLR-2 Control Intestinal Functions
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subsequent arrested growth. To determine whether lin-35; slr-2

animals are defective at nutrient utilization, we made use of the

DAF-16::GFP translational fusion reporter. DAF-16::GFP exhibits

diffuse cytoplasmic expression throughout the body in animals that

are well fed but rapidly translocates to nuclei following their

removal from a food source [48]. Accordingly, in wild type we

observed diffuse GFP expression in fed animals at all stages and

nuclear localization in populations after nutrient deprivation

(Figure 5A, 5D, and data not shown). In contrast, lin-35; slr-2

double-mutant larvae displayed high levels of nuclear DAF-

16::GFP expression on plates with ample food as early as 12 hours

into larval development (Figure 5C, 5D). Nuclear GFP localization

further increased in double mutants at later time points, such that

nearly 100% of animals displayed punctate fluorescence by

36 hours (Figure 5D). This result suggests that lin-35; slr-2 larvae

experience starvation in the presence of a food source, consistent

with defects in intestinal functions. We also note that as compared

with wild type, both lin-35 and slr-2 single mutants exhibited

enhanced nuclear DAF-16::GFP localization on plates containing

food at all time points (Figure 5B, 5D). This result is perhaps not

unexpected given that both single mutants exhibit mild growth

retardation (data not shown) and independently show misregula-

tion in many intestine-related genes.

Because nuclear localization of DAF-16::GFP is known to occur

in response to several other forms of environmental stress [48], we

performed an independent assay to test whether or not lin-35; slr-2

mutants specifically experience nutritional deprivation. Previous

studies have demonstrated that intestinal cell UV-induced

autofluorescence, which facilitates the visualization of lysosomal

gut granules that serve as sites of fat storage [49], provides a

reliable marker for starvation in eating-defective mutants [50]. We

therefore examined gut granule autofluorescence in wild-type, lin-

35, slr-2, and lin-35; slr-2 staged larvae propagated in the presence

or absence of the OP50 food source. Strikingly, by this assay lin-35;

slr-2 mutants grown in the presence of food displayed a punctate

pattern of gut autofluorescence that was identical to wild-type

animals propagated in the absence of the food (Figure 6). In

contrast, both single mutants were effectively indistinguishable

from wild type under all conditions and time points tested Figure

S8). Thus, by two independent assays, lin-35; slr-2 mutants show

evidence of experiencing nutritional deprivation.

Based on our evidence that lin-35; slr-2 larvae have intestinal-

associated defects and undergo starvation in the presence of their

normal bacterial food source, E. coli (OP50), we hypothesized that

suppression of larval arrest might be achievable by supplying

double mutants with a preprocessed synthetic food source. To test

this, we grew lin-35; slr-2 animals in liquid axenic medium, a

nutreint source consisting of peptides, fatty acids, hydrolyzed yeast

and soy, dried milk, and hemoglobin [51]. Notably, 19% of double

mutants grown in axenic medium were capable of bypassing early

larval arrest and 5% of the total population went on to become

gravid adults (n = 243). Furthermore, when fertile lin-35; slr-2

adults were placed back onto OP50 plates, progeny from these

animals arrested uniformly as L1 larvae. We note that although

the observed frequency of suppression of larval arrest was

relatively modest in these experiments, the ability of the synthetic

medium to bypass what is otherwise a completely penetrant

phenotype is highly significant. In addition, we examined the

expression pattern of DAF-16::GFP in lin-35; slr-2 mutants rescued

from larval arrest by growth on axenic media. Notably, we

Figure 5. DAF-16::GFP localization in lin-35; slr-2 mutants. (A2C) GFP fluorescence representing diffuse (A), weak-nuclear (B), and strong-
nuclear (C) localization of the DAF-16::GFP marker. Genotypes of depicted L1 larvae are wild type (A), slr-2, (B) and lin-35; slr-2 (C). (D) Relative rates of
the three classes of GFP localization for wild-type (N2), lin-35 and slr-2 single mutants, and lin-35; slr-2 double mutants at 12, 24, and 36 hours after
synchronization onto an abundant bacterial food source (OP50). lin-35; slr-2 double mutants show high levels of DAF-16::GFP nuclear localization by
12 hours, consistent with starvation. Also note that both lin-35 and slr-2 single mutants, which are not growth arrested but show significant
misregulation of intestinal genes, exhibit significantly higher levels of DAF-16::GFP than wild type. Scale bars: in A, 10 mm for A–C.
doi:10.1371/journal.pgen.1000059.g005
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observed cytosol-specific expression in 95% of rescued double-

mutant adults (n = 21; Figure S9). This later finding indicates that

the nuclear localization of DAF-16::GFP observed in previous

experiments (Figure 5) occurs most likely as a consequence of

nutritional deprivation and is not due to non-specific effects

conferred by the lin-35 and slr-2 mutations.

