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Abstract

In eukaryotes, neighboring genes can be packaged together in specific chromatin structures that ensure their coordinated
expression. Examples of such multi-gene chromatin domains are well-documented, but a global view of the chromatin
organization of eukaryotic genomes is lacking. To systematically identify multi-gene chromatin domains, we constructed a
compendium of genome-scale binding maps for a broad panel of chromatin-associated proteins in Drosophila
melanogaster. Next, we computationally analyzed this compendium for evidence of multi-gene chromatin domains using
a novel statistical segmentation algorithm. We find that at least 50% of all fly genes are organized into chromatin domains,
which often consist of dozens of genes. The domains are characterized by various known and novel combinations of
chromatin proteins. The genes in many of the domains are coregulated during development and tend to have similar
biological functions. Furthermore, during evolution fewer chromosomal rearrangements occur inside chromatin domains
than outside domains. Our results indicate that a substantial portion of the Drosophila genome is packaged into functionally
coherent, multi-gene chromatin domains. This has broad mechanistic implications for gene regulation and genome
evolution.
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Introduction

It is becoming increasingly clear that the ordering of genes in

metazoan genomes is non-random [1,2]. Functionally related

genes are often located next to one another in the linear genome,

and this proximity can be essential for their coordinated regulation

during development [3]. Well-studied examples of this are the b-

globin gene locus [4] and the hox gene clusters [5,6]. Genome-scale

studies point at the existence of many more clusters of functionally

related genes [7–9]. In addition, analysis of transcriptome datasets

has shown that genes with a similar expression pattern are

frequently located in clusters in the genome. For example, testis-

and sperm-specific genes in Drosophila melanogaster [10,11] and

muscle-specific genes in Caenorhabditis elegans [12] are significantly

clustered. Analysis of genome-wide expression profiles during

Drosophila development has identified many clusters of coexpressed

neighboring genes, ranging from 10 to 30 genes in size [13].

Furthermore, the human genome shows large regions in which

most genes are expressed at high levels, alternating with regions

that contain predominantly lowly expressed genes [14,15]. These

observations strongly suggest that juxtaposition of genes in the

linear genome can facilitate their coordinated regulation. Howev-

er, the underlying molecular mechanisms are poorly understood.

Chromatin is a principal orchestrator of transcription. Neigh-

boring genes can be packaged together into a single chromatin

domain that may act as a regulatory unit [2,3,16,17]. Several

chromatin domains have been characterized in detail in a variety

of species [18–23]. However, it remains unclear whether such

domains are relatively rare, or represent a general principle of

genome organization. Here, we present a systematic survey of

chromatin domain organization of the D. melanogaster genome by

computational analysis of a broad panel of genome-wide

chromatin protein binding maps. Our results demonstrate that

at least half of the Drosophila genome consists of multi-gene

chromatin domains. Strikingly, these domains can be very large

and include dozens of genes. We provide evidence that most of the

newly identified domains are of functional relevance.

Results

A Compendium of Chromatin Protein Binding Maps
To systematically identify chromatin domains, we assembled a

compendium of genome-scale binding maps of 29 broadly selected

Drosophila chromatin components (Dataset S1). We included

previously published DamID and ChIP-on-chip datasets

[21,22,24–28] as well as newly generated DamID maps for 11

proteins (see Methods). The full list consists of heterochromatin

proteins, Polycomb group proteins, chromatin remodeling pro-

teins, high mobility group (HMG) proteins, various DNA binding

factors, histone modifications, and specialized histones (Table 1).

Most binding maps were obtained in the Kc167 cell line, which

provides a homogeneous cell population. Only the map of the
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variant histone H3.3 was derived from the S2 cell line, and the

maps of eve and Prospero from Drosophila embryos. At present, this

is the most extensive collection of genome-scale chromatin protein

binding maps in a metazoan.

Detection and Visualization of Clustering in Protein
Binding Maps

The definition of a multi-gene chromatin domain is not trivial.

Intuitively, it might be defined as a set of adjacent genes that are

all bound by a chromatin protein X. However, it is conceivable

that one or more genes loop out from a domain and do not bind

X. In this case, the domain would consist of two or more sub-

domains, and it is not obvious whether one should regard it as a

single larger domain or as multiple smaller domains. Both views

may in fact be correct; for example, the larger domain may

determine the overall expression pattern of the included genes,

while the sub-domains may act as separate fine-tuning units, and

the intervening gene(s) may separate the units. This is just one

theoretical example of a possible configuration; many different

types of domain structures may exist [2,3,16,17].

To obviate the need for detailed models, we took an unbiased

statistical approach. We defined chromatin domains as regions of

local enrichment in occupancy by a specific chromatin component

over multiple adjacent genes. We require that this local

enrichment is statistically significant, i.e., it must not be explainable

by random fluctuations. Practically, this means that this local

enrichment should not be observed when the order of genes in the

genome is randomly permuted. To detect and visualize regions of

local enrichment in our protein binding maps, we modified and

extended a previously reported sliding window method [15] (see

Methods). For each window of w consecutive genes, we tested

whether the distribution of protein occupancy values differs from

what is expected by chance, by comparing it to a null model in

which the linear order of genes in the genome is randomly

permuted. For each possible window position along each

chromosome arm, and each possible window size, we accordingly

computed a P-value representing the probability of observing the

same or a larger degree of linear clustering by chance. Note that

because all possible window sizes are analyzed, this approach

allows for the identification of hierarchical structures of domains

within domains. We emphasize that this approach does not

require any pre-defined threshold for the level of protein

occupancy, which would be arbitrary in the absence of objective

criteria for choosing such a threshold.

