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ABSTRACT

he use of modern molecular biology tools in

deciphering the perturbed biochemistry and

physiology underlying the obese state has proven
invaluable. Identifying the hypothalamic leptin/melanocortin
pathway as critical in many cases of monogenic obesity has
permitted targeted, hypothesis-driven experiments to be
performed, and has implicated new candidates as causative
for previously uncharacterized clinical cases of obesity.
Meanwhile, the effects of mutations in the melanocortin-4
receptor gene, for which the obese phenotype varies in the
degree of severity among individuals, are now thought to be
influenced by one’s environmental surroundings. Molecular
approaches have revealed that syndromes (Prader-Willi and
Bardet-Biedl) previously assumed to be controlled by a single
gene are, conversely, regulated by multiple elements. Finally,
the application of comprehensive profiling technologies
coupled with creative statistical analyses has revealed that
interactions between genetic and environmental factors are
responsible for the common obesity currently challenging
many Westernized societies. As such, an improved
understanding of the different “types” of obesity not only
permits the development of potential therapies, but also
proposes novel and often unexpected directions in
deciphering the dysfunctional state of obesity.

Introduction

According to the World Health Organization (http://
www.who.int), there are an estimated 1 billion adults who are
overweight (body mass index > 25 kglmQ), and 300 million of
these are considered clinically obese (body mass index > 30
kg/m?). Such staggering statistics clearly suggest that, despite
the overt recognition of the taxing effects of obesity on both
medical and social programs, Westernized societies are still
succumbing to this global epidemic. While technological
progress made over the last 20 years has yielded the tools
necessary to comprehensively explore the perturbed
biochemistry underlying the obese state, it has also
demonstrated that interactions between genetic makeup and
environment (GXE) are critical for the regulation of adipose
mass function. As such, medical and nutritional
recommendations based on genetically undefined and/or
environmentally heterogeneous population-based studies
have, not unsurprisingly, had minimal success in treating
common diseases. It is precisely this lack of success that is
paving the way for the widely discussed concepts of
personalized medicine [1,2] and nutrition [3-5]. However,
prior to our society realizing either of these ambitious
concepts, the genetic components underlying common
diseases such as obesity must be elucidated with confidence.

Over the past ten years, the study of genetically complex
diseases has benefited greatly from the extraordinary
advances made in molecular biology. While obesity was first
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thought to be a disease that obeys the rules of Mendelian
inheritance, new technologies paint a far more complicated
picture of this metabolic disease and have led to unsuspected
and fascinating new developments. Obesity stemming from a
single, naturally occurring dysfunctional gene (i.e.,
monogenic obesity) is both severe and rare when compared
to the more common form of obesity, in which numerous
genes make minor contributions in determining phenotype
(i.e., polygenic obesities). Although some genetic candidates
underlying monogenic obesities in the mouse have been
defined, transferring this knowledge to humans has led to
more questions than answers. Indeed, the molecular
approach has revealed novel candidate genes for the various
types of human obesity, has suggested that several clinical
cases previously defined as monogenic obesity are genetically
more complex than previously thought, and has clearly
positioned GXE interactions as fundamentally important to
understanding the mechanisms involved in fat-mass
expansion. As discussed in the present review, despite the fact
that our understanding of the genetic, biological, and
biochemical factors underlying obesity is currently
incomplete, the use of novel molecular approaches is rapidly
unraveling this complex metabolic disease.

Monogenic Obesity

To date, nearly 200 cases of human obesity have been
associated with a single gene mutation. Furthermore, these
mutations all lie in one of 11 genes [6,7]. These cases, which
obey Mendelian genetics, are characterized by extremely
severe phenotypes that present themselves in childhood and
are often associated with additional behavioral,
developmental, and endocrine disorders [8]. Initial
knowledge concerning monogenic diseases was derived from
large-scale linkage analyses in mice that had naturally
occurring mutations that led to extreme adiposity. These
analyses resulted in the detection of disease loci and the
identification of candidate genes [9]. Using such an approach,
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Figure 1. The Leptin/Melanocortin Pathway
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The integration of signals from peripheral tissues in the hypothalamus is fundamental to the regulation of energy homeostasis. Distinct neuronal
populations propagate the signaling of various molecules to control food intake and satiety. POMC neurons in the arcuate nucleus are activated by
leptin and insulin and produce a-MSH, which then activates the MC4R receptor in the paraventricular nucleus, resulting in a satiety signal. The
downstream roles of SIM1, BDNF, and TKRB are currently being explored. In contrast, a separate group of neurons expressing NPY and AGRP produce
molecules that act as potent inhibitors of MC4R signaling. A dysfunction in these pathways will disrupt energy homeostasis. AGRP, agouti-related
protein; 0-MSH, alpha melanocyte stimulating hormone receptor; BDNF, brain-derived neurotropic factor; GHR, ghrelin receptor; ISR, insulin receptor;

