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Abstract

The recent development of whole genome association studies has lead to the robust identification of several loci involved
in different common human diseases. Interestingly, some of the strongest signals of association observed in these studies
arise from non-coding regions located in very large introns or far away from any annotated genes, raising the possibility that
these regions are involved in the etiology of the disease through some unidentified regulatory mechanisms. These findings
highlight the importance of better understanding the mechanisms leading to inter-individual differences in gene expression
in humans. Most of the existing approaches developed to identify common regulatory polymorphisms are based on
linkage/association mapping of gene expression to genotypes. However, these methods have some limitations, notably
their cost and the requirement of extensive genotyping information from all the individuals studied which limits their
applications to a specific cohort or tissue. Here we describe a robust and high-throughput method to directly measure
differences in allelic expression for a large number of genes using the Illumina Allele-Specific Expression BeadArray platform
and quantitative sequencing of RT-PCR products. We show that this approach allows reliable identification of differences in
the relative expression of the two alleles larger than 1.5-fold (i.e., deviations of the allelic ratio larger than 60:40) and offers
several advantages over the mapping of total gene expression, particularly for studying humans or outbred populations.
Our analysis of more than 80 individuals for 2,968 SNPs located in 1,380 genes confirms that differential allelic expression is
a widespread phenomenon affecting the expression of 20% of human genes and shows that our method successfully
captures expression differences resulting from both genetic and epigenetic cis-acting mechanisms.
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Introduction

Understanding the genetic causes of phenotypic variation in

humans still remains a major challenge for human genetics. In

hundreds of cases, a single DNA sequence polymorphism affecting

a protein coding sequence has been linked to a clear simple

Mendelian phenotype (see e.g. [1]) and, for a much smaller but

increasing number of cases, to more complex phenotypes [2–4].

Recent developments in high-density genotyping technologies

have led to the completion of several whole genome association

studies that test hundreds of thousands of markers for a specific

disease. While earlier studies essentially focused on variants in

coding sequences and regions immediately surrounding candidate

genes, whole genome scans interrogate, in an unbiased way, most

of the human genome including large regions of non-coding DNA

that had not been studied previously. Interestingly, some of the

strongest signals observed in these association studies are located in

non-coding regions, either in large introns (e.g. [5–7]) or far away

from any annotated loci (e.g. [8] and references therein). The

mechanisms connecting these polymorphisms to the etiology of the

diseases are still unclear but regulation of gene expression remains

an obvious candidate. It is thus becoming particularly important to

have a powerful and reliable method to easily test the influence of

DNA polymorphisms on gene expression. One of the approaches

commonly used to identify regulatory polymorphisms is to look for

statistical associations between variation in gene expression and

individual genotypes [9,10]. This method offers the advantage of

simultaneously analyzing thousands of genes using gene expression

arrays and has yielded fascinating results in yeast [11,12] and

mouse [13–16]. Its application in humans [17–24] suffers from

relatively low statistical power due to potential inter-individual

differences in a large number of causal variants involved in the

regulation of a specific gene [25], their modest effects and the

burden of the multiple testing correction necessary to take into
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account the large number of independent tests performed. In

addition, since this approach requires extensive genotype infor-

mation for all individuals, it is costly to apply to new samples. An

alternative approach is to compare the relative expression of the

two alleles in one individual: the effect of a polymorphism affecting

in cis the regulation of a particular transcript can be detected by

measuring the relative expression of the two alleles in heterozygous

individuals using a transcribed SNP as a marker [26–32]. Several

studies have used this approach in humans but have been

criticized for their low throughput or the apparent high variability.

Here we describe a novel array-based method that allows high-

throughput assessment of differential allelic expression. We used a

modified version of the Illumina GoldenGate genotyping platform,

the Allele-Specific Expression (ASE) assay, to assess the extent of

differential allelic expression for over 1300 genes in more than 80

human lymphoblastoid cell lines (LCLs). Our analyses include 352

genes located in ENCODE regions and chromosome 21 that have

been previously screened for cis-regulatory polymorphisms using

total gene expression [19]. This allows us to directly compare the

advantages and drawbacks of the two approaches in terms of

range, sensitivity and robustness. We specifically address the issue

of experimental noise and reproducibility of the findings and show

that biology, not experimental variability, is responsible for the

patterns observed. We discuss the relevance of our results for the

identification of the molecular mechanisms regulating gene

expression, as well as their implications for future genetic studies.

Results

Assessment of Differential Allelic Expression Using
Illumina ASE Assay

We first assessed the extent of differential allelic expression at

1,432 exonic SNPs using 81 individual LCLs with the Illumina

ASE technology (Figure 1 and Table S1 for the composition of the

Illumina ASE Cancer Panel). This technology uses primer

extension assays with fluorescence-labeled allele-specific primers

to measure the proportion of each allele separately at the genomic

and transcriptomic levels (Figure 2). Five hundred and twelve

SNPs (in 345 genes) displayed an expression level significantly

higher than background in at least three heterozygous individuals

and were further investigated (see Materials and Methods for

details). The extent of differential allelic expression at each SNP

was obtained by comparing the relative amount of each allele in

RNA to the ratio observed in DNA.

As a first effort to determine if the assay could reliably be used to

assess differential expression we generated spike mixes using

varying proportions of total RNA extracts from two individuals.

For 20 exonic SNPs located in expressed transcript, the two

individuals are homozygous for the different alleles (i.e. respec-

tively AA and BB), while for 192 SNPs one individual is

Author Summary

We describe a new methodology to identify individual
differences in the expression of the two copies of one
gene. This is achieved by comparing the mRNA level of the
two alleles using a heterozygous polymorphism in the
transcript as marker. We show that this approach allows an
exhaustive survey of cis-acting regulation in the genome;
we can identify allelic expression differences due to
epigenetic mechanisms of gene regulation (e.g. imprinting
or X-inactivation) as well as differences due to the
presence of polymorphisms in regulatory elements. The
direct comparison of the expression of both alleles nullifies
possible trans-acting regulatory effects (that influence
equally both alleles) and thus complements the findings
from gene expression association studies. Our approach
can be easily applied to any cohort of interest for a wide
range of studies. It notably allows following up association
signals and testing whether a gene sitting on a particular
haplotype is over- or under-expressed, or can be used for
screening cancer tissues for aberrant gene expression due
to newly arisen mutations or alteration of the methylation
patterns.

Figure 1. Experiment design and results obtained for the two panels used in the study. The Overall column corresponds to the
combination of the two panels. The detailed composition of each panel is presented on Supplemental Table S1.
doi:10.1371/journal.pgen.1000006.g001

Cis-Acting Regulation in Humans
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heterozygous and the other homozygous (i.e. either AB and AA, or

AB and BB). Since the expression of each gene may differ between

the two individuals, one does not expect to observe an exact

translation of the proportions of total RNA mixed to the ‘‘allelic’’

expression level. However, the allelic expression differences

estimated for the different spike mixes should be the proportional

to each other. For all homozygous/homozygous mixes (20 out of

20 SNPs) and 83% of the heterozygous/homozygous mixes (159

out of 192), we observed a significant linear correlation (p,0.05)

between the proportion of mixed total RNAs and the ‘‘allele-

specific expression’’ estimated by the assay (Figure 3 and

Figure S1).