To visualize the P-values that quantify the local enrichment of

protein occupancy in multi-gene regions at all possible spatial

scales for each chromosome, we use a triangular graph we call

‘‘domainogram’’, in which window position is indicated on the

horizontal axis, window size on the vertical axis, and P-value by a

color scale. Fig. 1A shows a domainogram of the binding of

Heterochromatin Protein 1 (HP1) on chromosome arm 2R. This

graph reveals that a few large chromosomal regions are

significantly enriched for HP1 binding (bright purple and red

colors). The pericentromeric region shows strong enrichment of

HP1, consistent with previous reports [29,30]. In addition, a

telomere-proximal region of highly significant enrichment is

identified that was not previously known. Interestingly, this region

displays a nested organization: two smaller regions of enrichment

at ,18 and 20 Mb together are part of a substantially larger

region. No enrichments are seen after random permutation of the

gene order (Fig. 1C,D), underscoring that our statistical criterion

for spatial clustering is valid.

Non-Random Local Enrichments Are Abundant and Can
Be Dynamic

We systematically generated domainograms for all proteins in

the compendium (Fig. 2 and Supplementary Fig. S1). Strikingly,

nearly all proteins exhibit non-random enrichment at multiple

sites in the genome. In some cases, such as for Lamin (Lam;

Fig. 2A) and Polycomb (Pc; Fig. 2D) this is consistent with

previously reported evidence for clustering of target genes

[21,22,31]. For many other proteins, such as the HMG protein

D1 and the transcription factor Mnt (Fig. 2B and C), the non-

random genomic distribution has not been reported before. In

several instances, the patterns of enrichment suggest a nested

architecture, with larger domains subdivided into two or more

smaller regions of enrichment (e.g., Fig. 2A–C). More complex

enrichment patterns, sometimes covering a substantial part of a

chromosome arm, can also be seen (e.g., D1 on chromosome 2L,

Fig. 2B). Taken together, these results indicate that most

chromatin components are highly non-randomly distributed along

the Drosophila genome.

Most of the maps used for this analysis were obtained using

cDNA arrays to detect protein binding. This means that genes are

the units of mapping, and only protein binding at or in the

flanking regions (about 1–2 kb on either side) of genes is detected

[32]. To test whether this restriction might affect the identification

of regions of enrichment, we also constructed domainograms of

high-resolution tiling array DamID data of HP1. Comparison

showed that cDNA array data yielded essentially the same

enrichment patterns as tiling array data, although the latter

provide a more fine-grained view (Supplementary Fig. S2). To rule

out the possibility that the observed patterns of enrichment are the

result of an experimental bias of the DamID technique, we

compared DamID data for Pc with ChIP data for H3K27me3, the

histone modification that forms the primary docking site for Pc

[33] (Fig. 2D). Reassuringly, the domainograms are very similar.

We were surprised to find that 9 out of 29 proteins displayed

moderate but significant enrichment along the entire X chromo-

some (note the purple or red colors in the top parts of the X

chromosome domainograms in Fig. 2C and Supplementary Fig.

Author Summary

Genes are packaged into chromatin by a variety of
specialized proteins. Many different types of chromatin
exist, and each may regulate gene expression in different
ways. It was previously observed that neighboring genes
are sometimes packaged together into a single type of
chromatin, which can facilitate their coordinated regula-
tion. However, it has been unclear whether such multi-
gene chromatin domains are exceptional, or may occur
more frequently. Here, we report a systematic analysis of
genome-wide binding patterns of a large set of chromatin
components in the fruit fly Drosophila melanogaster.
Strikingly, we find that at least 50% of all genes in this
organism are packaged together with several of their
neighboring genes into a single type of chromatin. Each
chromatin domain can include dozens of genes and can be
made up of different combinations of chromatin proteins.
We show that genes in each domain often have similar
functions and are coordinately expressed during develop-
ment. Moreover, we find that many of these multi-gene
domains have been kept intact during evolution, indicat-
ing that they are important functional units. In summary,
multi-gene chromatin domains are much more common
than previously thought, and they are likely to play
important roles in the orchestration of gene expression.

Multi-Gene Chromatin Domains in Drosophila
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S1). For histone H3.3 in male S2 cells this was previously reported

and attributed to the dosage compensation mechanism [27], which

ensures ,2-fold increased expression of most genes on the single

male X chromosome [34,35]. The global X-enrichment of several

other proteins (Bicoid, brahma, eve, Groucho, HP1, HP6, MBD-

like, Mnt, Trl) in female Kc167 cells is surprising, but may be

linked to the observation that X-linked genes in females also

display slightly but significantly enhanced gene expression levels

compared to autosomal genes [36].

To assess whether domains of enrichment are stable or dynamic

entities, we compared HP1 binding patterns in Kc167 cells under

two different culturing conditions, viz. medium with serum (BPYE)

and without serum (HyQ). While some HP1 domains (e.g., in

pericentric regions) remain constant under these two conditions,

other domains appear to be dynamic (Fig. 2E and Supplementary

Fig. S1). For example, the large telomere-proximal region of

enrichment on chromosome 2R is only observed when the cells are

grown in BPYE, and is completely absent in HyQ (Fig. 2E). This

indicates that this region on 2R consists of a large cluster of

conditional HP1 target genes that bind HP1 simultaneously upon

an (yet unknown) intracellular signaling event that is triggered by

serum. We have also studied the dynamics of chromatin domains

formed by the protein HP6 by interfering with its interaction

partner HP1 (Fig. 2F; data from ref. [24]). After knock-down of

HP1, the formation of a prominent chromatin domain of HP6

binding is observed around position ,10 Mb on chromosome 2L,

a region that is also enriched in binding of Mnt (Fig. 2C) and

several other proteins (see below). These results show that external

signals or perturbation of chromatin complex composition can

influence the formation of chromatin domains.