LepR, leptin receptor; NPY, neuropeptide Y; PC1 and 2, proconvertase 1 and 2; POMC, proopiomelanocortin; SIM1, single-minded homolog 1

(Drosophila); TRKB, tyrosine kinase receptor.

the majority of mutations in genes underlying monogenic
murine obesity have now been cloned [10].

Indeed, the targeted genetic characterization of naturally
occurring obese models, such as the ob/ob, db/db, fat, and tubby
mice, led to the discovery of recessive mutations in the genes
encoding leptin (Lep or ob), leptin receptor (Lepr or db),
carboxypeptidase E (Cpe or fat), and tubby (Tub) [11]. The
transfer of this knowledge to clinical cases in which the gene
underlying the phenotype was successfully hypothesized
validates the roles of some of the aforementioned genes in
human monogenic obesity, and clearly positions the leptin/
melanocortin pathway as critical in the regulation of whole-
body energy homeostasis (Figure 1) [12]. In brief, this
hypothalamic pathway is activated following the systemic
release of the adipokine LEP and its subsequent interaction
with the receptor LEPR located on the surface of neurons of
the arcuate nucleus of the hypothalamus. The downstream
signals that regulate satiety and energy homeostasis are then
propagated via proopiomelanocortin (POMC), cocaine- and
amphetamine-related transcript (CART), and the
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melanocortin system [13,14]. While POMC/CART neurons
synthesize the anorectic peptide alpha melanocyte
stimulating hormone (a-MSH), a separate group of neurons
express the orexigenic neuropeptide Y (NPY) and the agouti
related protein (AGRP), which acts as a potent inhibitor of
melanocortin 3 receptor (MC3R) and melanocortin 4
receptor (MC4R).

Since naturally occurring mutations and the targeted
disruption of genes in mouse models (Lep, Lepr, Pomc, Mc4r,
and Mc3r) were all found to have key roles in the same
molecular pathway, genes in and associated with the leptin/
melanocortin pathway became logical candidates to consider
in clinical cases where obesity remained unexplained.
Stemming from this hypothesis, several additional genes were
found to cause monogenic obesity (Figure 1). First, single-
minded homolog 1 (Drosophila) (SIM1) was identified in a girl
with early-onset obesity and a de novo chromosomal
translocation [15]. SIM1 is expressed in the paraventricular
nucleus of the hypothalamus, has a role in the melanocortin
signaling pathway, and appears to regulate feeding rather
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than energy expenditure [16]. Second, decreased expression
of brain-derived neurotropic factor (BDNF) was recently
found to regulate eating behavior [17]. BDNF and its
associated neurotrophic tyrosine kinase receptor (ITRKB/
NTRK2) are both expressed in the ventromedial
hypothalamus and are proposed to have a role downstream of
MCA4R signaling [18]. A mutation in TRKB was identified in an
8-y-old male with a complex development syndrome and
severe obesity, and further functional in vitro studies have
suggested that mutations impair hypothalamic signaling
processes [19,20].

A frequent autosomal-dominant form of obesity stemming
from mutations in MC4R was simultaneously reported by two
groups, first in family studies and then in case-control studies
[21-24]. Since these initial reports, MC4R-linked obesity
remains the most prevalent form of monogenic obesity
identified to date, representing approximately 2%-3% of
childhood and adult obesity [7,25-27]. Mutations have also
been reported in the general population, but to a
significantly lesser degree [25]. Furthermore, instances have
been reported in which individuals in the general population
have these mutations but are not obese, suggesting a variable
phenotype [25]. Investigating the molecular mechanisms by
which loss-of-function mutations in MC4R cause obesity has
led to a panel of functional anomalies: abnormal MC4R
membrane expression, a defect in the agonist response, and a
disruption in the intracellular transport of this protein [28].
In contrast with rare monogenic obesities, even careful
clinical analysis does not easily detect obesity stemming from
MC4R mutations because of the lack of additional obvious
phenotypes. Thus, the question remains whether there are
other forms of obesity with a marked genetic influence, such
as that noted for MC4R mutation-linked obesity. The recent
discovery of rare functional mutations in regions of POMC
encoding for a-MSH and leading to childhood obesity with
no other observed anomalies (in contrast to the POMC
mutations previously described [29]) provides support for the
use of genetic screens to identify factors upstream and
downstream of MC4R in early-onset and severe human
obesity [30].