We then tried to assess the threshold above which differential

allelic expression would be genuine: even if the two alleles are

equally expressed in one individual, we expect the ratio of allelic

expression measured at a given marker to deviate stochastically

from 50:50 due to experimental variability. In order to

differentiate technical noise from biological signal (i.e. the

differences in allelic expression due to differential cis-acting

regulation), we evaluated the extent of experimental variability

in the assay by comparing independent estimates of allelic

imbalance for duplicates of individual RNA. We used duplicated

measurements from 81 individuals at all SNPs expressed to

determine a robust estimation of the experimental variability (N =

31,503 duplicates). After averaging duplicate differences for each

SNP over all individuals, we observed than less than 3% of the

SNPs show a population average variability greater than 10% (see

Materials and Methods for more details and Figure S2). This level

of experimental variability corresponds to a ratio of allelic

expression of 60:40 (i.e. 1.5-fold difference). Thus, population-

average allelic expression ratio at any SNP lower than 60:40 can

be explained by experimental noise, while a SNP displaying a

population-average differential allelic expression greater than this

threshold most likely reflects a biological process affecting cis-

Figure 2. Overview of the Illumina Allele-Specific Expression assay. Genomic DNA and total RNA are separately converted into biotinylated
DNA and amplified using fluorescence-labeled universal primers following extension and ligation of allele-specific assay oligo-nucleotides. PCR
products are captured by locus-specific beads and the fluorescence of each dye (i.e. allele) at each locus is measured by quantitative fluorescence
imaging (see Materials and Methods for details).
doi:10.1371/journal.pgen.1000006.g002

Figure 3. Result of the spike mixes experiment for four genes.
The graph shows the logarithm of the dye ratio (y-axis) for four mixes of
total RNA extract (x-axis) of NA12155 (at 0 on the x-axis) and NA07000
(at 1 on the x-axis). The original RNA extracts mixed and the four mixes
for FRK (rs580396) are shown in blue, for GNAS (rs7121) in pink, for
ITPR3 (rs2229634) in yellow and for RAD52 (rs1051672) in green.
doi:10.1371/journal.pgen.1000006.g003
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regulation. We are interested in the present study in identifying

loci with common allelic expression differences and we thus

focused on population-average differential allelic expression: the

average over all heterozygous individuals of the extent of allelic

expression differences, regardless of which allele is over expressed

(this is addressed later). The identification of a single individual

with dramatic allelic expression difference is also possible using the

same approach (but a different detection cut-off) but is beyond the

scope of this paper. Among the 345 genes expressed in this first

panel (512 SNPs), 72 (87 SNPs) displayed an average level of allelic

imbalance larger than this 40:60 cut-off and were thus considered

to display significant differences in allelic expression (Figure 4).

These analyses rely on the observation of the three genotypes in

the population (i.e. AA, AB and BB). To also include SNPs with a

lower minor allele frequency for each it was not possible to observe

homozygotes for the minor allele in our small sample, we designed

a second analysis method using solely the heterozygous individ-

uals. If the alleles are differentially regulated we expect to observe

in some cases a very large variance in the ratio of the two alleles in

the population. We used this approach to determine SNPs for

which the heterozygous individuals harbor a variance of the allelic

ration higher than expected using a Maximum expectation

algorithm (see Materials and Methods for details). This approach

does not allow us to quantity the overall extent of differential allelic

expression but identifies 8 genes with differential allelic expression

that were not identified by the previous method.

When one considers the estimates of allelic expression obtained

using different SNPs in a same transcript showing significant

differences in allele expression (i.e. with a population-average ratio

greater than 60:40), we note that 36 out of 44 correlations between

individuals estimates are significant (for an average r2 of 0.83).

Individuals showing a large allelic expression difference at one

SNP display similar patterns at all heterozygous positions of the

transcript (an example is shown on Figure 5). This observation

supports our findings that the experimental variability is low in the

Illumina ASE assay and that this assay allows quantitative

assessment of differential allelic expression. Consequently, the

population-average estimates of allelic imbalance obtained with

different markers in the same transcript tend to be similar (Table

S2) but can vary since different individuals will be included in the

average (depending on whether they are heterozygotes at this

marker).

Validation of Allelic Imbalance Estimates Using
Quantitative Sequencing

To further assess the validity of our results, we randomly

selected 25 genes tested on the Illumina ASE platform and used

quantitative sequencing of RT-PCR products [33] to measure

allelic imbalance for the same SNP in the same individuals (Figure

Figure 4. Population-average estimates of allelic expression at 416 SNPs from the first panel. Each blue cross stands for one SNP and is
displayed on the left y-axis based on the average allelic ratio observed using all heterozygous individuals for this SNP. The SNPs are ranked on the x-
axis from 1 (SNP with the highest average allelic imbalance) to 416 (lowest average allelic imbalance). Green dots stand for SNPs in imprinted genes,
pink dots for SNPs in X-linked genes. The red line represents our significance threshold based on the estimation of experimental variability and
corresponds to an average allelic ratio of 40:60. The red crosses are the 25 SNPs also analyzed using quantitative sequencing of RT-PCR products and
are displayed on the right y-axis according to the strength of the correlation (Pearson’s r2) between the estimates of both methods (i.e., 1 indicates
complete correlation between both estimations, 0 no correlation). Non significant correlations (p.0.05) are indicated with r2 = 0.
doi:10.1371/journal.pgen.1000006.g004

Figure 5. Estimates of allelic expression using two SNPs
located in the IL1A gene. Each blue cross displays one individual
heterozygous at two SNPs in IL1A. The x-axis represents the estimate of
allelic imbalance using rs1304037, the y-axis the allelic imbalance
measured using rs17561. The two axes cross at 50:50 corresponding to
an equal expression of both alleles, the allelic ratio 100:0 corresponds to
complete transcriptional silencing of one allele, 0:100 to the silencing of
the other allele.
doi:10.1371/journal.pgen.1000006.g005
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S3). The selected genes consisted of eight autosomal genes with

significant allelic imbalance and 17 genes for which the level of

differential allelic expression did not reach our significance

threshold. We analyzed the same 81 individual LCLs using

RNA from the same extract as for the Illumina assay. Overall, we

observed a strong correlation between the estimates of allelic

imbalance obtained for each individual using the two methods for

the genes with a ratio of allelic expression larger than our 40:60

cut-off (r2.0.8 for 6 out of 8 genes, see Figure 6A as a example).

The correlations were not statistically significant for the genes for

which the average difference in allelic imbalance did not reach our

significance threshold (16 out of 17 genes, Figure 6B): minor

deviations observed in the allelic ratio for these genes likely

correspond to random variations and are therefore not expected to

be reproducible. The strength of the correlation (measured by

Pearson’s r2) for all 25 genes is shown on Figure 4. One SNP in

CD44 (rs8193) displayed a low but significant correlation between

our estimates of allelic imbalance obtained from the Illumina assay

and those using quantitative sequencing (p,1024, r2 = 0.4075),

even though the average level of allelic imbalance was below our

significance cut-off on the Illumina platform. Allelic imbalance at

CD44 has been previously reported [30] and it is likely that the

signal observed at that gene is real but corresponds to a low level of

differential expression. Two genes (ABL2, XRCC1) showed

significant allelic imbalance in the Illumina ASE assay (with a

mean allelic ratio of, respectively, 70:30 and 65:35) but were not

validated by quantitative sequencing. Manual inspection of the

Illumina results for these genes revealed that the allelic expression

ratios were estimated using a small number of homozygotes for the

minor allele (respectively, 1 and 2 individuals) which led to an

incorrect estimation of the expected dye ratio for heterozygotes

and to a general over-estimation of allelic imbalance. For further

analyses, we manually curated the list of all genes with significant

differential allelic expression to remove potential false positives due

to low number of homozygous individuals.

Reproducibility of Allelic Imbalance Measured in Cell
Lines

Our study uses lymphoblastoid cell lines (LCLs) and it remains

controversial whether culture conditions could artefactually

generate differential allelic expression. We therefore tested

whether allelic imbalance is influenced by harvesting the cells

after different numbers of passages. This allowed us to control the

effect of changes in the culture environment including pH,

nutrient concentration and cell density at the time of harvest. We

compared our estimation of allelic imbalance for three genes with

significant population-average allelic imbalance in 47 individuals

Figure 6. Cross-validation by quantitative sequencing. The correlations between the estimates of allelic imbalance using Illumina ASE assay
(x-axis) and quantitative sequencing (y-axis) are shown for all individuals heterozygous for IGF1 (A) and GLI1 (B). IGF1 displays significant population-
average allelic imbalance (with a mean allelic ratio of 60:40) and the estimates from quantitative sequencing are very similar with those from Illumina.
In contrast, GLI1 did not show significant allelic imbalance (the population-average ratio is close to 55:45 below the significance threshold of 60:40)
and the estimates from quantitative sequencing of the same individuals are not correlated with those of Illumina (as expected if they only result from
stochastic noise).
doi:10.1371/journal.pgen.1000006.g006

Cis-Acting Regulation in Humans

PLoS Genetics | www.plosgenetics.org 5 2008 | Volume 4 | Issue 2 | e1000006



using recently thawed LCLs harvested after the 2nd, 4th and 6th

successive passages (respectively, ‘‘growths’’ 1, 2 and 3). The

correlations between the allelic imbalance estimations are

displayed in Figure S4 for the comparison of growths 2 and 3.