It has previously been shown that developmental arrest resulting

from nutrient deprivation is mediated during the L1 stage by a

pathway that includes the DAF-18/PTEN lipid phosphatase [52].

One hallmark of this developmental arrest is the cessation of all

germ cell proliferation, leading to diminutive gonads. Consistent

with lin-35; slr-2 mutants undergoing starvation-induced arrest,

gonad size in double mutants was indistinguishable from wild-type

starved L1s (Figure S10E). To determine whether or not germline

proliferation is inhibited in lin-35; slr-2 mutants by the DAF-18

pathway, we used RNAi feeding to inhibit daf-18 activity in double

mutants (See Materials and Methods). Most notably, average

gonad size increased by 2.1-fold in double mutants exposed to daf-

18(RNAi) (n = 55) versus OP50 controls (n = 59; Figure S10). This

result is consistent with our findings indicating that growth arrest

in double mutants is due to nutritional deprivation and further

demonstrates that the developmental arrest exhibited by lin-35; slr-

2 mutants depends, at least in part, on the DAF-18 pathway.

Although data presented above, including the mosaic and

transcriptome analyses, strongly implicates the intestine as the

focus of the lin-35; slr-2 growth-arrested phenotype, defects in

bacterial cell uptake and mechanical disruption by the foregut

(pharynx) could theoretically account for the starvation-induced

arrest. To test for this possibility, we directly assayed the ability of

lin-35; slr-2 larvae to ingest a food analog (fluorescent beads) and

observed normal uptake in 90% of double mutants at all time

points tested (Figure S11). Furthermore, based on a GFP-marked

OP50 strain, mechanical disruption of bacteria was completely

normal in double mutants twelve hours into larval development, at

which time double mutants show strong evidence of starvation-

induced growth arrest (Figure S12; Figures 5 and 6). Taken

together, our cumulative results strongly indicate that lin-35; slr-2

double mutants undergo starvation-induced growth arrest and that

this arrest is specifically attributable to defects associated with the

intestine.

slr-2 Is Expressed in the Intestine and Foregut of
Developing Larvae

Our results indicate that both LIN-35 and SLR-2 function

redundantly within the intestine to promote nutrient utilization.

Consistent with this, LIN-35 is expressed in many cell types

throughout early development including cells of the intestine

[25,53]. To determine the pattern of slr-2 expression during

development, we constructed a slr-2::GFP transcriptional reporter

using an ,900-bp region upstream of the slr-2 start codon. Based

on the location of a nearby adjacent gene, Y59A8B.12 (Figure 2A),

this sequence is likely to encompass the complete 59 regulatory

region of slr-2. slr-2::GFP expression was first detected in most or

all embryonic cells beginning at around the 100-cell stage (Figure

S13). Beginning in late embryonic development and continuing

through L1, slr-2::GFP expression was largely restricted to the

intestine (Figure 7A, 7B; Figure S13), with highest levels of

expression observed in posterior gut cells. A similar expression

pattern was also observed in L4 larvae and adults, although

expression was detected in additional tissues including the foregut

(Figure S13). This expression pattern is consistent with our

findings that slr-2 acts during the L1 stage to control the expression

of many genes associated with intestinal functions.

slr-2 Interactions with SynMuv Genes
As described in the Introduction, lin-35 limits vulval cell

induction in cooperation with numerous genes of the SynMuv

network. To determine whether or not the observed genetic

interaction with slr-2 is specific to lin-35 or is common among

other SynMuv family members, we tested seven Class B and one

Class A mutant for genetic interactions with slr-2. Interestingly,

only one of the tested SynMuv genes, dpl-1, showed strong

interactions with slr-2 (Table 1). dpl-1 encodes an ortholog of

mammalian DP, which functions as a binding partner for the E2F

family of transcriptional regulators. This finding therefore

implicates DP and E2F as co-partners of LIN-35 in the

transcriptional regulation of intestinal-associated genes. In con-

trast, the remaining mutants showed at most very weak

interactions with slr-2, a finding that underscores the fundamental

differences between the role of LIN-35 in vulval cell induction and

nutrient utilization (Table 1).