As the principle goal is to ameliorate the corpulence and
metabolic status of obese individuals, cases of monogenic
obesity in which gene function is well-characterized can
benefit from therapeutic intervention. Leptin therapy in
children deficient in this adipokine dramatically reduced
body weight, and was accompanied, in some instances, by
improved insulinemia and pubertal development [31]. While
treatments are not yet available for cases of POMC-, PCI-,
SIM1-, TRKB-, and MC4R-linked obesities, preliminary
studies hint that targeted therapies might not be far away.

Recent studies using neuron-specific LEPR transgenes, a
POMC gene-delivery system, and a melanocortin-receptor
agonist (MT-II) have all proved efficient in reducing food
intake, body weight, and insulin resistance [32-35]. Current
MCA4R therapeutic peptides are of interest, but have been
found to be anorexigenic and to stimulate erectile activity
[36-38]; therefore, the development of therapies targeting
monogenic obesity will need to circumvent such undesirable
side effects. Nevertheless, these studies suggest promising
futures for individuals with mutations in genes of the leptin/
melanocortin pathway but, as discussed in the remainder of
the manuscript, reinforce the enormous challenge lying
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ahead if therapies are to be developed for individuals with
syndromic or polygenic obesity.

Syndromic Obesity

There are between 20 and 30 Mendelian disorders in which
patients are clinically obese, yet are additionally
distinguished by mental retardation, dysmorphic features,
and organ-specific developmental abnormalities [7,8]. Such
cases are referred to as syndromic obesity. These syndromes
arise from discrete genetic defects or chromosomal
abnormalities, and can be either autosomal or X-linked
disorders. However, inasmuch as these cases are well-defined
in a clinical context, analyzing the genetic component of
these conditions suggests that multiple genes within a
biological pathway may produce identical phenotypes [39].
The most common disorders known are Prader-Willi
syndrome (PWS), Bardet-Biedl syndrome (BBS), and Alstrém
syndrome, but many others have been reported elsewhere
[39].

The most frequent of these syndromes (1 in 25,000 births) is
PWS, which is characterized by obesity, hyperphagia,
diminished fetal activity, mental retardation, and
hypogonadism. This disorder is caused by an absence in the
paternal segment 15q11.2-q12 through chromosomal loss.
Several candidate genes in the 15q11-13 region of PWS
patients have been studied; however, the molecular basis of
hyperphagia remains undefined in part because of the fact
that none of the currently available PWS mouse models have
an obese phenotype [40]. One candidate protein that may
mediate the severe hyperphagia of PWS is the gastric
hormone ghrelin [41], via its regulation of hunger and
stimulation of growth hormone [8]. Ghrelin’s role is further
implied by the positive findings that growth hormone
supplementation is capable of reversing several dysfunctional
processes associated with PWS [42,43]; however, in the
absence of a suitable experimental model, identifying the
genetic components of this syndrome will be challenging.

