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Arthrobacter sp. strains are among the most frequently isolated, indigenous, aerobic bacterial genera found in soils.
Member of the genus are metabolically and ecologically diverse and have the ability to survive in environmentally
harsh conditions for extended periods of time. The genome of Arthrobacter aurescens strain TC1, which was originally
isolated from soil at an atrazine spill site, is composed of a single 4,597,686 basepair (bp) circular chromosome and two
circular plasmids, pTC1 and pTC2, which are 408,237 bp and 300,725 bp, respectively. Over 66% of the 4,702 open
reading frames (ORFs) present in the TC1 genome could be assigned a putative function, and 13.2% (623 genes) appear
to be unique to this bacterium, suggesting niche specialization. The genome of TC1 is most similar to that of
Tropheryma, Leifsonia, Streptomyces, and Corynebacterium glutamicum, and analyses suggest that A. aurescens TC1 has
expanded its metabolic abilities by relying on the duplication of catabolic genes and by funneling metabolic
intermediates generated by plasmid-borne genes to chromosomally encoded pathways. The data presented here
suggest that Arthrobacter's environmental prevalence may be due to its ability to survive under stressful conditions
induced by starvation, ionizing radiation, oxygen radicals, and toxic chemicals.
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Introduction

Strains of Arthrobacter species were first culled from soils in
the 19th century [1] and are among the most frequently
isolated, indigenous, aerobic bacterial genera found in soils
[2-6]. These bacteria typically appear as Gram-negative rods
in younger cultures and as Gram-positive cocci in older
cultures. The molecular basis for their distinct method of
growth is not known. Due to their pleomorphic and
heterogeneous appearances, Arthrobacter sp. strains were
originally grouped with the Corynebacteria [7]. However,
more modern systematic analyses indicate that members of
the genus Arthrobacter are taxonomically clustered with the
Micrococcaceae, which is comprised of high G+C, Gram-
positive bacteria of the genera Citrococcus, Kocuria, Micrococcus,
Renibacterium, Nesterenkonia, and Rothia [8].

Arthrobacter sp. are ubiquitous and have been found in
common soils and in extreme environments, such as the deep
subsurface, arctic ice, chemically contaminated sites, and
radioactive environments [9-13]. Arthrobacter sp. strains were
reported to be among the most prevalent genera of bacteria
isolated from beneath leaking radionuclide storage tanks at
the Department of Energy facility in Hanford, Washington,
United States [14].

The environmental prevalence of Arthrobacter may be due,
in part, to its ability to survive long periods under stressful
conditions induced by starvation, temperature shifts, ionizing
radiation, oxygen radicals, and toxic chemicals [15-19]. This
remarkable survival ability is exemplified by the recovery of
Arthrobacter sp. from desert Antarctic soils following 3 y of
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drying [20]; experiments in the laboratory confirm these
observations [21-23]. In these studies, morphogenesis of
Arthrobacter from rod to coccus has been implicated in the
bacterium’s ability to survive stresses, with the small coccoid-
like state described as the most stable form. The transition to
this coccoid-like state has been demonstrated to require
manganese [22], and accumulation of this metal in the
bacterial cytoplasm has been linked to radiation-stress
survival in Deinococcus radiodurans and other bacteria [24].
Arthrobacter sp. are metabolically diverse and have been
isolated for their ability to biodegrade a variety of environ-
mental pollutants such as glyphosate, methyl tert-butyl ether,
2,4-dichlorophenoxyacetate (2,4-D), nictotine, 4-nitrophenol,
dimethylsilanediol, endoxohexahydrophthalate (endothal),
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Synopsis

Soil systems contain the greatest diversity of microorganisms on
earth, with 5,000-10,000 species of microorganism per gram of soil.
Arthrobacter sp. strains have a primitive life cycle and are among the
most frequently isolated, indigenous soil bacteria, found in common
and deep subsurface soils, arctic ice, and environments contami-
nated with industrial chemicals and radioactive materials. To better
understand how these bacteria survive in environmentally harsh
conditions, the authors used a structural genomics approach to
identify genes involved in soil survival of Arthrobacter aurescens
strain TC1, a bacterium originally isolated for its ability to degrade
the herbicide atrazine. They found that the genome of this
bacterium comprises a single circular chromosome and two
plasmids that encode for a large number proteins involved in stress
responses due to starvation, desiccation, oxygen radicals, and toxic
chemicals. A. aurescens’ metabolic versatility is in part due to the
presence of duplicated catabolic genes and its ability to funnel
plasmid-derived intermediates into chromosomally encoded path-
ways. Arthrobacter’s array of genes that allow for survival in stressful
conditions and its ability to produce a temperature-tolerant “cyst”-
like resting cell render this soil microorganism able to survive and
prosper in a variety of environmental conditions.

fluorene, phthalate, nitroglycerine, and a very large number
of s-triazine herbicides. Arthrobacter have also been shown to
be highly resistant to some toxic heavy metals and chromate
anion [25-31]. Arthrobacter aurescens strain TC1 (originally
isolated from soil at a South Dakota spill site containing 1,000
Ib of the herbicide atrazine [30]) has been shown to
metabolize over 23 different s-triazine compounds [31], the
greatest number of s-triazine compounds catabolized by a
single organism thus far reported. Moreover, metabolic and
genomic analyses suggest that A. aurescens TC1 has the
capacity to catabolize over 500 structurally diverse s-triazine
compounds [45].

The molecular basis for Arthrobacter’s success in surviving
stress conditions in soil and metabolizing diverse compounds
has been investigated only sporadically. Such studies included
the isolation of genes involved in glycine betaine synthesis in
A. globiformis [32,33], the analysis of trehalose and glycogen
synthesis under stress conditions in A. globiformis [34], the
sequencing of the nicotine-degradation plasmid in A.
nicotinovorans [35], and the partial sequencing of the genome
of the heavy-metal resistant Arthrobacter sp. strain FB24 (http://
genome.jgi-psf.org/draft__microbes /artf/art__f.home.html).

In this report we describe the complete sequencing,
assembly, and annotation of the genome of A. aurescens TC1.
The A. aurescens genome consists of a chromosome and two
plasmids. Genomic analyses provide new insights into this
versatile and autochthonous bacterium’s ecological niche and
survival strategies in soils.

Results/Discussion

Genome Features of A. aurescens TC1

General genome features. The genome of A. aurescens TC1 is
comprised of three molecules: a single circular chromosome
of 4,597,686 bp (locus tag: AAur) and two plasmids: pTCl
(locus tag: AAur__pTCl) and pTC2 (locus tag: AAur__pTC2)
of 328,237 and 300,725 bp, respectively (Figure 1; Figure 2;
Table 1). Since the pTC1 contains six identical copies of a 16-
kb repeat region, the final molecule size is approximately 408
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kb (see below and Materials and Methods). Overall, the
chromosome and plasmids of the A. aurescens genome contain
4,708 open reading frames (ORFs), of which 3,071 (65.2%)
could be assigned a putative function. Approximately 13.2%
(623 hypothetical proteins) of the A. aurescens TC1 genome
appears to be unique to this bacterium, with no matches to
any known sequence.

