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Rapid progress in exploring the human and mouse genome has resulted in the generation of a multitude of mouse
models to study gene functions in their biological context. However, effective screening methods that allow rapid
noninvasive phenotyping of transgenic and knockout mice are still lacking. To identify murine models with bone
alterations in vivo, we used flat-panel volume computed tomography (fpVCT) for high-resolution 3-D imaging and
developed an algorithm with a computational intelligence system. First, we tested the accuracy and reliability of this
approach by imaging discoidin domain receptor 2- (DDR2-) deficient mice, which display distinct skull abnormalities as
shown by comparative landmark-based analysis. High-contrast fpVCT data of the skull with 200 pm isotropic resolution
and 8-s scan time allowed segmentation and computation of significant shape features as well as visualization of
morphological differences. The application of a trained artificial neuronal network to these datasets permitted a semi-
automatic and highly accurate phenotype classification of DDR2-deficient compared to C57BL/6 wild-type mice. Even
heterozygous DDR2 mice with only subtle phenotypic alterations were correctly determined by fpVCT imaging and
identified as a new class. In addition, we successfully applied the algorithm to classify knockout mice lacking the DDR1
gene with no apparent skull deformities. Thus, this new method seems to be a potential tool to identify novel mouse
phenotypes with skull changes from transgenic and knockout mice on the basis of random mutagenesis as well as from
genetic models. However for this purpose, new neuronal networks have to be created and trained. In summary, the
combination of fpVCT images with artificial neuronal networks provides a reliable, novel method for rapid, cost-
effective, and noninvasive primary screening tool to detect skeletal phenotypes in mice.
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Introduction

Following the sequencing of the mouse and human
genomes, attention has now focused on assessing gene
function by gain-of-function mutations or targeted deletion
of genes to address their function in vivo. However, many
transgenic or knockout mice display a mild pathology without
overt phenotypic alterations, which is clearly of utmost
importance in understanding human diseases. This, in turn,
has created an enormous demand for effective tools to assess
the phenotype of mouse models so that gene expressions can
be understood in a biological context [1]. However, the
development of high-throughput mouse mutagenesis proto-
cols requires a time- and cost-effective mode for primary
testing of phenotypes.

In previous work, noninvasive imaging techniques such as
computed tomography (CT) and magnetic resonance imaging
have been applied to the anatomical phenotyping of trans-
genic mouse embryos [2-4] as well as in the brain and skulls of
mouse models [5-7]. The measurement of 3-D coordinates as
biological landmarks on the skull was used to analyze
craniofacial phenotypes in mouse models for Down syndrome
[8]. Similarly, metabolic profiling of cardiac tissue through
high-resolution nuclear magnetic resonance spectroscopy in
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conjunction with multivariate statistics was used to classify
mouse models of cardiac disease [9].

These imaging technologies for rapid visualization of large
regions of anatomical structures have several important
advantages over classical histology. The differential compar-
ison of a large dataset of images using traditional radiological
observation and a well-trained eye, especially between
complex skeletal structures, is often inadequate. Therefore,
automated analysis of images to detect skeletal phenotypes in
mouse models will be highly advantageous.

Here, we have performed flat panel-based volume com-
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Author Summary

Transgenic mice are key models to shed new light on gene function
during development and disease. Reliable high-throughput screen-
ing tools will facilitate the identification of transgenic mice with
distinct phenotypes. In particular, alterations of the skull are difficult
to detect by visual inspection due to its very complex morphological
structure. Here, we used high-resolution flat-panel volume com-
puted tomography (fpVCT), a novel semi-automatic screening tool
to image skull-shape features of mice. The resulting 3-D datasets
were combined with artificial neuronal networks and complex
nonlinear computational models to permit rapid and automatic
interpretation of the images. Compared to the extremely laborious
landmark-based analysis, the manual work in our approach was
reduced to the control of skull segmentation of images obtained by
fpVCT. We applied our approach to genetically altered mice and
various mouse strains and showed that it is an accurate and reliable
method to successfully identify mice with skeletal phenotypes. We
suggest the new methodology will also be a valuable tool for an in
vivo, rapid, cost-effective, and reliable primary screen to identify
skull abnormalities generated by random mouse mutagenesis
experiments.

puted tomography (fpVCT) for rapid high-resolution imaging
of bone structures in combination with artificial neuronal
networks (ANNs) that are complex nonlinear computational
models, designed much like the neuronal organization of a
brain [10-15]. These networks are composed of a large
number of highly interconnected processing elements,
termed neurons, working in parallel order to model
complicated biological relationships without making assump-
tions based on conventional statistical distributions. Neuro-
nal networks learn by example so the details of how to
recognize the phenotype of the skull are not needed. What is
needed is a set of examples that are representative of all the
variations of the phenotype [12,13]. Such neuronal networks
have already been applied to characterize the variability of
anthropological features of the human nasal skeleton [14] and
to analyze and classify human craniofacial growth [15]. Here,
fpVCT imaging enables the 3-D visualization of small
anatomic details of bone structures. By selecting subvisual
information from these fpVCT datasets of the skull, we
applied ANNs to predict skeletal phenotypes in mouse
models.

For visualization of the feature space structure, here, we
analyzed the automatically generated skull-shape features
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with principle component analysis (PCA) and cluster analysis.
PCA simplifies multidimensional datasets to lower dimen-
sions and consequently transforms them into orthogonal
linear to a new coordinate system such that the greatest
variance comes to lie on the first coordinate, the second
greatest variance on the next coordinate, and so on [16].
Cluster analysis is the partitioning of data into subsets, so that
the data in each subset share some common traits with the
use of some defined distance measurements [16,17].

