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While major inroads have been made in identifying the genetic causes of rare Mendelian disorders, little progress has
been made in the discovery of common gene variations that predispose to complex diseases. The single gene variants
that have been shown to associate reproducibly with complex diseases typically have small effect sizes or attributable
risks. However, the joint actions of common gene variants within pathways may play a major role in predisposing to
complex diseases (the paradigm of complex genetics). The goal of this study was to determine whether polymorphism
in a candidate pathway (axon guidance) predisposed to a complex disease (Parkinson disease [PD]). We mined a whole-
genome association dataset and identified single nucleotide polymorphisms (SNPs) that were within axon-guidance
pathway genes. We then constructed models of axon-guidance pathway SNPs that predicted three outcomes: PD
susceptibility (odds ratio¼90.8, p¼4.64 3 10�38), survival free of PD (hazards ratio¼19.0, p¼5.43 3 10�48), and PD age
at onset (R2¼0.68, p¼1.68 3 10�51). By contrast, models constructed from thousands of random selections of genomic
SNPs predicted the three PD outcomes poorly. Mining of a second whole-genome association dataset and mining of an
expression profiling dataset also supported a role for many axon-guidance pathway genes in PD. These findings could
have important implications regarding the pathogenesis of PD. This genomic pathway approach may also offer
insights into other complex diseases such as Alzheimer disease, diabetes mellitus, nicotine and alcohol dependence,
and several cancers.
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Introduction

Complex diseases occur commonly in the population and
are a major source of disability and death worldwide. They
are thought to arise from multiple predisposing factors, both
genetic and nongenetic, and joint effects of those factors are
thought to be of key importance [1,2]. Parkinson disease (PD)
serves as an example of a complex disease [3,4]. Other
examples include Alzheimer disease, diabetes mellitus,
nicotine and alcohol dependence, and several types of cancer
[5]. While major inroads have been made in identifying the
genetic causes of rare Mendelian disorders, little progress has
been made in the discovery of common gene variations that
predispose to complex diseases [6,7]. The single gene variants
that have been shown to associate reproducibly with complex
diseases typically have small effect sizes or attributable risks.
However, the joint actions of common gene variants within
pathways may play a major role in predisposing to complex
diseases (the paradigm of complex genetics), and the
discovery of susceptibility genes and pathways may have
sizeable public health benefits [8,9].

As early as 1997, experimental studies inferred that genetic
variability in the axon guidance pathway was a possible factor
contributing to the cause of PD [10]. More recently, a high-
resolution, whole-genome association study of PD highlighted
the semaphorin 5A gene (SEMA5A) as containing the single
nucleotide polymorphism (SNP) most significantly associated

with PD susceptibility in that study [11]. SEMA5A maps to the
deletion candidate interval for cri du chat syndrome, which is
associated with severe abnormalities in brain development
[12]. Semaphorin proteins play an important role in axon
guidance and in the development of the mesencephalic
dopamine neuron system during embryogenesis [13]. They
interact with several other proteins from the axon guidance
pathway to provide a complex and dynamic set of cues that
either repel (as for the semaphorins) or attract axons toward
their synaptic targets [14,15]. Indeed, several axon-guidance
pathway proteins (including ephrin and netrin and slit
proteins and their ephrin and deleted in colorectal carcino-
ma and roundabout family receptors) have been shown to
also be important for dopamine axonal maintenance,
regeneration, and target recognition [16,17]. Several exper-
imental findings from the neurodevelopment literature and
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our preliminary genetic findings led us to hypothesize that
while the main effects of a single gene such as SEMA5A may
be small and of limited significance, the joint effects of
multiple axon-guidance pathway genes may predispose to PD.

Results

This study employed a genomic pathway approach to
determine whether polymorphism in the axon guidance
pathway predisposed to PD. Specifically, we employed
bioinformatic methods to mine an available whole-genome
association dataset for SNPs that were within brain-expressed,
axon-guidance pathway genes. We then employed statistical
methods to construct models of axon-guidance pathway SNPs
that predicted three outcomes: PD susceptibility, survival free
of PD, and age at onset of PD. The primary whole-genome
association study dataset employed by this study included 443
PD cases and 443 unaffected sibling controls (Tier 1 sample).
Details regarding the demographic and clinical characteristics
of these participants have been reported previously [11]. The
median age at onset of PD among the cases was 61 years (range
31–94). Details regarding the SNP markers genotyped,
including call rates, Hardy-Weinberg equilibrium estimations,
and regenotyping concordance rates were previously re-
ported [11]. Our bioinformatic methods identified 128 brain-
expressed axon-guidance pathway genes, and our SNP dataset
included 1,460 SNPs within 117 of those genes, as detailed in
Table S1. There were no SNP data for 11 genes.

PD Susceptibility
Of the 1,460 SNPs within brain-expressed genes of the

axon-guidance pathway, 183 SNPs (12.5%) were individually
associated with susceptibility to PD. Table 1 contains results
for the final model produced by running SNPs through the
multistage process to predict PD susceptibility. This model
used data from 442 matched PD patients/sibling controls (one
pair was missing data on one or more SNPs). The odds ratios
(ORs) (95% confidence intervals [CIs]) for the groups defined
by predicted PD probability of ,0.25, 0.25–0.50, 0.50–0.75,
and .0.75 were as follows: 1 (reference), 4.58 (2.27–9.23), 15.42

(6.19–38.45), and 90.76 (32.60–252.67) respectively. Since we
were interested in the significance of the pathway, rather than
individual SNPs, the p value for the overall model was of
primary importance. In this case, the model had an overall p
value of 4.64310�38 (95% CI 6.94310�28�5.39310�40). This
model significantly predicted whether or not an individual
was a case or an unaffected sibling. The predicted proba-
bilities of PD were high (towards 1) for most of the cases, and
low (towards 0) for most of the unaffected siblings (Figure 1).
Indeed 35% of the cases had predicted probabilities above 0.9,
and 34% of unaffected siblings had predicted probabilities
below 0.1. However, as shown by Figure 1, the model did not
completely distinguish the two groups; some cases had low
predicted probabilities, and some controls had high predicted
probabilities. The concordance for the model was about 0.70,
indicating good but not complete agreement between
predicted and observed case/sibling status.

Survival Free of PD
Of the 1,460 SNPs, 175 (12.0%) were individually associated

with survival free of PD (hazard function) using Cox propor-
tional hazards models, as detailed in Table S1. Table 2
contains results for the final proportional hazards model
produced by running SNPs through the multistage process to
predict survival free of PD. This model used data from 400 PD
patients (43 patients were missing data on one or more SNPs).
In this case, the model had an overall p value of 5.43 3 10�48

(95% CI 3.19 3 10�37 � 2.36 3 10�61). By contrast, the model
was not significant at predicting survival (age at study) of the
matched sibling controls (p ¼ 0.73). This last finding suggests
that the model predicts survival free of PD (hazard function),
but not survival in general, and that the model is specific for
PD cases.
Figure 2 shows a Kaplan-Meier plot to describe the results

of the model. The groups were formed by calculating a risk
score for each PD patient using the equation from the
proportional hazards model, then categorizing the score at
the 25th (Q1), 50th (Q2), and 75th (Q3) percentiles. The
survival curves separated nicely right from the earliest ages of
onset. By age 60, only 9% of PD patients in the predicted
highest risk group were still free of PD, whereas 89% of PD
patients in the predicted lowest risk group were free of PD.
By age 70, none of the PD patients in the predicted highest
risk group were still free of PD, whereas 66% of PD patients
in the predicted lowest risk group were free of PD. The
median ages at onset for each group, from lowest risk group
to highest risk group, were 72.1, 66.5, 59.7, and 51.7, a
difference in survival free of PD of more than 20 years from
lowest to highest. The concordance for this model was 0.76.
The hazards ratios (HRs) (95% CIs) for the four groups, from
lowest to highest risk, were 1 (reference), 2.96 (2.14–4.07), 6.91
(4.87–9.81), and 19.04 (13.11–27.65).