A total of 485 genes (10.3%) have their best BLAST
matches to other A. aurescens TC1 genes, rather than to genes
outside the genome of strain TCI (Table 1), indicating a high
degree of genome duplication and possible functional
redundancy. This redundancy may allow strain TC1 to rapidly
adapt to changing environments. A list of these genes, with
their best match, is provided in Table SI1. Not surprisingly,
the largest fraction of these recently duplicated genes consists
of transposase genes (see below): 40% of the TC1 transposase
genes have their best match within the TCl genome.
Functional role categories that appear to have undergone
extensive gene duplication include genes involved in cellular
processes (14.8%), transcription (13.2%), cell envelope
(12.6%), and energy metabolism (11.3%). Of these ORFs, 30
encode transcriptional regulators, including those in the Gnt,
Ars, Lux, and Mar family, and 109 encode proteins involved
in metabolism (central metabolism and the metabolism of
aldehydes, alcohols, and other substrates). Interestingly, 25 of
these genes appear to be involved in resistance to heavy
metals or stresses, and four encode for RNA polymerase 0
factor, which is involved in the phosphate starvation response
[36].

Gene duplications (paralogs) have been postulated to assist
microbes in adapting to changing environments. Since A.
aurescens lives in soil, a habitat of constant change, such
duplications most likely facilitate the survival of strain TCI.
Overall, our results are in agreement with Gevers and
colleagues [37], who reported that functional classification
of paralogs in 106 microbial genomes revealed a preferential
enrichment for genes involved in transcription, metabolism,
and other defense mechanisms.

The A. aurescens TC1 chromosome contains 11 genomic
islands (of 5 kb or larger) encoding 180 genes that have
atypical G+C content and nucleotide composition when
compared to the rest of the TC1 genome (Table S2). The
islands include transposons and related genes, transcriptional
regulators, resistance genes, and genes involved in metabo-
lism and transport of a wide range of substrates. Genes
displaying atypical composition have also been detected in
the genomes of other soil organisms, like Pseudomonas putida
KT2440 [38], and have been postulated to contribute to
saprophytic competence and survival as K-strategists, which
devote more energy to competitive success and survival than
to reproduction [39]. Moreover, these genes are thought to
arise from horizontally transferred islands, noncoding se-
quences, and ancient, conserved gene clusters [40]. In P.
putida, about 20% of the genes contain a genomic signature
that is different from the rest of the 6.2-Mb genome [38,39],
whereas A. aurescens TC1 contains about 10-fold less. This
suggests that the A. aurescens TC1 genome may be more stable
than that of P. putida, or that the genome of the latter
bacterium is more mosaic than that of the former. Twenty-
nine out of 105 islands with atypical composition in P. putida
are thought to have been acquired by horizontal gene
transfer through mobile genetic elements, many of which
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Figure 1. Circular Representation of the Chromosome of A. aurescens TC1

Each concentric circle is numbered from the outermost circle to the inner most circle and represents genomic data for A. aurescens strain TC1
chromosome. The first and second circles represent the predicted coding sequences on the plus and minus strands, respectively, colored by functional
role categories: salmon, amino acid biosynthesis; light blue, biosynthesis of cofactors and prosthetic groups and carriers; light green, cell envelope; red,
cellular processes; brown, central intermediary metabolism; yellow, DNA metabolism; green, energy metabolism; purple, fatty acid and phospholipid
metabolism; pink, protein fate and synthesis; orange, purines, pyrimidines, nucleosides, and nucleotides; blue, regulatory functions; grey, transcription;
teal, transport and binding proteins; and black, hypothetical and conserved hypothetical proteins. The third circle displays the G + C skew: positive G +
C skew in magenta and negative G + C skew in green. The fourth circle displays the rRNAs (red), sSRNAs (blue), and tRNAs (green). The fifth circle displays
repeated sequences of at least 50 bp long (at least 97% identity between two repeats); each color/tick size represents a different repeat. Prophage (blue
ticks) and transposon (dark green ticks) genes are displayed on the sixth circle. The seventh circle displays the percentage of similarity (BLASTP searches)
between TC1 and Arthrobacter sp. FB24 ORFs: >95%, full-sized black ticks; 85%-95%, three-quarter sized brown ticks; 75%-85%, three-quarter sized red
ticks; 65%-75%, half-sized gold ticks; 55%—-65%, half-sized yellow ticks. The eighth and ninth circles display the organism best match: L. xili (blue ticks), S.
coelicolor (green ticks), and S. avermitilis (gold ticks) on circle 8. N. farcinica (red ticks), T. fusca (brown ticks), M. avium (cyan ticks), and C. efficiens (black

ticks) on circle 9. The tenth circle shows the regions of atypical composition (x> analysis).

doi:10.1371/journal.pgen.0020214.g001

may contribute to this organism’s extensive metabolic
abilities [45]. In contrast, A. aurescens TC1 appears to have
expanded its metabolic abilities by relying more on gene
duplication than on horizontal gene transfer and by funnel-
ing metabolic intermediates generated by plasmid-borne
genes to chromosomally encoded pathways. Out of the 11
genomic islands with atypical composition that are poten-
tially contributing to this organism’s metabolic proficiency,
only two are associated with mobile genetic elements. Region
4 contains two degenerate/truncated IS256 family trans-
posases, three Tnbb4-related transposases, an ISAaul ele-
ment, a degenerate IS110 family transposase, a Tn3-family
transposase, and two phage integrase family domain proteins.
Region 6 contains two copies of the ISAaul element.
Consistent with the majority of high G + C Gram-positive
bacteria, the A. aurescens TC1 genome does not contain genes
for the synthesis or hydrolysis of polyhydroxybutyrate, which
appears mostly restricted to members of the Proteobacteria
[41]. In addition, A. aurescens TC1 does not contain genes for
flagella synthesis or motility. Lack of motility in this
bacterium is characteristic of this species group and many
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species within the genus. Concomitantly, A. aurescens TC1 also
lacks genes for chemotaxis. In contrast, other soil microbes
like P. putida KT2440 have a repertoire of genes for motility,
flagella, and chemotaxis [38]. Consequently, the competitive-
ness, survival ability, and metabolic versatility of A. aurescens
TC1 apparently does not require movement of this bacte-
rium, which presumably remains attached to soil particles or
soil organic matter.

A. aurescens TC1 also appears to be ecologically versatile and
capable of growing on a wide variety of carbon compounds.
Moreover, based on gene assignments to the “Energy
Metabolism” functional role category of The Institute for
Genomic Research (TIGR) (http://cmr.tigr.org/tigr-scripts/
CMR/Rolelds.cgi), 17.7% of the TC1 genome (833 ORFs) is
devoted to energy production. This is in contrast to many
sequenced organisms in which approximately 4%-7% of
genes are involved in energy production and conversion [42].
Consistent with the extensive metabolic versatility associated
with the degradation of s-triazines and other compounds,
TC1 encodes 568 putative transporters and binding proteins
(12.06% of the TC1 genome): 101 for amines, peptides, and
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For clarity, the locus tag (AAur_pTC1) was removed from the ORF numbers (for example, ORF number 0082 is AAur_pTC10082).

doi:10.1371/journal.pgen.0020214.g002

amino acids, and 107 for carbohydrates, alcohols, and acids.
This is comparable to the genome of P. putida KT2440, which,
when sequenced in 2002 [38], had the highest number of
predicted putative transporters and binding proteins (671,
12.38% of the genome) of any sequenced bacterium.
Interestingly, A. aurescens TC1 contains three predicted ABC
family opine transporters (AAur__0594, AAur__ 2744, and
AAur__3735), suggesting that TC1 may have the ability to
degrade plant-derived opines or other novel amino acid-

derived compounds produced in the plant rhizosphere [43].