The method was applied to knockout mice of a subfamily of
tyrosine kinase receptors, discoidin domain receptors
(DDRs), which are selectively expressed in a number of
different cell types and organs; upon collagen activation
DDRs regulate cellular adhesion and proliferation as well as
extracellular matrix remodeling [18,19]. Lack of DDR2
resulted in reduced chondrocyte proliferation and short-
ening of long bones and the snout [20]. In contrast little is
known about skeletal abnormalities of DDR1-deficient mice
[21].

The purpose of this study is to present a rapid method for
primary screening of skeletal phenotypes using fpVCT,
allowing detailed nondestructive imaging of the skull in vivo.
Using skull-shape features semi-automatically calculated
from fpVCT datasets in combination with ANNs, we were
able to successfully classify adult knockout mice with various
bone malformations as well as identify mouse populations
with subtle skeletal abnormalities with high accuracy.

Materials and Methods

Animals

All animals were maintained under pathogen-free con-
ditions and housed in accordance with German animal
welfare regulations. All animal protocols were approved by
the administration of Lower Saxony, Germany. For this study
homozygous and heterozygous DDR1- and DDR2-deficient
mice on inbred CH7BL/6 backgrounds, five DDR1/2 double
knockout (DDR1—/—//DDR2—/—) mice, as well as C57BL/6 wild-
type and severe combined immunodeficient (SCID) mice
strain CB-17/ Ztm-scid, of different ages and sexes were used.
To allow nearly complete ossification of the skull, all mice
with the exception of the 14-d-old double knockout mice
were older than 50 d. For this study we used 85 mice in total:
29 DDR1/2+H, 25 DDR2—/—, ten DDR2+/—, nine DDR1—/—, five
DDRI1-H/DDR2—/—, and seven SCID mice. For descriptive
statistics, see Table 1.

Table 1. Collection of Mice

Genotype (Confirmed by Age 50-150 d Age >150d
Standard PCR Genotyping) Mean =SD Sex Mean *=SD Sex
Male Female Male Female

DDR1/2-+/+ 96.5 * 31.6 6 5 336.1 + 96.0 1 7
DDR2—/— 1189 * 223 6 7 346.9 + 121.9 8 5
DDR2+/— 150 = 0 0 0 420.1 = 15.0 5 4
DDR1—/— 0 0 2103 + 436 3 5

SCID 0 0 246.1 = 59.8 3 4
DDR1—/—//DDR2—/— 14 5 0 0 0

doi:10.1371/journal.pgen.0030118.t001
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Figure 1. Comparison of Skull Image
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Presented is a volume rendering of skull forms of C57BL/6 wild-type mice of different sexes and ages (left panel) and DDR2—/—, DDR1—/—, and DDR2+/—
mice (right panel). Displayed are distances and representative features of the skeleton of the head viewed from the right side. D, represents the
maximal distance between the external occipital protuberance and the incisor teeth. The distance between the center of the inner ear and the incisor
teeth is labeled D,, whereas D; delineates the distance between the center of the inner ear and the external occipital protuberance. C; depicts the bend
of parietal, interparietal, and occipital bone and is measured as sum of the local contour curvature. The landmark F; symbolizes the nasal bone.

doi:10.1371/journal.pgen.0030118.g001

The genotype of mice was verified by standard techniques.
DNA was isolated from tail biopsies, and polymerase chain
reaction (PCR) was performed as described previously [20,21].
These results were compared to the outcome obtained by
fpVCT datasets in combination with an ANN.

Imaging Protocol by fpVCT

Mice were anesthetized with vaporized isoflurane at 0.8 —
1% concentration throughout the imaging session and
centered on the fpVCT gantry axis of rotation. The fpVCT
prototype used in this study was developed and constructed by
General Electric Global Research (http://lwww.ge.com/
research). It consists of a modified circular CT gantry and
two amorphous silicon flat-panel X-ray detectors, each of 20.5
X 20.5 cm? with a matrix of 1,024 X 1,024 detector elements
and a resolution of 200 pm. The fpVCT uses a step-and-shoot
acquisition mode. Standard z coverage of one step is 4.21 cm.
The mice were placed perpendicular to the z-axis of the
system in order to scan the whole mouse with one rotation. All
datasets were acquired with the same protocol: 1,000 views per
rotation, 8-s rotation time, 360 used detector rows, 80 kVp,
and 100 mA. A modified Feldkamp algorithm was used for
image reconstruction resulting in isotropic high-resolution
volume datasets (256 X 256 matrix, resolution about 200 pm).

Characterization of Skulls
To characterize the skull differences between the various
mouse lines, we used landmark-based geometric analysis.
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Distances on the side-view-projection of the 3-D rendered
mouse skull (Dy, Dy, and D3) as well as the curvature of the
occipital region (C,) were manually measured (Figure 1). To
calculate the curvature, the contour part between the
inflection point on the superior region of the head as well
as the inflection point after the sharp bend on the occipital
region were manually isolated (Figure 1). For comparability
of curvature values, all contours were stretched to the same
length. Contours were represented in Freeman code (chain
code). Therefore, each of the eight possible directions from
one to the next contour point was encoded by a number from
0 to 7. We started with 0 on the right and used increasing
numbers in a clockwise orientation. Since the determination
of the local curvature from the changes of these direction
codes results in rather noisy curves [22], we calculated the
local curvature for a surrounding of six contour points, three
forward and three backward of the actual point [23]. C;
represents the sum of these curvature values.

