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Individual genetic admixture estimates, determined both across the genome and at specific genomic regions, have
been proposed for use in identifying specific genomic regions harboring loci influencing phenotypes in regional
admixture mapping (RAM). Estimates of individual ancestry can be used in structured association tests (SAT) to reduce
confounding induced by various forms of population substructure. Although presented as two distinct approaches, we
provide a conceptual framework in which both RAM and SAT are special cases of a more general linear model. We
clarify which variables are sufficient to condition upon in order to prevent spurious associations and also provide a
simple closed form ‘‘semiparametric’’ method of evaluating the reliability of individual admixture estimates. An
estimate of the reliability of individual admixture estimates is required to make an inherent errors-in-variables
problem tractable. Casting RAM and SAT methods as a general linear model offers enormous flexibility enabling
application to a rich set of phenotypes, populations, covariates, and situations, including interaction terms and
multilocus models. This approach should allow far wider use of RAM and SAT, often using standard software, in
addressing admixture as either a confounder of association studies or a tool for finding loci influencing complex
phenotypes in species as diverse as plants, humans, and nonhuman animals.
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Introduction

When two or more populations have been separated by
geographic or cultural boundaries for many generations,
differential selection pressures, drift, and spontaneous
mutations may lead to different allele frequencies in each
population. If individuals from these founding populations
subsequently mate, disequilibrium among linked markers in
their offspring may span a greater genetic distance than
typically found in panmictic populations. This extended
disequilibrium can greatly facilitate the ability to detect
regions of the genome harboring phenotype-influencing loci
by reducing both the number of marker loci required and the
cost when compared to disequilibrium mapping in panmictic
populations [1,2]. However, this admixture process can, under
some circumstances, produce disequilibrium between pairs of
unlinked loci, creating confounding (i.e., spurious associa-
tions) in genetic association studies [3–5].

Recently, with the availability of genome-wide markers, the
wider use and application of Bayesian statistical methods, the
use of Markov chain Monte Carlo and hidden Markov
methods, and the insight of several investigative groups [6–
12], the opportunity for sophisticated admixture mapping has
become a reality. These advances also provide the ability to
control for possible confounding due to disequilibrium
between pairs of unlinked loci created by the admixture
process. Several strategies have been proposed for estimating
admixture for individuals over the whole genome, as well as

in specific regions of the genome [8,10,13]. Methods referred
to as structured association tests (SATs) have been proposed
that use individual admixture estimates to perform tests of
association within admixed populations [7,11,14,15]. Regional
admixture mapping (RAM) methods use genome-wide
admixture estimates and region-specific admixture estimates
to identify specific regions of the genome harboring loci that
influence phenotypes [1,13,16]. These methods are especially
interesting due to their potential for identifying genetic
variants contributing to diseases or phenotypes that have
markedly different distributions among breeding groups (or
in humans, ethnic groups) [17]. Other methods, such as
genomic control, proposed by Devlin and Roeder, attempt to
correct for population stratification due to admixture in
association testing without inferring or utilizing the details of
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the population structure [14,18,19]. These methods do not
involve the estimation of individual admixture values and will
not be discussed in detail here; however, they have been
discussed and compared with existing SAT methods else-
where [14,20,21].

The overall aim of this paper is to provide a general model
that conceptually unites RAM and SAT methodologies into
an extensible form. To accomplish this, we provide an
overview of the problem and existing methods, followed by
methodologic clarification. We then present our model and
illustrate its properties via simulation. These simulations are
not meant to provide comprehensive description of the
operating characteristics of the methods across many
situations, but rather offer illustrations of key methodological
points.

Results/Discussion

Before presenting a unifying approach, we review the
justification and underlying principles of both methods.

What Is SAT?
Hoggart et al. (p. 1492 in [7]) articulated the rationale

behind SAT: ‘‘In general, population stratification exists
when the total population has been formed by admixture
between subpopulations and when admixture proportions
(defined as the proportions of the genome that have ancestry
from each subpopulation) vary between individuals. . . .If the
risk of disease varies with admixture proportions, this will
confound associations of disease with genotype at any locus
where allele frequencies vary between subpopulations. . . .If
the confounder—admixture proportions—can be measured
accurately, control for it can be achieved in a straightforward
manner by modeling its effects in the analysis.’’