Chromosomal insertion sequence elements. A. aurescens
TC1 contains a total of 46 ORFs encoding functions
consistent with transposons or insertion sequence (IS)
elements, 23 of which are on the chromosome. No phage
could be identified in the TC1 genome. Compared to other
sequenced soil microorganisms, such as P. putida KT2440,
strain TC1 has relatively few IS elements and transposons.
The most abundant IS is represented by 11 perfect copies of a
previously undescribed ISAaul element. All 11 copies are
flanked by unique 4-bp direct repeats; eight, two, and one
copies were localized to the chromosome, pTC1, and pTC2,
respectively. This element belongs to the 1S407 group of the
IS8 family of transposases. Since all copies of this new IS
element are perfectly identical, it suggests that they were
acquired relatively recently by the A. aurescens TC1 genome.
However, at least two copies of ISAaul interrupt chromoso-
mal genes (AAur__1382/AAur__1385, encoding tyramine
oxidase; and AAur__3174/AAur__3176, an acyltransferase
family protein), and one copy interrupts a pTCl-encoded
putative membrane protein (AAur_pTC10101/AAur__
pTC10103). 1S407 elements have previously been reported

to be present in other environmental bacteria, and extensive
characterization has mainly been done in Burkholderia cepacia
strains where this IS element has been shown to activate gene
expression via a 070-dependent promoter [44].

A. aurescens TC1 Plasmid Features

A. aurescens pTC1 plasmid. A. aurescens strain TC1 contains
two plasmids, pTC1 and pTC2 (Figure 2). The pTCl1 plasmid,
is 328,237 bp in size (not including the six identical copies of
a 16-kb repeat region; see below and Materials and Methods),
contains 297 ORFs, and has a G + C content of 64.6%, a value
slightly greater than that of the chromosome. The pTCl
plasmid contains genes involved in the biodegradation of
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atrazine to cyanuric acid. More interestingly, a portion of
pTC1 contains six identical direct tandem repeats of about
16 kb, beginning at around coordinate 95000
(AAur_pTC10084, at nucleotide position 100190-93861)
and ending approximately 183 bp upstream of the start of
AAur__pTC10091 (nucleotide position: 115622-110496) (Fig-
ure 2). This repeat region includes the triazine hydrolase
gene, trzN (AAur__pTC10087), and an exact gene duplication
of a toprim domain protein (AAur_pTC10084 and
AAur__pTC10091) (Figure 2), a conserved region from DNA
primase, corresponding to the topoisomerase-primase do-
main common to DnaG primases, topoisomerases, and the
RecR/M DNA repair proteins. Multiple copies of trzN, the first
gene in the s-triazine biodegradation pathway, may have
important consequences for this bacterium’s ability to
catabolize a large number of s-triazine compounds as the
sole nitrogen and carbon sources for growth [45]. Redun-
dancy in trzN may enhance catabolism via gene dosage effects,
or provide a competitive advantage to this bacterium versus
organisms such as Pseudomonas sp. strain ADP, which contains
a single triazine hydrolase gene that may be more readily lost
in growth conditions lacking adequate selection pressure.

A cassette of four genes of unknown function is found both
on the chromosome (AAur__0073 to AAur__0076) and
on pTCl (AAur_pTC10098, AAur_pTC10099,
AAur__pTC10101/AAur__pTC10103, and AAur__pTC10104)
(Figure 3C2; Table S3). While gene arrangement is identical in
these two cassettes, the genes are not identical to each other,
sharing between 82% and 93% identity at the protein
level. One plasmid-borne gene (AAur_pTC10101/
AAur__pTC10103) also differs due to disruption by an IS
element (AAur__pTC10100 and AAur__pTC10102), while the
chromosomal version appears intact (Figure 3C2). The gene
cassette in pTC1 could have originated from the chromosome
of the same strain (the sequence differences between the
chromosome and plasmid ORFs could be the consequence of
the fast mutation rate of evolving new functions), or, most
likely, it originated from the chromosome of a different
strain. It will be interesting to test whether these genes of
unknown function, in pTC1 and the chromosome, might be
beneficial to this organism.

Among the other genes shared between the chromosome
and plasmid pTCl1 are five genes related to cytochrome c:
three cytochrome ¢ biosynthesis genes (AAur__pTC10174 and
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Table 1. General Features of A. aurescens TC1 Genome

Characteristic or Category Chromosome pTC1 pTC2 Best Matches % ORFs in Role
to TC1 ORFs ? Category ®
Length (bp) 4,597,686 ~408,000 © 300,725 — —
G + C content (%) 624 64.6 61.3 — —
ORF number 4136 297 275 = =
Assigned function 2767 139 165 — —
Conserved hypothetical 379 24 36 49 11.16
Unknown function/Unclassified 522 30 23 53 9.22
Hypothetical proteins 468 104 51 41 6.58
Average gene length (bp) 1003 963 917 — —
Percent coding (%) 90.3 87.5 84.1 — —
rRNAs 18 - — — —
tRNA 54 = = = =
sRNAs 1 — . . —
Functional Role Category Breakdown
Amino acid biosynthesis 136 1 2 5 3.60
Synthesis of cofactors, prosthetic groups, and carriers 141 2 5 12 8.11
Cell envelope 340 22 18 48 12.63
Cellular processes 186 19 17 33 14.86
Central intermediary metabolism 117 7 12 6 441
DNA metabolism 11 17 5 13 9.77
Energy metabolism 739 36 58 94 11.28
Fatty acid and phospholipid metabolism 123 2 3 8 6.25
Mobile and extrachromosomal element functions 35 20 14 28 40.58
Protein fate 167 9 6 12 6.59
Protein synthesis 123 1 0 0 0.00
Purines, pyrimidines, nucleosides, and nucleotides 82 1 2 5 5.88
Regulatory functions 332 13 32 30 7.96
Signal transduction 54 0 1 1 1.82
Transcription 89 0 2 12 13.19
Transport and binding proteins 517 20 31 35 6.16

2 Number of ORFs (total = 485), broken down by functional role category, with BLAST best matches to other ORFs in the TC1 genome, when compared against a nonredundant database

including previously sequenced genomes and A. aurescens TC1.

® Percentage of ORFs with BLAST matches to other ORFs in the TC1 genome, normalized by the number of ORFs in each functional role category.
€ The length of the pTC1 plasmid includes the length of the six identical direct tandem repeats of about 16kb each. This region of pTC1 (328,237 bp) is still collapsed in the latest pTC1

assembly in GenBank.
doi:10.1371/journal.pgen.0020214.t001

two c¢cdA genes encoded by AAur__pTC10144 and
AAur__pTC10197) (Figure 3E), one putative cytochrome ¢
assembly protein (AAur__pTC10191), and one cytochrome ¢
oxidase subunit III (AAur__pTC10179). The CcdA protein is
also found on pTC2 (AAur_pTC20033 and
AAur__pTC20039); all the CcdA proteins encoded by the
pTCl1 and pTC2 plasmids are homologs of the same
chromosomal c¢cdA gene (AAur__3288). One additional
putative cytochrome ¢ biogenesis protein was found on the
pTC2 plasmid (AAur_pTC20039). Both the pTCl-
(AAur__pTC10174) and pTC2-encoded (AAur__pTC20039)
ORFs are highly similar (61.5% and 72.7% identity, respec-
tively) to the corresponding chromosomal ORF (AAur__3287;
Table S3). In addition, strain TC1 contains five and seven

chromosome- and plasmid pTCl-borne genes encoding
resistance to cobalt-zinc-cadmium and copper, respectively.