Segmentation and Preprocessing of Datasets
Segmentations of skulls were done using a simple threshold
algorithm in the head region in order to segment all voxel
with values above the threshold. For this purpose all parts of
the segmentation that do not represent the skull were
removed. All segmented voxel were referenced by the letter S.
Skull orientation and size were standardized by computing
the centroid (Equation 1) and mass centroid axis, which are
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the eigenvectors of the inertial tensor (Equation 2), and
rotating the skull in a such way that the x-axis points along
the main mass centroid axis. To calculate the inertial tensor,
the mass of a voxel is required. Bone consists of structures
expressing different CT-numbers, and skull is surrounded by
soft tissue that is characterized by low CT-numbers. There-
fore, a distribution of these CT-numbers with a left skew
gauss-like shape due to the partial volume effect was
observed. The real surface of the bone is within a surface
voxel. Because surface voxel must not contribute to features
with the same magnitude as voxel representing solid bone, we
determined the mass of a voxel by the weight function g(v)
(Equation 3). Applying this equation voxel with a density
equal to the mean density of bone had more influence in
further calculations than others.
Mass centroid:

Po=Y g v (1)

vES
Inertial tensor:

N Mmooz Mo11 Mio1
M= | mo11 mo20 Mi10 (2)
mior  Mil0  M200

Weight function:

o) =1— @) (3)

[max(|v - vmin|7 |v - vmzlxm2

Moments:

Mijk = Zvlr : v]u ’ v}Zu g(v) (4)
veSs
v, = radius component, v,,, = polar angle, and v4, = azimuth
angle of position vector v
Maximal dimensions along every axis were determined
after the segmentation procedure and skulls were isotropi-
cally rescaled between —1 and 1 in all dimensions. These
transformed skulls provide a basis to calculate size- and
orientation-independent form features.

Calculation of Skull-Form Features

In a global depiction the components of the inertial tensor
(Equation 3) are second-order moments. Here we used as
features the moments (Equation 4) up to an order of four [24].
Since mouse skulls can be described as ellipsoid, these
moments are not generated in Cartesian but in spherical
coordinates. With the index of formula (Equation 4) we
obtained the following 34 moments: mgg;, Mg19, M1g9, Mooe,
Mog20, Moo, Mo11, Mio1, Miyre, Moe3, Mos0, M3p0, Mo12, Mo,
Mog1, Mygp, Moo, Mojg, Miyyy, Moo4, Mog0, Mype, Mo13, M3,
M3y, My30, M301, M310, Moge, Moge, Magg, M2, Myg1, and Myy;.

If we consider Cartesian coordinates, it is possible to
compare the second-order moments with a mass distribution
away from a rotation axis. This means that a high second-
order moment indicates that the mass of parts of the skull is
distributed farther from the dedicated axis. Assuming that
the mass density is nearly the same between the different
skulls, a higher value second-order moment connotes the
skull being more expanded perpendicular to that axis. Third-
order moments impact the aberration from rotation symme-
try perpendicular to the dedicated axis, and fourth-order
moments impact the outliers. Since these predictions can be
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applied accordantly for spherical coordinates, form features
were now encoded in these statistical parameters, in total 34
moments, independent of skull size and orientation. Sex of
the animal (0 = female and 1= male) and the normalized age,
af (Equation 5) were added as features 35 and 36.

The feature af was calculated under the assumption that
ossification of the skull has an exponential behavior and is up
to 90% completed after 60 days [25]. So the codomain of
(Equation 5) is the interval (0, 0.9] for mice that are between 1

and 60 d old.

_ 1nfa)
S =10y (5)

a = age in days.

Finally, all features were transformed in an interval [-1, 1]
to raise the stability of the training process of the artificial
networks. For segmentation and feature calculation purposes,
the algorithms were implemented using MSVCA+ 6.0 and the
additional libraries QT4.2 (Trolltech, http:/lwww.trolltech.
com) and VGL2.4 (Volume Graphics GmbH, http:/lwww.
volumegraphics.com). A G+ implementation of transforma-
tion and feature generation part is presented in Protocol S1.

Neuronal Networks: Basic Structure

To assess mouse phenotypes by skull images, several
different ANNs were initially tested. Here, skull-form features
were used to train multilayer perceptron network models
developed with the Stuttgart Neuronal Network Simulator
(SNNS) in context with a back-propagation-learning rule [26].
A multilayer perceptron consists of one input layer, some
hidden layers, and an output layer. Such a network performs
a transformation from an input pattern, which is the
summary of all input values applied to the input neurons,
into an output pattern and can be used for classification
purposes by assigning classes to the output pattern. Hidden
layers do not interact with the outside and are only necessary
to perform the classification process.

For training and validation of a neuronal network, at least
two different classified datasets have to be applied: one for
the training process in order to impact the needed trans-
formation between input pattern and the known output
pattern in the network via the learning rule and one to test
the network. The latter set consists of data not presented
during the learning process. To test for accuracy, all network
responses for the test dataset were compared manually with
the known output pattern validated by genotyping of the
mice. Here, the training dataset contains images from a
minimum of three times more mice than the test dataset and
the distribution of the pattern between these two datasets
were chosen randomly to avoid bias.

Statistical Analysis

For statistical analysis we performed PCA, cluster analysis,
and Student’s ¢-test. PCA and clustering analysis were done
with PAST, free statistics software [27]. We used an
agglomerative hierarchical cluster method with a Euclidean
metric that groups step-by-step samples together with the
lowest distance. The result of the algorithm is displayed as a
dendrogram.