To gain mechanistic insight into the observed differences

between the interactions of slr-2 with lin-35 and dpl-1, and the non-

interacting SynMuv genes, we used qRT-PCR to assay expression

levels of 29 genes identified previously by our transcriptome

analysis. This included seven genes with intestine-specific expres-

sion, ten with known roles in energy production and metabolic

regulation, and eight associated with cell cycle, germline, and

RNAi functions (Table S2). We first examined expression levels in

staged L1 single mutants to determine the frequency of co-

regulation between slr-2 and the SynMuv genes. We define

Figure 6. UV intestinal autofluorescence in lin-35; slr-2 mutants.
Representative images from a time course following placement of
synchronized wild type and lin-35; slr-2 L1 larvae on plates devoid of a
bacterial food source (starved) or containing OP50 E. coli (fed). Intestinal
autofluorescence in wild-type starved animals is much weaker than in
fed animals and appears punctate. Note that both starved and fed lin-
35; slr-2 mutants appear identical to each other and to starved wild-type
animals at the 12 h and 24 h time points. For quantitation of the
presented data and information on single mutants, see Figure S8. All
images were captured using identical exposure times. Scale bar: in A, 10
mm for all panels.
doi:10.1371/journal.pgen.1000059.g006
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co-regulation as the occurrence of a simultaneous increase or

decrease in target gene expression levels by $1.5 fold relative to

wild type. Interestingly, similar levels of co-regulation with slr-2

were observed between the strong interacting (lin-35 and dpl-1) and

weak or non-interacting (lin-9 and hpl-2) SynMuv genes tested; lin-

35, dpl-1, lin-9, and hpl-2 showed co-regulation of 12, 17, 16, and

17 genes, respectively (Figure 8). This result suggests that target co-

regulation per se is not sufficient to cause a synthetic genetic

interaction. Interestingly, co-regulation was only observed among

the intestine-specific and metabolic regulator gene classes.

To better understand the basis of the observed genetic

interactions, we performed qRT-PCR analysis in staged L1

double mutants (also see Materials and Methods). Specifically, we

looked for synergistic misregulation effects on co-regulated genes

identified by our analysis of single mutants. Genes were scored

positive for synergistic effects if the fold change observed in double

mutants was $1.95-fold higher than the greatest fold-change

observed in either single mutant. Thus, for single mutants

displaying fold changes of 3.0 and 6.0, a fold change of 11.7 or

greater would be defined as synergistic (greater than additive).

Notably, we observed synergistic effects on 7/12 and 8/17 lin-35–

slr-2 and dpl-1–slr-2 co-regulated targets, respectively (Figure 8). In

contrast, only 2/16 lin-9–slr-2 and 0/17 hpl-2–slr-2 co-regulated

targets displayed synergistic misregulation (Figure 8). To see if the

above differences were statistically significant, we applied a chi

square test and found no significant difference between lin-35; slr-2

and dpl-1; slr-2 double mutants. Comparison of lin-9; slr-2 and hpl-

2; slr-2 with lin-35 slr-2 double mutants, however, showed that the

observed differences were statistically significant (p = 0.01 and

p,0.001, respectively). These results suggest that the strong

synthetic phenotypes observed in lin-35; slr-2 and dpl-1; slr-2

double mutants may be due to the synergistic misregulation of

common targets.

Discussion

We have demonstrated a novel role for the pocket protein

ortholog lin-35/Rb in nutrient utilization by the intestine. To our

knowledge, these findings constitute the first direct demonstration

of a role for pRb family members in the basic maintenance of

organ functions. Furthermore, this function is carried out

redundantly with SLR-2, a putative transcription factor and

previously uncharacterized member of the C. elegans Zn-finger

protein family. Multiple lines of evidence support the model that

LIN-35 and SLR-2 act within intestinal cells to control the

expression of genes required for the proper functioning of the

digestive tract. (1) The early growth and developmental arrest of

lin-35; slr-2 mutants, coupled with an absence of morphological

defects, is consistent with an inability to utilize nutrients (Figure 1,

Figure S10). (2) Transcriptome profiling of lin-35 and slr-2 single

mutants revealed extensive involvement in the regulation of

intestine-associated genes (Figure 3; Figure S6). (3) Mosaic analysis

demonstrated a requirement for both LIN-35 and SLR-2 within

intestinal cells (Figure 4). (4) Based on UV-induced intestinal

autofluorescence (Figure 6) and the DAF-16::GFP reporter

(Figure 5), lin-35; slr-2 larvae experience nutrient deprivation

when grown on a standard bacterial food source. (5) The larval

arrest of lin-35; slr-2 mutants can be partially suppressed by growth

on a processed synthetic medium. (6) Both lin-35 and slr-2 are

expressed in cells of the intestine during early larval development

and the expression of slr-2 in the intestine is highly specific at this

stage (Figure 7).