The estimations of allelic imbalance after different passages were

very similar to each other (r2.0.9), supporting the idea that

differential allelic expression is little influenced by variations in

culture environment.

Comparison of Differential Allelic Expression with Total
Gene Expression Association

An alternative approach to identifying cis-regulatory polymor-

phisms is to test for statistical association in a population between

total gene expression measurements and the genotypes at markers in

or surrounding the transcript. Interestingly, one of the genes

showing the most marked difference in allele expression in our

analysis is one of the 14 genes identified by Cheung and colleagues

in a previous genome-wide study [17]. One comprehensive analysis

was recently conducted for 512 RefSeq genes in ENCODE regions

and chromosome 21 using LCLs from 60 unrelated individuals

genotyped by the HapMap project [19]. In order to compare the

respective strengths and weaknesses of total gene expression

mapping and differential allelic expression, we designed a second

panel that includes SNPs in the same genomic regions to analyze the

same individual LCLs (Figure 1 and Table S1 for details). Using the

information from the HapMap phase I (release 16) to select

common exonic SNPs, we were able to include 228 and 124 genes

from, respectively, ENCODE regions and chromosome 21, while

Stranger and colleagues selected 321 and 191 genes (after screening

for genes with high variance in their expression among individuals,

see Materials and Methods for details). From the regions analyzed

by Stranger and al., two-hundreds and ninety SNPs (in 170 genes)

showed an expression level significantly higher than the background

in three or more heterozygous individuals and were further

investigated. Forty-nine out of 170 genes show significant level of

differential allelic expression including 6 out of the 21 genes

identified by Stranger and colleagues and present in our panel.

Additionally, TTC3 which shows significant association between

total gene expression and genotypes in the study by Stranger et al.

shows patterns of allelic expression consistent with differential allelic

expression (including a very high correlation between the extent of

differential allelic expression estimated using different SNPs) on the

Illumina ASE assay, even though it did not pass the significance cut-

off. Overall in this second panel, 497 SNPs in 317 genes were

expressed in three or more heterozygous individuals (out of 1536

SNPs in 674 genes) and 78 SNPs in 65 genes showed a significant

level of differential allelic expression (Figure 1).

Intronic SNPs Can Be Used To Assess Differential Allelic
To test whether intronic SNPs could be used instead of exonic

SNP, we included for each gene on the second panel one intronic

SNP. In general, intronic SNPs were less successfully analyzed and

passed our expression threshold only for genes highly expressed in

LCLs (Figure S5). This finding is consistent with previous

observations [30] and the low proportion of unspliced mRNA

(heteronuclear RNA) in cells relative to spliced transcripts. If the

intronic SNP of a gene was detected in the RNA extract, it

typically yields estimates of differential allelic expression very

similar with those obtained using exonic SNPs.

Differential Allelic Expression in the Human Genome
Overall, 177 out of 1,009 expressed SNPs (in 140 out of 643

genes expressed, 22%) display population-average ratios of allelic

expression larger than 40:60 or an higher than expected variance

in allelic expression among heterozygous individuals and are thus

unlikely to result solely from stochastic variation in the experiment

(Figure S6). Table 1 shows the 133 SNPs (100 genes) with

significant allelic imbalance after manual curation to remove

possible false positives due to a low number of individual

homozygous for the minor allele (this list is likely over-conservative

and the complete data is presented in Table S2).

Many of the genes with the highest extent of allelic imbalance in

LCLs are located on the X-chromosome. While it is known that

one allele at most X-linked genes is silenced in females by

inactivation of one entire chromosome [34,35], we would expect

that a polyclonal cell population (in which half of the cells

inactivate one X chromosome and the other 50% inactivate the

alternate X chromosome) would give a similar level of expression

for both alleles. However, all X-linked genes on our two SNP

panels (22 SNPs in 12 genes) were among the top 5% of genes with

most dramatic allelic imbalance patterns. The extent of allelic

imbalance at a given gene varies among individual LCLs but

interestingly, the patterns of allelic imbalance are very consistent

across genes for a given individual (Figure S7). Additionally, the

inheritance of the expressed allele (determined, when possible,

using the pedigree information for the two families included in this

study) appeared random. It has been previously proposed that the

extent of clonality of a cell line could explain the patterns of allelic

imbalance at genes with random mono-allelic expression [30]:

clonal cells will all have the same X chromosome inactivated and

thus display very high ratios of allelic imbalance. In contrast, cell-

lines composed of a polyclonal population of lymphoblasts will

have one or the other of their X chromosomes inactivated in

different cells and thus an apparent expression of both alleles (i.e.,

a low extent of differential allelic expression). Our observations at

X-linked genes are consistent with this hypothesis and the biased

clonality of these LCLs, which were created over 20 years ago and

passaged numerous times (see also [30]).

The two autosomal genes displaying the most dramatic allelic

imbalance patterns have previously been shown to be imprinted in

humans: PEG10 [36] and SNRPN [37]. In addition, KCNQ1,

MEST and ZNF215 which are imprinted in humans [38–40] also

show significant differences in allelic expression (Table 1). The

mode of inheritance of the expressed allele also corresponds, in

each case, to what has been described for the expression of these

genes: for PEG10 and SNRPN, heterozygous individuals express

the paternally-inherited allele (i.e. maternally imprinted) while for

KCNQ1 the maternally-inherited allele is expressed. Our limited

pedigree information is not conclusive for MEST and ZNF215.

The only other known imprinted gene analyzable in our panel,

PLAGL1 [41,42] did not pass the significance threshold (i.e. an

allelic ratio greater than 60:40) but shows a population average

allelic imbalance larger than 55:45 and a high correlation between

the two SNPs analyzable in the panel (rs2076684 and rs9373409);

therefore it likely represents a significant difference in allelic

expression.

The 83 remaining genes (103 SNPs) with significant population-

average allelic imbalance included several genes for which allelic

imbalance had been shown in previous studies (e.g. IL1A or IGF1

described in [30]). For some genes (e.g., CHI3L2), one allele/

haplotype is clearly expressed more than the other in heterozy-

gotes and the inheritance pattern in families supports a genetic

cause for allelic imbalance. For other genes, neither the direction

of allelic imbalance nor the pedigree analysis allowed us to easily

differentiate the genetic/epigenetic cause of the differential allelic

expression (Table 1). For 56 genes with significant differences in

allelic expression we tested whether differential allelic expression

Cis-Acting Regulation in Humans
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Table 1. Genes with significant allelic expression difference.