Furthermore, to determine whether the means of measured
distances and curvatures between two mice strains differ
significantly, we used the unpaired Student’s ¢-test performed
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Figure 2. Statistical Evaluation of Various Metrical Skull Features

(A, B) Progression of the cumulative local contour curvatures C; follows the contour positions of knockout mice and their controls. Shown are the mean

values and the local standard dewatlons for each mice strain.
(C-E) Box plots for C;, D

2, and D5 values are shown. p-Values for the paired Student’s t-test for each feature of every strain are indicated in comparison

to wild-type controls. Differences with p < 0.05 were considered to be significant. Note, that parameters C; and D’; in DDR2-deficient mice, D5 in
heterozygous DDR2-deficient mice, and D", in DDR1-deficient mice differ significantly in comparison to wild-type controls.

doi:10.1371/journal.pgen.0030118.g002

online with http://www.physics.csbsju.edul/stats/t-test.html. All
data were expressed as mean * SD, and statistical significance
was established at a p-value less than 0.05.

Results

Anatomical Phenotypes of Transgenic Mice

Noninvasive imaging by fpVCT with 200 pm isotropy and
8-s scan times enabled the selective 3-D visualization of the
skull of individual adult DDR1-and DDR2-deficient mice as
well as wild-type littermates (Figure 1). Image comparison by
visual inspection of C57BL/6 wild-type mice of different sex
and age demonstrated minor interindividual differences
within the complex skull morphology formed by the cranium
and mandible. These minor variations in skull shapes are due
to sexual dimorphisms and age dependent ossification.
Individual skulls of mice from the control strain differ mainly
in relative size and are characterized by the forming of the
tympanic bulba, the infraorbital hiatus, and the grade of
ossification of the frontal and occipital bone (Figure 1, left
panel).

Representative examples of skull images from the various
knockout mice in comparison to controls are shown in
Figure 1,

right panel. For comparative analyses of the

various skulls we introduced landmarks located on the
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cranium that show marked differences mainly between
DDR2-deficient mice and wild-type controls. Curvature (i,
located at the posterior neurocranium, depicts the bend of
parietal, interparietal, and occipital bone. As plotted in
Figure 2A and 2B the local curvature is a nonconstant
function, which differs between the knockout mice on
different contour positions. We introduced C; as the sum
of the local curvature values representing the value of the
cumulative curves on the maximal contour position. Dy
represents the maximal distance between the external
occipital protuberance and the incisor teeth. The distance
between the center of the inner ear and the incisor teeth is
labeled with Dy, whereas D3 is the distance between the
center of the inner ear and the external occipital protub-
erance (Figure 1, left panel). To take into account different
skull sizes, we introduced new parameters such as D"y and
D5, which are calculated from Do and Ds by dividing the
data with the total skull distance of D;. The nasal bone is
represented by F.

The neurocranium of DDR2-deficient mice displays a more
round shape in comparison to controls illustrated by an
increase in the magnitude of curvature C; (Figure 1, right
panel). This is clearly depicted by different cumulative
curvatures of C; especially in the late part of the curve of
DDR2-deficient mice in comparison to their wild-type
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controls (Figure 2B and 2C). Skulls of DDR2—/— mice are
jolted as shown by a reduced length of D; (20.31 = 0.58 mm
versus 22.68 £ 0.45 mm for control). Furthermore a spherical
skull shape is characteristic for DDR2-deficient mice as
demonstrated by a reduced mean value for D'y (0.77 =
0.016 versus 0.784 = 0.009 for control; p = 0.068; Figure 2D)
and a significant increased value for D" (0.34 = 0.009 versus
0.30 £ 0.005 for control; p < 0.0001; Figure 2E). Character-
istic of DDR2-deficient mice is the nasal bone demonstrated
by the landmark F; that appears to be altered and of different
shape in comparison to controls by visual inspection (Figure
1, right panel).

Alterations between wild-type and heterozygous DDR2-
deficient mice are very subtle and can hardly be depicted by
comparative morphological analysis using traditional radio-
logical observation (Figure 1). This is shown by no significant
differences of D'y (0.79 * 0.018 versus 0.78 * 0.009 for
control; p = 0.76; Figure 2D) and the curvature C; (—94.98 *
14.30 versus —84.96 * 8.56 for control; p = 0.81, Figure 2C).
Only the value for D’y was significantly altered in DDR2 +/—
mice (0.29 * 0.004 versus 0.30 = 0.005 for control; p = 0.023;
Figure 2D).

DDRI1-deficient mice are known to be smaller. Here, one
characteristic feature of the skull of DDR1-deficient mice is
an altered curvature progression compared to their wild-type
controls (Figure 2A). However, the value for C; (-90.24 *= 4.29
versus —84.96 * 8.56 for control; p = 0.21) was not
significantly different (Figure 2C). Distance measurements
also revealed no significant differences to the values obtained
in wild-type controls. D"y was reduced in wild-type mice (0.80
+ 0.005 versus 0.78 = 0.009 for control; p = 0.097) whereas
D3 was within the same range (0.30 = 0.009 versus 0.30 =
0.005 for control; p = 0.73; Figure 2D and 2E)

Comparative landmark based analysis of skulls of DDR2-
deficient mice confirmed statistical significant bone defor-
mations compared to controls, whereas analysis in DDRI-
deficient mice determined no skull alterations.