Currently, our data do not distinguish between specific classes of

intestinal defects such as those affecting nutrient uptake,

processing, or the dissemination of nutrients to other tissues.

However, the sizeable number and diverse array of intestinal genes

affected in both lin-35 and slr-2 mutants could indicate that

multiple, and potentially additive, defects may be involved. We

note that foregut-based defects are effectively ruled out as a

primary cause of starvation in lin-35; slr-2 mutants based on data

from our mosaic analysis as well as additional results indicating

that double mutants can both internalize and mechanically disrupt

OP50 bacteria (Figures 11–12).

A central question posed by our analysis concerns the

mechanistic basis of the observed synthetic genetic interaction

between lin-35 and slr-2. This question is most directly addressed

by our studies of synthetic genetic interactions between slr-2 and

nine SynMuv genes (including lin-35), and by our subsequent

analysis of transcriptional effects in a subset of both single and

double mutants. Somewhat surprisingly, among the 29 genes

assayed in single mutants, we found equivalent levels of

transcriptional co-regulation between slr-2 and the non-interacting

SynMuv genes (hpl-2 and lin-9) and between slr-2 and the strong

interactors (lin-35 and dpl-1). This result suggests that regulon

overlap alone is not sufficient for the induction of a synthetic

genetic interaction (Table 1 and Figure 8). In contrast, only lin-35;

slr-2 and dpl-1; slr-2 double mutants showed a high frequency of

synergistic misregulation of common targets (Figure 8). This

finding suggests that it is the synergistic misregulation of common

targets that may specifically predispose animals to displaying

strong synthetic phenotypes. It is also worth noting that enhanced

effects on targets (equivalent to changes $1.95-fold) in double

Figure 7. slr-2 is expressed in the intestine. DIC (A) and corresponding GFP fluorescence (B) images. Approximately 900 bp of regulatory
sequences upstream to the predicted slr-2 start codon was used to drive expression of an integrated GFP reporter. Reporter expression was observed
throughout the intestine in L1 larvae with highest levels consistently occurring in the posterior-most cells. Arrowheads indicate intestinal nuclei in
both panels. Expression at additional stages can be seen in Figure S13. Scale bars: in A, 10 mm for A and B.
doi:10.1371/journal.pgen.1000059.g007
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mutants were generally only observed in cases where both single

mutants showed evidence of co-misregulation (Figure 8). Although

these trends are compelling, our data does not address whether or

not the synthetic phenotype occurs as a result of the synergistic

misregulation of one or multiple genes. Certainly, the finding that

a potentially sizeable number of genes are synergisitically

misregulated in both lin-35; slr-2 and dpl-1; slr-2 mutants is

consistent with a mechanism involving combined effects on many

targets. Nevertheless, in the case of the SynMuv phenotype, it has

been shown that it is the ultimate misregulation of a single gene,

lin-3, that likely accounts for the excess in vulval cell induction

[54].

It is also striking that of the seven Slr mutants identified by our

laboratory, four (spr-1, xnp-1, psa-1, and slr-2) encode transcrip-

tional regulators [27,30,31]. Furthermore, results from other

laboratories reveal a strong overrepresentation of transcription

factors among genes that display genetic redundancy with lin-35/

Rb, including many of the discovered SynMuv genes

[22,25,33,34,55]. Thus, a common theme among lin-35-synthetic

interactors appears to be transcriptional regulation. These findings

are further consistent with large-scale screens in S. cerevisiae

indicating that genetic redundancy is more frequently observed

between genes with similar predicted molecular functions [56],

and suggests that similar trends will be observed in C. elegans and

higher organisms.