rs Gene Panel Chr
#
Hets

Variance &
Mean Average AI

rs2292305 THBS1 Cancer 15 13 Mean shifted NA

rs2288539 NR2F6 Cancer 19 18 Mean shifted NA

rs2459216 OAT Cancer 10 6 High variance NA

rs3750105 PEG10 Cancer 7 8 High variance NA

rs3745410 LILRB3 Encode 19 5 High variance NA

rs2839500 TMPRSS3 Encode 21 13 High variance NA

rs546782 FGF9 Cancer 13 10 High variance NA

rs17756426 DDX43 Encode 6 6 High variance NA

rs1893963 DSC2 Cancer 18 14 High variance NA

rs9978281 C21orf7 Encode 21 12 High variance NA

rs2834601 CLIC6 Encode 21 8 High variance NA

rs2070807 DNASE1L1 Encode X 5 High variance NA

rs705 SNRPN Cancer 15 42 High variance 95:05

rs7810469 PEG10 Cancer 7 12 High variance 95:05

rs13073 PEG10 Cancer 7 35 High variance 95:05

rs2240176 FLJ35801 Encode 22 18 95:05

rs311683 DDX43 Encode 6 15 High variance 90:10

rs5956583 BIRC4 Cancer X 21 High variance 90:10

rs1056831 CHI3L2 Cancer 1 39 90:10

rs1050757 G6PD Encode X 6 Mean shifted 90:10

rs1474593 BIRC4 Encode X 19 High variance 90:10

rs8371 BIRC4 Cancer X 20 High variance 85:15

rs1800291 F8 Encode X 6 85:15

rs2734647 MECP2 Cancer X 12 High variance 85:15

rs1057403 BTK Cancer X 4 85:15

rs1059701 IRAK1 Cancer X 14 High variance 85:15

rs700 BTK Cancer X 22 High variance 85:15

rs9018 FHL1 Cancer X 4 85:15

rs2734647 MECP2 Encode X 10 85:15

rs3813455 GAB3 Encode X 10 High variance 85:15

rs5945431 PLXNA3 Encode X 9 High variance 85:15

rs5958343 BIRC4 Cancer X 26 High variance 85:15

rs5987266 PLXNA3 Encode X 10 High variance 85:15

rs311686 DDX43 Encode 6 17 High variance 85:15

rs9856 BIRC4 Cancer X 24 High variance 85:15

rs6151429 ARSA Encode 22 24 85:15

rs17330644 BIRC4 Encode X 15 High variance 80:20

rs1050705 F8 Encode X 12 High variance 80:20

rs11887 VBP1 Cancer X 12 High variance 80:20

rs12877 DNASE1L1 Cancer X 4 80:20

rs10798 KCNQ1 Cancer 11 31 High variance 75:25

rs6571303 CXorf12 Encode X 8 75:25

rs9394782 NCR2 Encode 6 15 75:25

rs183436 ABCG1 Encode 21 36 75:25

rs6691569 FCRL3 Encode 1 12 75:25

rs17561 IL1A Cancer 2 21 High variance 75:25

rs2278699 ZAP70 Cancer 2 3 75:25

rs8535 CHI3L2 Cancer 1 38 High variance 75:25

rs1056825 CHI3L2 Cancer 1 38 High variance 75:25

rs1304037 IL1A Cancer 2 26 High variance 75:25

Table 1. cont.

rs Gene Panel Chr
#
Hets

Variance &
Mean Average AI

rs1571858 GSTM3 Encode 1 17 High variance 75:25

rs3817405 PLXDC2 Cancer 10 12 High variance 75:25

rs10863 MEST Cancer 7 29 High variance 70:30

rs10336 CXCL9 Cancer 4 11 High variance 70:30

rs5351 EDNRB Cancer 13 22 High variance 70:30

rs1022477 RIBC2 Encode 22 26 70:30

rs6007897 CELSR1 Encode 22 10 High variance 70:30

rs11264793 FCRL3 Encode 1 24 70:30

rs4445669 IGSF4 Cancer 11 40 High variance 70:30

rs4767884 PXN Cancer 12 26 70:30

rs1041985 CDH2 Encode 18 38 70:30

rs140519 KLHDC7B Encode 22 30 70:30

rs17197 PTGER2 Encode 14 10 70:30

rs1803965 MGMT Cancer 10 5 70:30

rs2837029 C21orf13 Encode 21 15 Mean shifted 70:30

rs724558 SERPINB10 Encode 18 23 70:30

rs6007594 C22orf8 Encode 22 28 70:30

rs7561 LAMB1 Cancer 7 21 High variance 70:30

rs165602 NEFH Encode 22 6 70:30

rs10593 ITGB1BP1 Cancer 2 23 High variance 65:35

rs1042531 PCK1 Encode 20 9 65:35

rs1025689 IL17RB Cancer 3 29 65:35

rs225334 TFF2 Encode 21 17 65:35

rs17207369 LILRP2 Encode 19 18 65:35

rs3856806 PPARG Encode 3 5 High variance 65:35

rs300239 ENC1 Cancer 5 27 65:35

rs677688 IMPACT Cancer 18 7 65:35

rs6104 SERPINB2 Cancer 18 19 High variance 65:35

rs8097425 SERPINB10 Encode 18 24 65:35

rs1071676 IL1B Cancer 2 29 High variance 65:35

rs9612234 GNAZ Encode 22 16 65:35

rs2024233 WNT2 Encode 7 24 High variance 65:35

rs7927012 TRIM6 Encode 11 30 65:35

rs2024233 WNT2 Cancer 7 15 High variance 65:35

rs162549 CYP1B1 Cancer 2 22 High variance 65:35

rs2075760 PLSCR3 Cancer 17 19 65:35

rs2832236 C21orf7 Encode 21 40 High variance 65:35

rs15017 MOXD1 Encode 6 6 High variance 60:40

rs1053474 IMPACT Cancer 18 31 60:40

rs7120209 TRIM6 Encode 11 13 60:40

rs958 MAPK10 Cancer 4 28 60:40

rs7914 MCAM Cancer 11 31 High variance 60:40

rs12593359 RAD51 Cancer 15 44 60:40

rs1368439 IL12B Encode 5 23 60:40

rs1103229 PPIL2 Encode 22 26 60:40

rs2839600 NDUFV3 Encode 21 17 60:40

rs3734744 MOXD1 Encode 6 11 60:40

rs8807 HLA Cancer 6 15 60:40

rs743616 ARSA Encode 22 37 60:40

rs6214 IGF1 Cancer 12 31 High variance 60:40
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could be statistically associated to one of the SNP in the vicinity of

the gene genotyped by the HapMap project (see Materials &

Methods for details). The results of these tests for SERPINB10 and

ABCG1 are shown on Figure 7 and the strongest nominal

association for each gene is displayed on Table 2. Twenty-three

genes still display statistical significant associations after Bonferroni

correction for multiple testing (highlighted in green on Table 2)

showing a clear enrichment relative to the 2–3 associations

expected by chance. Our power to detect a significant association

between a HapMap SNP and the under-/over-expressing

chromosome in this setting is low due to our reduced sample

size (only the heterozygous individuals are taken into account in

this analysis) and the number of regulatory haplotypes identified is

thus likely underestimated. Additionally, many SNPs are tested for

each gene and it is thus possible that some of the regulatory

haplotypes result from spurious associations (i.e. they are false

positives). One argument against a very high rate of false positive

in our analysis is that imprinted genes such as MEST or PEG10 do

not show any signal of association (Figure S8) consistent with the

fact that the cis-regulatory mechanism at these genes is not

encoded in the DNA sequence. To further investigate the validity

of our association, we attempted to independently confirm these

regulatory haplotypes by testing for the statistical association

between one SNP in the regulatory haplotype and gene expression

level. We used gene expression measurements performed at the

Wellcome Trust Sanger Institute (kindly provided by M. Dermitza-

kis) on the same individual cell lines assayed by Illumina gene

expression arrays. For each gene, we tested whether the homozy-

gotes for the regulatory haplotype associated with low allelic

expression in heterozygotes show a significantly lower gene

expression level than the homozygous individuals for the regulatory

haplotype associated with high allelic expression. We also performed

locus-specific RT-PCR and quantified the level of gene expression

using SYBR-Green for eleven genes for which differential allelic

expression was significantly associated with allelic expression but for

which expression data were not available (2 genes) or genes with

strong association with a regulatory haplotype but that were not

validated using the Sanger dataset (9 genes). Overall, out of the 47

genes with a significant association between a SNP (or several,

defining the regulatory haplotype) and differential allelic expression

at the nominal cut-off, 10 were confirmed using gene expression

measurements while 5 other genes showed a trend but did not reach

statistical significance (Table 2).

Discussion

Biology, Not Experimental Noise, Is Responsible for
Differential Allelic Expression

We analyzed differences in relative allelic expression (or allelic

imbalance) at 1,380 human genes using 2,968 SNPs and more

than 80 lymphoblastoid cell lines from individuals with European

ancestry. Using quantitative sequencing we validated our results

for a subset of genes and showed that the experimental variability

in both settings is low and that the Illumina ASE assay and

quantitative sequencing of RT-PCR products yield reproducible

estimates of allelic imbalance consistent with each other. Overall,

the experimental noise is much lower than the difference in

relative allelic expression observed at many loci and therefore

cannot be responsible for it. Additionally, the high concordance of

the results obtained using different SNPs in the same transcript

supports our findings that allelic imbalance, as we estimated it, is

not an experimental artefact but reflects inherent biological

differences in the relative expression of both alleles in heterozygous

individuals. We also showed that lymphoblastoid cell lines, despite

being simplified biological materials, are suitable resources to

investigate mechanisms of gene regulation. Here, we demonstrated

that our estimation of allelic imbalance is little affected by growth

conditions and that LCLs harvested from different passages yield

very similar results. Finally, the results efficiently recapitulate the

consequences of the epigenetic mechanisms established in the

individuals from which the cells have been derived (see also [43]).

We are therefore confident that, overall, the patterns of allelic

imbalance we observed are neither experimental artifacts, nor

specific to the material studied, but represent a common biological

phenomenon affecting human gene expression.