Definition of Discrete Domains of Enrichment
While the domainograms are useful for visualizing regions of

local spatial enrichment, they do not provide precise domain

boundaries, as would be desirable for subsequent functional

analyses (see below). To this end, we developed a dynamic

programming algorithm that for each protein identifies the

optimal genomic partitioning into discrete domains. To capture

potentially nested domain structures, we performed this procedure

iteratively using a maximum domain size constraint, and

combined results for all possible values of this maximum domain

size. As a result, the domainogram is simplified to a set of partially

overlapping discrete domains of enrichment. For a detailed

description of our algorithm, see Methods. We refer to the

discrete domains identified by the partitioning algorithm as Blocks

of Regulators In Chromosomal Kontext (BRICKs). We note that

whereas some chromatin domains may be discrete in reality,

others may have less sharply defined borders. In the latter case the

discretization into BRICKs represents an oversimplification for

practical purposes.

Fig. 3A shows the BRICKs identified for HMG protein D1 on

chromosome arm 2L. When tested on simulated data that consist

of various discrete domains placed in a noisy background, our

algorithm identifies most domains correctly, with a low false-

Figure 1. Visualization of chromatin domains by ‘‘domainograms’’. To visualize local enrichment of a chromatin component, we calculate a
probability score for the enrichment in a window of w neighboring genes under a null model in which all genes are randomly permuted. This
calculation is done for all possible windows, ranging in size from a single gene to all genes on an entire chromosome arm, and for all possible window
positions. A color scale (ranging from black for non-significant scores close to 1, to red for highly significant scores ,1026, see color scalebar) is used
to visualize the probability scores in a triangular graph, which we term ‘‘domainogram’’. Horizontally, each score is plotted at the chromosomal
position of the center of the window, and vertically the windows are ordered by size. Thus, we obtain an intuitive visualization of local enrichments at
all possible scales. See Methods for a detailed description. A) Domainogram of HP1 binding on the right arm of chromosome 2. B) Genomic map of
HP1 binding used to generate the domainogram. C–D) domainogram plot and corresponding binding map after random permutation of the HP1
binding values along the genome. Genomic locations (Mb) are indicated below each graph in A–B.
doi:10.1371/journal.pgen.1000045.g001

Multi-Gene Chromatin Domains in Drosophila
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positive rate (Supplementary Fig. S3). Parameters were chosen

such that for randomly permuted datasets the algorithm discovers

,40 times fewer discrete domains than in the actual biological

binding maps, i.e., the estimated false discovery rate (FDR) is

,2.5%. Importantly, our algorithm was designed to discover the

intrinsic size of the binding domains: a larger region containing two

or more smaller BRICKs will only be parsed as a BRICK itself if

increased binding also occurs in the regions in between the smaller

BRICKs (Fig. 3B). Therefore, the nested domain structure that

can be observed between 14–18 Mb in Fig. 3A presumably reflects

a complex chromatin domain structure. Consistently, in computer

simulations of chromosomes with simple discrete domains, our

algorithm typically does not find nested or overlapping BRICK

patterns (Supplementary Fig. S3).

Figure 2. Genome-wide domainograms reveal non-random local enrichment of chromatin components. (A–C) domainograms for Lamin
(A), D1 (B) and Mnt (C) along all major chromosome arms. Simple and nested patterns of local enrichment are visible. D) Domainogram comparison
for Polycomb (mapped by DamID [21]) and H3K27me3 (mapped by ChIP [21]) on chromosome 3R. E) HP1 distribution on chromosome 2R in Kc167
cells grown in serum-containing (BPYE) and serum-free (HyQ) medium. A strong telomere-proximal region of enrichment is only observed in BPYE
medium (indicated by the red bar). Data from BPYE medium is the same as in Fig. 1A–B. F) Domainograms of chromosome 2L for HP6 binding after
RNAi of its binding partner HP1 and after a control RNAi (data from [24]). In D–F, only the bottom parts of the domainogram triangles are shown.
doi:10.1371/journal.pgen.1000045.g002

Multi-Gene Chromatin Domains in Drosophila
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BRICKs Reveal Combinatorial Relationships between
Subsets of Chromatin Proteins

To compare the spatial binding patterns of the 29 tested

proteins and histone marks, we used a visual representation in

which their respective BRICKs are stacked, providing a compact

simultaneous view of their chromosomal domain structure (Fig. 4A

and Supplementary Fig. S4). This revealed that several proteins

have strongly overlapping BRICKs, suggesting that these proteins

may act together to form a distinct chromatin domain. As

expected, heterochromatin components HP1, Su(var)3-9, HP3/

Lhr, HP4, HP5 and HP6 colocalize in BRICKS in pericentric

regions (Supplementary Fig. S4) and can also be seen to form a

small consistent domain at position ,8 Mb on chromosome 2L

(Fig. 4A). Likewise, the BRICK structures of the Polycomb Group

complex components Pc, Sce, esc and H3K27me3 are highly

similar. Other combinations of proteins are more surprising. For

example, the BRICKs for Mnt, H3K4me2, Sin3A, and eve

overlap strongly on chromosome 2L around ,10 Mb (Fig. 4A).

BRICKs of Lamin, His1, D1, and SuUR also overlap, between

,14 and ,18 Mb on chromosome 2L. Some proteins can be part

of different types of domains: In pericentric regions, D1 shares

BRICKs with HP1 and other heterochromatin components, but at

other sites D1 is found in various combinations with Lam, SuUR

and His1 (Supplementary Fig. S4). Similarly, Sin3A forms

different combinations with Sir2, H3K4me2, and Mnt (Fig. 4A

and Supplementary Fig. S4), and also with H3.3 and eve (with the

caveat that the latter profiles were not obtained in the Kc167 cell

line). These results are suggestive of a combinatorial ‘‘chromatin

code’’ that marks specific domains.