Our discovery of a role for LIN-35 in promoting nutrient

utilization by the intestine also complements several recent reports

describing roles for pRb family members in intestinal cell

proliferation, morphogenesis, and differentiation. Recently, Haigis

and coworkers reported that that simultaneous loss of pRb and

either p107 or p130 leads to both structural aberrations and

incomplete cellular differentiation in intestinal villi [57]. There are

conflicting reports, however, as to whether single mutations in

pocket protein members are sufficient to disrupt intestinal

development [57–59]. Notably, one study using a conditional

Rb knockout approach observed dramatic hyperproliferation of

intestinal epithelium, leading to villi filling up the luminal space

[59]. Consistent with this, we and others have observed

Figure 8. Transcriptional analysis in SynMuv mutants. qRT-PCR was used to quantitate the expression levels of 29 tester genes described in
the text (also see Table S1). Data represent the mean of at least 4 samples along with their standard errors. Target genes displaying co-regulation
between slr-2 and individual SynMuv genes are highlighted in light blue. Genes showing synergistic misregulation in double mutants are highlighted
in yellow. Note that a high frequency of synergistic misregulation is observed only in lin-35;slr-2 and dpl-1;slr-2 double mutants, which display strong
synthetic genetic interactions (Table 1). Also note that both co-regulation and synergistic misregulation in lin-35;slr-2 and dpl-1;slr-2 mutants is limited
to targets associated with intestinal and metabolic functions. For additional information, see text.
doi:10.1371/journal.pgen.1000059.g008
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pronounced hyperproliferation of intestinal nuclei in double

mutants of lin-35 and either fzr-1 [20] or cki-1 [17]. In contrast

to the above studies, our current findings uniquely implicate LIN-

35 in nutrient acquisition or utilization by the intestine (organ

function), and show that this defect is not due to overt cell cycle

abnormalities. This latter finding is also consistent with an absence

of cell cycle genes from the slr-2 regulon (Figure 3; Figure S6).

Interestingly, the human ortholog of another lin-35-synthetic gene

identified by our screen, xnp-1/ATR-X, was recently implicated in

intestinal functions, as mutations in ATR-X led to a wide range of

gastrointestinal abnormalities [60].

Our study also further links Zn-finger proteins to pRb-related

functions, as a sizeable number of C2H2-type proteins have been

shown to physically or genetically interact with pocket protein

family members [27,34,55,61–66]. In C. elegans, lin-35-interacting

Zn-finger transcription factors include lsy-2 and zfp-2, which

function coordinately with lin-35 to promote fertility [55]; mcd-1,

which acts with lin-35 to promote apoptosis [34]; and spr-4, which

redundantly regulates vulval morphogenesis with lin-35 [27]. In

addition, the THAP-domain protein GON-14 functions redun-

dantly with LIN-35 to promote larval growth [33], and a

mammalian THAP-domain protein, THAP1, acts in parallel to

pRb/E2F to control the expression of E2F target genes required for

G1–S-phase progression [66]. Thus, interactions between LIN-35

and Zn-finger proteins (frequently C2H2-type proteins) in various

organisms have important and versatile roles in development.

Materials and Methods

Strains and Maintenance
C. elegans strains were maintained according to established

procedures [67], and all experiments were carried out at 20uC.

Strains used in these studies include the following: N2, wild type;

MT10430, [lin-35(n745) further backcrossed by our laboratory

56] [25]; MH1461, [lin-35(n745); kuEx119]; MH1620, [lin-35; slr-

2(ku297); kuEx119]; MT1799, [lin-36(n766); unc-32(e189)];

MT5470, [lin-37(n758)]; MT1806, [lin-15A(n767)]; MT2495, [lin-

15B(n744)]; MT8840, [dpy-5(e61); lin-53(n833)]; MT8879, [dpl-

1(n2994)]; PFR40, [hpl-2(tm1489)]; TJ356, [daf-16::GFP; rol-6];

TY903, [yDf7/unc-76(e911)]; WY53, [lin-35(n745); unc-76(e911);

rol-9(sc148)]; WY286, [slr-2(ku297); fdEx25 (CBG05648+sur-

5::GFP)]; WY447, [lin-35(n745); slr-2(ku297); fdEx25]; WY471,

[lin-35; daf-16::GFP; rol-6]; WY472, [daf-16::GFP; rol-6; slr-2];

WY473, [lin-35; daf-16::GFP; rol-6; slr-2; kuEx119].

slr-2(ku297) Genetic Mapping
Genetic mapping of the slr-2(ku297) locus was performed using

established procedures [for details see [68]]. Briefly, slr-2 was

mapped between unc-76 and rol-9 on LGV. SNP mapping (using

the online SNP database at http://genome.wustl.edu/genome/

celegans/celegans_snp.cgi) was then used to place the slr-2 locus in

an 82.3-kb region defined by SNP:Y59A8B:89830 and

SNP:Y59A8B:172162, which contains nine predicted genes.