BBS is characterized by early-onset obesity and rod-cone
dystrophy, morphological finger abnormalities, learning
difficulties, and renal disease, among other clinical traits.
Although originally classified in the clinic as a homogeneous
syndrome, BBS has since been associated with at least 11
different chromosomal locations, with several mutations
identified within some of the following locations: BBS1 on
11q13, BBS2 on 16q21, BBS3 on 3p13, BBS4 on 15q22.3, BBS5
on 2q31, BBS6 on 20p12, BBS7 on 4q27, BBS8 on 14q32.11,
BBS9 on 7pl4, BBSI0 on 12q21.2, and BBSII on 9q33.1 [44-
47]. While BBS was considered to be autosomal-recessive, it
has recently been found that the clinical symptoms of certain
forms of BBS are related to recessive mutations at one of the
BBS loci associated with a heterozygous mutation at a second
locus, prompting, for the first time, the hypothesis of a
triallelic mode of transmission [44,48]. Six genes are
characterized in BBS, although their functions remain
enigmatic to various degrees. For the BBS6 locus, positional
cloning identified the MKKS gene, which codes for a
chaperone protein. Mutations identified in MKKS result in a
shortened chaperone protein and are present in 5%-7% of
BBS cases; however, the links between MKKS, its eventual
target proteins, and the BBS clinical traits are largely
unknown. A newly identified locus, BBS10, has recently been
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found to code for C120rf58, a vertebrate-specific chaperone-
like protein, and was found to be mutated in 20% of the
populations examined from various ethnic backgrounds [45].
Unlike BBS6 and BBS10, the genes associated with BBSI,
BBS2, and BBS4 are very different from MKKS and CI201f58
genes, but it is conceivable that they code for protein
substrates of these chaperones [49]. Recently, the gene
encoding the E3 ubiquitin ligase TRIM32 was identified as the
11th locus associated with BBS, suggesting that the list of
genetic components for this syndrome may yet remain
incomplete [47]. Fascinating functional studies performed in
single-cell organisms have shown that certain BBS genes are
specific to ciliated cells [50]. Ciliated cells have a role in
mammalian development, contributing to right/left
asymmetry, thus enabling the organs (e.g., heart, liver, and
lungs) to be correctly positioned within the biological system.
Dysfunction in processes affecting ciliated cells may
contribute to the alterations in pigmentary epithelia and
structural anomalies noted in certain organs in patients with
BBS; however, the relationship between cilia and obesity
remains enigmatic [51]. Preliminary findings suggest that cilia
formation is not dependent on BBS gene functionality [52];
rather, the BBS genes may play an important role in
intracellular signaling [51]. A recent article by Mak and
colleagues used Caenorhabditis elegans to demonstrate the
regulation of fat storage by orthologs of both neuronal TUB
and BBSI genes, suggesting the existence of a currently
unidentified intertissue signaling pathway that may link
ciliated neurons and adipose cells [53]. As such, new fields of
research have been opened by the molecular investigation of
BBS, most notably regarding the role of ciliated cells in
controlling some mechanisms of body-weight regulation.
While syndromic obesity was previously presumed to be
under the control of a single gene (and thus was considered
monogenic obesity), progress in the post-genomic era has
clearly distinguished this type of obesity; however, defining
the contribution of multiple genetic factors in a syndrome is
significantly more challenging than localizing the single gene
involved in monogenic diseases. The difficulty of this task is
further amplified if several tissues coordinately regulate
phenotype (as possibly exemplified by ghrelin signaling in
PWS), indicating that the integrative field of systems biology
may hold the key to identifying both the within- and the
between-tissue regulators underlying syndromes.

Polygenic Obesity

Polygenic, or common, obesity arises when an individual’s
genetic makeup is susceptible to an environment that
promotes energy consumption over energy expenditure.
Most Westernized societies have an environment that favors
weight gain rather than loss because of food abundance and
lack of physical activity, thus positioning common obesity as a
major epidemic currently challenging these societies. Many
excellent reviews have been published in which the genetic
complexity and the challenges in dissecting the perturbed
biology underlying common obesity have been outlined
[7,14,54-56]. Perhaps the greatest obstacle hindering progress
is the issue of replication. While independent replication of a
novel association is mandatory, it is important to stress that
our current degree of understanding of GXE interactions
should prevent an unreplicated result from immediately
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being discarded. Complex traits are highly dependent on GXE
interactions; however, inasmuch as this is widely accepted, a
question persists: how can one account for and control all
possible influences within an experimental design that may
affect data interpretation and ultimately experimental
conclusions? Although accomplishing this goal is feasible with
genetically identical mice, in humans it is nearly impossible.
The individual complexity in humans relates to the alleles
that influence common diseases in different genetic
backgrounds, and to variable genetic combinations eventually
influenced by different epigenetic (including in utero) or
environmental factors during an individual’s lifetime (the
role of epigenetics in obesity and its downstream
consequences is a field unto itself, and has been thoroughly
reviewed in [57,58]) (Figure 2). The precise degree to which
genes eventually contribute to complex traits remains poorly
defined, and the importance of subtle environmental factors
may simply not be appreciated. Thus, as illustrated below by
two independent examples, both replicated and unreplicated
findings should be considered to be of interest at this early
stage in unraveling the genetics of obesity.