A merged overview of BRICKs in all chromosomes (Fig. 4B)

reveals that a substantial part of the Drosophila genome is organized

into chromatin domains. When BRICKs are limited to a

maximum of 100 consecutive genes, 50% of the genome,

corresponding to 54% of all genes, is covered by at least one

BRICK. These results demonstrate a strikingly high degree of

non-random organization of genes into chromatin domains.

BRICKs Represent Functionally Relevant Genomic
Domains

BRICKs typically show average protein binding log-ratios

ranging from ,0.4–3 (Supplementary Fig. S5), which corresponds

to ,1.3–8 fold enrichments of a chromatin component in each

BRICK relative to the genome-wide median value. Even subtle

modulations of protein-genome interactions may have biologically

relevant effects on gene regulation, but functional evidence is

required to confirm this. To directly address whether BRICKs

represent chromatin domains of functional importance, we

performed three different analyses.

First, we hypothesized that genes may be packaged together in a

BRICK to facilitate their synchronized expression during

development. To test this, we determined the degree of

developmental coexpression of genes within each BRICK, using

a previously published Drosophila gene expression dataset [37].

Fig. 5A illustrates that a large fraction of the BRICKs indeed show

substantial coregulation. Because neighboring genes are often

coregulated [13,37], we asked specifically whether genes within

BRICKs display a higher degree of coexpression than genes in

size-matched control windows located outside BRICKs. Statistical

analysis of these data (Fig. 5B, see Text S1 and Supplementary Fig.

S6) demonstrates that for about half of the investigated chromatin

proteins the degree of coregulation is significantly higher within

BRICKs than in control windows. This indicates that many

BRICKs may be important for the developmental synchronization

of gene sets. We note that this analysis is based on the assumption

that chromatin domains remain unaltered between the cells in

which the protein binding patterns were mapped (mostly Kc167

cells) and the developmental stages for which expression data was

obtained (six different stages ranging from early embryos to adult

flies [37]). While several reports indicate that some chromatin

domains indeed are very similar in different cell types, tissues, and

developmental stages [21,22,38], other domains are more plastic

(e.g., Fig. 2E and [22]). Our coexpression analysis does not take

into account such potential dynamics in domain structure, and

Figure 3. Identification of the most probable locations of
discrete chromatin domains. An algorithm based on dynamic
programming (see Methods) was used to identify the most probable
partitioning into discrete domains of local enrichment (BRICKs). A) Top
panel: domainogram of D1 on chromosome arm 2L. Bottom panel:
corresponding locations of identified BRICKs (up to a BRICK size of 100).
Nested BRICK structures can be identified, in which large BRICKs overlap
with smaller BRICKs. They are visualized as a stack of BRICKs, and are all
used for subsequent functional analyses. B) Simplified cartoon
illustrating that the BRICK detection algorithm only combines two
smaller BRICKs into one larger BRICK if the protein binding values
between the two smaller BRICKs are significantly elevated above
background. Thus, higher-level BRICKs are not just a trivial consequence
of two smaller BRICKS being in close proximity of one another.
doi:10.1371/journal.pgen.1000045.g003
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therefore may be expected to underestimate the correlation

between BRICK organization and coordinated gene expression.

Second, we asked whether genes within each BRICK have

common functions. To this end, we tested for enrichment of

specific Gene Ontology (GO) categories [39] within each BRICK

(see Methods). Fig. 5C shows that, at an estimated FDR of 1%

(Supplementary Fig. S7 and Text S1), roughly half of all BRICKs

are enriched for one or more GO categories. This number is

significantly higher than what is expected by chance, even if the

known genomic clustering of GO categories [7] is taken into

account (P = 0.017, based on 1,000 genome-wide circular

permutations of the association between genes and GO catego-

Figure 4. BRICK locations for all tested proteins. A) BRICKs on chromosome arm 2L. BRICKs smaller than 100 probed genes are shown for all
analyzed proteins. The proteins are ordered by hierarchical clustering, with proteins that have the strongest overlapping domains closest together in
the figure. B) Combined overview of the BRICKs for all proteins on all chromosome arms. BRICKs of different proteins are color-coded as indicated.
Vertical position corresponds to the number of genes contained in the BRICK. Note that a substantial part of the Drosophila genome (,50%) is
covered by at least one BRICK.
doi:10.1371/journal.pgen.1000045.g004
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ries). A striking example is a BRICK defined by the protein