Analysis of the Generated Feature Space for Different
Knockout Mice with PCA and Cluster Analysis

PCA and cluster analysis were performed in the complete
34-D feature space to visualize and evaluate its structure and
the existence of clusters corresponding to distinct mice types.
Figure 3A displays the two-dimensional subspace for the two
main components of the PCA for a subset of mice. For better
visualization sample points of one class were interconnected
with lines. No cluster could be detected, indicating a poor
conditioned feature space. Cluster analysis applied to skull
features of DDR2-deficient mice, and their wild-type controls
do not discriminate between the two mouse populations
(Figure 3B).

To evaluate the influence of sex- and age-dependent skull-
shape differences, we performed PCA for an age- and a sex-
matched subset, respectively, using datasets from DDR2-
deficient mice and their wild-type controls (Figure 3C and
3D). Skull shapes of both male and female controls and
female DDR2—/— mice displayed strong sex related differences
shown by higher interclass distances in comparison to
intraclass distances. Especially, control mice were grouped
into two subsets of male and female mice. Only the cluster of
the DDR2-deficient mice was very widespread, thus over-
lapping the clusters of female DDR2—/— and male control
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mice. Excluding male DDR2—/—, the feature space can be
divided into two half planes for male and female mice.
Interestingly, the male DDR2-deficient mice can be subdi-
vided into two subgroups consisting of male and female
“looking” mice (Figure 3C). In the PCA of the age depend-
ency of the feature vectors including young mice, we depicted
age related varieties, but were not able to determine any
functional relationship between increase in age and the
position of the feature vector (Figure 3D).

Since the skull-shape features used in this study are
dependent on sex, we applied in further experiments both
female and male mice to train the ANNSs. In order to suppress
the age dependent effects we only used mice older than 50
days with the exception of DDR1—/—//[DDR2—/— mice, which
were scanned ex-vivo when 14 d old.

ANN 1 Applied to fpVCT Datasets Allows Phenotypic
Assessment of DDR2-Deficient Mice

ANN 1 shown in Figure 4A was developed to identify
DDR2-deficient mice displaying a known skeletal phenotype
between control littermates. Neuronal network 1 received
one import layer with 36 neurons to import the skull features
calculated from fpVCT datasets. It consists of two hidden
layers with five and three neurons and of one output layer
with two neurons, N; and Ns. All neurons were connected
with short cuts and trained with the back-propagation
momentum-learning rule.

A total of three different phenotypic assessments corre-
sponding to DDR2—/—, DDR2+/—, and control mice were
encoded in the output pattern as demonstrated in Figure 4A.
We considered “high activation” as activation of the output
neuron over 50% and “low activation” as activation under
50%. The following interconnections between output pattern
and the corresponding genotype were defined: high activa-
tion of output neuron N; with simultaneous low activation of
Ny represents the DDR2—/— genotype; high activation of Ny
associated with low activation of N, represents the DDR2+-H-
genotype; while low activation of both N; and Ny illustrates
the heterozygous DDR2 genotype. To train neuronal network
1, datasets of skull images from 39 adult mice, 18 DDR2—/—, 8
DDR2+/— mice, and 13 wild-type control mice were included.
The accuracy of the trained neuronal network 1 to predict
DDR2 genotypes in mice was tested with an additional dataset
of skull images of eight mice. As demonstrated in Table 2, all
tested mice were successfully classified by this method. A 30%
activation of neuron N» indicates that a heterozygous DDR2
mouse displays only a mild skeletal malformation. All results
were confirmed by standard genotyping techniques applying
PCR with genomic DNA.

Network 1 was also shown to successfully discriminate
between various two mice types. In particular this simple
network could also distinguish between DDR1—/— mice and
their wild-type controls as well as between SCID mice and
C57BLI6, the wild-type littermates of DDR-deficient mice
(unpublished data).

ANN 2 Applied to fpVCT Datasets Discriminates DDR2—/—,
DDR2+/—, DDR1—/—, C57BL/6 Wild-Type Controls, and
SCID Mice between Different Mouse Populations

We applied our methodology to a larger cohort of mice
derived from more than one strain of knockout mice. We
used DDRI1-deficient as well as SCID mice in combination
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Figure 3. Statistical Evaluation of the Generated 34-D Skull-Shape Features
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(A) A scatter plot is demonstrated for the two main components of the PCA-transformed 34-D feature space of all skull-shape features. The samples for
each mice strain are interconnected with lines. The clusters are strongly overlapping, and in this case the two dimensional subspaces are not linearly

separable.

(B) A further cluster analysis for DDR2—/— and DDR1/24/4 mice based on the Euclidean distance between the feature vectors does not separate the two

groups.

(C) PCA-transformed skull-shape features of a subset of age-matched DDR1/2+/+ and DDR2—/— mice with different sex are well clustered according to
their sex for DDR1/2+4/+ and the female DDR2—/— mice. The male DDR2—/— mice are widely separated resulting in overlaps with their females.