A. aurescens strain TC1 was originally isolated by its ability
to degrade atrazine [31]. Preliminary studies showed that the
three atrazine catabolism genes frzN, atzB, and aizC were
present on a 160-kb region of the largest plasmid [46]; the
complete genomic sequence presented here is consistent with
these previous findings. All three triazine hydrolase genes,
trzN, atzB, and atzC (AAur__pTC10087, AAur__pTC10218,
and AAur__pTC10212, respectively), were located on plasmid
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pTC1 and nowhere else in the A. aurescens TC1 genome. A
complete cluster of genes involved in the biodegradation of
isopropylamine (ipu) was found on each of the two TCI1
plasmids, pTC1 (~14-kb region delimited by
AAur__pTC10058 and AAur__pTC10069) and pTC2 (~16-
kb region delimited by AAur_pTC20219 and
AAur__pTC20208). They most likely allow A. aurescens TC1
to metabolize several s-triazines as a sole carbon and nitrogen
source for growth. The TC1 ipu genes are highly homologous
to several of those in the ipu gene cluster previously reported
to be involved in isopropylamine catabolism by Pseudomonas
sp. strain KIE171 [47]. However, unlike the KIE171 ipu genes,
which are clustered in an operon-like fashion, the pTC1 and
pTC2 ipu genes are clustered, but do not appear to be
organized in one single operon.

Fourteen ORFs on pTCl are consistent with transposons
and/or IS elements, including the previously identified IS
elements IS1071 (Tn3 family element) and ISPps1 (IS91 family
element). The 1S1071 was previously shown to be located
adjacent to the atrazine degradation genes afzA and atzB on
plasmid pADP-1 in Pseudomonas strain ADP [48]. In addition,
pTC1 harbors transposases belonging to the IS3 (ISAaul), IS5,
1S21, IS110, and IS1380 families. In contrast, the chromosome
contains only ISAaul (eight copies), a Tn3 family element
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Figure 3. Circular Representations of the pTC1 and pTC2 Plasmids of A. aurescens TC1, and Comparative Linear Displays of Some of the Plasmid Regions

Shared with the Strain TC1 Chromosome

(A and B) Each concentric circle of the circular figures is numbered from the outermost circle to the innermost circle. For each plasmid, the first and
second circles represent the predicted coding sequences on the plus and minus strands, respectively, colored by functional role categories (see Figure
1). The third circle displays the G + C skew: positive G + C skew in magenta and negative G + C skew in green. The fourth circle displays the repeated
sequences of at least 50 bp long (at least 97% identity between two repeats); each color/tick size represents a different repeat. Prophage (blue ticks)
and transposon (dark green ticks) genes are displayed on the fifth circle. The sixth circle shows the regions of atypical composition (x> analysis).
(C-1) Comparative linear displays of some of the pTC1 and pTC2 sequences matching the TC1 chromosome. The percent of protein identity is indicated
by the color of the connecting lines (legend on the right side of the figure). For clarity, the locus tags (AAur_ for the chromosome, and AAur_pTC1 and
AAur_pTC2 for the pTC1 and pTC2 plasmids, respectively) were removed from the ORF numbers. For example, the chromosomal ORF number 2549 is
AAur_2549, the pTC1 ORF number 0246 is AAur_pTC10246, and the pTC2 ORF number 0054 is AAur_pTC20054.

doi:10.1371/journal.pgen.0020214.g003

that is not IS1071, an element related to Tnb54, and two
degenerate IS110 and IS256 family transposases.
Relationship between pTCl-localized genes to sequences
present on plasmids in other microorganisms. Genes on pTCl1
showed limited homology to those on other sequenced
plasmids, including plasmid sequences reported for Arthro-
bacter sp. FB24. The genes on pTCI involved in atrazine
degradation were initially discovered by homology to genes
carried by plasmid pADP-1 from Pseudomonas sp. strain ADP
[46]. The greatest relationship between pADPI and pTCl,
with an amino-acid similarity of 83.3%-100%, seems to be
limited to the region delimited by 17 pTCl-encoded ORFS
(AAur_pTC10202 through AAur__pTC10225; Table S4)
containing the atrazine degradation genes atzB and atzC and
several transposases (Figure 4). Outside this region, there
were 14 additional genes showing more limited similarity
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(30%-43%) between plasmids pTC1 and pADPI1, primarily
encoding transposases, IS elements, and mercury-resistance
proteins. However, two additional ORFs (AAur__pTC10210
and AAur__pTC10215) had significant amino acid similarity
(81%-100%) to ORFs on pADP-1 encoding a putative
transporter and a dihydrolipoamide dehydrogenase homolog,
respectively (Table S4).

Twenty-six genes present on pTCl also displayed signifi-
cant amino-acid similarity (cutoff value >30%) to those on
plasmid pAO1 from A. nicotinovorans [35] (Figure 4; Table S4).
Among known proteins, the greatest similarity (88%) between
the two plasmids was found in AAur_pTC10093, which
endodes a putative Soj/ParA family protein,
AAur__pTC10124 (51%), which encodes a putative ParB-
partitioning protein, and AAur__pTC10243 (70%), which
encodes a DNA-invertase (a site-specific recombinase/resol-
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Figure 4. Comparative Linear Display Representing the Sequence Homologies between the A. aurescens pTC1 Plasmid, the Pseudomonas sp. pADP-1

Plasmid, and the A. nicotinivorans pAO1 Plasmid

Only selected regions for each of the three plasmids are shown. The percent of protein identity is indicated by the color of the connecting lines (legend
on the bottom left side of the figure). For clarity, the locus tags (AAur_pTC1 for the pTC1 plasmid, AAK for the pADP-1 plasmid, and CAD for the pAO1

plasmid) were removed from the ORF numbers.
doi:10.1371/journal.pgen.0020214.g004

vase family protein). This suggests that genes involved in
plasmid partitioning in pTC1 and pAO1 most likely share a
common ancestor.

A. aurescens pTC2 plasmid. The pTC2 plasmid, which
contains 275 ORFs (Table 1), has a G 4+ C content of 61.3%,
the lowest of three replicons in this bacterium. It contains a
large number of ORFS, encoding proteins with functions
involved in the metabolism of nitrogenous compounds,
energy metabolism, and transcriptional regulators, along
with nine ORFs encoding functions consistent with trans-
posons and/or IS elements. The plasmid pTC2 contains IS3
(ISAaul), IS110, and IS256 family transposases, and a Tn3
family resolvase. In addition, plasmid pTC2 contains three,
four, and one ORFs involved in resistance to copper,
arsenate, and cobalt-zinc-cadmium, respectively. Similar to
the other plasmid, the pTC2 also contains an ipuC homolog
encoding Y-glutamylisopropylamide synthetase, and other
genes involved in the degradation of isopropylamine, which is
also released during the degradation of s-triazine compounds.
Plasmid pTC2 contains 111 ORFs with significant amino-acid
identity to chromosomally-encoded proteins (Table S3). The
sharing of nearly identical genes on plasmids and the
chromosome in the same organism has previously been
reported for soil [49,50] and other bacteria [51,52], and it is
tempting to speculate that plasmid-encoded functions may
allow for competitive success in the environment. While the
origin of the redundant genes is unknown, they may have
arisen from transposition events occurring between plasmids
and the chromosome or via horizontal gene transfer,
especially for redundant homologs (or paralogs) that have
significant differences at the amino-acid level. Genes present
on pTC2 have no significant identity to translated plasmid-
localized ORFs reported for Arthrobacter sp. FB24.