Table 1. cont.

rs Gene Panel Chr
#
Hets

Variance &
Mean Average AI

rs2822445 RBM11 Encode 21 38 60:40

rs4947963 EGFR Encode 7 19 60:40

rs5275 PTGS2 Cancer 1 41 60:40

rs2257505 MGC33648 Encode 5 29 60:40

rs1029365 FLJ21062 Encode 7 30 60:40

rs2839536 TSGA2 Encode 21 19 60:40

rs6518322 LOC284837 Encode 21 29 60:40

rs2258119 C21orf91 Encode 21 25 60:40

rs2229730 CSK Cancer 15 4 60:40

rs2206593 PTGS2 Cancer 1 10 High variance 60:40

rs2829877 JAM2 Encode 21 17 60:40

rs1053395 TUBB4 Cancer 19 32 60:40

rs1044104 BMP6 Cancer 6 22 60:40

rs1801719 F2R Cancer 5 31 60:40

rs235768 BMP2 Cancer 20 7 High variance 60:40

rs2239730 ZNF215 Cancer 11 41 60:40

rs2270121 GAS7 Cancer 17 38 60:40

rs963075 SERPINB10 Encode 18 32 High variance 60:40

rs4820268 TMPRSS6 Encode 22 38 60:40

rs4798 ITGB1BP1 Cancer 2 34 60:40

rs9782 ASCL1 Cancer 12 28 60:40

rs180817 BCR Cancer 22 15 60:40

rs406271 TFRC Cancer 3 33 60:40

rs1476217 FGF2 Cancer 4 43 High variance 60:40

rs2239731 ZNF215 Cancer 11 44 60:40

rs10916 CYP1B1 Cancer 2 13 High variance 60:40

rs2230033 KCNJ15 Encode 21 33 60:40

rs3088440 CDKN2A Cancer 9 31 60:40

rs2855658 CYP1B1 Cancer 2 37 High variance 55:45

rs14983 MMP7 Cancer 11 22 High variance 55:45

rs3747676 FGF2 Cancer 4 42 High variance 55:45

rs10502001 MMP7 Cancer 11 19 High variance 55:45

rs2066575 DLEU1 Cancer 13 27 High variance 55:45

#Hets: number of heterozygous individuals which express the transcript.
Variance & Mean: indicates whether the analyses of variance/mean allelic
expression detected significant deviation of the expression of both alleles (see
Materials and Methods for details).
Average AI: population-average difference in allelic expression using all
individuals heterozygous at this position (rounded down). These values
correspond to values reported on the y-axis on Figure 4 and Figure S6.
doi:10.1371/journal.pgen.1000006.t001
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Differential Allelic Expression Identifies Consequences of
Epigenetic Mechanisms of Gene Regulation

We showed that LCLs derived from female individuals still

harbor the consequences of X-inactivation at all X-linked genes

investigated, with one allele being transcriptionally silenced [34].

The extent of allelic imbalance detected at X-linked genes can

vary among LCLs due to the various degrees of clonality of these

cells but clonal LCLs consistently show complete silencing of one

allele at all X-linked genes investigated (Figure S7). In addition,

imprinting, established in the germ lines of the parents of the

individuals from which the cells are derived [44], is also

maintained in LCLs. In our experiments, PEG10, SNPRN,

MEST and KCNQ1 show reduced or absent expression of one

Figure 7. Association mapping of allelic imbalance to regulatory haplotypes for SERPINB10 (A) and ABCG1 (B). The green track shows
the –log(p.value) for the association of the alleles for each SNP with the over-/under-expressing chromosome (i.e. the higher the bar, the strongest
the association). The linkage disequilibrium pattern for the CEPH individuals genotyped by the HapMap project is displayed below (using r2).
doi:10.1371/journal.pgen.1000006.g007
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Table 2. Results of the association mapping and validation assays.

Gene Chr # Hets Association Sanger RT-PCR Mapped to

ABCG1 21 18 2.20E-10 6.81E-01 5.78E-01 Intron

ARSA 22 17 2.26E-05 NA Gene

ASCL1 12 13 1.69E-02 1.37E-02

BCR 22 6 6.06E-02 9.83E-01

BMP6 6 5 4.76E-02 8.62E-01

C21orf13 21 9 4.11E-05 No data 3.78E-02 Gene-59

C21orf7 21 12 3.71E-01 7.06E-01

C21orf91 21 17 1.54E-08 8.47E-04 Gene

C22orf8 22 8 1.55E-04 No data Gene

CDH2 18 22 5.32E-05 7.00E-01 Gene

CXCL9 4 7 4.66E-03 3.43E-01 Whole Region

CYP1B1 2 17 2.11E-06 1.43E-02 Gene-59

DDX43 6 9 3.47E-01 5.56E-01

EDNRB 13 14 7.03E-03 6.17E-01 Whole Region

EGFR 7 6 4.55E-01 6.21E-01

F2R 5 10 1.08E-05 7.32E-01 9.65E-02 39UTR

FCRL3 1 14 6.88E-05 No data 8.04E-03 Gene-39

FGF2 4 22 6.00E-03 7.63E-01 Gene-39

FLJ35801 22 13 4.72E-02 1.23E-01

GAS7 17 12 7.40E-07 2.96E-01 1.45E-01 39UTR

GNAZ 22 5 7.94E-03 6.42E-01 1.16E-01 Gene-39

IGF1 12 13 2.38E-01 9.17E-01

IGSF4 11 15 1.70E-03 2.91E-01 2.59E-01 Gene-39

IL12B 5 13 1.92E-07 4.51E-02 Whole Region

IL17RB 3 14 5.98E-06 6.81E-01 7.33E-01 59

IL1A 2 9 1.49E-01 8.74E-01

IMPACT 18 11 7.52E-03 6.63E-01 59distal ?

ITGB1BP1 2 18 1.58E-03 No data Gene

JAM2 21 9 2.26E-03 NA 59 ?

KCNJ15 21 13 1.69E-02 3.25E-01 Gene

KCNQ1 11 21 2.07E-02 1.59E-01

KLHDC7B 22 21 3.72E-12 No data Gene-39

LILRP2 19 10 2.30E-02 No data

LOC284837 21 16 3.73E-02 No data

MAPK10 4 11 2.84E-06 5.25E-01 Gene

MCAM 11 12 6.44E-04 5.21E-01 Gene/39

MEST 7 9 1.53E-01 5.50E-01

MGC33648 5 21 4.40E-06 3.59E-05 59

MMP7 11 8 4.66E-03 7.46E-01

MOXD1 6 8 6.99E-03 1.12E-01 59

NDUFV3 21 11 2.84E-06 3.73E-05 Gene-39

PEG10 7 22 4.59E-02 NA

PLSCR3 17 10 1.98E-02 2.22E-01

PLXDC2 10 8 7.69E-02 3.40E-02

PTGS2 1 5 2.06E-01 NA

PXN 12 14 4.23E-04 9.24E-01 Gene-39

RBM11 21 10 1.08E-05 4.59E-01 1.71E-01 39

RIBC2 22 12 7.40E-07 No data Gene

SERPINB10 18 22 1.84E-05 5.98E-11 59

SERPINB2 18 10 1.19E-04 2.98E-01 Gene-59
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allele and, when the mode of inheritance can be determined, it

corresponds to the imprinting mechanism described in the

literature (i.e. PEG10 and SNPRN are maternally imprinted,

KCNQ1 is paternally imprinted). We thus observe extensive

differential allelic expression (i.e. allelic ratio larger than 70:30) for

all genes whose expression is known to be epigenetically regulated.

This clearly shows that analysis of differential allelic expression is a

suitable method for identifying the consequences of epigenetic

mechanisms of gene regulation. The Illumina ASE assay would

thus provide an efficient method to screen tumor tissues and

identify patterns of differential allelic expression resulting from

aberrant methylation or loss of imprinting that are known to be

involved in the etiology of cancers [45–47].

Interestingly, IMPACT which shows significant extent of allelic

imbalance at two SNPs (rs677688 and rs1053474) in our study, is

known to be imprinted in mice [48] but not in humans [49]. The

mode of inheritance of the over-expressed alleles could not be

determined using the two families available in our study (i.e. the

parents were always homozygous for the same allele). The attempt

to map differential expression to a regulatory haplotype was not

successful and is consistent with an epigenetic mechanism of gene

regulation. More investigations are required to determine whether

the pattern of allelic imbalance observed for IMPACT results from

incomplete silencing of one allele following imprinting in the

parental germ-lines or whether it results from random mono-allelic

expression or another mechanism of gene expression regulation.