We will show that how one attempts to control for parental
ancestry is critical to determining whether one eliminates
potential confounding due to variations in parental ancestry.
To our knowledge, there are four published approaches to
SAT [7,11,12,22]. All are built on this general principle, but

take somewhat different approaches. We will not explore the
specifics of those approaches here but note that none are
couched in a general framework that includes both RAM and
SAT. Furthermore, none allow flexible generalization to as
broad a range of situations as we would wish.
The overall issue of confounding due to admixture

disequilibrium, generalized to any population, is portrayed
in the path diagram of Figure 1. In the path diagram,
rectangles represent directly observed variables, ellipses
represent unobserved or latent variables, dashed ellipses
represent variables that can potentially exert influences, and
arrows represent direct or casual relationships. The path
diagram introduces two key latent constructs, individual
ancestry and individual admixture, which underlie the issue
of confounding due to variation in individual ancestry.
Specifically, an individual ancestry proportion, with respect
to a specific parental population, is defined as the proportion
of that individual’s ancestors who were members of that
parental population in the generation prior to the first
admixture event. This is in contrast to an individual’s
admixture, which is the proportion of the individual’s
genome that is inherited from a specific parental population.
The figure indicates that association testing is not a simple

issue. The relationship between the putative quantitative trait
locus (QTL) and phenotype is the one of interest, but it can
be confounded by other variables. First, note that QTLs and
individual admixture can be directly influenced by random
variation due to meiosis. In addition, both the phenotype and
measured admixture are potentially subject to measurement
error. Furthermore, measured admixture is directly affected
by individual admixture, which in turn is affected by
individual ancestry. Naturally, the ancestry of the parents,
represented by P1 and P2, affects individual ancestry.
Individual ancestry can directly affect the putative QTL,
which in turn can affect the phenotype, so individual ancestry
has an indirect affect on the phenotype via the putative QTL.
The right–hand side of the path diagram is a mirror image of
the left–hand side, with unobserved QTL replacing the
putative QTL and represents the potential path of spurious
associations. The diagram also indicates that the product of
parental ancestries also affects both QTLs. Justification for
these paths is provided below.
The consequences of failing to control for variation is

ancestry is illustrated in Figure 2A. The simple simulation
reveals type I errors occur 13.24, 41.2, and 193 times as often
as expected at the .05, .01, and .001 a levels, respectively, and
this inflation is attributable to confounding due to variation
in ancestry. SATs are designed to be resistant to such
confounding.

What Is RAM?
We define region-specific admixture as a characteristic of

segments of the genomes of individuals. For any given region
of the genome, one’s region-specific admixture from pop-
ulation V is the proportion of alleles in that region that are
copies of alleles from members of population V. The
rationale for RAM rests on two premises. First, the process
of admixture creates linkage disequilibrium among linked
loci that tends to extend over longer genetic distances than
does disequilibrium under long-term panmixia. Second, even
after appropriately adjusting for the degree of individual
ancestry, the degree of individual region-specific admixture
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Synopsis

In recent years, scientific efforts to find genes influencing disease
and health-related traits have sought to capitalize on the unique
genetic characteristics of admixed populations. Admixture can refer
to the event of two or more genetically diverse populations
intermating and producing an admixed population. Admixture
creates the potential for efficient identification of trait-influencing
genes. However, genetic association studies using admixed pop-
ulations are also prone to incorrectly concluding that a gene is
linked and associated with a trait even when it is not. Several
researchers have produced promising statistical methodologies for
genetic association studies within admixed populations. In this
paper, the authors show how these statistical methods can be
unified in a broadly applicable regression framework and discuss
which variables should be included in the regression models for
valid testing. Because the variables required in this regression
framework can only be measured with error, the authors show the
consequences of these measurement errors and present measure-
ment error correction methods applicable to this problem. By
recasting the statistical methods for genetic association studies
within admixed populations as regression models, a broader range
of modeling and hypothesis testing becomes available.



will covary with phenotypes that are influenced by loci that
are (1) in the region under study; and (2) in disequilibrium
with loci that have different allele frequencies in the parental
populations. Both premises are well established [23,24]. Prior
to the late 1990s, several authors had formally discussed the
possibility of RAM-type approaches [23], but did not offer
methods that would control for potential spurious associa-
tions [4]. McKeigue first introduced modern approaches to
RAM that attempted to control for spurious associations
induced by the admixture process [6,25,26].

Several approaches to RAM [6,13,16,25–29] have been
published. Some [28] use a two-stage approach in which
estimates of individual admixture and region-specific admix-
ture are first obtained in a specialized procedure and then
used in an ordinary logistic regression approach with case-
control data. This two-stage approach lends itself to general-
ization and is a simplified form of the unified general linear
model approach we present.

Methodologic Clarifications
There are a number of methodologic points that have been

alluded to but have not been completely elucidated in the
literature pertaining to how one should condition upon
(control for) ancestry within RAM and SAT. Within the next
few sections, we seek to clarify these points.