Age at Onset of PD
Of the 1,460 SNPs, 160 (11.0%) were individually associated

with age at onset of PD using linear regression models, as
detailed in Table S1. Table 3 contains results for the final
model produced by running SNPs through the multistage
process to predict PD age at onset. This model used data from
395 PD patients (48 patients were missing data on one or more
SNPs). In this case, the model had an overall p value of 1.683

10�51 (95% CI 3.563 10�42� 1.163 10�51). By contrast, the set
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Author Summary

Complex diseases are common disorders that are believed to have
many causes. Examples include Alzheimer disease, diabetes mellitus,
nicotine and alcohol dependence, and several cancers. This study
represents a paradigm shift from single gene to pathway studies of
complex diseases. We present the example of Parkinson disease (PD)
and a complex array of chemical signals that wires the brain during
fetal development (the axon guidance pathway). We mined a
dataset that studied hundreds of thousands of DNA variations
(single nucleotide polymorphisms [SNPs]) in persons with and
without PD and identified SNPs that were assigned to axon-
guidance pathway genes. We then identified sets of SNPs that were
highly predictive of PD susceptibility, survival free of PD, and age at
onset of PD. The effect sizes and the statistical significance observed
for the pathway were far greater than for any single gene. We
validated our findings for the pathway using a second SNP dataset
for PD and also a dataset for PD that studied RNA variations. There is
prior evidence that the axon guidance pathway might play a role in
other brain disorders (e.g., Alzheimer disease, Tourette syndrome,
dyslexia, epilepsy, and schizophrenia). A genomic pathway approach
may lead to important breakthroughs for many complex diseases.



of SNPs was not significant at predicting age at study of the
matched sibling controls (p ¼ 0.34). This last finding suggests
that the model predicts age at onset of PD, not age at the time
of the study, and that the model is specific for PD cases.

Figure 3 shows a plot of predicted age at onset versus
reported age at onset to summarize the results of the model.
The plot showed a nice elliptical pattern, reflecting the model
R2 of 0.683 (95% CI 0.62–0.69). The model explained about
68% of the variability in age at onset of PD.

Figure S1 shows the distributions of the test statistics from
the models with randomly selected SNPs and the values of the
test statistics from our final models for PD susceptibility (A),
survival free of PD (B), and age at onset of PD (C). The test
statistics from our final models were in every case much
greater than those observed from the other models.

Other combinations of SNPs from the axon guidance
pathway also performed quite well in predicting PD
susceptibility, survival free of PD, and age at onset of PD.
Although the models reported in this manuscript provided
good fits to our data, our results do not preclude other
combinations of axon-guidance pathway SNPs as significant
predictors of PD. The SNPs in the final models that we
selected showed no significant linkage disequilibrium in
unaffected siblings.

Validation with a Second Whole-Genome Association
Dataset

We also mined a second available whole-genome associa-
tion dataset for PD, to determine whether the genes in each
of the predictive genetic models in our primary whole-

genome association dataset were also predictive of the same
PD outcomes in the secondary dataset (same genes and
outcomes, different SNPs and samples). Details regarding the
participants and genotyping procedures for that study have
been recently reported [18].
The secondary whole-genome association dataset included

1,195 SNPs in the 22 genes from the model predicting PD
susceptibility in our primary dataset. Of those SNPs, 127
(10.6%) were individually associated with susceptibility to PD,
as detailed in Table S2. Table S3 contains results for the final
model produced by running SNPs through the multistage
process to predict PD susceptibility. This model used data
from 528 individuals (264 PD patients and 264 unrelated
controls; eight individuals were missing data on one or more
SNPs). The model had an overall p value of 3.93 3 10�44. The
ORs (95% CIs) for the groups defined by predicted PD
probability of ,0.25, 0.25–0.50, 0.50–0.75, and .0.75 were as
follows: 1 (reference), 7.86 (3.94–15.71), 16.14 (8.13–32.05), and
121.14 (56.63–259.14), respectively. The predicted probabil-
ities of PD were high (towards 1) for most of the cases and low
(towards 0) for most of the unaffected siblings (Figure S3).
Indeed 38% of the cases had predicted probabilities above 0.9,
and 39% of unaffected siblings had predicted probabilities
below 0.1. However, as shown by Figure S3, the model did not
completely distinguish the two groups; some cases had low
predicted probabilities, and some controls had high predicted
probabilities. The concordance for the model was 0.90.
The secondary whole-genome association dataset included

1,411 SNPs in the 26 genes from the model predicting age at
onset of PD in our primary dataset. Of those SNPs, 142

Table 1. SNPs in Axon-Guidance Pathway Genes Predicting PD Susceptibility

Genea (rs or ss Identification)

Final Coding Schemeb
Odds Ratio (95% CI)c p Valuec Interactiona Odds Ratio (95% CI)c p Valuec

CDC42 (rs12740705), d 0.16 (0.06–0.41) 1.3 3 10�04 DCC*PAK4 0.02 (0.002–0.19) 6.0 3 10�04

CHP (rs6492998), d 0.21 (0.09–0.47) 1.6 3 10�04 EPHA4*FYN 0.16 (0.05–0.53) 2.8 3 10�03

DCC (rs17468382), d 0.07 (0.01–0.67) 2.1 3 10�02 EPHA4*PAK7 0.26 (0.11–0.62) 2.7 3 10�03

EFNA5 (ss46558780), d 0.80 (0.29–2.21) 6.7 3 10�01 EPHB2*EFNA5 5.25 (2.10–13.13) 4.0 3 10�04

EPHA4 (rs13386128), a 16.29 (5.95–44.59) 5.6 3 10�08 FYN*RRAS2 0.04 (0.003–0.50) 1.3 3 10�02

EPHB1 (rs2030737), d 2.60 (1.23–5.51) 1.2 3 10�02 FYN*SLIT3 4.52 (1.32–15.47) 1.6 3 10�02

EPHB2 (rs10917325), a 0.11 (0.05–0.28) 1.6 3 10�06 MRAS*SLIT3 0.18 (0.08–0.41) 5.9 3 10�05

FYN (rs6910116), r 59.95 (5.01–717.33) 1.2 3 10�03 PAK7*CHP 2.94 (1.23–7.01) 1.5 3 10�02

GNAI3 (rs6692804), r 0.07 (0.01–0.32) 6.3 3 10�04 SEMA5A*RAC2 4.95 (1.37–17.91) 1.5 3 10�02

GSK3B (rs16830689), r 0.09 (0.02–0.44) 2.9 3 10�03 UNC5C1*DCC 6.89 (1.20–39.51) 3.0 3 10�02