(D) PCA of DDR2—/— and DDR1/2+/+ mice that were separated in male and female are illustrated. Sample points of each group are connected with
arrows in the direction of increasing age. No correlation between age and feature vector was depicted.

doi:10.1371/journal.pgen.0030118.g003

with homogenous and heterozygous DDR2-knockout mice
and their controls to train ANN 2. This multilayer perceptron
network consists of one input layer with 34 neurons, two
hidden layers with five and three neurons each, and one
output layer with five neurons (Figure 4B). We included 49
mice in the training process including 18 DDR2—/—, six
DDR2+/—, five DDR1—/—, and 16 C57BLI/6 wild-type mice as
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well as four SCID mice. The experimental dataset consisted of
skull images of 16 mice randomly chosen from the mouse
cohort. As shown in Figure 4B, each mouse population was
identified by one output neuron, N; — N5. The output neuron,
which shows maximal activation, determines the phenotype
that the network estimates for a given input pattern
independent of the values of the other output neurons.
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Figure 4. Architectures of the ANNs 1 to 3 to Discriminate DDR2—/—, DDR2+4/—, DDR1—/—, DDR1/2+/+, and SCID Mice between Different Mouse
Populations

(A) Network 1 for paired classification classifies DDR2-deficient mice against their wild-type littermates. It consists of one input layer with 34 neurons for
the skull-shape features and two additional input neurons for age and sex. The image shows the network response for a DDR1/2+/+ mouse (pattern 4,
Table 2)

(B) Neuronal network 2 applied for classification of all five mice strains in a mixed collective consists of one input layer with 34 neurons, two hidden
layers with five and three neurons, and one output layer with five neurons N; — Ns. In network 2 the taught output identifies each output neuron as one
mouse population. The output neuron with the highest activation is called the “winning” neuron and indicates with which class of mice the input
pattern is associated. The network response for input pattern 4, the input of skull-shape features of a DDR2—/— mouse is displayed. This is demonstrated
by high activation of the output neuron N, (green, high activation; blue, low activation).

(C) Neuronal network 3 applied for classification of DDR2+/— mice, which were incorrectly identified in network 2 as C57BL/6 control mice, consists of
one input layer with 34 skull-based features, one hidden layer with five neurons, and one output layer with the neurons N; and N,. The output of an
output unit is a value between 0 and 1. The combination of the taught output that represents a distinct phenotype of DDR2+4/— and SCID or C57BL/6
wild-type mice is shown below. High activation of output neuron N; with simultaneous low activation of N, represents C57BL/6 wild-type mice, low
activation of both N; and N, represents a SCID mouse, and low activation of N; by simultaneous high activation of N, represents a DDR2+/— mouse. The
network response for input pattern 4, the input of skull-shape features of a heterozygous DDR2 mouse, is displayed. This is demonstrated by high
activation of N; and N, (green, high activation; blue, low activation).

doi:10.1371/journal.pgen.0030118.g004

DDR2-deficient mice were classified with high accuracy as
demonstrated by the most highly activated output neuron, No,
being consistent in all three cases (Table 3). Since skull
features of DDR1—/—, DDR2+/—, and DDRI1/2+H4 as well as
SCID mice display only minor phenotypic differences among
each other, these genotypes were more difficult to classify in a
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network with trained datasets from skulls of all five
populations. This is shown by low activation of the
corresponding output neurons, N3 for DDR1—/— and N, for
SCID mice, in comparison to the high activation observed in
Ny for DDR2—/— mice. However, the transgenic status of DDR-
deficient mice could be reliably predicted with the exception
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Table 2. Phenotypic Assessment of DDR2-Deficient Mice Using fpVCT Datasets and ANN 1

Number Genotype (Confirmed by Age (d) Sex Activation (%) Result Correctly

Standard PCR Genotyping) N N Classified
1 2

1 DDR1/2+/+ 57 Male 0.00 100.0 DDR1/24-/+ Yes

2 DDR2—/— 277 Male 99.97 0.03 DDR2—/— Yes

3 DDR1/2+4/+ 406 Female 0.07 91.22 DDR1/2+/+ Yes

4 DDR1/2+/+ 117 Male 0.01 99.82 DDR1/2+4/+ Yes

5 DDR1/24-/4+ 253 Female 1.36 97.63 DDR1/2+4/4+ Yes

6 DDR2—/— 114 Male 99.97 0.20 DDR2—/— Yes

7 DDR2+/— 161 Female 27.64 0.81 DDR2+/— Yes

8 DDR2+/— 161 Female 0.04 2.69 DDR2+/— Yes

doi:10.1371/journal.pgen.0030118.t002

of DDR2 heterozygous mice and one SCID mouse, which were
incorrectly classified as control mice by showing maximal
activation of Nj (Table 3). It appears that the major
differences in skull formation between DDR2—/— and control
mice determine the network, thus making it more difficult to
classify mice with phenotypes possessing only minor bone
abnormalities.

ANN 3 Applied to fpVCT Datasets Identifies DDR2+/—,
C57BL/6 Wild-Type, and SCID Mice

ANN 3 was applied to distinguish between C57BLI/6 wild-
type control, DDR2+/—, and SCID mice that were identified in
network 2 as control mice (Figure 4C). Neuronal network 3
received 34 input neurons and one output layer with two
neurons, N; and No. This network also consisted of two
hidden layer with five and three neurons. Low activation of
both N; and Ny represented SCID mice, high activation of
output neuron N; with simultaneous low activation of Ny
represented C57BL/6 wild-type mice, whereas high activation
of both Ny and Ns represented DDR2-+— mice. The network
was trained with 21 datasets, seven DDR2+/— mice, nine
C57BLI6 wild-type mice, and five SCID mice. As shown in
Table 4, all mice were successfully classified by skull-based
features using ANN 3.

ANN 2 Applied to fpVCT Datasets Identifies DDR1/2
Double Knockout Mice

In an additional experiment we presented to the network 2
skull features of five DDR1/2 double knockout mice (DDR1—/—
IIDDR2—/—) without a new training process. Even when skull-
shape features of these mice were not encoded in the
network, the network response (Table 5) clearly depicted
the existence of two skull shapes in all five mice tested, both
related to DDR1- and DDR2-deficient mice. Therefore, the
phenotype of the DDR double knockout mouse appears to be
a superposition of the skull shapes from DDRI-/ and
DDR2—/— mice.