Regulatory Polymorphisms Determine Allelic Expression
for Some Human Genes

Our analysis of 643 genes expressed in LCLs shows that, for a large

proportion of them (,20%), the two alleles are differentially

expressed in most heterozygous individuals. For 18 genes, differential

expression resulted from a known epigenetic silencing of one of the

two alleles, either through X-inactivation in females or imprinting.

The mechanisms leading to allele-specific expression at all other

genes could be driven by a polymorphism affecting the cis-acting

regulation (e.g. a SNP in a transcription factor or a miRNA biding

site) or simply result from random silencing of one of the two alleles.

We tested 56 genes for association of differential allelic expression

patterns observed with a cis-acting regulatory polymorphism using

genotypes generated by the HapMap project (see Materials and

Methods for details). For 23 of these genes we identified a region

statistically associated with differences in allele expression that could

indicate the existence of a regulatory haplotype (i.e., a region of one

chromosome likely containing the polymorphism(s) causing the

differential cis-regulation). These regions are often tens of kb long,

consistent with previous descriptions of the linkage disequilibrium

patterns in humans [50]. Although this approach does not identify

the actual polymorphism(s) responsible for the differential cis-

regulation, examination of these regulatory haplotypes provides

some valuable insights on the mechanisms leading to differential

expression and can guide future investigations. For example, the

regulatory haplotype for GAS7 is almost exclusively restricted to the

39UTR of the gene and may indicate that the patterns of allelic

imbalance observed are due to differential mRNA processing,

stability or the presence of a 39 enhancer. In contrast, the regulatory

haplotype identified for MGC33648 is located in the 59 region and

does not seem to overlap with the gene itself. This might be indicative

of alternative promoter usage or differential transcription efficiency

(e.g. due to differential transcription factor binding site affinity).

Allelic Imbalance Is Complementary of Total Gene
Expression Association

Several recent studies have used large-scale associations

between gene expression and extensive genotype information to

investigate gene regulation in humans, some of them using cell

lines included in our study. In particular, Stranger and colleagues

analyzed 630 genes located in ENCODE regions, on chromosome

21 and in one portion of chromosome 20. They found evidence of

cis-acting regulation for 63 genes [19]. 2005). We were able to

analyze 21 of these genes in our experiment. Six of them also

showed evidence of cis-acting regulation (e.g. SERPINB10 or

TSGA2) in our study while a seventh gene (TTC3) showed

patterns consistent with differential allelic expression but did not

reach our significance threshold. The remaining 14 genes did not

show evidence of differential allelic expression in our analysis.

Alternatively, we identified 10 new genes located in ENCODE

region or chromosome 21 that showed significant level of

differential allelic expression but were not detected in the Stranger

study. Several non-exclusive reasons could explain the discrepan-

cies between the results of the two approaches. First, it is worth

noting that, even if the same individuals are analyzed by allelic-

specific expression and gene expression association, the power to

detect cis-acting effect differs depending on the allele frequency of

the marker used: in gene expression association analysis all

individuals are analyzed but the power in the regression analysis

Table 2. cont.

Gene Chr # Hets Association Sanger RT-PCR Mapped to

SNRPN 15 27 3.94E-02 3.78E-01

TMPRSS6 22 12 7.40E-07 8.42E-01 39UTR

TRIM6 11 8 2.56E-02 9.84E-01

TSGA2 21 8 1.55E-04 9.81E-01 Gene

WNT2 7 9 9.05E-03 3.60E-01 6.45E-01 59 Gene

ZNF215 11 20 3.73E-02 1.45E-03 1.82E-02 Gene-59

#Hets: number of heterozygous individuals for the gene considered among the HapMap individuals analyzed.
Association: lowest nominal p-value obtained by Fischer exact test of the association of the alleles of all SNPs with over-/under-expressing chromosomes. Associations
remaining significant after Bonferroni correction for multiple testing are highlighted in green.
Sanger: p-value obtained in the linear regression of the Sanger gene expression measurements with the alleles of the SNP most strongly associated with allelic
expression.
RT-PCR: p-value obtained in the linear regression of the locus-specific RT-PCR gene expression measurements with the alleles of the SNP most strongly associated with
allelic expression.
Mapped to: broad localization of the regulatory haplotype with regards to the gene with significant difference in allele expression.
doi:10.1371/journal.pgen.1000006.t002
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depends on their genotypes (e.g. the genotypes AA, AB and BB are

encoded in the linear regression as 0, 1 and 2) while in allelic

expression analysis only the individuals heterozygotes at the

marker considered are analyzed. This can become particularly

problematic to study differential allelic expression at some genes

since it requires a relatively common exonic SNP to detect allelic

imbalance. In this context, it is worth noting that intronic SNPs

can successfully be used for genes that are highly expressed (see

also [30]). Second, associations of gene expression to genotypes

depends greatly on the linkage disequilibrium (LD) patterns and

requires extensive genotype information from all the individuals in

order to include one marker in LD with the regulatory

polymorphism. Allelic expression, on the other hand, directly

investigate cis effect directly at the gene level and thus only requires

physical link between the gene and the regulatory polymorphism

affecting it (i.e. they need to be on the same chromosome). Finally,

the differences between allelic expression and gene expression

mapping might indicate that some genes are also regulated by

trans-acting mechanisms that differ among individuals: differential

allelic expression is influenced only by cis-acting mechanisms of

gene regulation while gene expression is influenced by cis- and

trans-acting gene regulation. It is thus not unlikely that individual

differences in trans-acting regulation swamp the signal from cis-

acting polymorphisms. In this context, it is noteworthy that total

gene expression mapping has been much more successful in mice

and yeast for which the genetic heterogeneity is much lower and can

be controlled (reviewed in [9,10,51]). In humans, or in any other

outbred population, genetic heterogeneity greatly limits the

identification of cis-acting mechanisms using gene expression data

while measurements of differential allelic expression are unaffected.

We showed here that allelic expression assays are complemen-

tary from gene expression mapping and that the Illumina ASE

assay overcomes two of the major limitations and criticisms of the

former methodologies used to assess differential allelic expression:

it allows a robust and high-throughput estimation of allelic

imbalance: it is now possible to reliably screen hundreds of RNAs

for several hundreds of genes in a couple of days. Additionally,

when several SNPs can be used to assess differential allelic

expression, the assay becomes very robust since each marker

provides an independent estimation and one can test the

correlation among estimates obtained at different positions. It is

worth noting here that since this assay relies on the comparison of

allelic ratio in DNA and RNA of each individual, it internally

controls for the existence of polymorphisms in the primer sites or

copy number variation encompassing the gene studied (that will

affect equally DNA and RNA). Likely, the greatest advantage of

the analysis of differential allelic expression over total gene

expression is its flexibility. To identify differential regulation of

gene expression using total gene expression, one needs extensive

genotype information to test whether, at any polymorphic

position, the gene expression differences among individuals

segregate according to their genotype. This precludes a quick

assessment of the expression of one locus in one cohort of

particular interest or using a specific tissue. In contrary, differential

allelic expression offers the advantage that any one gene can be

quickly assessed in any cohort or tissue by simply comparing the

expression of the two alleles in each individual (the amount of

genetic information recently made available by the HapMap

project allows a quick and easy selection of markers likely to be

polymorphic for a given gene). The determination of regulatory

haplotypes would still require extensive information concerning

surrounding polymorphisms but the initial screening to determine

whether one transcript is differentially cis-regulated can be done

very efficiently with a handful of markers.

Conclusion
We showed that differential allelic expression is a robust

approach to identify cis-acting mechanism of gene regulation. It

complements gene expression association studies and offers

additional perspectives, notably on epigenetic mechanisms of gene

regulation. It could thus be particularly interesting to apply this

assay to tumors to detect mis-regulated genes due to aberrant

methylation patterns or loss of imprinting. In addition, our

approach is applicable to any new cohort or tissue since it is self-

sufficient to identify differential cis-regulation and does not require

additional genotyping. It can be easily used to follow-up interesting

non-coding regions associated to a particular disease and test if

they are involved in the etiology of the disease through some

regulatory effects on neighboring genes.