MRAS (rs4678260), a 0.97 (0.57–1.65) 9.1 3 10�01

NTNG1 (rs11185076), r 0.02 (0.001–0.32) 5.7 3 10�03

PAK4 (rs17641276), r 9.55 (3.73–24.43) 2.5 3 10�06

PAK7 (rs2072952), a 1.70 (0.75–3.90) 2.1 3 10�01

PLXNA2 (rs6656034), a 2.92 (1.75–4.87) 4.0 3 10�05

PLXNC1 (rs2068435), a 0.51 (0.25–1.02) 5.5 3 10�02

PPP3CA (rs2044041), d 5.72 (2.84–11.51) 1.1 3 10�06

RAC2 (rs739043), r 0.16 (0.069–0.39) 4.8 3 10�05

RRAS2 (rs2970332), d 8.78 (2.45–31.44) 8.5 3 10�04

SEMA5A (ss46559487), d 0.22 (0.10–0.49) 2.0 3 10�04

SLIT3 (rs9688032), d 17.46 (4.61–66.07) 2.5 3 10�05

UNC5C1 (rs11097458), a 2.25 (1.41–3.61) 7.2 3 10�04

UNC5C2 (rs4444836), d 0.38 (0.17–0.85) 1.8 3 10�02

Data from our primary whole-genome association dataset [11].
aSubscript is used to identify individual SNPs in interactions; asterisk denotes multiplicative interaction.
ba, log additive; d, Mendelian dominant; r, Mendelian recessive.
cResults adjusted for age and gender.
doi:10.1371/journal.pgen.0030098.t001
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(10.1%) were individually associated with survival free of PD
(hazard function) using Cox proportional hazards models, as
detailed in Table S2. Table S4 contains results for the final
proportional hazards model produced by running SNPs
through the multistage process to predict survival free of
PD. This model used data from 263 PD patients (five patients
were missing data on one or more SNPs). In this case, the
model had an overall p value of 6.30 3 10�35. However, the
model was not significant at predicting survival (age at study)
of the matched sibling controls (p ¼ 0.14).

Figure S4 uses a Kaplan-Meier plot to describe the results of
the model. The groups were formed by calculating a risk score
for each PD patient using the equation from the proportional
hazards model, then categorizing the score at the 25th (Q1),
50th (Q2), and 75th (Q3) percentiles. The survival curves
separated nicely right from the earliest ages of onset. By age
60, only 41% of PD patients in the predicted highest risk
group were still free of PD, whereas 94% of PD patients in the
predicted lowest risk group were free of PD. By age 70, none
of the PD patients in the predicted highest risk group were

still free of PD, whereas 68% of PD patients in the predicted
lowest risk group were free of PD. The median ages at onset
for each group, from lowest risk group to highest risk group,
were 74, 68, 63, and 60, a difference in survival free of PD of 14
years from lowest to highest. The concordance for this model
was 0.78. The HRs (95% CIs) for the four groups, from lowest
to highest risk, were 1 (reference), 4.02 (2.62–6.16), 10.69
(6.72–16.98), and 21.05 (12.85–34.48).
The secondary whole-genome association dataset included

1,605 SNPs in 28 of the 29 genes from the final model
predicting age at onset of PD in our primary dataset. Of those
SNPs, 157 (9.8%) were individually associated with age at
onset of PD using linear regression models, as detailed in
Table S2. Table S5 contains results for the final model
produced by running SNPs through the multistage process to
predict PD age at onset-squared. This model used data from
265 PD patients (three patients were missing data on one or
more SNPs). In this case, the model had an overall p value of
4.72 3 10�40. However, the set of SNPs was not significant at
predicting age at study-squared of the matched sibling
controls (p ¼ 0.527).
Figure S5 shows a plot of predicted age at onset versus

reported age at onset to summarize the results of the model.
The plot showed a nice elliptical pattern, reflecting the model
R2 of 0.714. The model explained about 71% of the variability
in age at onset of PD.

Validation with a Gene-Expression Profiling Dataset
We also mined an available gene-expression profiling

dataset for PD that considered 21 different brain regions.
Details regarding the participants, biological samples, and
microarray experiments have been recently reported [19].
For this study, we limited our data analyses to the substantia
nigra and the striatum (putamen and caudate nuclei), since
these are the brain regions contributing most significantly to
the nigrostriatal dopamine deficiency that is characteristic of
PD and since we defined our three PD outcomes according to
the corresponding motor phenotype. There was a total of 45
genes represented by the SNPs listed for the three predictive
genetic models (Tables 1–3), and the gene expression dataset
had informative probe sets for 32 of those genes in the
substantia nigra, 34 in the putamen, and 35 in the caudate.
Table S6 provides a detailed listing of the multiregional
expression data for the 45 genes. In each region, there were
more differentially expressed genes observed than expected
by chance: substantia nigra, seven observed (22%) versus 1.6
expected (5%); putamen, five observed (15%) versus 1.7
expected (5%); and caudate, five observed (14%) versus 1.8
expected (5%). Overall, 36 genes had data in at least one of
the three regions, and 14 (39%) of those were differentially
expressed in at least one region. Figure 4 provides a detailed
summary of the multiregional expression data for the 45
axon-guidance pathway genes that were predictive of PD
outcomes. We observed no significant differences in the
number of probe sets for differentially expressed versus
normally expressed genes, except for the putamen where two
genes with eight fragments each were both differentially
expressed (unpublished data). Removing those two genes
(outliers) removed the significance (no differences in the
median numbers of informative probe sets).
We found very similar results from our sensitivity analyses

treating accurate-type and cross-reacting type fragments

Figure 1. Goodness-of-Fit of Final Model Using Axon Guidance Genes to

Predict Susceptibility to PD

Data presented are within our primary whole-genome association
dataset [11]. Histogram of predicted probabilities of PD in cases (A)
and histogram of predicted probabilities of PD in unaffected siblings (B)
are presented. A perfect fit would have all predicted probabilities for
cases equal to one and all predicted probabilities for unaffected siblings
equal to zero. A model with no explanatory value would have histograms
that were indistinguishable from each other. Conditional logistic
regression analyses were used to generate the probabilities, and hence
the data do not fit a single exponential curve (one end close to zero).
doi:10.1371/journal.pgen.0030098.g001
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equally. Again, in each region there were more differentially
expressed genes than expected by chance. Restricting to the
45 genes represented in the three predictive genetic models,
the results were: substantia nigra, seven observed (22%)
versus 1.6 expected (5%); putamen, five observed (15%)
versus 1.7 expected (5%); and caudate, seven observed (20%)
versus 1.8 expected (5%). Overall, of the 36 genes with data in
at least one of the three regions, 14 (39%) were still
differentially expressed in at least one region.

Finally, we renormalized and reanalyzed the raw data from
the original gene expression profiling study using a different
standard software package, to obtain results for all probe sets
in all 45 genes and in all three regions. We again observed
differential expression of axon-guidance pathway genes in
PD, although the findings were more modest. A total of 13
genes were differentially expressed in at least one region
(eight in the substantia nigra, one in the putamen, and four in
the caudate).

For all analyses of differential gene expression, we were
able to code the differential expression unambiguously as
increased or reduced. For genes with multiple informative
and differentially expressed probe sets, the direction of effect
was always the same.