Comparative Genomics

Comparison of the genomes of A. aurescens TCl and
Arthrobacter sp. FB24. The closed genome sequence of
Arthrobacter sp. strain FB24, which was isolated from chro-
mate- and xylene-enriched soil microcosms, was produced by
the United States Department of Energy Joint Genome
Institute (http://genome.jgi-psf.org/draft__microbes/art__f/
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art__f.download.ftp.html). The FB24 genome released by
DOE/JGI consists of four molecules: a 4.7-Mb chromosome
and three plasmids, with sizes of 96.5 kb, 115.5 kb, and 159.5
kb. The FB24 genome has an overall estimated G 4 C content
of 65.4%, slightly greater than that of A. aurescens TCl
(62.4%). The FB24 genome has a G 4 C content of 65.5% for
the chromosome and 64.6%, 63.3%, and 65.0% for each of
the three plasmids, respectively. A computer-only (i.e., no
manual curation) annotation of the four FB24 molecules
using the TIGR annotation pipeline predicted a total number
of 4,702 ORFs: 4,313 for the chromosome, 105 for the 96.5-kb
plasmid, 116 for the 115.5-kb plasmid, and 168 for the 159.5-
kb plasmid.

Whole genome nucleotide and amino-acid alignments
between the TCI1 and FB24 genomes (Figure S1) show an
overall conservation of synteny between the chromosomes of
the two organisms, with an overall similarity of 79.09% at the
amino-acid level. Out of 4,136 ORFs comprising the TC1
chromosome, 540 TC1 ORFs (13.08%) do not have an
equivalent in the FB24 genome (BLASTP e-value cutoff of
1075, corresponding to amino-acid level of similarity >35%)
(Table S5). The remaining 3,596 TC1 ORFs could be mapped
to the FB24 chromosome, with a percentage of amino-acid
similarity ranging from 37.1% to 100%; 25 proteins are 100%
identical between TC1 and FB24; of these 25, ten are
ribosomal proteins. The largest cluster of genes unique to
A. aurescens TC1, i.e., absent from the FB24 genome (“gaps” in
the dot-plot in Figure S1), is a region spanning 250 kb of the
TC1 chromosome. An overwhelming majority of the A.
aurescens TC1 unique genes encode hypothetical proteins
(237 proteins, 43.88% of the total set of unique proteins)
(Table S4), conserved hypothetical proteins, conserved
domain proteins (76 proteins, 14.07% of total set of unique
proteins), or proteins of unknown function (nine proteins).
The A. aurescens TC1 chromosome also encodes 38 integral
membrane proteins that are not found in the FB24 genome,
as well as 15 lipoproteins, 22 ISAaul-related proteins (11
transposase orfA and 11 transposase orfB proteins), and eight
transcriptional regulators, four of which belong to the AraC
family. Finally, among the unique TC1 proteins that are
important for the ability of A. aurescens TCI to survive in the
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Numbers adjacent to branch points are bootstrap percentages (n = 100 replicates). The bar represents 10% sequence divergence.

doi:10.1371/journal.pgen.0020214.g005

soil are a manganese-containing catalase (AAur__0634), a
putative cobalt-zinc-cadmium efflux permease
(AAur__3137), a putative cold shock protein (AAur__2005),
and two proteins containing a cupin domain (AAur__3146
and AAur__4032).

Comparison with phylogenetically related bacteria. In
agreement with phylogeny based on analysis of 16S rRNA
(Figure b5), the genome of A. aurescens TC1 shares coding

sequences, (>40% amino acid-sequence identity) with
Streptomyces coelicolor A3(2) (668 genes, 14.2% of the TCl
genome) and Leifsonia xyli subsp. xyli str. CTCB07 (232 genes,
4.9% of the TCI genome) (Figure S2). However, A. aurescens
TC1 contains a large number of unique ORFs (3,413) relative
to these bacteria, suggesting that this bacterium has diverged
from its phylogenetic neighbors. Overall, genome compar-
isons with respect to genes involved in survival reflect, to
some degree, the lifestyle of each organism. For example, the
intracellular pathogens Tropheryma and Leifsonia have rela-
tively few genes (three and 38 genes, respectively; Table 2)
involved in stress responses, while the bacteria that live in
soil, S. avermitilis (147 genes), P. putida (68 genes), A. aurescens
TC1 (112 genes), and Arthobacter sp. FB24 (113 genes) have a
relatively large number of genes encoding stress-related
proteins. Interestingly, however, the industrially important
soil bacterium Corynebacterium glutamicum has relatively few
genes (39 genes) involved in survival in response to oxidative
damage and other stresses (Table 2). As expected, organisms
that have both a soil- and animal-host phase, such as the
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pathogenic Mycobacterium sp. strains, have a number of stress-
related ORFs that are intermediate between these two
extremes.

Genome-Enabled Survival Strategies

Induction of alternative ¢ factors is an important strategy
for coping with environmental stress in bacteria, and there is
an apparent correlation between the number of alternative ¢
factors and the complexity of the environment, which
synchronously induces genes in response to a particular
stress. While Mpycoplasma sp. strains (obligate intracellular
pathogens) only contain the housekeeping ¢ and no alter-
native G factors, Escherichia coli and S. coelicolor have six and 62
alternative o factors, respectively. A. aurescens TC1 appears
particularly poised for stress, encoding 17 ©70 family ©
factors and one RNA polymerase 670 factor RpoD
(AAur__1761). Overall, the TC1 chromosome and the pTC2
plasmid encode 34 transcription factors, all but one
(AAur__pTC20242) of which is located on the chromosome.
In contrast, the genome of P. putida KT2440 encodes for 30
transcription factors, of which 18 belong to the 670 family of
¢ factors. While the number of one- and two-component
regulators is related to genome size, organisms with complex
lifestyles or that need to contend with fluctuations in
environmental conditions have been reported to have a
disproportionate number of regulatory genes [53]. The
genome of strain TC1 contains 331 ORFs encoding regulatory
proteins, and TetR (44 proteins), MarR (25 proteins), LysR (20
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Table 2. Comparison of the Number of Stress-Response Genes Found in the Genomes of A. aurescens TC1 and Other Related Bacteria

Microorganism Number of ORFs Involved in:
Oxidative Stress Osmoprotection Cupins/Pirins USPs Total

A. aurescens TC1 28 61 15 8 112
Arthrobacter sp. FB24 21 67 10 15 113
L. xyli CTCBO7 9 28 1 0 38
N. farcinica IFM10152 17 22 12 7 58
T. fusca YX 9 45 3 7 64
S. avermitilis MA-4680 12 113 18 4 147
Tropheryma whiplei Twist 1 2 0 0 3
C. glutamicum ATCC 13032 Kitasato 10 16 8 5 39
P. putida KT2440 21 19 18 10 68

doi:10.1371/journal.pgen.0020214.t002

proteins), IcIR (17 proteins), and AraC (16 proteins) comprise
the largest class of one-component systems.