Materials and Methods

Sample Preparation
83 lymphoblastoid cell lines (LCL) derived from blood samples

from the CEPH collection were selected for this project. They

included 60 unrelated individuals obtained from Utah residents

with ancestry from western and northern Europe for which DNA

was genotyped for millions of SNPs covering the entire genome by

the International HapMap Project. Additionally, 21 LCLs from

CEPH pedigrees 1420 and 1444 were included to provide

complete information on two three-generation CEPH families.

Cells were grown at 37uC and 5% CO2 in RPMI 1640 medium

(Invitrogen, Burlington, Canada) supplemented with 15% heat-

inactivated fetal bovine serum (Sigma-Aldricht, Oakville, Canda),

2 mM L-glutamine (Invitrogen, Burlington, Canada) and penicil-

lin/streptomycin (Invitrogen, Burlington, Canada). The cell

growth was monitored with a hemocytometer and the cells were

harvested when the density reached 0.8–1.16106 cells/mL. Cells

were then resuspended and lysed in TRIzol reagent (Invitrogen,

Burlington, Canada). For all LCLs, three successive growths were

performed (corresponding to the 2nd, 4th and 6th passages) after

thawing frozen cell aliquots.

Illumina Allele-Specific Expression (ASE) Assay
We estimated allelic imbalance at 1,380 genes (two panels of

,1,500 SNPs, Figure 1) using the Illumina ASE assay (Figure 2).

The experiment is similar to the one used for large-scale SNP

genotyping [52] and gene expression profiling [53] except that

DNA and RNA are independently assessed and compared to each

other. RNA was first converted into biotinylated cDNA [53] while

DNA was treated according to the usual GoldenGate assay

protocol [52]. Biotinylated DNA (derived from genomic DNA or

mRNA) was immobilized on paramagnetic beads and pooled

SNP-specific oligonucleotides were annealed on the DNA.

Hybridized oligonucleotides were then extended and ligated to

generate DNA templates, which were amplified using universal

fluorescently-labeled primers. Finally, single-stranded PCR prod-

ucts were hybridized to a Sentrix Array Matrix [52], and the

arrays were imaged using the BeadArray Reader Scanner [54]. 96

samples (DNA or RNA) were analyzed per Sentrix Array for

,1,500 SNPs. All RNA measurements were performed in

duplicates.

Analyses of ASE Results
To estimate the extent of allelic imbalance in heterozygote

individuals at each SNP of the Illumina ASE panel, we developed

algorithms using two different approaches: i) we used information

from individuals of all three genotypes (AA, AB and BB), and/or ii)

we used only the heterozygote individuals.
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We first determined whether a given gene was expressed above

a determined background in a given individual. To do so, we

made use of the fact that the genotypes were known (from the

DNA analysis) and developed a locus-specific expression back-

ground cut-off: homozygote individuals (i.e. AA or BB) can only

express the corresponding allele, respectively A or B, at the RNA

level (if at all). We thus determined a background fluorescence

level (i.e. corresponding to random noise) for each allele (i.e. A and

B) by measuring the emission in the corresponding dye

(respectively, Cy3 and Cy5) in individuals homozygous for the

other allele (respectively BB and AA). This is represented

schematically on Figure S9. To avoid false positive results due to

the inclusion of transcripts not expressed in the cell lines

considered, we used a conservative approach and arbitrarily fixed

the background emission cutoff to the maximum emission of the

absent allele of all homozygotes, plus the mean emission of the

absent allele divided by the number of homozygotes (to weight the

uncertainty in the determination of the ‘‘maximum noise’’ by the

numbers of individuals used to determine it). This procedure

allowed us to independently estimate the background emission of

each allele/dye specifically for each SNP, which is particularly

important because the fluorescence emission can differ drastically

between the dyes and among loci (data not shown). We then

proceeded to the detection call using the background cut-offs:

individuals with genotypes AA were considered to express a given

transcript if the emission was larger than twice the cutoff

background emission of A, individuals with genotypes AB if the

fluorescence was larger than the sum of the background emission

of A and the background emission of B, and individuals with

genotypes BB if the emission is larger than twice the background

emission of B. Since the inclusion in the analyses of transcripts

expressed at low level (or not expressed at all) is very problematic,

we excluded from our analyses all loci for which less than 75% of

the individuals had discordant replicate expression (i.e., one

replicate above expression background, the other under the cut-off

value).

The first method used to determine whether some heterozygote

individuals expressed significantly differently the two alleles is

locus-specific but requires having at least one individual expressed

from each homozygote genotype (AA and BB). In this case, we

determined the median log ratio of the two dyes for each

homozygote clusters at the DNA and RNA level

(eDDAA, eRRAA, eDDBB, eRRBB) as well as the median absolute deviations

(MAD). We used medians and MADs, instead of means and

standard deviations, to down weight the influence of possible

outliers. We then determined a range of ‘‘expected’’ (i.e. non

significant) variation of allelic expression for the heterozygote

individuals. We calculated the equation of the lines joining the

median values plus/minus two MAD of AA and BB and estimated

the range, for the log ratio of the dyes at the RNA level, between

the lines at the value corresponding to the median of DNA in

heterozygote individuals (Figure S10). If the observed log ratio of

dyes for a given heterozygote individual fell outside the expected

range of variation in absence of AI (Figure S8), we scored each

heterozygote individual separately to obtain a quantitative

estimation of allelic imbalance using the ratio:

RAB{E RABð Þð Þ
eRRAA{E RABð Þ
� � , if RABwE RABð Þ

or
RAB{E RABð Þð Þ
E RABð Þ{eRRBB

� � , if RABvE RABð Þ:

This simple estimate indicates both the magnitude of the allelic

imbalance (i.e. the fold difference) and its direction (i.e. which

allele is more expressed than its counterpart).

In order to assess allelic imbalance for SNPs with low minor allele

frequencies (for which homozygote individuals with the minor allele

may not be present in a small sample size panel), we developed a

second method based solely on the heterozygote individuals. If a

given transcript is affected by allelic imbalance we expect that either

the variance of the log ratio of dyes for heterozygote RNAs to be

greatly increased relative to the variance of homozygote RNAs, or, if

one allele is systematically more expressed than the other, the mean

value of these log ratios to be drastically shifted from its expected

intermediate position (between the mean for AA and the mean for

BB homozygote RNAs). For all SNPs with at least five individuals

with the same genotype expressed, we estimated the standard

deviation of the log ratio of dyes for DNA and RNA. The

distribution of the log ratio of the standard deviations (i.e. log sDNA/

sRNA) over all loci for heterozygous individuals differed from those

observed using homozygous individuals and did not seem to fit a

normal distribution (Figure S11). Based on the assumption that this

distribution may include some loci in allelic imbalance (and thus with

a higher than expected RNA variance), we fitted a mixture of two

Gaussians on our dataset (i.e., one corresponding to the loci with

allelic imbalance, the second including all other loci) using a

Maximum Expectation algorithm implemented in R (mixdist

package). For our data, the best fit was obtained with a minor

distribution (including ,3% of the loci) corresponding to the most

extremely negative log ratios of variances (i.e., that the RNA

standard deviation was larger than expected). For each locus, we

then used the probability of belonging to the ‘‘higher-than-expected

RNA variance’’ distribution as an indication of allelic imbalance.

Quantitative Sequencing of RT-PCR Products
We assessed the extent of allelic imbalance by quantitative

sequencing following the method described in Ge et al. [33].