Discussion

Although the genetic model findings from this study have
not been replicated using identical SNPs in an independent
sample, they do generate some interesting hypotheses and
provide evidence for the possible role of the axon guidance
pathway in PD. As such, our study represents a paradigm shift
from single-gene to pathway analyses of a complex disease.
Replication of genetic association findings can be challeng-
ing, particularly when the effect sizes are small [18, 20–27].
Although a second whole-genome association study of PD was
recently published and has data that could be similarly mined
to test the hypothesis that the axon guidance pathway is
associated with PD, that dataset included only 16% of the
SNPs included in the dataset that we utilized, precluding an
exact replication of our models [11,18]. Nevertheless, for the
32,192 SNPs common to the two studies, we identified three
SNPs that were associated with PD in all meta-analysis
strategies. One of the SNPs was in the axon-guidance pathway
gene UNC5C, which encodes a netrin receptor [28].
Furthermore, within the secondary whole-genome associ-

ation dataset [18], we were able to construct predictive
models for PD susceptibility, survival free of PD, and

Table 2. SNPs in Axon-Guidance Pathway Genes Predicting Survival Free of PD

Genea (rs or ss Identification),

Final Coding Schemeb
HR (95% CI) p Value Interactiona HR (95% CI) p Value

ABLIM2 (rs10008860), r 1.68 (1.30–2.18) 7.1 3 10�05 DCC1*NTNG1 2.91 (1.30–6.52) 9.3 3 10�03

DCC1 (rs16954702), a 0.78 (0.38–1.57) 4.8 3 10�01 EPHA8*EPHB11 0.12 (0.02–0.76) 2.5 3 10�02

DCC2 (rs4940245), d 0.46 (0.33–0.64) 4.5 3 10�06 EPHB11*DPYSL2 2.89 (1.26–6.62) 1.2 3 10�02

DPYSL2 (rs327234), r 0.30 (0.13–0.66) 2.7 3 10�03 PAK6*NFATC4 1.46 (1.08–1.97) 1.3 3 10�02

EPHA8 (ss46536672), r 1.81 (0.38–8.68) 4.6 3 10�01 ROBO12*PLXNC12 0.43 (0.25–0.75) 2.9 3 10�03

EPHB11 (rs1554675), r 1.08 (0.71–1.64) 7.1 3 10�01 ROBO2*DCC2 1.82 (1.18–2.82) 7.2 3 10�03

EPHB12 (rs36183), r 1.65 (1.28–2.13) 1.1 3 10�04 ROBO2*SEMA3A 0.40 (0.26–0.63) 4.7 3 10�05

KRAS (rs11047902), d 0.62 (0.48–0.80) 3.0 3 10�04 SEMA3A*RRAS2 3.39 (1.66–6.90) 7.8 3 10�04

NFATC2 (ss46555247), a 1.47 (1.20–1.79) 1.6 3 10�04 SLIT32*NTNG1 0.47 (0.28–0.79) 3.9 3 10�03

NFATC4 (rs2295298), a 1.29 (1.04–1.60) 2.3 3 10�02 SLIT31*SEMA3A 0.57 (0.35–0.91) 1.9 3 10�02

NTNG1 (rs12731259), d 2.41 (1.55–3.75) 9.1 3 10�05

PAK3 (rs10521534), r 5.89 (2.26–15.31) 2.8 3 10�04

PAK6 (ss46552269), a 0.46 (0.30–0.70) 2.6 3 10�04

PLXNC11 (rs2068435), r 3.27 (1.61–6.65) 1.1 3 10�03

PLXNC12 (rs3803071), a 1.45 (1.22–1.72) 2.9 3 10�05

PPP3CA (rs1506801), a 1.58 (1.34–1.85) 3.6 3 10�08

ROBO11 (rs6769328), d 0.49 (0.35–0.69) 2.8 3 10�05

ROBO12 (ss46540991), r 1.24 (0.64–2.41) 5.2 3 10�01

ROBO2 (rs17015294), d 0.63 (0.42–0.93) 2.0 3 10�02

ROCK2 (rs6721445), d 0.26 (0.12–0.60) 1.4 3 10�03

RRAS2 (rs1431374), r 0.36 (0.23–0.59) 3.2 3 10�05

SEMA3A (ss46545340), d 1.13 (0.80–1.60) 5.0 3 10�01

SEMA3D (rs12176601), d 1.32 (1.06–1.64) 1.3 3 10�02

SEMA3E (rs215285), r 1.98 (1.45–2.71) 1.8 3 10�05

SEMA5A (rs3822787), r 5.28 (2.47–11.3) 1.8 3 10�05

SLIT31 (rs1432899), d 2.21 (1.60–3.06) 1.7 3 10�06

SLIT32 (rs7715777), d 1.21 (0.80–1.83) 3.6 3 10�01

SLIT33 (ss46557969), r 0.54 (0.42–0.71) 5.2 3 10�06

SRGAP1 (rs1840664), d 2.30 (1.69–3.12) 9.4 3 10�08

SRGAP3 (rs6762693), a 0.66 (0.54–0.82) 1.2 3 10�04

UNC5A (rs539822), d 2.51 (1.23–5.09) 1.1 3 10�02

UNC5D (rs13256961), a 1.12 (0.96–1.31) 1.6 3 10�01

Data from our primary whole-genome association dataset [11].
aSubscript is used to identify individual SNPs in interactions; asterisk denotes multiplicative interaction.
ba, log additive; d, Mendelian dominant; r, Mendelian recessive.
doi:10.1371/journal.pgen.0030098.t002
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predicted age at onset of PD. All three models in the
secondary dataset were also highly significant. This is
remarkable, as the two datasets employed independent
samples and different study designs. Namely, the study of
Fung et al. employed fewer participants, unrelated controls,
and more and different SNP markers compared to the study
of Maraganore et al. [11,18]. This would further attest to the
robustness of our predictive models. For validation purposes,
we restricted the analyses of the secondary dataset to the
genes that were represented by SNPs in each of the three
predictive models for the primary dataset. This biases the
findings for the secondary dataset conservatively, as it is
possible that additional axon-guidance pathway genes con-
tribute to the PD outcomes in that study sample. A more
conservative approach would have been to limit the analysis
of the secondary dataset to either the same SNPs or to SNPs
from the same linkage disequilibrium bins, as for the first
study. However, because there was only limited overlap in
SNPs between the two studies (16%), and because many of the
SNPs employed by the two studies are not included in a
common haplotype map, this would not be possible for all of
the genes in the models. Nevertheless, future studies of the

two whole-genome association datasets may wish to consider
additional meta-analytic strategies [28].
We note that the magnitudes of the genetic effects were

sizeable. Within our primary whole-genome association
dataset [11], persons with high versus low model scores
differed in susceptibility by 90-fold and in age at onset by
more than 20 years, and polymorphism in the axon guidance
pathway accounted for nearly 70% of the age at onset
variance of PD. Similarly large effects were observed for the
secondary dataset [18]. The findings of a study are more likely
to be true when the effect sizes are large; however, we
acknowledge that limited sample size, multiple tested
relationships, and flexible analyses may have reduced the
positive predictive value of the large effects that we observed
[29]. Although the p values observed for our predictive
models were small, these were the values determined by the
actual data in independent datasets, and bootstrapping
resulted in CIs smaller than 1 3 10�27 for each outcome in
the primary dataset.
Within our primary whole-genome association dataset [11],

models constructed from thousands of random selections of
genomic SNPs predicted all three PD outcomes poorly by
comparison to models constructed using axon guidance
SNPs. Our models of survival free of PD and age at onset of
PD did not predict age at study in sibling controls (nor for
unrelated controls in the secondary dataset). This would
again argue against a chance association of the models with
PD outcomes within the samples. We note that the models
constructed using axon guidance SNPs were robust and were
not crippled by the elimination of SNPs. For example, in our
primary dataset, even after removing the first ten SNPs to
enter the models (via the stepwise selection process), the
overall model p values were smaller than 13 10�15 for each of
the outcomes (unpublished data). This indicates that the
results were not driven by a few SNPs and that the joint
effects of multiple SNPs were important.
Our analyses of an available gene-expression profiling

dataset revealed that axon-guidance pathway genes were
differentially expressed in the brains of PD cases as compared
to controls, including several genes that were predictive of PD
in the models constructed from the primary whole-genome
association dataset (convergence of findings) [11,19]. Not all
genes included in the models constructed from the primary
whole-genome association dataset were abnormally expressed
in the gene-expression profiling dataset, and not all axon-
guidance pathway genes that were abnormally expressed in
the gene-expression profiling dataset were predictive of PD
outcomes in that whole-genome association dataset (unpub-
lished data). This may be because: (1) for some genes, the
whole-genome association dataset had no data (no informa-
tive SNPs); (2) for some genes, the gene-expression profiling
dataset had no data (no informative probe sets); (3) the PD
brains included in the gene-expression profiling dataset were
from end-stage patients, and it is possible that for some axon-
guidance pathway genes differential expression occurs only
earlier in life; (4) the genes included in the predictive models
may have been associated with PD via a mechanism other
than differential expression (i.e., qualitative rather than
quantitative effects); (5) there are multiple other possible
limitations intrinsic to the whole-genome association and
gene expression profiling studies, which may have led to false