Surviving constant internal oxidative stress. One clue to
the survival capacity of Arthrobacter is its ability to survive
continuously generated reactive oxygen radicals produced by
its intense aerobic metabolism. This derives, in part, from 14
genes encoding oxidases that use molecular oxygen to
metabolize amino groups (EC numbers 1.4.3.- and 1.5.3.-;
Table S6). This is more than any other bacterium for which a
genome sequence has been published. Our analyses of the
genomes of M. tuberculosis 210, Bacillus subtilis BSO001, M.
avium 104, P. putida KT2440, S. avermitilis MA-4680, and S.
coelicolor A3(2) revealed only ten, six, eight, seven, two, and
three amine oxidases, respectively. Moreover, there are over
30 other oxidase genes in the TCl genome (Table S6).
Oxidases generate HyOy that can generate other reactive
oxygen species, such as hyperreactive hydroxyl radical, which
can cause extensive damage leading to cell death. To this end,
the genome of A. aurescens TC1 contains one superoxide
dismutase gene, sodA (AAur__2087), four catalase genes (a
manganese-containing catalase [AAur__0634], an organic
halide-resistance protein ohr [AAur__1251], and two iron
catalases [AAur__1864 and AAur__3059]), and an uncharac-
terized peroxidase-related enzyme (AAur__2025). While A.
aurescens contains a SoxR homolog (AAur__3550), which may
play a regulatory role in resistance to oxidative stress, no
SoxS homolog is present. The lack of SoxS has been reported
in many other environmental bacteria [54], suggesting that
SoxR, which is induced by HsOs and other superoxide
compounds, directly interacts with other proteins to control
expression of environmentally relevant genes [55].

A. aurescens TC1 is likely to sequester significant levels of
manganese, which might be important for its resistance to
oxidative stress [24]. A. aurescens TC1 contains a homolog
(AAur__3914) to MndD from A. globiformis and other
arthrobacteria, a manganese-dependent dioxygenase [56]
showing resistance to HsOy inactivation [56-58]. Other
enzymes, which contain alternative metals, also contain
manganese (II), based on genome annotation evidence for
A. aurescens TC1. Arthrobacter species were found to be the
most numerically prevalent bacteria isolated from beneath
leaking radionuclide storage tanks [14], and preliminary
studies indicate that A. aurescens TC1 is significantly resistant
to ionizing radiation in the laboratory (M. Daly, unpublished
data).
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Genes involved in trehalose, glycogen, osmoticums, and
other protective polysaccharides. Based on the genome
sequence, A. aurescens TC1 produces glycogen and trehalose,
both of which have been found in A. globiformis [34]. Moreover,
we have used in vivo nuclear magnetic resonance and
observed the formation of trehalose in osmotically stressed
cells of A. aurescens TC1 (data not shown). Trehalose has been
shown to accumulate under extreme water stress conditions
in bacteria and affords cell desiccation tolerance [59]. The
genes for both the biosynthesis and catabolism of trehalose
(AAur_0306, AAur__0909, AAur__2895, AAur__2896,
AAur__4069, AAur__0930, AAur__0931, and AAur__3722)
and glycogen (AAur__2137) are present in A. aurescens TC1,
which is expected for an osmoprotectant that would be
formed transiently and degraded when not needed. The
glycogen synthetic branching enzyme (AAur__2897,
AAur__0691, AAur__0904) is most commonly found in fungi
and soil bacteria.

Bacteria exposed to osmotic stress also maintain equili-
brium by the accumulation of organic osmolytes, such as
glycine betaine (N,N,N-trimethylglycine) [60]. A. aurescens TC1
contains both betA (choline dehydrogenase) and betB (betaine
aldehyde dehydrogenase) genes (AAur_0512 and
AAur__0513, respectively), located most likely as an operon.
An helix-turn-helix transcriptional regulator, betl/
(AAur__0516), is also present near this operon. In addition,
a second copy of betA (AAur__3606), and two clusters of ABC-
type glycine betaine/choline transport genes (similar to proX,
proZ, and proW) were also identified in the A. aurescens genome
(AAur__2814-AAur__2817 and AAur__0644-AAur__0647). A
potential proP-like proline-betaine-ectoine transporter
(AAur__0280) was also present, suggesting that exogenous
choline can serve as substrate for glycine betaine synthesis. A.
pascens and A. globiformis have been reported to use a soluble
choline oxidase to catalyze both steps of glycine betaine
sysnthesis [61]. Osmotic stress in this bacterium may also be
modulated by the control of water movement into the cell via
an aquaporin Z (agpZ) (AAur__2559) homolog, having about
61% amino acid similarity to agpZ from Sinorhizobium meliloti.

Cupins in Arthrobacter and relation to stress, manganese
accumulation, and morphogenesis. Cupins, a superfamily of
B-barrel structural domains, are thought to be involved in
stress responses, cell morphogenesis and development, cell
wall structure, and desiccation tolerance [62]. Cupin super-
family enzymes include several dioxygenases and plant-
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associated germins [62] that bind a single manganese ion,
similar to manganese superoxide dismutase (MnSOD) [63].
The A. aurescens TC1 contains 14 cupin domain-containing
proteins, 11 of which are located on the chromosome, and
one on each of the two plasmids (Table S6). While several
microbial genomes have been reported to contain from two
to seven cupin genes, the stress-responsive A. aurescens, B.
subtilis, and Synechocystis genomes contain 15-20 copies. The
majority (81%), of A. aurescens cupin-containing genes contain
a single cupin domain, while gentisate dioxygenase
(AAur__0331) and AAur__3409 have a two-domain cupin
composition (Table S6). Four of the mono domain cupin-
containing proteins in A. aurescens (AAur__3964, AAur__1055,
AAur__0978 and AAur__1082) have a C-terminal cupin and
are most likely helix-turn-helix regulatory proteins. A.
aurescens also contains a single cupin domain, pirin-like gene
(AAur__2822) (Table S6), a homolog of which in Synechocystis
sp. PCC 6803 is induced under salt and other stress
conditions [64].

Other stress-responsive genes. A. aurescens TC1 appears to
be well poised to respond to a variety of environmental
stresses. The TC1 chromosome was found to encode universal
stress-related proteins (USPs), heat- and cold-shock proteins,
general stress proteins, starvation-inducible proteins, and
proteins involved in osmotic sensing and response (Table S6).
The USPs represent a superfamily of proteins (accession
number listed in Supporting Information) that are induced in
cells in response to carbon, nitrogen, and phosphate
starvation, exposure to heat, entering stationary phase, and
UV exposure [65]. Genome analyses indicate that organisms
exposed to stress conditions have a greater number of USPs
than intracellular parasites. Halobacterium sp. strain NRC-1 has
eight usp genes, while Ricketsia, Mycoplasma, and Chlamydia sp.
strains have only one. The A. aurescens genome contains eight
ORFs (AAur__0044, AAur__0235, AAur__0410, AAur__0506,
AAur__0701, AAur__2837, AAur__3886, and AAur__4058)
encoding members of the USP superfamily (Table S6). In
addition, this bacterium contains several ORFs encoding
heat- and cold-shock proteins, a gene region containing a
dna]-dnaK-grpE operon (AAur__1876-AAur__1878), a puta-
tive HspR homolog (AAur__1879), and the chaperonins ClpB
(AAur__1880) and groEL/ES (AAur__1001, AAur_ 2874, and
AAur__2875). Interestingly, the genome of Arthrobacter sp.
FB24 indicates the presence of approximately 15 potential
USP superfamily members (Table 2). Since Arthrobacter sp.
strains are subjected to daily fluctuation in temperature,
osmotic potential, oxygen concentration, and other stresses,
these USPs and other stress-related proteins may be involved
in the survival of this bacterium under soil conditions.