C. briggsae slr-2 Transgenic Rescue
The following primers were used to amplify the C. briggsae slr-2

ortholog, CBG05648: 59-GTGGCATTGTAGGACGATACCC-

39 and 59-GGAATTCGGAGGGAATTTGAAC-39. The result-

ing PCR product, together with the sur-5::RFP marker, was

injected into lin-35; slr-2; kuEx119 mutants to generate lines

carrying an RFP-marked extrachromosomal array. Rescue was

inferred by the ability of the RFP-encoding array to confer

viability to worms lacking the GFP-marked lin-35 rescuing array

(kuEx119). Seven of seven lines isolated from independently

injected P0s yielded strains that could be propagated in the

absence of kuEx119.

slr-2 Gene Structure
39 RACE was performed using domains of Y59A8B.13 that are

conserved between C. elegans, C. briggsae, and C. remanei. 59 RACE

was performed using a primer complementary to the SL1 trans-

splice leader sequence and a primer specific to Y59A8B.13.

Microarray, qRT-PCR, and Statistical Analysis
RNA was extracted from staged L1 larvae, purified, and used

for microarray analysis as previously described [21]. Differentially

expressed genes were identified by comparison with identically

staged N2 worms using RMA software, as previously described

[21]. RNA was extracted from staged L1 larvae, purified, and used

for qRT-PCR as previously described [21]. Intestine-specific/

enriched genes referenced in our studies were obtained from a

previously published SAGE analysis and displayed a minimum

intestine:whole worm tag ratio of .2.6 as previously determined

[41]. Our P-values were calculated using either t-tests or chi-

square tests, where appropriate, using the statistic language R.

Pearson correlation coefficients between lin-35 and slr-2 coregu-

lated genes as well as standard errors of mean (or deviation) for all

other experiments was calculated using Microsoft Excel. A staged

(L1) population of lin-35; slr-2 double mutants (lacking the kuEx119

array) was obtained using a COPAS worm sorter from Union

Biometrica.

slr-2::GFP
A transcriptional reporter was generated by amplifying an

,900-bp region upstream of the slr-2 start codon using the

following primers: 59-CCCATTATCGGCCATTTTTGCTG-39

and 59-GGTGCAGGTCGACACTTTTCGACATTTCCGG-

TGGTCTG-39. Based on the location of the confirmed gene,

Y59A8B.12, which is located ,1 kb upstream of the translational

start site for slr-2, this sequence is likely to encompass the complete

59 regulatory region of slr-2. Following digestion with XhoI and

SalI, the resulting PCR product was inserted into pPD95.69 (gift of

A. Fire), and the obtained plasmid was injected in N2 animals to

establish multiple independent extrachromosomal arrays, all of

which showed similar patterns of GFP expression. One extra-

chromosomal array line was then chosen for integration using

standard irradiation methods [69].

daf-18(RNAi)
RNAi was carried out using standard procedures [70]. MH1620

L4 hermaphrodites were placed on daf-18(RNAi) feeding plates

and F1 progeny were assayed 4–5 days later for gonad size.

Supporting Information

Figure S1 slr-2 cDNA and predicted translated peptide. For

additional details, see Materials and Methods and text.

Found at: doi:10.1371/journal.pgen.1000059.s001 (2.49 MB TIF)

Figure S2 SLR-2-responsive genes. A complete list of the 1736

genes that showed differential expression in a slr-2 mutant strain.

The column labeled ‘‘Probesets’’ refers to Affymetrix probe set

numbers, the column referred to as ‘‘mountain’’ refers to gene

mountains, described in Kim, et al, 2001.

Found at: doi:10.1371/journal.pgen.1000059.s002 (0.27 MB

XLS)

Figure S3 Correlation between microarray and qRT-PCR for

slr-2-responcive genes. qRT-PCR and microarray data for
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slr-2-responsive genes show similar changes in differential

expression. Numbers for qRT-PCR represent the mean of at least

four samples along with their standard errors. Genes shown in blue

include cell cycle, germline, and RNAi-associated genes.

Found at: doi:10.1371/journal.pgen.1000059.s003 (0.34 MB TIF)

Figure S4 SLR-2-responsive genes in an adult SAGE gut

library. A complete list of the 261 genes that were differentially

expressed in slr-2 mutants as well as present in a SAGE library

prepared from the intestine of adult worms (Figure 3; McGhee, et

al, 2007). The column labeled ‘‘Probesets’’ refers to Affymetrix

probe set numbers, the column ‘‘Fold Change’’ represents the level

of differential expression in a slr-2 mutant background compared

to wild type. The column labeled ‘‘mountain’’ refers to gene

mountains, described in Kim, et al, 2001.