Discussion

This study presents a rapid cost-effective primary screen-
ing method for comparing and identifying mutant mice with
abnormalities in skeletal development out of the increasing
number of mouse models that are now being generated where
genes have been “knocked out,” “knocked in,” or mutated.

We have developed an ANN-based intelligent system for
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image interpretation of large 3-D fpVCT datasets. ANNs are
interconnected groups of artificial neurons that use a
mathematical or computational model for information
processing based on a connectionist approach to computa-
tion [12]. High-resolution 3-D imaging fpVCT allows a
detailed visualization of the mouse skeleton with clear
contours. The delineation of the anatomical details of bone
structures in mice by fpVCT imaging has been previously
described [9].

Comparative morphological analysis is typically difficult in
the skull and extremely laborious due to its very complex
skeletal structure [6]. In our study, large 3-D fpVCT datasets
were simplified to skull-shape features on the basis of high-
order moments of the whole skull, making phenotyping of
mouse models a much simpler, cost-efficient, and semi-
automatic process [23]. One of the benefits of this semi-
automatic classification method is that the manual work is
reduced to the control of the segmentation process of skulls
for which anatomical knowledge is not necessary, resulting in
a rapid and therefore high-throughput application.

Since each of the 34 skull-shape features are based on all
skull voxels, and therefore the features include all possible
skull alterations, the method was found to be very reprodu-
cible and reliable for mouse classification. Therefore, in order
to analyze novel phenotypes with skull abnormalities the
same feature space can consistently be applied. Although,
other statistical methods might be appropriate to analyze
these complex biological relationships, we have chosen
neuronal networks for the classification process because of
several advantages of this method. Neuronal networks are
able to elucidate nonlinear problems and learn by example,
so the details of the complex morphological skull structure on
the basis of which the mice classification is made, are not
needed [12,13]. Therefore, the use of neuronal networks is
highly favorable in our study, characterized by poorly
conditioned features space and the comparison of mice
types, in which the distinct alterations between the different
skull phenotypes are not known yet.

Our results indicate that this computational-intelligence
scheme based on 34 skull features is capable of identifying
genetically modified mice with skeletal abnormalities ob-
served on the five different trained mouse populations.

PCA and cluster analysis of these skull features were not
able to discriminate between the different knockout mice
demonstrating a poorly conditioned feature space and
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Table 3. Discrimination of DDR1/2+/4, DDR2—/—, DDR2+/—, DDR1—/—, and SCID Mice between Different Mouse Populations Using

fpVCT Datasets and ANN 2

Number Genotype (Confirmed Age Sex Activation (%) Result Correctly
by Stand_ard PCR (d) N, — N, — Ns — No— Ns— Classified
Genotyping) DDR1/2+/—~ DDR2-/— DDR1—/— SCID DDR1/2+/+

1 DDR1/2+/+ 57 Male 0.13 0.00 3.18 3.19 28.37° DDR1/2+/+ Yes
2 DDR2—/— 277 Male 0.00 99.98% 26.10 2.13 0.00 DDR2—/— Yes
3 DDR1/2+/+ 406 Female 0.06 0.00 293 0.18  99.13° DDR1/2+/+  Yes
4 DDR1/2+/+ 117 Male 0.63 0.00 0.41 0.27 99.87° DDR1/2+/+ Yes
5 DDR2—/— 113 Male 0.00 79.33? 42.18 0.04 0.02 DDR2—/— Yes
6 DDR1/2+/+ 253 Female 0.00 0.00 5.95 006  99.93° DDR1/2+/+  Yes
7 DDR2—/— 114 Male 0.00 99.99% 0.14 4.59 0.00 DDR2—/— Yes
8 SCID 82 Female 0.00 246 0.19 60.367 5.56 SCID Yes
9 DDR1—/— 156 Male 0.00 242 10.22° 0.67 228 DDR1—/— Yes

10 DDR2+-/— 413 Male 16.95 0.00 0.21 0.01 99.98% DDR1/2+/+ No

11 DDR2+/— 161 Female 0.00 0.01 7.29 1.90 72.452 DDR1/2+/+ No

12 SCID 98 Female 0.00 1.12 0.39 89.68° 5.52 SCID Yes

13 SCID 100 Female 0.00 0.06 4.70 0.98 53.78% DDR1/2+4-/+ No

14 DDR1—/— 210 Female 264 0.00 57.13% 14.47 0.06 DDR1—/— Yes

15 DDR1—/— 200 Female 0.06 0.00 87.85% 21.00 0.00 DDR1—/— Yes

16 DDR1—/— 223 Female 0.00 0.10 75.73% 0.00 20.71 DDR1—/— Yes

“Activation of the winning neuron that causes the classification result.
doi:10.1371/journal.pgen.0030118.t003

thereby showing that a nonlinear classification is a prereq-
uisite to a correct determination of genetically altered mice
models [15,16]. Here, features implemented in the ANNs were
independent of skull sizes and orientations, thus making this
method suitable to exclude interindividual variations of skull
growth within mice of one group. Although features are
related to age, this method is able to successfully discriminate
between mice types when using mice older than 50 d. This
goes in line with the observation that skull shapes of mice
change with growth, but remain nearly constant 15 d
postnatal [28]. The high significance of these features is also
shown by the fact that even the smallest differences can be
automatically detected, such as alterations in skull shapes
related to sex. The algorithm was first tested on a cohort of
DDR2-deficient mice with a known skeletal phenotype
displaying shortage of long bones and a shorter snout [20].
In this study, this phenotyping method enables us to reliably
detect DDR2-deficient mice within a cohort consisting of
homozygous and heterozygous DDR2 mutants. Even hetero-
zygous DDR2 mice with a subtle phenotype were correctly

determined and identified as being different from their wild-
type control by this method based on fpVCT imaging.