Figure 2. Kaplan-Meier Survival Plot for Age at Onset in PD Patients

Data are grouped by categorized risk score from proportional hazards
model within our primary whole-genome association dataset [11]. The
model clearly differentiates between early-age-at-onset cases and late-
age-at-onset cases. Cases generating the long-dashed line were
predicted to be at highest risk for early onset of PD, followed by the
medium-dashed, short-dashed, and continuous lines, respectively. Since
only cases were included, all of the lines end at 0% free of PD.
doi:10.1371/journal.pgen.0030098.g002
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positive and false negative results (divergence of findings)
[11,19].

Although we observed differential expression of axon-
guidance pathway genes in an available gene-expression
profiling dataset, we have not as yet demonstrated the
biological effects of specific SNPs included in the predictive
models in either human gene transcription or translation
datasets or in experimental cell or animal models (construct
validity). We emphasize that the SNPs that were independent
predictors of susceptibility, survival free of PD, or age at
onset of PD in either whole-genome association dataset may
be only indirect markers of the functional variants within the
genes. Fine mapping of these gene loci in diverse populations
and experimental studies in transfected cell lines or in
transgenic animals may help to identify functional variants
within the genes and to elucidate the pathogenic mechanism
of the axon-guidance pathway variability that we observed [7].
It would be of interest to genotype a large postmortem cohort

for the SNPs that were predictive of PD outcomes and to
directly correlate the ORs of those SNPs to the fold changes
for matching RNA fragments (probe sets).
We find it plausible that polymorphism in the axon-

guidance pathway genes could lead to aberrant trajectory of
the ascending dopaminergic pathway during embryonic brain
development and in turn cause congenital deficiency in
nigrostriatal dopamine. In other words, some persons could
be ‘‘wired differently’’ from birth and could thus be at greater
risk to develop PD and at an earlier age. Animal experiments
provide support for this pathogenic mechanism. The study of
embryonic brain development in knockout mice has sug-
gested a critical role for axon guidance proteins, including
semaphorin and slit proteins, in the guidance of the
ascending trajectory of dopamine pathways from cell bodies
in the substantia nigra to the ipsilateral striatum [13,30,31].
By the 16th day of embryogenesis, mutant mice deficient in
semaphorin and slit proteins exhibit a loss of midline

Table 3. SNPs in Axon-Guidance Pathway Genes Predicting Age at Onset of PD

Genea (rs or ss Identification),

Final Coding Schemeb
Regression Coefficient

(Standard Error)

p Value Interactiona Regression Coefficient

(Standard Error)

p Value

(Intercept) 2,177.35 (643.06) 8.0 3 10�04 ABLIM21*CXCR4 3,399.00 (993.00) 7.0 3 10�04

ABL1 (rs17147263), r �1,845.63 (610.17) 2.7 3 10�03 ABLIM21*NFATC4 466.16 (169.44) 6.3 3 10�03

ABLIM21 (rs10008860), r �919.68 (247.79) 2.4 3 10�04 CDC42*CXCR4 �2,274.37 (976.73) 2.0 3 10�02

ABLIM22 (rs2386113), d 2,385.58 (530.76) 9.7 3 10�06 DPYSL2*DCC 548.09 (236.29) 2.1 3 10�02

CDC42 (rs2056974), d �366.15 (212.79) 8.6 3 10�02 DPYSL2*PLXNC1 513.80 (203.78) 1.2 3 10�02

CXCR4 (rs2734871), r 4,797.71 (1,169.33) 5.1 3 10�05 EFNA51*CXCR4 �3,066.66 (750.24) 5.5 3 10�05

DCC (rs1367637), r �514.16 (105.45) 1.7 3 10�06 EFNA51*NFATC4 383.76 (182.88) 3.7 3 10�02

DPYSL2 (rs327234), r �287.03 (188.67) 1.3 3 10�01 EPHA4*PPP3CA �384.13 (105.22) 3.0 3 10�04

EFNA51 (rs152562), d �710.18 (243.20) 3.7 3 10�03 NFATC21*NFATC4 �473.13 (156.98) 2.8 3 10�03

EFNA52 (rs3797510), r 502.49 (307.99) 1.0 3 10�01 NFATC22*ROBO12 739.45 (274.32) 7.4 3 10�03

EPHA4 (rs2303901), a �28.75 (93.95) 7.6 3 10�01 NFATC4*PAK6 �415.00 (117.66) 4.8 3 10�04

EPHB1 (ss46540509), a �386.45 (65.46) 8.8 3 10�09 PAK1*NFATC21 301.08 (139.99) 3.2 3 10�02

NFATC21 (ss46555246), r 737.17 (350.16) 3.6 3 10�02 PPP3CA*SLIT32 645.01 (154.72) 3.9 3 10�05

NFATC22 (ss46555247), a 90.19 (169.86) 6.0 3 10�01 PPP3CA*SRGAP12 �560.10 (206.16) 6.9 3 10�03

NFATC4 (rs2295298), a �305.84 (180.30) 9.1 3 10�02 ROBO11*NFATC21 �790.72 (294.22) 7.6 3 10�03

NTNG1 (rs4579786), r 1,579.13 (539.98) 3.7 3 10�03 ROBO11*UNC5D 1,536.78 (383.22) 7.5 3 10�05

PAK1 (rs503406), a 168.89 (79.54) 3.4 3 10�02 ROBO2*PLXNC1 �588.78 (160.31) 2.8 3 10�04

PAK3 (rs10521534), r �956.72 (410.60) 2.0 3 10�02 ROBO2*PPP3CA �299.35 (139.63) 3.3 3 10�02

PAK6 (ss46552269), a 836.89 (166.71) 8.5 3 10�07 ROBO2*SLIT32 493.18 (199.90) 1.4 3 10�02

PAK7 (rs6086976), r 456.37 (247.31) 6.6 3 10�02 SEMA4D*NFATC22 �421.48 (121.09) 5.7 3 10�04

PLXNC1 (rs10507035), a 57.35 (122.66) 6.4 3 10�01 SEMA5A1*SEMA4D 865.24 (323.95) 7.9 3 10�03

PPP3CA (rs1506801), a 189.91 (158.71) 2.3 3 10�01 SEMA6C*EFNA52 1,497.93 (550.81) 6.9 3 10�03

ROBO11 (rs6769328), d 319.29 (169.17) 6.0 3 10�02 SEMA6C*ROBO2 712.21 (184.45) 1.4 3 10�04

ROBO12 (ss46540991), r 118.28 (188.93) 5.3 3 10�01 SEMA6C*SEMA5A1 1,275.38 (429.55) 3.2 3 10�03

ROBO2 (rs17015294), d 232.75 (182.73) 2.0 3 10�01 SLIT31*UNC5D �3,038.73 (977.12) 2.0 3 10�03