It is unclear from past writing whether it is sufficient to
control for individual admixture, individual ancestry, or both
to eliminate confounding due to the admixture process. We

first clarify that, although sometimes used interchangeably,
an individual’s admixture and an individual’s ancestry are not
equivalent variables. To illustrate, consider a set of full
siblings that does not include any monozygotic twins. Because
they are full siblings, all individuals in the set have equal
individual ancestry from specific populations or regions. In
fact, all individuals in the set have ancestry equal to the mean
or midpoint of their parent’s ancestries, represented as P1

and P2. However, due to recombination, all individuals will
have slightly different admixture values.
Here we show by counterexamples that it is not sufficient

to control for individual admixture and it is also not
sufficient to control for individual ancestry. We then show
that it is sufficient to control for both individual ancestry and
the product of parental ancestry. Throughout the paper and
our examples, i represents the ith individual, j the jth locus, k
the number of alleles at the jth locus, and V the number of
founding populations. For simplicity we assume 2 founding
populations in this paper.
Controlling for individual admixture is not sufficient.

Given variations in parental ancestry, controlling for indi-
vidual admixture is not sufficient. Imagine an organism with
W independent genetic segments of equal genetic length. For
each individual, let the two parents have equal ancestry.
Suppose that the admixture of each segment is known
without (measurement) error. Without loss of generality,
assume that the segment-specific admixture values (denoted
Xj for the j

th segment) and the ancestry values are all scaled to

Figure 1. Path Diagram Illustrating the Relationship between Admixture, Ancestry, and Phenotype

This figure was created based on the rules of path diagrams outlined in [65] with minor modifications. We wish to explore the association of the
putative QTL with a given phenotype. However, as illustrated, this zero-order (i.e., unadjusted) association may be affected by relationships with other
factors. The rectangles and ellipses in the path diagram represent observable and latent (unobservable) variables, respectively. The dashed ellipses
indicate variables potentially capable of influencing the phenotype. Sources of error from random variation introduced by the meiosis process or
measurement error are indicated for observable and unobservable variables. The variable vi, i ¼ 1,2 denotes the number of alleles inherited from a
specific parental population at the ith QTL (the putative QTL, QTL 1, is observed, whereas QTL 2 is unobserved). Note that for a specific QTL, only two
possible values of Vi, i¼ 1,2 are considered in the model; the third possible value will serve as a reference. Pi, i¼ 1,2 represents the ancestry of each
parent for a sampled individual. The objective is to test for association between the putative QTL and the observed phenotype. Observed association
may simply result from unaccounted correlation among the putative QTL, the phenotype, and individual ancestry. The association can be further
confounded by the presence of unobserved factors, such as QTL 2. Controlling for parental and individual ancestry would break this confounding
pathway. Because ancestry is not directly observable, individual admixture estimates are used as surrogates. These estimates, obtainable through
existing software, can be seen as error-contaminated measurements of the true individual ancestry values. Hence, the measurement error problem
must be addressed when including these estimates in the model. Hoggart et al. [7] offer a figure similar to the one presented here.
DOI: 10.1371/journal.pgen.0020137.g001
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have variance 1.0. Given the assumptions above, all segment-
specific admixture values will have equal covariance with
ancestry. Denote this covariance as b. Let

Z ¼
XW
j¼1

Xj ð1Þ

denote the overall individual admixture value (for ease of
exposition, we have not divided by W, but this is only a linear

transformation and will have no impact on the result). Then,
the correlation coefficient between Xj1 and Xj2 is qXj1Xj2

¼ b2.
The correlation coefficient between Xj1 and Z is

qXj1Z ¼ qXj2Z ¼
1þ ðW � 1Þb2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W þWðW � 1Þb2

q : ð2Þ

The correlation coefficient can be written in terms of
simple correlation coefficients

Figure 2. Conditioning on Individual Ancestry and the Product of Parental Ancestries Is Necessary and Sufficient to Control for Confounding