So far, no obvious skull abnormalities have been observed
in DDRI1-deficient mice. A reduced bone calcification has
only been described in the fibula [21]. However, the imaging
technique in combination with a neuronal artificial network
trained only with skull-shape features generated from DDR1-
deficient mice, and control mice were successful in discrim-
inating clearly between DDRI-genotypes. With this method
DDR1-deficient mice were identified as mice that show, in
contrast to C57BL/6 wild-type animals, differences in skull
formation. Landmark-based analysis of three distances and
the occipital curvatures confirmed the presence of skull
abnormalities of DDR2 knockout mice, thereby clearly
defining a skeletal phenotype for these mutants. In contrast,
DDRI1-deficient mice with a subtle phenotype were not
significantly altered in these features.

The screening tool based on skull-shape features is
successful in discriminating between mouse strains displaying
no overt differences in skull formation, for example

Table 4. Identification of DDR2+/—, C57BL/6 Wild-Type, and SCID Mice Using fpVCT Datasets and ANN 3

Number Genotype (Confirmed by Age Sex Activation (%) Result Correctly
Standard PCR Genotyping) (d) N, N, Classified

1 SCID 100 Female 36.19 2.03 SCID Yes

2 C57BL/6 wild-type 156 Male 91.44% 1.50 C57BL/6 wild-type Yes

3 C57BL/6 wild-type 336 Female 99.13% 37.26 C57BL/6 wild-type Yes

4 DDR2+/— 413 Male 99.99° 87.81° DDR2+/— Yes

5 DDR2+/— 515 Female 99.99° 96.74° DDR2+/— Yes

6 SCID 98 Female 2.88 0.15 SCID Yes

“Activation of a neuron above 50% that leads to the classification result.
doi:10.1371/journal.pgen.0030118.t004
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Table 5. Identification of DDR1/2—/— Double Knockout Mice with ANN 2 That Is Only Trained for Single Knockout Mice

Number Genotype (Confirmed Age Sex Activation (%) Result Correctly
by Stanc!ard PCR (d) N, = N, — N — No— Ns— Classified
Genotyping)

DDR1/2 +/— DDR2 —/— DDR1 —/— SCID DDR1/2 +/+

1 DDR1—/—//DDR2—/— 14 Male 0.00 86.10° 87.90° 000  0.00 DDR1—/—//DDR2—/—  Yes

2 DDR1—/—//DDR2—/— 14 Male  0.00 99.40° 83.41° 0.00 0.0 DDR1—/—//DDR2—/—  Yes

3 DDR1—/—//DDR2—/— 14 Male 0.00 99.55° 95.22° 000  0.00 DDR1—/—//DDR2—/—  Yes

4 DDR1—/—//DDR2—/— 14 Male 000 99.83? 65.23° 000 0.0 DDR1—/—//DDR2—/—  Yes

5 DDR1—/—//DDR2—/— 14 Male 0.00 100.00° 81.18° 0.00 0.0 DDR1—/—//DDR2—/—  Yes

Activation of a neuron above 50% that leads to the classification result.
doi:10.1371/journal.pgen.0030118.t005

distinguishing SCID mice from C57BL/6 wild-type mice. Even
five double knockout mice for DDR1 and DDR2 not used in
the training process, were identified by our semi-automatic
classification method as a superposition of the classes related
to the single features of DDR1—/~ and DDR2—/— mice. This
suggests that the algorithm discriminates not only between
trained mice, but identifies different skull-shape traits.

The imaging technique, in combination with a more
complex neuronal network, was also valuable to reliably
discriminate DDR2-deficient mice between five different
mouse populations, including SCID mice and DDR1-deficient
mice. The challenge of creating a network for all presented
mouse genotype-related phenotypes together is to balance
the combined feature space of all classes. Therefore, the
application of this ANN trained with features out of datasets
from DDR2-deficient mice with a marked skeletal defect did
not allow discrimination between the heterozygous DDR2-
deficient mice, SCID mice, or their controls, which all show
similarity in skull bones. However, thereafter they were
successfully classified by applying the more specialized
neuronal network for the three subtle mouse phenotypes.

In conclusion, we have introduced a novel semi-automatic
screening method for skeletal phenotyping by applying
neuronal networks in combination with fpVCT, so far limited
to five different mice models. This methodology seems to be a
powerful tool for the rapid detection of living mice with skull
abnormalities. In the future, this technique is expected to be
a standardized, cost-effective, primary screen to identify mice
with skeletal differences out of a wide spectrum of genetically
altered mice on the basis of random mutagenesis as well as
transgenic and knockout mice. For successful identification
of novel mutant mice with bone abnormalities, skull-shape
features have to be calculated to create and train a novel
neuronal network. However, because the introduced features
are calculated automatically and include information of every
skull voxel, they should easily be implemented to new skull
shapes. Even a minor training error will indicate the
existence of alteration in skull shapes. The degree of reliance
to predict a skull phenotype is directly related to the
correspondence of the neuronal network response for a
second set of mice to their genotype. Therefore, skull
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