Prospero (Supplementary Fig. S8); in this BRICK many genes

encode transcription regulators that are implicated in the Notch

pathway. In total, we find 150 GO categories enriched in one or

more BRICKs (data not shown). Fig. 5D summarizes the fraction

of GO-enriched BRICKs for all proteins separately. In conclusion,

the observation that BRICKs are frequently enriched for genes

with related functions argues that they are likely to serve as

Figure 5. Evidence for functional relevance of BRICKs. A–B) Developmental coexpression of genes within BRICKs. A) Combined BRICKs of all
proteins as in Fig. 4B, colored for the relative degree of developmental coregulation of the genes within each BRICK (average pairwise correlation
between all the genes in the domain). To be able to compare BRICKs of different sizes, we normalized the average pairwise correlation to a z-score by
dividing by the standard deviation of 1000 average pairwise correlations of a random subset of n genes (see Text S1). B) Statistical significance of
coregulation of genes within BRICKs, for each chromatin protein. For each BRICK a quantile score was determined, representing the rank of the
coregulation in the BRICK, compared to the set of all equally-sized windows. The P-value was calculated using a Kolmogorov-Smirnov test for
deviation from a uniform distribution, representing the null hypothesis that BRICKs do not show more coregulation than non-BRICK windows (see
Text S1 for details). The dotted line indicates the significance threshold (p,0.001). C–D) Shared functions of genes within BRICKs. C) BRICKs that are
significantly enriched for at least one GO category at an FDR cut-off of 1% are marked in green (see Methods). D) The fraction of GO-enriched BRICKs
for every chromatin protein. Next to each bar are the absolute numbers of GO-enriched and total BRICKs, respectively. E–G). Reduced numbers of
synteny breakpoints within BRICKs. E) Part of chromosome arm 2L, showing positions of synteny breakpoints (dotted blue vertical lines) relative to
BRICKs (black horizontal lines). Note that breakpoints tend to be located just outside BRICKs. F) Statistical significance of exclusion of synteny
breakpoints from BRICKs formed by Prospero. Combined BRICKs for all proteins, up to the indicated BRICK size, were tested for exclusion of synteny
breaks using a hypergeometric test. G) Statistical significance of exclusion of synteny breaks from BRICKs separated by chromatin protein. The P-
values are the smallest values taken from plots as in F) (see Supplementary Fig. S9).
doi:10.1371/journal.pgen.1000045.g005
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functional modules. Comparison between Figures 5A and C shows

that BRICKs enriched for GO annotation are often not enriched

for coexpression, and vice versa.

Third, we reasoned that if BRICKs are functionally important,

chromosomal rearrangements that disrupt the BRICK structure

should be subject to negative selection during evolution. To test

this, we analyzed the positions of synteny breakpoints in the

genome of D. melanogaster relative to D. pseudoobscura [40]. These

two species diverged about 25–50 million years ago [41–43].

Indeed, we find that synteny breakpoints are often located

adjacent to BRICKs, rather than within BRICKs (Fig. 5E).

Statistical analysis shows that BRICKS defined by His1, Prospero,

Lamin, SuUR and D1, with sizes up to 40 probed genes, have

significantly fewer synteny breaks (,67% reduction) than expected

based on the distribution of synteny breaks in the genome (Fig. 5F–

G and Supplementary Fig. S9). Larger BRICKs typically do not

show this reduction, possibly because their integrity as a single

domain is less important, or because they cannot be preserved at

the high overall rate of synteny breaks (on average one breakpoint

per 15 genes, median is 8). While we cannot strictly rule out that

syntenic breaks and chromatin domain boundaries have a

common mechanistic origin, the apparent evolutionary selection

against the break-up of chromatin domains suggests that many of

them are functionally important.

Together, these three lines of evidence support the functional

importance of BRICKs in the Drosophila genome.

General Sequence Properties of BRICKs
Finally, we asked whether BRICKs represent regions with

specific general sequence properties. First, we tested whether

BRICKs are regions of unusual gene density. For the set of

BRICKs of each protein we calculated the average gene density,

and compared it with the genome-wide average gene density

(Fig. 6A). This analysis shows that different sets of BRICKs vary

substantially in gene spacing. For example, consistent with

previous observations [22], genes within Lam BRICKs are

relatively widely spaced. The same is true for BRICKs of other

heterochromatin proteins, such as SuUR, esc and HP1. By

contrast, genes within BRICKs of H3K4me3, Mnt, and Sir2 have

very short intergenic regions. Also the lengths of genes within

BRICKs can vary between proteins (Fig. 6B). In BRICKs

associated with inactive chromatin (esc, Sce, Lam) genes tend to

be longer than in BRICKs of active chromatin (H3K4me3, Mnt).

Analysis of repeat content (Fig. 6C) showed that BRICKs formed

by classical heterochromatin proteins such as HP1, Su(var)3-9 and

HP1-associated proteins [24] are more repeat-rich than other

BRICKs, which is consistent with previous analyses [29,38].

BRICKs defined by individual proteins show only minor variation

in G/C content (Fig. 6D). It is important to note that the

combined BRICKs for all proteins do not show a systematic bias

related to gene density, gene size, repeat density, or G/C content.

Therefore it is unlikely that their detection is a systematic artifact

of variation in any of these parameters along the genome.

Discussion

The results presented here indicate that about half of the

Drosophila genome is organized into large chromatin domains, most

of which are functionally relevant. This estimate of the coverage of

the genome by domains is likely to be an underestimate for three

reasons. First, because the BRICK segmentation algorithm is

computationally intensive, we restricted the BRICK sizes to a

maximum of 100 genes. The domainograms however indicate that

substantial non-random clustering also occurs above this limit.

Second, even though our compendium of binding maps includes a

wide range of known protein complexes, many other proteins must

be mapped for a complete view. Third, we provided evidence that

at least for some chromatin proteins the domain structure may

depend on the cellular state. We predict therefore that maps of

protein binding in various cell types will reveal additional, cell-type

specific BRICKs. Taken these considerations into account, our

estimate that approximately half of the fly genome is organized in

chromatin domains is conservative.

Previous analyses of genome-wide expression data have

revealed that there are domains of similarly expressed genes in

the genome of Drosophila [Spellman, 2002, 12144710; Boutanev,

2002, 12478293; Stolc, 2004, 15499012]. Spellman and Rubin

have shown that ,20% of the genome can be found in

coregulated domains ranging in size between 10 and 30 genes,

with a median of 13. The BRICKs range in size between 2 and

100 with a median of 26. However, we stress that due to the very

different nature of the methods that were employed in both studies

this comparison should be interpreted with caution.