Briefly, we isolated RNA using TRIzol reagent following the

manufacturer’s instructions. We assessed RNA quality with an

Agilent 2100 Bioanalyzer (Agilent, Palo Alto, USA) before

synthesizing first strand cDNA using random hexamers (Invitro-

gen, Burlington, Canada) and Superscript II reverse transcriptase

(Invitrogen, Burlington, Canada). For each locus, we designed

locus-specific primers, in the exon/UTR containing the SNP

analyzed, at least 50 bp away from the SNP studied. 5 ng of

genomic DNA and 10 ng of total cDNA were then amplified by

PCR using Hot Start Taq Polymerase (Qiagen, Mississauga,

Canada) with an activation step (95uC for 15 minutes) followed by

40 cycles (95uC for 30 s, 55uC for 30 s and 72uC for 45 s) and a

final extension step (72uC for 6 minutes). PCR products were

purified using Exonuclease I and Shrimp Alkaline Phosphatase

(USB, Cleveland, USA) and sequenced using either one of the

former primers or a nested primer, on an Applied Biosystems

3730xl DNA analyzer. We used PeakPeaker v.2.0 [33] with the

default settings to quantify the relative amount of the two alleles

measured from the chromatogram after peak intensity normaliza-

tion. To estimate the experimental variability of the entire

experimental setup we used a hierarchical strategy for two genes

(cf. Figure S12): for two/three individual cell lines, we extracted

independently RNAs three times and performed, on each extract,

three independent RT-PCRs. All cDNA obtained were then split

into three aliquots, each amplified independently by locus-specific

PCR. These PCR products were finally sequenced each three

times (i.e. three independent sequencing reactions). To estimate

the variability at each experimental stage we calculated the mean

standard variation normalized to the mean using the independent
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triplicates. To calculate the variance in the higher hierarchical

levels (PCR, RT-PCR), we averaged the values from the lower

level (e.g., to estimate the variability at the PCR level, we

compared the means of the three sequencing values performed on

each of the three PCRs: [s1,s2,s3] vs [s4,s5,s6] vs [s7,s8,s9]). The

results are presented in Text S1.

Association Mapping of Differential Allelic Expression
We attempted to map allelic imbalance to regulatory haplotypes

for all genes with significant differences in allelic expression that

fulfilled these criteria: i) they are mapped on the build 34 of the

human genome, ii) the SNP used in the Illumina ASE assay has

also been genotyped by the HapMap [55] and iii) there are more

than four HapMap individuals heterozygous at the marker SNP.

For each gene, we retrieved the haplotype information from the

phased chromosomes of each of the 57 HapMap CEPH

individuals for 100,000 bp upstream and downstream of the

SNP used to assess allelic imbalance. When a transcript contains

more than one SNP or if two SNPs used to assess allelic imbalance

at two transcripts are separated by less than 200,000 bp, the

region retrieved spans from the most upstream marker plus

100,000 bp to the most downstream marker minus 100,000 bp.

For each individual LCL, the over expressed and under expressed

haplotype/chromosome were identified and each SNP was tested

for segregation of the alleles in under- and over-expressed

chromosomes using a Fischer’s exact test. Between 47 and 592

SNPs were tested for each gene (mean = 229) and the associations

remaining significant after Bonferroni correction for multiple

testing are shown in green in Table 2.

Validation of Regulatory Haplotypes
Illumina total gene expression data were obtained from the

Wellcome Trust Sanger Institute for the 60 unrelated CEPH

individuals genotyped by the HapMap project and included in our

assay. We also determined the total expression for 10 genes using

Real-Time PCR and SYBR Green labeling on an ABI 7900HT

(Applied Biosystems, Foster City, CA) instrument. 8–10 ng of first

strand cDNA were amplified using 0.32 mM of gene specific

primers and Power SYBR Green PCR master mix (Applied

Biosystems) according to the manufacturer’s instructions. The

amplifications started by 95uC for 10 min followed by 40 cycles at

95uC for 20 s, 58uC for 30 s and 72uC for 45 s. We performed the

Real-Time PCR assays for the 60 individuals LCLs genotyped by

the HapMap projects and analyzed 6 replicates per each sample.

A standard curve was established using a dilution series of total

cDNA of known concentration. The Ct for each replicate was

transformed to a relative concentration using the estimated

standard curve function (SDS 2.1, Applied Biosystems) and

normalized based on 18S rRNA Taqman (Applied Biosystems)

expression data obtained for each sample to account for well to

well variability.

Software
All analysis scripts are available upon request. PeakPicker v.2.0

is available at http://www.genomequebec.mcgill.ca/EST-

HapMap/.

Supporting Information

Text S1 Experimental variability using quantitative sequencing

of RT-PCR products.

Found at: doi:10.1371/journal.pgen.1000006.s001 (0.03 MB

DOC)

Figure S1 Correlation between the estimates of allelic expression

and the proportions of total RNA extract mixed. The graph

displays the p-values of the linear regressions between the allelic

ratios and the proportions of mixed RNA. Mixes homozygous-

homozygous are shown in red, mixes heterozygous-homozygous

are in blue.

Found at: doi:10.1371/journal.pgen.1000006.s002 (1.94 MB TIF)

Figure S2 Estimation of experimental variability in the Illumina

ASE assay. Average difference between duplicates for 411 SNPs

analyzed using the Illumina ASE Cancer Panel. The variability is

shown for each SNP as the fraction of the difference between the

median dye ratio for homozygotes for one allele and the median

dye ratio for homozygotes for other allele (e.g., a variability of 0.1

could artificially generate an allelic ratio of 60:40 in heterozy-

gotes).

Found at: doi:10.1371/journal.pgen.1000006.s003 (1.86 MB TIF)

Figure S3 Assessment of differential allelic expression using

quantitative sequencing of RT-PCR products. First strand cDNA

is synthesized from total RNA extract using random hexamers and

amplified by locus-specific primers surrounding a particular coding

SNP. The allelic ratio is estimated directly from the sequencing trace

file with the software PeakPicker v2.0.

Found at: doi:10.1371/journal.pgen.1000006.s004 (3.26 MB TIF)

Figure S4 Influence of the culture conditions. The figure shows

the correlation between the estimates of allelic imbalance using

quantitative sequencing for cells harvested after 4 (‘‘Harvest 2’’, x-

axis) and 6 (‘‘Harvest 3’’, y-axis) passages. Each blue cross stands

for one heterozygous individual for the gene IGF1 (A), IL1A (B)

and CHI3L2 (C).

Found at: doi:10.1371/journal.pgen.1000006.s005 (2.50 MB TIF)

Figure S5 Exonic vs. intronic SNP. The graph shows the

average number of individuals expressing a detectable transcript

using an exonic SNP or an intronic SNP.

Found at: doi:10.1371/journal.pgen.1000006.s006 (1.95 MB TIF)

Figure S6 Population-average estimates of allelic imbalance at

777 SNPs (both panels combined). See legend of Figure 4.

Found at: doi:10.1371/journal.pgen.1000006.s007 (1.93 MB TIF)

Figure S7 Clonality and X-linked genes. The allelic imbalance

estimates for 11 X-linked SNPs (in 7 genes) are displayed on the y-

axis for every female individual (x-axis) (if the individual is

heterozygous at the position considered).

Found at: doi:10.1371/journal.pgen.1000006.s008 (2.50 MB TIF)

Figure S8 Association mapping of allelic imbalance to regula-

tory haplotypes for MEST (A) and PEG10 (B).

Found at: doi:10.1371/journal.pgen.1000006.s009 (4.54 MB TIF)

Figure S9 Method used for the detection of transcript

expression. See Materials and Methods for details.

Found at: doi:10.1371/journal.pgen.1000006.s010 (1.86 MB TIF)

Figure S10 Individual assessment of differential allelic expres-

sion on the Illumina ASE assay. See Materials and Methods for

details.

Found at: doi:10.1371/journal.pgen.1000006.s011 (1.93 MB TIF)

Figure S11 Variance-based assessment of differential allelic

expression on the Illumina ASE assay. See Materials and Methods

for details.

Found at: doi:10.1371/journal.pgen.1000006.s012 (1.91 MB TIF)

Figure S12 Estimation of experimental variability in quantita-

tive sequencing assay. We performed, for two genes (and five

individuals), triplicates of each experimental step: from one cell
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harvest we extract RNA three times independently. Each extract

was then subject to three independent RT-PCRs and each aliquot

was amplified three times by locus-specific PCR. Finally, PCR

products were sequenced three times and allelic imbalance

estimated using PeakPicker v2.0.

Found at: doi:10.1371/journal.pgen.1000006.s013 (1.54 MB TIF)

Table S1 List of the 2,968 SNPs analyzed using the Illumina

ASE assay. Origin. Displays if the gene is located in a ENCODE

region, on chromosome 21 or 22 and whether the genes was

included for its potential involvement in disease etiology. Intron/

exon. SNPs in 39UTR are shown as ‘‘exon’’.

Found at: doi:10.1371/journal.pgen.1000006.s014 (0.09 MB PDF)

Table S2 All SNPs expressed in at least three heterozygous

individuals

Found at: doi:10.1371/journal.pgen.1000006.s015 (0.05 MB PDF)
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