Starvation-responsive genes. The survival of A. aurescens
TC1, and other autochthonous soil bacteria, under conditions
of nutrient and other stresses most likely requires the
presence of genes regulated, in part, by rpoS or 6°, alternative
o factors of RNA polymerase [66-69]. Expression of rpoS is
repressed by RpsA and is regulated by homoserine lactones
(HSLs) or a derivative [70]. A. aurescens has an rpsA homolog,
AAur__0529 (encoding for a manganese-containing manda-
late racemase family protein), which is most likely involved in
starvation or stationary phase responses, and appears to
synthesize HSLs from homoserine via the threonine bio-
synthetic pathway beginning with L-aspartate, in which
AAur__0661, AAur__2995, and AAur__2612 encode aspartate
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kinase, aspartate semialdehyde dehydrogenase, and homo-
serine dehydrogenase, respectively. Quorum sensing has also
been shown to regulate the expression of catalase and
superoxide dismutase genes [71], further linking A. aurescens
HSL synthesis genes to oxygen and starvation stress. A.
aurescens also possesses several other genes involved in
starvation survival responses, including the carbon-starvation
protein CstA (AAur__0848), which has been shown to
positively regulate the cAMP-CRP-dependent carbon starva-
tion response [72].

Biodegradative capabilities. Of the 326 microorganisms
(encompassing 83 bacterial genera) in the University of
Minnesota Biocatalysis/Biodegradation Database (http://
umbbd.ahc.umn.edu/cgi-bin/micro.cgi), Arthrobacter sp. strains
are the third most abundant in catalogued biotransformation
reactions, only less than Pseudomonas and Rhodococcus sp.
strains. Arthrobacter strains are metabolically diverse and are
capable of catabolizing a variety of chemical compounds. The
present genome project revealed that A. aurescens TCI1 is
particularly well-endowed genetically to metabolize amines
[45]. It contains on the order of a dozen amine oxidases
(Table S6). Indeed, we have shown that the extraordinary
amine metabolism of A. aurescens TC1, coupled with plasmid
enzymes that metabolize secondary amines to primary
amines, can together provide for the metabolism of more
than 500 s-triazine ring compounds [45].

While members of the genus Arthrobacter have been noted
for their ability to catabolize various environmentally
relevant compounds, including pollutants such as glyphosate,
methyl tert-butyl ether, 2,4-dichlorophenoxyacetate (2,4-D),
nictotine, 4-nitrophenol, dimethylsilanediol, endoxohexahy-
drophthalate (endothal), fluorene, phthalate, and nitrogly-
cerine [25-31,73-75], A. aurescens TC1 does not contain genes
or pathways for the catabolism of any of these compounds. In
contrast, A. aurescens TC1 appears very specialized with
respect to its ability to use a large variety of nitrogenous
compounds as a source of nitrogen for growth. About 1.85%
of the A. aurescens genome is dedicated to the degradation of
proteins, peptides, and glycopeptides, further extending its
ability to catabolize a large array of nitrogenous compounds
for growth.

Catabolism of naturally occurring polymers. A significant
metabolic niche of A. aurescens TC1 and Arthrobacter sp. FB24 is
in the decomposition of carbohydrate polymers. For exam-
ple, these strains may express on the order of two dozen
amylase family proteins, which are putatively excreted. They
also make enzymes for oligomeric carbohydrate degradation,
as well as for the hydrolysis of pectin, glucoside, and xylan. A.
aurescens 'TC1 makes multiple inulinases. By contrast, there
are no annotated inulinases produced by P. putida KT2440. In
this context, Arthrobacter sp. likely occupy an important niche
in nature biodegrading carbohydrate polymers and humic
substances.

Conclusions

A. aurescens strain TC1 is an autochthonous soil bacterium
that has the ability to survive for long periods of time in a
variety of environmental conditions. Its ability to survive is
intimately tied to its genomic versatility, especially with
respect to nitrogen metabolism and the ability to grow on
polymeric substrates that are often not used by many soil
microbes. This most likely gives this bacterium a competitive
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advantage in oligotrophic soil environments. In addition, this
bacterium’s impressive array of genes and mechanisms
allowing for survival in stressful soil conditions, coupled with
its ability to produce a temperature-tolerant “cyst”-like
resting cell, makes Arthrobacter a truly ubiquitous soil micro-
organism that is well poised to survive and prosper in a great
variety of environmental conditions.

Materials and Methods

A. aurescens strain TC1 isolation and propagation. A. aurescens strain
TC1 was previously isolated, by direct plating and without enrich-
ment, from a South Dakota spill-site soil containing high concen-
trations (up to 29,000 pg/g) of atrazine as described [31]. The
bacterium was routinely grown at 30 °C in modified R minimal
medium [76] containing 500 pglg atrazine as the sole nitrogen and
carbon source. Total genomic DNA was isolated and twice purified by
CsCl density gradient centrifugation as previously described [77].

Sequencing, assembly, and gap closure. Cloning, sequencing, and
assembly were performed as described previously for genomes
sequenced at TIGR [78]. In brief, one small-insert plasmid library
(1-2 kb) and one medium-insert plasmid library (10-12 kb) were
generated by random nebulization and cloning of genomic DNA. In
the random sequencing phase, 8.7-fold coverage was achieved from
the two libraries. The sequences were assembled using TIGR
Assembler (www.tigr.orglsoftware/sequencing.shtml) or Celera Assem-
bler (http://sourceforge.net/projects/wgs-assembler), and the scaffolds
constructed using TIGR BAMBUS (www.tigr.orglsoftware/sequen-
cing.shtml). All sequence and physical gaps were closed by editing
the ends of sequence traces, primer walking or transposon-primed
sequencing on plasmid clones, and combinatorial PCR followed by
sequencing of the PCR product. A bacterial artificial chromosome
(BAC) library (~180 kb inserts) made in pCUGIBACI [46] was used in
the genome closure process.

The Arthrobacter genome contained a significant number of areas
difficult to sequence because of DNA secondary structures (“hard-
stops”). Clones from the large insert libraries spanning the area of
interest were initially amplified using the TempliPhi kit (Amersham
Biosciences, http://lwwwb.amershambiosciences.com) to generate a
large amount of plasmid DNA. These clones were then sequenced
using reaction mixes containing different cocktails of dGTP (ABI),
BigDye Terminator V3.1 (Applied Biosystems, https://products.ap-
pliedbiosystems.com) and betaine (Sigma-Aldrich http:/lwww.
sigmaaldrich.com). In addition, some of the clones were amplified
by PCR with the nucleotide analog 7-deaza-dGTP (Roche Diagnostics,
http:/lwww.roche-diagnostics.com) and sequenced. Implementation of
these techniques helped in destabilizing the hard-stop regions and
obtaining a sequence through it. An example of such hard-stops, the
longest in the TC1 genome, is shown in Figure S3. This hairpin loop is
located approximately 430 bp upstream of the predicted origin of
replication and is 66 bp long.