Studies of polygenic obesity are based on the analysis of
single nucleotide polymorphisms (SNPs) or repetition of
bases (polyCAs or microsatellites) located within or near a
candidate gene, where a candidate gene is one that meets a
number of criteria, such as its proximity to a quantitative
trait locus or its having a phenotypic effect following genetic
manipulation (e.g., knock-out and knock-in models) [59].
Should a candidate-gene variant appear promising based on
results derived from in vitro and animal-model studies, its
association with the obese phenotype is then examined in
case-control and family studies [60]; however, unlike
monogenic obesity, many genes and chromosomal regions
contribute to defining the common obese phenotype (Figure
3) [6,61]. These genes have been implicated in a wide variety
of biological functions, such as the regulation of food intake,
energy expenditure, lipid and glucose metabolism, and
adipose tissue development; however, despite having this
ever-increasing gene catalog at our disposal, using this
knowledge to unravel the molecular mechanisms underlying
obesity is challenging. Indeed, not only is the number of genes
associated with obesity high, but variants in some of these
genes are demonstrating the importance of polymorphisms
in the “interpretation” of environmental stimuli [3]. In
contrast to genetically identical mice whose environments
can be rigorously controlled, the genetic and environmental
diversity in humans has proved problematic for data
replication (i.e., to date, only 22 of 244 candidate genes for
obesity are supported by at least five positive studies)
[6,60,62]. The result can be conflicting findings that cast
doubt on potentially interesting candidate genes. For
example, an association between three SNPs of GAD2, which
codes for the 65-kDa subunit of the glutamic acid
decarboxylase enzyme, and morbid obesity was identified in a
French population following a genome-wide scan [63];
however, independent replication in a larger German
population could not be achieved [64]. Although this example
raises questions concerning the role of GAD2 in obesity, it
would be premature to discount GAD2’s involvement entirely
[65]. This notion may also apply to additional candidates (e.g.,
ectonucleotide pyrophosphatase/phosphodiesterase 1
[ENPPI] and solute carrier family 6, member 14 [SLC6A14])
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Figure 2. Gene-Environment Interactions in Common Obesity

The complex interactions underlying polygenic obesity demonstrate that genetic, social, behavioral, and environmental factors are all capable of

influencing the obese phenotype. The DNA strand should be interpreted

as taking into account both genetic polymorphisms and the conformation of

DNA structure (i.e., degree of methylation influenced by epigenetic events).

emerging from genome-wide scans, as they may also face
replication issues.

In many cases, a failure to replicate data is related to the
cohort size in which the association was first detected. Indeed,
because the contribution of any given gene to the phenotype
of a complex trait is often minimal, a large cohort size is
required if statistical significance is to be achieved; however,
the caveat is that the more associations examined, the greater
the risk of type-I errors (i.e., false-positive rate). Statistical
approaches such as linkage of disequilibrium threshold values
and permutation analyses have proven useful [66], but an
ingenious approach recently described by Herbert and
colleagues will undoubtedly provide a template for future
association studies [67]. Using a multi-stage design, in which
the number of SNPs considered is reduced at each step
without sacrificing genome-wide significance, the authors
selected the top ten SNPs for further analysis, and only one, a
SNP variant near the INSIG2 gene, was associated with
obesity. While more common statistical tests, such as the
Bonferroni and Hochberg corrections, did not identify this
variant, the multi-stage approach employed by the authors
proved accurate, as this variant was replicated in four out of
five independent populations (no significant association was
found using the Nurses Health Study cohort) [60,67]. Thus,
the use of novel and creative approaches may provide the
means to circumvent classical statistical obstacles in
identifying new candidate genes and possible GXE
interactions.

Future Challenges

Our ability to identify promising candidates has progressed
rapidly since entering the post-genomic era. Not only is this
era characterized by immense progress in molecular biology
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tools (e.g., microarrays, mass spectrometry, and
bioinformatics), it has also prompted the creation of
international consortiums that work together towards a
common goal [68,69]. Whether consortiums aim to sequence
genomes, develop classification terminologies, create publicly
accessible databases (such as HapMap), or provide scientific
and ethical guidelines for emerging fields, the result is the
same: pooling together resources and knowledge from
laboratories around the world realizes ambitious goals far
more quickly and accurately than an individual research
group working alone. For example, well-controlled dietary-
intervention studies are currently underway in large
populations in Europe, such as in the NUGENOB (http:/lwww.
nugenob.com) and Diogenes (http://www.diogenes-eu.org)
programs. Such programs, comprising both academic and
industrial partners, aim to study GXE interactions and
identify those genetic determinants susceptible to
environmental stimuli that are capable of influencing obesity
development [69,70].