Found at: doi:10.1371/journal.pgen.1000059.s004 (0.05 MB

XLS)

Figure S5 SLR-2-responsive genes differentially expressed in lin-

35 mutant worms. A complete list of 261 genes that were

differentially expressed in slr-2 mutants as well as in lin-35 mutants

(Figure 3). The column labeled ‘‘Probesets’’ refers to Affymetrix

probe set numbers. The column ‘‘Fold Change’’ represents the

level of differential expression in a slr-2 mutant background. The

column labeled ‘‘mountain’’ refers to gene mountains, described in

Kim, et al, 2001.

Found at: doi:10.1371/journal.pgen.1000059.s005 (0.04 MB

XLS)

Figure S6 Genes from categories I-IV exhibit strong enrichment

in genes associated with intestine and metabolic functions. (A)

Overlapping genes from categories I-IV display specific overrep-

resentation of intestine and metabolic mountains. (B, C) Available

expression database results showing that a majority of category I-

IV genes exhibit intestinal expression, including many that are

intestinal specific. (D) Genes from categories I-IV are enriched for

GATA sites relative to the SAGE gut dataset (also see Materials

and Methods and Results).

Found at: doi:10.1371/journal.pgen.1000059.s006 (1.67 MB TIF)

Figure S7 lin-35; slr-2 cell cycle analysis. (A) Graph showing

average intestinal nuclei numbers in wild type (N2), slr-2, lin-35,

lin-35; slr-2, and fzr-1 mutants (n = 50 for each strain). Bars

indicate standard deviations. Differences observed between lin-35;

slr-2 and fzr-1 mutants with wild type were statistically significant

(p,0.001). (B) Graph showing distribution of intestinal nuclei

numbers in wild-type and mutant strains. Note that whereas only

46% of lin-35; slr-2 double mutants contain greater numbers of

intestinal nuclei than wild type, 100% of double mutants arrest. In

contrast, whereas 72% of fzr-1 mutants contain extra nuclei, only

2% undergo arrest. DAPI staining of intestinal nuclei in N2 (C)

and lin-35; slr-2 double mutants (D). DAPI staining was measured

for 25 nuclei (from 8 worms for each genotype) using Openlab

software. N2 worms exhibited average fluorescence values of

125% of background and lin-35; slr-2 double mutants exhibited

average fluorescence values 127% of background. Arrowheads

illustrate intestinal nuclei. Scale bar: 10 mm in panels C and D.

Found at: doi:10.1371/journal.pgen.1000059.s007 (1.34 MB TIF)

Figure S8 Intestinal UV autofluorescence in wild-type, lin-35,

slr-2, and lin-35; slr-2 double mutant larvae. (A) Panels show

representative images (under DAPI channel UV) of intestines from

well-fed or starved wild-type, lin-35, slr-2, and lin-35; slr-2 of

synchronized larvae. (B) Quantitiation of autofluorescence pat-

terns corresponding to Panel A. Fluorescence was assigned as

either punctuate (punct) or diffuse (dif). Note that qualitative

differences can be detected between lin-35; slr-2 larvae and other

tested strains as early as three hours, though maximal effects are

observed by twelve hours. Scale bar: in A, 10 mm for all panels.

Found at: doi:10.1371/journal.pgen.1000059.s008 (8.36 MB TIF)

Figure S9 DAF-16::GFP expression in lin-35; slr-2 mutants

rescued for arrest by growth on axenic media. DIC (A) and

corresponding DAF-16::GFP fluorescence (B) micrographs of a lin-

35; slr-2 double mutant rescued from arrest by growth on synthetic

axenic media. Note that DAF-16::GFP shows a diffuse cytosolic

(non-nuclear) pattern of localization in the intestine, similar to fed

wild-type animals. Also see Figure 5. Scale bar: 10 mm for both

panels.

Found at: doi:10.1371/journal.pgen.1000059.s009 (1.02 MB TIF)

Figure S10 DAF-18 mediates developmental arrest in lin-35; slr-

2 double mutants. DIC micrographs of lin-35; slr-2 double mutants

on OP50 (A, B) or daf-18(RNAi) feeding plates (C, D). Animals

imaged were the progeny of fertile lin-35(n745); slr-2(ku297);

kuEx119 mutants in which the extrachromosomal array had been

lost (also see Materials and Methods). Representative gonad sizes

(A, C) as well as the largest gonads observed (B, D) for both OP50

and daf-18(RNAi)-treated animals. Gonads are outlined with a

yellow dashed line. Scale bar: 10 mm for A-D. (E) Quantification of

gonad size in starved WT (N2), lin-35;slr-2 and lin-35;slr-2; daf-

18(RNAi) animals. Error bars represent standard deviation. Note

that daf-18(RNAi) leads to an ,2-fold increase in the average size

of gonads.