A remarkable feature of the pTCl plasmid was the presence of six
identical tandem repeats of about 16 kb. Because of the large size of
each repeat unit, the size of the whole repeated region (~96 kb), the
fact that each repeat unit was perfectly identical to its neighbors, and
the absence of unique sequences between each unit, this repeated
region of pTCI could not be resolved at the time of publication of
this manuscript and is therefore still collapsed in the pTC1 sequence
assembly deposited in GenBank. However, several lines of evidence
allowed us to determine the exact number of repeat copies, as well as
the approximate coordinates of the repeat region in the pTCl
sequence. First, the average coverage of the area containing the
collapsed repeat was 58.9 + 7.6, whereas the regions before and after
the collapsed repeat region had an average coverage of 18.8 + 4.2
and 13.3 + 3.1, respectively. Second, a BAC clone containing an
insert spanning the entire ~96-kb repeat region was shotgun
sequenced (a total of 1,566 reads were sequenced) and assembled
into two contigs that matched and confirmed the plasmid pTCl1
assembly. The coverage in the unique area of the BAC assembly was
between 8- to 12-fold, as expected, whereas the coverage in the
repeat area was about 70-fold. The size of the assembled BAC was
about 45 kb, and the whole BAC size was estimated by PFGE to be
77.2 4+ 5 kb, further confirming the presence of six identical repeat
units of approximately 16 kb each. The corrected size of pTCl
inclusive of the six identical repeat units of about 16 kb is
approximately 408,237 bp.

ORF prediction and gene family identification. An initial set of
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ORFs likely to encode proteins was identified by GLIMMER
(www.tigr.org/software/genefinding.shtml), and those shorter than 30
codons (90 nucleotides) were eliminated. ORFs that overlapped were
inspected visually and, in some cases, removed. ORFs were searched
against a nonredundant protein database as described previously for
all TIGR genomes. Frameshifts and point mutations were detected
and corrected where appropriate as described previously [78].
Remaining frameshifts and point mutations are considered authentic,
and corresponding regions were annotated as “authentic frameshift”
or “authentic point mutation,” respectively. Two sets of hidden
Markov models (HMMs) were used to determine ORF membership in
families and superfamilies. These included 8,163 HMMs from PFAM
version 2.0 (www.sanger.ac.uk/Software/Pfam/index.shtml) and 2,998
HMMs from the TIGR orthologue resource (www.tigr.org/TIGRFAMs/
index.shtml). TOPPRED was used to identify membrane-spanning
domains in proteins.

Comparative genomics. All genes and predicted proteins from the
A. aurescens TC1 genome, as well as from all other published
completed genomes (see http:/lcmr.tigr.org/tigr-scriptsstCMR/CmrHo-
mePage.cgi), were compared using BLAST. For the identification of
recent gene duplications, all genes from the A. aurescens TC1 genome
were searched against a nonredundant database of completed
microbial genomes, to which the A. aurescens TC1 genome was added.
A gene was considered to be recently duplicated if the most similar
gene (as measured by p-value) was another gene within the TCl1
genome (relative to genes from other genomes).

GenBank submission. The nucleotide sequence of the whole
genome of A. aurescens strain TCl was submitted to GenBank
(accession numbers listed in Supporting Information). The complete
genome sequence is also available through the TIGR Comprehensive
Microbial Resource web site (http://cmr.tigr.org/tigr-scripts/CMR/
CmrHomePage.cgi).

Supporting Information

Figure S1. Whole Genome Alignments between A. aurescens TCI and
Arthrobacter sp. FB24

(A) Nucmer alignment comparing the nucleotide sequences of the
TC1 genome (x-axis) to the FB24 genome (y-axis). The Nucmer
algorithm was used to calculate and plot the nucleotide percentage of
similarity (scale on the right side) of maximally matching sequences
of at least 20 nucleotides between the two genomes.

(B) Promer alignment comparing the amino-acid sequences of the
TC1 genome (x-axis) to the FB24 genome (y-axis). The Promer
algorithm was used to calculate and plot the amino-acid percentage
similarity (scale on the right side) of maximally matching subsequen-
ces of at least five amino acids between the two genomes.

Found at doi:10.1371/journal.pgen.0020214.sg001 (777 KB PDF).

Figure S2. Functional Role Category Distribution of A. aurescens TC1
Genes with BLASTP Best Matches to L. xyli, S. coelicolor, S. avermitilis,
Nocardia farcinica, and Thermobifida fusca

Found at doi:10.1371/journal. pgen.0020214.sg002 (56 KB PDF).

Figure S3. Secondary Structure of the Longest Hairpin Loop in A.
aurescens TC1 Chromosomal DNA.

The following ionic conditions were used for the computation: [Na']=
1.0 M, [Mg"™]=0.0 M. The calculated AG0 was —34.3 kcallmole at 37 °C,
and the calculated Tm was 91.1 °C. The folding of the DNA sequence
(coordinates: 4597663-4597743) was computed using the mfold
(version 3.1) web server at http://www.bioinfo.rpi.edu/applications/
mfold/dna/form]1.cgi [79].

Found at doi:10.1371/journal.pgen.0020214.sg003 (301 KB PDF).

Table S1. List of the A. aurescens TC1 Genes with BLAST Best Matches
to Other TC1 Genes

Found at doi:10.1371/journal.pgen.0020214.st001 (787 KB DOC).

Table S2. List of the A. aurescens Chromosomally Encoded Genes with
Atypical Nucleotide Composition

Regions of atypical composition were analyzed by %2 analysis of the
nucleotide composition along the chromosome. In brief, the
distribution of all 64 trinucleotides (3-mers) was computed for the
complete chromosome, followed by the 3-mer distribution in 2,000-
bp windows across the chromosome (the window was shifted by 1,000
bp during the computation). For each window, the x? statistic was
computed on the difference between its 3-mer content and that of
the whole chromosome. A large value of this statistic means that the
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composition within the window is different from the rest of the
genome, based on the assumption that the DNA composition is
relatively uniform throughout the genome.

Found at doi:10.1371/journal.pgen.0020214.5t002 (329 KB DOC).

Table S3. List of the A. aurescens pTCl and pTC2 Plasmid Genes
Matching Chromosomal Genes by BLASTP Searches

Found at doi:10.1371/journal.pgen.0020214.5st003 (415 KB DOC).

Table S4. List of the Genes Shared among A. aurescens pTCl,
Pseudomonas sp. pADP1, and A. nicotinivorans pAO1 Plasmids

Found at doi:10.1371/journal. pgen.0020214.st004 (124 KB DOC).

Table S5. List of the A. aurescens TC1 Unique Genes, Compared with
the Genome of Arthrobacter sp. FB24

Found at doi:10.1371/journal. pgen.0020214.st005 (964 KB DOC).

Table S6. Genes in the A. aurescens TC1 Genome Involved in Stress
Survival

Found at doi:10.1371/journal.pgen.0020214.5st006 (242 KB DOC).

Accession Numbers

The GenBank (http://[www.ncbi.nlm.nih.gov) accession numbers for
the genomes discussed in this paper are Arthrobacter sp. FB24
(NC__008541, NC__008537, NC__008538, and NC__008539), A.
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