The domainograms and BRICK patterns suggest that chroma-

tin domains can have a complex, nested structure. It is tempting to

speculate that looping interactions take place in such nested

regions. It is noteworthy that transcription factors such as Trl, bcd,

and Jra also exhibit spatial clustering. These factors do not spread

along the chromatin fiber but instead have focal binding sites [44].

BRICKs of transcription factors must therefore be interpreted as

non-random clusters of focal binding sites. Genes in BRICKs

defined by transcription factors generally do not show simple

coexpression but tend to have common functions (Fig. 5B,D). This

is reminiscent of the mammalian b-globin locus, in which

functionally related genes are not coexpressed but instead are

transcribed in a temporally defined order. Several transcription

factors have multiple binding sites in the b-globin locus [45], and

looping interactions play an important role [19]. We therefore

speculate that some of the transcription factor BRICKs may be

similar in structure to the b-globin locus. Our BRICK database

(provided in GFF file format as Dataset S2) provides a rational

starting point for the selection of loci to probe for looping

interactions using the 3C/4C/5C technologies [46].

The surprisingly widespread occurrence of chromatin domains

has two major implications. First, chromatin domains provide a

plausible explanation for earlier observations that neighboring

genes in eukaryotic genomes are often co-regulated [13,37]. Our

results suggest that chromatin domains may at least be partially

responsible for the synchronized expression of neighboring genes,

although it cannot be ruled out that in some instances the

clustering of a chromatin mark may be the consequence rather

than the cause of this synchronized expression. Second, our data

suggest that chromatin domains impose considerable constraints

on genome evolution. Most likely, this is due to negative selection

of genome rearrangements that disrupt the integrity of chromatin

domains, but it is also possible that chromatin domains stabilize

the chromatin fiber and thereby physically prevent chromosome

rearrangements. In summary, the widespread chromatin domain

organization provides new clues towards the understanding of the

mechanisms of transcription regulation as well as genome

structure and evolution.

Methods

DamID and ChIP-on-Chip Data
Table 1 summarizes the protein binding maps that we used.

Published DamID and ChIP-on-chip profiles were taken from refs

[21,22,24–28,44]. In addition, we generated new DamID profiles
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for brm, Trl (GAGA factor), gro, Mnt, Sin3A and Sir2 using

previously reported Dam-fusion expression vectors [44,47–49],

and for full-length D1, DSP1, His1, MBD-like, and Su(var)3-7

using newly constructed Dam-fusion vectors. These new profiles

were generated in Kc167 grown in serum-containing medium as

described [44]. The DamID profile of HP1 in Kc167 cells grown

in serum-free Hyclone Insect-Xpress medium (‘‘HyQ’’) was not

previously published but was generated in parallel with our

already published profile of HP1 from cells in serum-containing

medium [24], allowing for direct comparison. Plasmid sequences

are available at http://research.nki.nl/vansteensellab. DamID

experiments were performed as described previously [50]. Binding

profiles represent the average of triplicate experiments, with one

experiment in the reversed dye orientation. Log2 ratios were

averaged across replicates. The raw data can be accessed via the

Gene Expression Omnibus under accession number GSE10219;

the combined binding data is also provided as Dataset S1, and the

set of BRICKs is supplied in GFF format as Dataset S2. All data

Figure 6. Sequence properties of BRICKs. For each type of BRICK (defined by a single chromatin component) the average value is plotted for A)
gene density; B) gene length; C) fraction of repetitive (i.e., non-unique) sequence; D) G/C content. All values are plotted as deviations from the
genome-wide average (red vertical lines).
doi:10.1371/journal.pgen.1000045.g006
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were generated in Kc167 cells, except for the maps of His3.3A, eve

and Prospero. His3.3A data are from the S2 cell line [27];

Prospero [25] and eve [26] data are from stage 10–11 and stage 17

embryos, respectively.

Except for the eve and Prospero maps, all data were generated

using 12k cDNA arrays. Each cDNA probe detects the binding at

or in the vicinity (,1–2 kb) of a gene [32]. Thus, genes are the

units of our analysis. To ensure that each cDNA probe constitutes

an independent datapoint, overlapping cDNA probes were

removed, using the following rules: 1) if a probe overlapped with

multiple other mutually non-overlapping probes we removed the

former probe from the dataset, 2) if two probes overlapped more

than 20%, the smaller of the two probes was removed.

Binding data of eve and Prospero were generated with genome-

wide tiling arrays [25]. To allow for direct comparison with the

cDNA array based data, we resampled the tiling array data, so that

we had one datapoint per gene. For this we used the gene

annotation from release 4.3 of the Flybase genome annotation

(http://www.flybase.net). For every gene in the genome we

calculated the average of all the probes encompassed by that

gene. As with the cDNA data, when two genes overlapped more

than 20%, the smallest gene was removed, with the exception of

genes that overlapped with multiple non-overlapping genes, in

which case the gene overlapping with multiple genes was removed.

After removal of overlapping genes we are left with 12,821 genes

for which we have reliable eve and Prospero data.

For the comparison of cDNA data to high-resolution data, the

HP1 tiling array data was not resampled to one datapoint per gene.

For the comparison we used the left arm of chromosome 2, which

contains .222k probes (1 probe per 100 bp) [29]. Since for large

numbers of probes the domainogram analyses become computa-

tionally intensive, the tiling array data was averaged into equal-sized

bins of 3 kb. These data were used as input to the algorithm.