Found at: doi:10.1371/journal.pgen.1000059.s010 (4.44 MB TIF)

Figure S11 lin-35; slr-2 larvae can internalize food analogs. (A-

C) Following synchronization on plates without food, wild-type

(N2), lin-35, slr-2, and lin-35; slr-2 double mutants were cultured on

plates in the presence (fed) or absence (st) of OP50 bacteria for the

times shown (A-C). At the indicated time points, larvae were

transferred to plates containing a visually detectable food analog

(fluorescent beads, Polyscience, Inc., FluoresbriteTM Polychro-

matic red microspheres, CAT#19507) for 30 minutes, and bead

internalization was then scored by fluorescence microscopy in 50–

70 larvae for each time point. Note that at all time points observed,

lin-35; slr-2 double mutants did not vary significantly from single

mutant controls, nor did fed and starved populations vary

significantly from each other. DIC (D, F) and corresponding

GFP (E, G) micrographs of wild-type (D, E) and lin-35; slr-2 double

mutants (F, G) scored as capable of internalizing beads at

12 hours. Scale bar: 10 mm for panels D-G.

Found at: doi:10.1371/journal.pgen.1000059.s011 (2.12 MB TIF)

Figure S12 lin-35; slr-2 larvae can mechanically disrupt bacteria.

Following synchronization on plates without food, wild-type (N2)

and lin-35; slr-2 larvae were cultured in the absence of food for an

additional 3 to 36 hours before placement on plates containing a

GFP-marked OP50 bacterial strain. Mechanical disruption is

indicated by the presence of GFP-fluorescing bacteria in the

foregut only (A). Even after extended periods of time (24–

36 hours), the majority of lin-35; slr-2 double mutants were

capable of disrupting OP50. Furthermore, mechanical disruption

in lin-35; slr-2 larvae was indistinguishable from wild type at

12 hours, where other assays showed clear indications of

starvation (also see main text). DIC (B, D) and corresponding

GFP (C, E) micrographs of lin-35; slr-2 double mutants that have

ingested GFP-marked OP50 bacteria (OP50-GFP strain). Panels B

and C depict representative images obtained for the majority of

assayed larvae, where GFP fluorescence can be detected only in

regions of the alimentary canal that are anterior to the posterior

pharyngeal bulb (grinder), where the mechanical disruption of

bacteria normally occurs. In a minority of worms at the 24 and 36
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hour time points (D and E), some fluorescent bacteria observed in

the intestine (arrow). Pharyngeal regions are delineated by yellow

braces. Scale bar: 10 mm in panels B-E.

Found at: doi:10.1371/journal.pgen.1000059.s012 (2.16 MB TIF)

Figure S13 Expression of slr-2::GFP. DIC (A, C, E) and

corresponding GFP (B, D, F) micrographs of an L4 larvae (A,

B), a pre-morphogenetic embryo (,300 cell stage; C, D), and late-

stage embryo (E, F). Although brightest in the intestinal posterior,

reporter expression was observed throughout the intestine in L4

stage larvae. In addition, L4 larvae exhibited expression in

marginal cells and the m3VR, mC, I5, m5, m6, and m7 cells of the

pharynx, as well as a small subset of head neurons and the

excretory duct cell (A, B). Ubiquitous expression was observed in

the early embryo (C, D), which becomes largely restricted to the

intestine by the pretzel-stage, where expression is brightest in the

posterior gut region (E, F). In panels A and B, the posterior region

displaying the greatest intense intestinal fluorescence is delineated

by a solid white brace and the adjacent dimmer region is

delineated by a white, dashed brace. The foregut is delineated by a

white dotted dashed brace. In panels E and F, the posterior

intestinal region is circled. Scale bar: A, B 100 mm, C-F, 10 mm.

Found at: doi:10.1371/journal.pgen.1000059.s013 (7.21 MB TIF)

Table S1 Insulin and TOR signaling networks are down

regulated in slr-2 mutants.

Found at: doi:10.1371/journal.pgen.1000059.s014 (0.05 MB

DOC)

Table S2 Description of tester genes used for qRT-PCR

analysis.

Found at: doi:10.1371/journal.pgen.1000059.s015 (0.05 MB

DOC)
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