SEMA3E (rs215285), r �416.74 (128.40) 1.3 3 10�03 SLIT32*UNC5D �575.60 (229.89) 1.3 3 10�02

SEMA4D (rs9969727), a 297.51 (78.41) 1.8 3 10�01 SRGAP3*SLIT32 �446.03 (179.54) 1.3 3 10�02

SEMA5A1 (rs16882671), a �2,288.01 (575.23) 8.6 3 10�05 SRGAP3*SLIT33 �397.10 (165.82) 1.7 3 10�02

SEMA5A2 (rs3822787), r �1,172.76 (314.54) 2.3 3 10�04

SEMA6C (rs4357530), r �41.57 (141.18) 7.7 3 10�01

SLIT2 (rs1355512), r �482.36 (192.17) 1.3 3 10�02

SLIT31 (rs11738097), r 278.84 (289.97) 3.4 3 10�01

SLIT32 (rs1432899), d �736.37 (193.67) 1.7 3 10�04

SLIT33 (rs4868530), d 398.81 (112.49) 4.5 3 10�04

SRGAP11 (rs10784373), d 271.13 (93.81) 4.1 3 10�03

SRGAP12 (rs1840664), d �247.09 (174.00) 1.6 3 10�01

SRGAP3 (rs6762693), a 518.98 (124.81) 4.1 3 10�05

UNC5D (ss46546978), a �791.59 (375.74) 3.6 3 10�02

Data from our primary whole-genome association dataset [11].
aSubscript is used to identify individual SNPs in interactions; asterisk denotes multiplicative interaction.
ba, log additive; d, Mendelian dominant; r, Mendelian recessive.
doi:10.1371/journal.pgen.0030098.t003
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repulsion of ascending dopamine pathways, so that the fibers
ascend aberrantly to the contralateral striatum. This results
in a visible reduction in the dopamine innervation of the
striatum in semaphorin and slit deficient mice. Striatal
dopamine deficiency is the neurochemical hallmark of PD
[32].

Similarly, transgenic mice with disrupted ephrin signaling
exhibit a 40%–50% quantitative reduction in nigrostriatal
innervation and exhibit classical behavioral model character-
istics of PD [33,34]. There is also some indirect support of this
pathogenic ‘‘miswiring’’ mechanism in humans. Recently, a
rare sequence variation in a single axonal-dendritic develop-
ment gene was associated with Tourette syndrome, another
disorder involving dopamine neurons [35]. Furthermore,
developmental anatomic asymmetries in nigrostriatal inner-
vation resulting from polymorphism in axon-guidance path-
way genes could account for motor asymmetries later seen in
patients with PD [36].

Another possibility is that axon-guidance pathway mole-
cules contribute to the pathogenesis of PD via other
mechanisms. For example, these proteins also play an
important role in axonal repair and in apoptotic signaling.
Polymorphism within the pathway may make neurons more
or less vulnerable to endogenous or exogenous toxins that
trigger the cell death response [37,38]. The continued

expression of some axon-guidance pathway genes, such as
netrin-1 and dcc, in nigral and striatal neurons throughout the
mammalian life cycle (including embryogenesis and adult-
hood) would support multiple possible functions, and it has
been suggested that netrin or netrin-like molecules may be of
use in understanding and treating PD [10]. Prior knowledge
of many biological mechanisms by which the axon guidance
pathway may contribute to the pathogenesis of PD increases
the probability that our genetic findings may be true
(warranting validation studies) [29,39].

Significance and Innovation
In summary, we employed a genomic pathway approach to

determine whether polymorphism in a candidate pathway
(axon guidance) predisposed to a complex disease (PD). We

Figure 3. Predicted Versus Reported Age at Onset in PD Patients

Data are within our primary whole-genome association dataset [11].
Points indicate reported individual values, and the line represents perfect
agreement. In this case, the pattern shows a fairly tight elliptical pattern,
reflecting a good fit and high R2 of 0.68. The fit appears equally good
from the minimum to maximum reported age at onset.
doi:10.1371/journal.pgen.0030098.g003

Figure 4. Convergence of Findings for Whole-Genome Association and

Gene-Expression Profiling Datasets

Listed are genes that had one or more SNPs included in at least one of
the three genetic models that predicted PD susceptibility or survival free
of PD or age at onset of PD (n ¼ 45 genes). Expression data are
summarized for each of the three nigrostriatal regions (substantia nigra,
putamen, and caudate).
Gray, no informative probe sets for the gene and region; white, no
difference in expression in cases and controls; red, the gene had
increased expression in cases compared to controls; green, the gene had
reduced expression in cases compared to controls.
doi:10.1371/journal.pgen.0030098.g004
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found that multiple SNPs in axon-guidance pathway genes
were strong predictors of PD susceptibility, survival free of
PD, and age at onset of PD in two independent whole-genome
association datasets; and many axon-guidance pathway genes
were differentially expressed in PD. Although an exact
replication of the predictive genetic models remains to be
done (same SNPs, independent samples), we consider these
findings timely and potentially important. To date, predictive
biomarkers for PD are lacking. Our genetic findings for the
axon guidance pathway and PD might suggest a new
environmental focus on exposures that occur during intra-
uterine life (miswiring hypothesis).

Our findings would also provide evidence that complex
diseases such as PD can be due to the joint effects of many
genes that, taken singly, would show only small effects
(additive effects model and epistasis) [40–43]. While the
available datasets were exploratory and may have been
underpowered to detect the main effects of single SNPs or
probe sets, our findings are consistent with recent studies that
report greater statistical power to detect the joint effects of
multiple loci than the main effects of single loci [44,45]. By
contrast to familial aggregation and twin studies, our findings
demonstrate that a largely sporadic disease such as PD can in
fact have a strong genetic component [4,46,47] and suggest
that a similar genomic pathway approach might provide
insights into several other complex diseases. Finally, these
findings provide important insights regarding the molecular
mechanisms that may control dopamine circuit formation
and programmed cell death in healthy versus diseased
individuals. This in turn may facilitate the development of
treatments for axonal synaptic regeneration and repair and
for neuroprotection in PD [17,37]. We envision that a
systematic study of all defined genomic pathways will yield
additional important findings for PD, even in the absence of
prior evidence of strong single-gene association.

Materials and Methods

Bioinformatic methods. To formally test our hypothesis, we
consulted the Kyoto Encyclopedia of Genes and Genomes (KEGG)
[48–50]. The KEGG PATHWAY database is a bioinformatics resource
that provides wiring diagrams of molecular interactions, reactions,
and relations. There are at least 270 pathways in KEGG related to
Homo sapiens and diseases. This includes a detailed summary of the
axon guidance pathway, updated as recently as October 3, 2005
(http://www.genome.jp/dbget-bin/www_bget?path:hsa04360). We
identified all of the genes that encoded proteins within the KEGG
axon guidance pathway via Entrez Gene (http://www.ncbi.nlm.nih.gov/
entrez/query.fcgi?db¼Gene) and consulted the UniGene database
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db¼unigene) to deter-
mine which of the genes were expressed in the human brain (n¼128).
We then mined an available whole-genome association dataset for PD
to identify those SNPs that were genotyped in brain-expressed, axon-
guidance pathway genes as part of that study [11]. Specifically, in that
study, (which we refer to as the primary whole-genome association
dataset), we had individually genotyped 198,345 genomic SNPs that
were uniformly spaced (one per 12 kb average gap distance) and
informative in 443 sibling pairs discordant for PD. This included
1,460 SNPs within 117 axon-guidance pathway genes expressed in the
brain.

Statistical methods. All statistical tests were two tailed and
considered significant at the conventional alpha level of 0.05. All
statistical analyses were performed in SAS version 9.1 (SAS Institute,
http://www.sas.com) or S-Plus version 7 (Insightful Corporation, http://
www.insightful.com). We considered three outcomes of interest: (1)
PD susceptibility, (2) survival free of PD, and (3) age at onset of PD.
We sought to identify joint action models of SNPs from the axon
guidance pathway that predicted each of the three outcomes.