Computation of P-Values for Multi-Gene Windows
Because DamID and ChIP log-ratios for a specific protein are

often not normally distributed (data not shown), we used a non-

parametric approach to evaluate local enrichment. For each

binding profile, probes are sorted in descending order according to

their DamID or ChIP ratio and converted to single-gene quantile

scores:

Qi~
ri{

1

2
N

Here N equals the total number of probes and ri is the rank for

probe i = 1,…,N. To integrate evidence for protein occupancy

across multiple adjacent probes for each window (i,w) of width w

ending at probe i, we compute a multi-gene P-value, Piw, from the

single-probe quantile scores (Qi2w+1, … , Qi), with i$w. We define

Piw so as to have a uniform distribution on the interval [0,1] if all

the Qi values, which are uniformly distributed by construction, are

independent random variables. To this end we use a transforma-

tion according to R.A. Fisher [51]: Given the product statistic

Siw~{2 ln P
w

j~1
Qi{wzj

Piw can be computed using a x2-distribution with 2w degrees of

freedom:

Piw~x2
2w(Siw)

Note that for w = 1, we have Pi1 = Qi. The Piw can be visualized

simultaneously in a triangular diagram (‘‘domainogram’’) using an

approach similar to Versteeg et al. [15]. Image files were created

using custom Perl scripts (available upon request).

Dynamic Programming Procedure for Defining BRICKs
To identify the most probable discrete domains of size .1

(BRICKs) from the Piw data structures, we used a dynamic

programming algorithm [52]. We modified our scoring scheme so

as to favor the ‘‘no-domains’’ segmentation consisting of only w = 1

windows by introducing a bias factor c and defining:

~PPiw~
cPiw (w~1)

Piw (ww1)

�

Each possible segmentation of the genome into non-overlapping

windows corresponds to a path {(i(k), w(k))} through the Piw

triangle, where k = 1,...,K runs over all K windows in the

segmentation (K#N). Here i(k) denotes the last gene in the k-th

window, while w(k) denotes the length of the k-th window. The

optimal segmentation minimizes an objective function equal to the

product over all windows constituting the path:

VN~ P
K

k~1

~PPi(k)w(k)

� �w(k)

This segmentation can be determined using the recursion relation

Vi~ min
w

Vi{w
~PPiw

� �w
; Wi~ arg min

w
Vi{w

~PPiw

� �w

and the initial condition V0 = 1. Backtracking starting from i = N

according to

i.izWi

defines the optimal segmentation.

To identify the nested structure present in the domain

organization, we perform the previously discussed computation,

with restriction of the maximum window size (wmax). This way the

segmentation is restricted to smaller window sizes, which leads to

the identification of smaller BRICKs. The analysis is iterated until

the segmentation for all wmax.1 has been determined. See Text S1

for more detailed information on the BRICKs algorithm.

GO Enrichment Analysis
The Flybase Gene Ontology annotation version 1.92 was used to

calculate the enrichment of GO categories. GO categories containing

fewer than 5 genes were ignored. Enrichment of GO categories in

each BRICK was determined using the cumulative hypergeometric

distribution, accounting for multiple testing of all combinations of

domains and GO categories. As both the BRICK structure and the

GO dataset are hierarchically organized, we estimated the FDR

using a Monte Carlo simulation in which all genes were randomly

permuted while keeping the assignment to GO categories and

BRICK structure intact. For each BRICK d, the P-value (cumulative

hypergeometric distribution) for each GO category was determined,

and the smallest of these was recorded as Pd. The false discovery rate

for each BRICK is then given by FDR(Pd), where

FDR(P)~
SD(P)T

D(P)
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In the denominator, D(P) represents the number of BRICKs

with a minimal p-value smaller than P, while the numerator

represents an average of the same quantity over random

permutations. Fig. S6 shows the distribution of the actual

p-values belonging to the BRICKs for all proteins combined

and the p-value distribution from 10,000 random genome

permutations.

We have also performed this analysis for BRICK sets defined by

individual proteins. In this analysis the FDR cut-off was based on

1000 randomizations. We have used this per protein calculation of

the FDR cut-off to determine the number of enriched BRICKs

shown in Fig. 5D.

A circular permutation test was performed to account for

possible uneven distribution of GO category members across the

genome. In this analysis we circularly permuted the genes along

the BRICK set. Using the above mentioned FDR(Pd) as a cut-off

we determined the number of BRICKs (BRICKGO) that fell below

this threshold. The distribution of BRICKGO of 1000 circular

permutations is compared to the actual number of significantly

enriched BRICKs to determine the P-value.

Synteny Analysis
Release 4.3 of the D. melanogaster genome annotation (Berkeley

Drosophila Genome Project) contains information on the start and

end location of regions that are syntenic to genomic regions in D.

pseudoobsura. These locations represent synteny breakpoints. Since

it has been reported that the scaffolds from the dot chromosome

(chromosome 4 in D. melanogaster and chromosome 5 in D.

pseudoobscura) could not reliably ordered in D. pseudoobscura [40], we

omitted chromosome 4 from our synteny calculations. On the

other chromosome arms of D. melanogaster, the distribution of the

synteny breakpoints is not significantly different from a uniform

random distribution (Kolmogorov-Smirnov test, P = 0.6498; data

not shown).

Synteny blocks spanning multiple genes sometimes contain

insertions of a single gene from a different locus in D. pseudoobsura.

In the genome annotation, these events are marked by two

syntenic block entries. We decided that insertion of a single gene

does not constitute a break in a synteny block, when it is

embedded in a larger region of synteny. For the formation or

break-up of chromatin domains, insertion of a single gene is likely

a less deleterious event then an actual break in synteny.

Depletion of synteny breakpoints from BRICKs was determined

as follows: Given the start and end position in a BRICK, we

determined the genes that are encompassed by the BRICK. Since

breaks in synteny almost exclusively occur in between genes, we

counted the number of intergenic regions within all the BRICKs

(n). Next we determined the number of synteny breakpoints within

the BRICKs (k). Given that there are 955 synteny breakpoints (K)

in the D. melanogaster genome and 14,351 intergenic regions (N), we

can calculate a probability score using the cumulative hypergeo-

metric distribution for k syntenic breakpoints in a BRICK

containing n intergenic regions.