Within such programs, the use of comprehensive platforms
(i.e., genetics, transcriptomics, peptidomics, and
metabolomics) coupled with clinical data will play a
predominant role in elucidating the perturbed functions
leading to obesity. Such a “hypothesis-generating” approach
promises to identify candidate genes that will undoubtedly
implicate novel biological pathways capable of affecting
energy status and will enhance our understanding of the
evolutionary stages in cellular adaptation during the
development of obesity; however, it is important to stress that
the association of a gene with a complex trait indicates only a
possible risk rather than the causative gene. As such, the
research community must err on the side of caution when
positioning genes/SNPs in relation to disease. No single SNP
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Figure 3. Linkage Studies with Obesity-Related Phenotypes in Six Different Populations

All chromosomes but the Y chromosome have been found linked with an obesity-related phenotype (e.g., body mass index, fat mass, waist
circumference, and blood pressure) in a least one population. Links for relatively few regions have been replicated in more than one population, as
illustrated by colored boxes stacked horizontally. The figure was created using information in the most recent Human Obesity Gene Map update [6]. The
American population comprises Caucasian, Hispanic, African, and Asian Americans.

will cause obesity; however, a combination of variants
exposed to so-called obesogenic environmental stimuli will
increase the relative risk that an individual will develop the
disease. Alternatively, SNPs may also have a beneficial role by
offering a degree of protection against obesity. Recent
evidence has demonstrated that the infrequent V103l
polymorphism in MC4R is negatively associated with serum
triglyceride levels, body mass index, and obesity [71,72]. As
such, genetic variations in MC4R can lead to both loss and
gain of function [73]. Such a finding highlights the
importance of searching for SNPs overrepresented in both
obese and lean populations. Thus, when looking at the future
promise of personalized medicine and nutrition, one must
consider both sides of the coin. One side is purely beneficial,
where the health and well-being of an individual is improved
using information in their genetic blueprint. The other side
concerns the ethics of possessing such knowledge, where the
details of an individual’s genetic makeup may be used
inappropriately (e.g., discrimination in society). While new
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technologies and international consortiums will enable the
research community to unravel the genetics of complex traits
and realize the ambitious goal of personalization more
quickly, the future ethical handling of this information will
prove to be a far greater challenge, with the potential for
drastic implications.

Conclusions

In the context of gene-gene and GXE interactions,
providing a list of fail-proof guidelines that guarantee the
identification of novel candidate genes important in defining
complex traits is challenging, as issues such as replication,
multiple testing, and sample size will continue to be handled
on an experiment-by-experiment basis. Progress in the
knowledge of the human genome, the development of
comprehensive technologies, and new analytical strategies
will permit both the genetic and environmental aspects of
complex traits to be addressed simultaneously; however,
success will ultimately lie with international consortiums that
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pool together expertise and resources to define and
functionally annotate the genetic factors underlying the
various forms of obesity.

Supporting Information
Accession Numbers

The UniGene (http://www.ncbinlm.nih.govlentrez/query.
fcgi?db=unigene) accession numbers for the genes discussed in the
text are as follows: AGRP, Hs.104633; BBS1, Hs.502915; BBS10,
Hs.96322; BBS11, Hs.591910; BBS2, Hs.333738; BBS3, Hs.373801;
BBS4, Hs.208681; BBS5, Hs.233398; BBS6, Hs.472119; BBS7,
Hs.591694; BBS8, Hs.303055; BBS9, Hs.372360; BDNF, Hs.502182;
CART, Hs.1707; Cpe, Mm.31395; ENPP1, Hs.527295; GAD2,
Hs.231829; INSIG2, Hs.7089; LEP, Hs.194236; Lep, Mm.277072; LEPR
Hs.23581; Lepr, Mm.259282; MC3R, Hs.248018; MC4R, Hs.532833;
NPY, Hs.1832; NTRK2 (TRKB), Hs.494312; POMC, Hs.1897; SIM1,
Hs.520293; SLC6A14, Hs.522109; and Tub, Mm.241469. m
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