For the first outcome, we used conditional logistic regressions
stratified on sibship to examine associations of the SNPs with PD
susceptibility while adjusting for age and gender [51]. For each SNP,
we calculated ORs, 95% CIs, and p values. Goodness-of-fit was
assessed through measuring concordance and visually through
histograms of predicted probabilities [52]. We estimated overall
ORs by categorizing the predicted probability of PD from the model
into four groups (,0.25, 0.25–0.50, 0.50–0.75, and .0.75) and then
calculating the ORs for each group relative to the ,0.25 group. We
used a likelihood ratio test to assess the significance of the overall
model and calculated a 95% bias-corrected bootstrap CI for the
associated p value using 10,000 resamples.

For the second outcome, we used Cox proportional hazards models
to test for associations of the SNPs with survival free of PD [53]. For
each SNP, we calculated HRs, 95% CIs, and p values. Concordance
was again calculated for the proportional hazards models, and
Kaplan-Meier plots of categorized scores predicting risk of PD were
generated to provide visual gauges for goodness-of-fit [54]. We also
calculated HRs for risk groups categorized at the quartiles, using the
lowest risk group as reference. We used a likelihood ratio test to
assess the significance of the overall model and calculated a 95% bias-
corrected bootstrap CI for the associated p value using 10,000
resamples.

For the third outcome, we predicted the reported age at onset of
PD using multiple regression models [55]. Goodness-of-fit was
described through the model R2 values and plots of the predicted
versus observed ages at onset. We used an F test to assess the
significance of the overall model and calculated a 95% bias-corrected
bootstrap CI for the associated p value and the R2 using 10,000
resamples. Assumptions were tested throughout. Only the linear
regression models required a data transformation; age at onset-
squared was used as the outcome to meet the required normality
assumption. We performed tests of linkage disequilibrium in
unaffected siblings for the SNPs in the final models for the three
outcomes using LDSELECT version 1.0 (copyright 2004 by Deborah
A. Nickerson, Mark Rieder, Chris Carlson, and Qian Yi, University of
Washington, United States) with a threshold R2 of 0.80.

Figure S2 summarizes the scheme used to develop models for each
outcome. Since the modes of expression of the alleles in the SNPs of
interest were not known, we first looked at each SNP using three
coding schemes: log-additive, Mendelian dominant, and Mendelian
recessive (Step 1). We simplified subsequent analyses by removing
from further consideration those SNPs with no significant main
effects in any coding scheme (Step 2). Removing those SNPs was a
conservative approach, potentially biasing our tests towards the null
hypotheses, since the SNPs were prevented from possibly entering the
joint action models after adjustment for other variables. We generally
coded the remaining SNPs using the schemes that produced the
smallest p values, since these provided our best estimates of the modes
of expression in our data (Step 3). For each outcome, we then created
multiple sets of SNPs, where each set contained only SNPs with at
least a certain number of non-missing values (Step 4). This was done
to address issues due to missing values.

While most SNPs had fairly complete data, others had missing
values from substantial numbers of participants: up to 18% of cases
and up to 32% of case-sib pairs. We therefore chose an approach
where we constructed candidate models using sets of SNPs with fairly
complete data (effective sample sizes close to the maximum 443) to
explain as much of the outcomes as possible, then checked to see if
adding other SNPs on top of the candidate models would contribute
significantly. We constructed the candidate models for each set using
standard automated procedures (Step 5) and selected a final
candidate model for each outcome based on significance and
goodness-of-fit (Step 6). We then added other SNPs, which were
significant given the candidate models (Step 7) and significant pair-
wise interactions (Step 8).

To compare the significance of our axon-guidance pathway SNP
models to the significance of randomly selected genomic SNP models,
we constructed 4,000 models for each outcome by randomly selecting
the appropriate number of SNPs from the entire available dataset.
We then plotted the distributions of the test statistics from those
models and the values of the test statistics from our final models.

Validation with a second whole-genome association dataset. A
second whole-genome association study of PD was recently published,
including first stage analysis and public release of the data [18]. That
study included 276 patients with PD and 276 neurologically normal
and unrelated controls. The samples used for that study were derived
from the National Institute of Neurological Disorders and Stroke
Neurogenetics repository hosted by the Coriell Institute for Medical
Research (https://queue.coriell.org/Q/snp_index.asp). There were
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408,803 SNPs individually genotyped, and call rates and Hardy-
Weinberg equilibrium p values were previously reported [23]. We
downloaded the individual level data for that study from the Coriell
Institute website, and we identified SNPs in that secondary dataset
that were assigned to the genes represented by SNPs in each of the
predictive genetic models for our primary dataset (same genes and
outcomes, different SNPs and samples). We then employed the same
statistical methods to construct predictive genetic models for the
same outcomes in the secondary dataset, with two exceptions. First,
because the secondary dataset employed unrelated controls that were
not individually matched, we performed unconditional logistic
regression analyses instead of conditional logistic regression analyses
for the PD susceptibility outcome. Second, we restricted the age at
onset of PD analyses in the secondary dataset to exclude participants
with ages younger than those reported in the primary dataset, which
resulted in the exclusion of one participant whose age at onset was
reportedly 13 years.

Validation with a gene-expression profiling dataset. We explored
an available gene-expression profiling dataset to determine if there
was convergence of those functional data with the genetic association
data and models [19]. That study included multiregional gene
expression data from postmortem brain specimens from 22 PD cases
and 23 normal aged brain donors and represents the most
comprehensive expression profiling study of PD to date (largest
numbers of participants, brain regions studied, and genes assayed)
[56]. Very strict RNA quality control criteria were used. We analyzed
data derived from Affymetrix Human Genome U133 Plus 2.0
GeneChip arrays, which included probe set data for 126 of the 128
brain-expressed axon-guidance pathway genes that we initially
identified (see Bioinformatic methods). We analyzed probe set data
for the substantia nigra, putamen, and caudate regions using methods
and criteria similar to the published study [19]. Supporting
information regarding the study design, expression values calcula-
tions, and array normalization methods for the published study are
also provided in Text S1.

For the differential expression analyses of this study, we identified
probe sets from within the original dataset that were assigned to the
axon-guidance pathway genes of interest (those represented by SNPs
in either of the three predictive genetic models in the primary whole-
genome association dataset). For each probe set we compared
expression for cases and controls in each of the three nigrostriatal
regions (Table S6). We considered a probe set informative in a given
region if it was expressed in at least 75% of cases or 75% of controls.
Although differential expression of a single probe set is most of the
times enough to characterize a gene as differentially expressed
(multiple polyadenylation sites are represented on Affymetrix gene
chips to account for multiple gene transcripts), for this study we
employed a more conservative definition of differential gene
expression than for the original study [19]. We defined a gene as
differentially expressed in a given region if at least one accurate-type
(at) probe set assigned to the gene had a t-test p value ,0.05 and
absolute value of the fold expression �1.3. Alternatively, we defined a
gene as differentially expressed in a given region if at least 30% of
accurate-type (at) or cross reacting-type (x_at, s_at) probe sets
assigned to the gene had t-test p values ,0.05 and absolute values of
the fold expression �1.3. These definitions weigh the significance of
cross-reactive type probe sets lower than accurate-type probe sets
because they have less specificity, and also account for the possibility
that multiple probe sets for the same gene may not provide
concordant gene expression measurements [57].