The median synteny block size is 8 genes, whereas some

BRICKs are much larger (by definition up to 100 genes). Because

of this partial discrepancy in scale, we performed the synteny

analysis for subsets of BRICKs smaller than a given maximum size

(BRICK size is the number of probed genes per BRICK). Plotting

–log10(P-value) as a function of the maximum BRICK size

visualizes the size-dependent depletion of synteny breakpoints

from BRICKs (Fig. S8). Fig. 5G shows the P-values corresponding

to the most significantly depleted BRICK size range for each

protein.

Supporting Information

Figure S1 Domainograms for all tested proteins on all major

chromosome arms. Chromosome 4, which is only ,1.2 Mb in

size, is not shown. Color scheme is the same as in Figure 1.

Found at: doi:10.1371/journal.pgen.1000045.s001 (1.46 MB PDF)

Figure S2 Comparison of cDNA data with high-resolution tiling

array data. Domainograms for high resolution tiling array DamID

data (top) and cDNA array DamID data (bottom) for HP1 on

chromosome 2L.

Found at: doi:10.1371/journal.pgen.1000045.s002 (0.81 MB PDF)

Figure S3 Domainogram and BRICK identification from

synthetic data. Simulated data were generated to test the

visualization and detection of chromatin domains. We created a

virtual chromosome arm of 1200 genes, each associated with a

quantile score (range 0–1) representing the ranked binding of a

virtual protein. On this chromosome arm we placed seven

domains consisting of 5–100 neighboring genes that were assigned

quantile scores representing either ‘‘strong’’ (randomly selected

quantile scores 0.99–1.00), ‘‘medium’’ (0.90–0.99) or ‘‘weak’’

(0.75–0.90) binding. The remainder of the genes was assigned a

random value. A) Domainogram derived from an artificial dataset,

and B) the corresponding simulated data. Yellow, orange and red

rectangles denote the domains of weak, medium, and strong

binding, respectively. C) Plot showing the performance of BRICK

detection on 100 separate simulation runs. Horizontal lines denote

the coordinates of identified BRICKs in each simulation run

(vertical axis). Sensitivity of BRICK detection depends on the size

and intensity of the domain, but identification of spurious domains

or fusion of separate domains occurs very rarely.

Found at: doi:10.1371/journal.pgen.1000045.s003 (0.75 MB PDF)

Figure S4 BRICK plots showing the distribution of chromatin

domains for all proteins on each chromosome arm. BRICKs ,100

probed genes are shown. Each horizontal line depicts the position

of a BRICK. For each protein, the relative vertical location of the

lines represents the number of probed genes in a BRICK.

Found at: doi:10.1371/journal.pgen.1000045.s004 (0.38 MB PDF)

Figure S5 Enrichments of protein binding in BRICKs. Boxplots

are shown of the average protein binding (DamID or ChIP)

logratio for each BRICK size. Boxes show 25th–75th percentile,

and the horizontal line inside each box indicates the median.

Found at: doi:10.1371/journal.pgen.1000045.s005 (0.16 MB PDF)

Figure S6 Empirical cumulative distribution plots for quantile

scores for coregulation in domains. Figures show cumulative

distribution of quantile scores of coregulation (see Text S1 for

details on the calculation of quantile scores). Each figure represents

the coregulation level for one protein as indicated. Horizontal axes

represent quantile scores, vertical axes represent the relative

cumulative level for a given quantile score. The dashed gray line

represents the theoretical uniform distribution. In the top-left

corner of each graph is indicated the p-value according to the KS-

test, for deviation from a uniform distribution.

Found at: doi:10.1371/journal.pgen.1000045.s006 (0.94 MB PDF)

Figure S7 Empirical cumulative distribution of p-values for

enrichment of GO categories. P-values of enrichment for GO

categories were calculated using the cumulative hypergeometric

distribution. Empirical distribution of the p-values in the domains

is shown in black. The gray line denotes the empirical distribution

of p-values from 10,000 randomized genomes. The red dashed

line denotes the p-values for which the FDR is 0.01.

Found at: doi:10.1371/journal.pgen.1000045.s007 (0.27 MB PDF)
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Figure S8 A Prospero chromatin domain is enriched for genes

encoding transcription factors involved in Notch signaling. A)

Bottom part of a domainogram of chromosome 3R for Prospero

binding. Below the plot the corresponding BRICK structure is

shown. B) Chromosomal map showing tiling array data with log2

binding ratios for Prospero (Choksi et al. Dev Cell. 2006

Dec;11(6):775-89) in a BRICK region. C) Genes located in the same

region. Three major GO categories are indicated by different colors.

Found at: doi:10.1371/journal.pgen.1000045.s008 (1.07 MB PDF)

Figure S9 Synteny breakpoints are significantly depleted from

BRICKs defined by some proteins. Depletion of synteny break-

points from BRICKs is calculated using the cumulative hypergeo-

metric distribution. For every protein, barplots show the p-value as

a function of the maximum BRICK size. For a maximum BRICK

size, all BRICKs up to that size are included.

Found at: doi:10.1371/journal.pgen.1000045.s009 (0.47 MB PDF)

Text S1 Additional information on computational methods.

Found at: doi:10.1371/journal.pgen.1000045.s010 (0.57 MB PDF)

Dataset S1 Genome-wide binding data for all analyzed

chromatin components.

Found at: doi:10.1371/journal.pgen.1000045.s011 (1.72 MB ZIP)

Dataset S2 GFF file listing all BRICKs.
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