We also performed a sensitivity analysis where a gene was defined
as differentially expressed in a given region if at least one probe set of
any type assigned to the gene had a t-test p value ,0.05 and absolute
value of the fold expression �1.3. This was consistent with the
differential expression analyses performed for the original study [19].
Finally, we performed a second sensitivity analysis whereby we
employed the same CEL file data as for the original gene expression
profiling study [18], and we renormalized and reanalyzed the data
using a second standard software package (GeneSpring, Agilent
Technologies, http://www.home.agilent.com). That normalization pro-
cedure allowed us to obtain informative results for all probe sets and
in all 45 genes. Additional details of this sensitivity analysis are
provided as supporting information (Text S1).

For our primary differential expression analyses, we tested for
possible bias due to the number of informative probe sets per gene by
comparing the distributions for differentially expressed versus
normally expressed genes using the Wilcoxon rank sum test. For
the primary and two sensitivity analyses, we coded the differential
expression of genes as increased or reduced if all probe sets assigned

to the gene had the same direction of effect or ambiguous if the
probe sets had opposite directions of effect.

Supporting Information

Figure S1. Distributions of the Test Statistics from the Models with
Randomly Selected SNPs and the Values of the Test Statistics

Figure S1 shows results from our final models for PD susceptibility
(A), survival free of PD (B), and age at onset of PD (C), within our
primary whole-genome association dataset [11].

Found at doi:10.1371/journal.pgen.0030098.sg001 (19 KB PDF).

Figure S2. Summary of the Scheme Used to Develop Models for Each
Outcome

The procedure employed to build joint action models using SNPs
from genes in the axon guidance pathway that predict PD
susceptibility, survival free of PD, and age at onset of PD, within
both whole-genome association datasets [11,18] is presented.

Found at doi:10.1371/journal.pgen.0030098.sg002 (16 KB PDF).

Figure S3. Goodness-of-Fit of Final Model Using Axon Guidance
Genes to Predict Susceptibility to PD

Model is within a second whole-genome association dataset [18].
Histogram of predicted probabilities of PD in cases (A) and histogram
of predicted probabilities of PD in unrelated controls (B) are
presented. A perfect fit would have all predicted probabilities for
cases equal to one, and all predicted probabilities for unrelated
controls equal to zero. A model with no explanatory value would have
histograms that were indistinguishable from each other.

Found at doi:10.1371/journal.pgen.0030098.sg003 (12 KB PDF).

Figure S4. Kaplan-Meier Survival Plot for Age at Onset in PD Patients

Data are grouped by categorized risk score from proportional
hazards model, within a second whole-genome association dataset
[18]. The model clearly differentiates between early-age-at-onset
cases and late-age-at-onset cases. Cases generating the long-dashed
line were predicted to be at highest risk for early onset of PD,
followed by the medium-dashed, short-dashed, and continuous lines
respectively. Since only cases were included, all of the lines end at 0%
free of PD.

Found at doi:10.1371/journal.pgen.0030098.sg004 (10 KB PDF).

Figure S5. Predicted Versus Reported Age at Onset in PD Patients

Data presented are within a second whole-genome association dataset
[18]. Points indicate reported individual values, and the line
represents perfect agreement. In this case, the pattern shows a fairly
tight elliptical pattern, reflecting a good fit and high R2 of 0.71. The
fit appears equally good from the minimum to maximum reported
age at onset. By contrast to our primary dataset, which reported age
at onset to the month, the second dataset reported age at onset to the
year. This and smaller sample size may account for the slightly grainy
appearance of the plot for this secondary study as compared to the
primary study.

Found at doi:10.1371/journal.pgen.0030098.sg005 (23 KB PDF).

Table S1. Detailed SNP Identifier Information and Additional Results
for Three Outcomes

For each of the 1,460 axon-guidance pathway SNPs included in our
primary whole-genome association dataset [11], provided are detailed
SNP identifier information and additional results for three outcomes:
PD susceptibility, survival free of PD, and predicted age at onset of
PD. The individual level data for the original whole-genome
association study [11] can be downloaded from the NCBI website
(http : / /www.ncbi .n lm.nih .gov /projects /gap /cgi -bin / s tudy .
cgi?id¼phs000048, anticipated availability within two months of
publication).

Found at doi:10.1371/journal.pgen.0030098.st001 (3.7 MB XLS).

Table S2. Detailed SNP Identifier Information for the 45 Axon-
Guidance Pathway Genes

For the secondary whole-genome association dataset [18], provided
are detailed SNP identifier information for the 45 axon-guidance
pathway genes highlighted by the primary study and additional
results for three outcomes: PD susceptibility, survival free of PD, and
predicted age at onset of PD.

Found at doi:10.1371/journal.pgen.0030098.st002 (1.6 MB XLS).
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Table S3. SNPs in Axon-Guidance Pathway Genes Predicting PD
Susceptibility

Data presented are within a second whole-genome association dataset
[18].

Found at doi:10.1371/journal.pgen.0030098.st003 (84 KB DOC).

Table S4. SNPs in Axon-Guidance Pathway Genes Predicting Survival
Free of PD

Data presented are within a second whole-genome association dataset
[18].

Found at doi:10.1371/journal.pgen.0030098.st004 (71 KB DOC).

Table S5. SNPs in Axon-Guidance Pathway Genes Predicting Age at
Onset of PD

Data presented are within a second whole-genome association dataset
[18].

Found at doi:10.1371/journal.pgen.0030098.st005 (77 KB DOC).

Table S6. Detailed Gene Expression Data for Each of the Three
Nigrostriatal Regions Considered

For the 45 axon-guidance pathway genes represented by SNPs in the
three predictive genetic models (as defined by our primary whole-
genome association dataset [11]), provided are detailed gene
expression data for each of the three nigrostriatal regions considered,
including probe set type, t-test p value, fold expression difference in
cases and controls, and percent of cases and controls with expression
present for the probe set. The CEL file data for the substantia nigra
from the original gene expression profiling study [19] can now be
downloaded from the Gene Expression Omnibus website (http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc¼GSE7621).
Found at doi:10.1371/journal.pgen.0030098.st006 (47 KB XLS).

Text S1. Study Design, Expression Values Calculation, and Array
Normalization

Document provides additional details regarding the methods
employed for the gene expression profiling study [19], including
study design, expression values calculation, and array normalization;
additional details regarding the differential expression analyses for
this study are presented.

Found at doi:10.1371/journal.pgen.0030098.sd001 (33 KB DOC).

Text S2. MIAME Guidelines Checklist

Found at doi:10.1371/journal.pgen.0030098.sd002 (76 KB DOC).

Accession Numbers

The National Center for Biotechnology Information Entrez Gene
website (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db¼gene) ac-
cession numbers (GeneIDs) for the genes named in the paper
include: ABL1 (25), ABLIM2 (84448), CDC42 (998), CHP (11261),
CXCR4 (7852), DCC (1630), DPYSL2 (1808), EFNA5 (1946), EPHA4
(2043), EPHA8 (2046), EPHB1 (2047), EPHB2 (2048), FYN (2534),
GNAI3 (2773), GSK3B (2932), KRAS (3845), MRAS (22808), NFATC2
(4773), NFATC4 (4776), NTNG1 (22854), PAK1 (5058), PAK3 (5063),
PAK4 (10298), PAK6 (56924), PAK7 (57144), PLXNA2 (5362), PLXNC1
(10154), PPP3CA (5530), RAC2 (5880), ROBO1 (6091), ROBO2 (6092),
ROCK2 (9475), RRAS2 (22800), SEMA3A (10371), SEMA3D (223117),
SEMA3E (9723), SEMA4D (10507), SEMA5A (9037), SLIT2 (9353), SLIT3
(6586), SRGAP1 (57522), SRGAP3 (9901), UNC5A (90249), UNC5C
(8633), and UNC5D (137970).
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