A dataset was simulated from idealized circumstances for the purposes of illustration. The dataset contained 1,000 individuals that were admixed from
parental populations V and V. For each individual, both parents had the same amount of V ancestry. The V ancestry proportion of each individual was
drawn from a beta distribution (Beta [0.3771, 0.8341]). These parameter values were based on estimates of African ancestry proportions from a sample
of 479 individuals recruited from different previously described studies in New York City, New York, and Birmingham, Alabama [66–68]. We simulated a
trait-influencing diallelic QTL (G1) that had alleles G and g with frequencies 0.2 and 0.8, respectively, in population V and frequencies 0.8 and 0.2,
respectively, in population V. We simulated a phenotype, Y, that was a function of G1 and a random normal deviate. Finally, we simulated a marker (G2)
that had alleles with frequencies 0.2 and 0.8 in population V and complementary frequencies in population V. Alleles at G2 did not influence Y and G2
was unlinked to G1. However, G1, G2, and Y are all correlated with ancestry. However, the association between G2 and Y is spurious. We then test for
association between Y and G2 by regressing Y on two dummy codes for the genotypes at G2 [69] and conducting a two degrees of freedom (df) test
under the following scenarios: (1) without any type of control (i.e., no covariates); (2) controlling for linear term of true individual ancestry when the
alleles at G1 act in an additive fashion; (3) controlling for linear term of true individual ancestry when the alleles at G1 act in an overdominant fashion;
and (4) controlling for linear and quadratic term of true individual ancestry when the alleles at G1 act in an overdominant fashion. Because we imposed
the simplifying condition that for each individual, both parents had the same amount of V ancestry, the square of individual ancestry is equivalent to
the product of parental ancestries. Since alleles at G2 do not cause variation in Y nor is G2 linked to a gene that causes variation in Y, every significant
association found under any of the above scenarios constitutes a false positive. The graphs in this panel were created by simulating 1,000 independent
replicate datasets. The dots on each graph located on the left portion of each panel represent the observed p values (expressed on a�log10 scale) for
the test for the effect of G2 for each dataset. The bar plot of the right section of each panel represents the observed ratio of the empirical to the
nominal type I error for each simulation.
(A) Not controlling for ancestry leads to inflated type I error. The degree of type 1 error rate inflation increases with smaller a levels.
(B) Controlling for only the linear term of individual ancestry is sufficient only when the confounding QTL affects the phenotype only in an additive
fashion. In this case, there was no excess of type 1 errors.
(C) When the QTL affects the phenotype in a nonadditive fashion (in this case, through overdominance), controlling for the linear term of ancestry is
insufficient to remove the confounding effect. The type I error rates remain quite inflated even after including true individual ancestry in the model.
(D) When the QTL affects the phenotype in an overdominant fashion, controlling for true individual ancestry and the product of parental ancestries
effectively eliminates the confounding. In this case, the ratios of empirical to nominal a levels are within sampling error of 1.0.
DOI: 10.1371/journal.pgen.0020137.g002
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qXj1Xj2jZ ¼
qXiXj1

� qXj1ZqXj2Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� q2

Xj1ZÞð1� q2
Xj2ZÞ

q ; ð3Þ

after substituting and reducing,

qXj1Xj2jZ ¼
1

1�W
: ð4Þ

for W . 1. Thus, it is clear in this situation that the partial
correlation coefficient can never be zero and only asymptoti-
cally approaches zero as W approaches infinity (i.e., as the
amount of independent information that goes into the
emergent variable of admixture increases infinitely). If
qXj1Xj2jZ is not guaranteed to be zero, then, conditional on
individual admixture, what is inherited at one segment can be
correlated with what is inherited at another chromosome.
Therefore, controlling for individual admixture is not
sufficient to eliminate correlations among unlinked loci and
is not sufficient to control for spurious associations. The
formula further implies that the distinction between individ-
ual ancestry and individual admixture will, all other things
being equal, be greatest in organisms such as Arabidopsis
(diploid chromosome number ¼ 10, 8.0 3 107 base pairs in
total length) with short genomes and less in organisms such as
crayfish (diploid chromosome number¼ 200, 8.22 3 109 base
pairs in total length) with long genomes (see http://www.
genomesize.com).

Controlling for individual ancestry is not sufficient. Let X1

and X2 denote Bernoulli-distributed random variables in-
dicating whether or not one has inherited two alleles from
population V at locus 1 and locus 2, respectively, and let vij
denote the number of alleles inherited from population V at
the jth locus for the ith individual. Assume that the two loci are
unlinked and that we begin with two inbred populations, V
and V_ (not V), denoting nonadmixed individuals from
population V as VV and nonadmixed members of the
population V_ as V_V_. Subsequently, N1 and N2 individuals
from populations V and V_, and, subsequently their offspring,
begin intermating for two generations in an unspecified
pattern. Then, in the second admixed generation, we have a
population that can be described as in Table 1.

As can be seen in Table 1, P(vij¼ 2) is not determined solely
by individual ancestry but also depends on mating patterns

and mixing proportions, via their influence on the distribu-
tion of parental mating types. This means that, even condi-
tional upon individual ancestry, there can still be
confounding because X1 will be correlated with X2. Control-
ling for individual ancestry may remove most of the
confounding, but not all. This is even more evident when
one imagines a dataset including only the two rows with V
ancestry of 1/2. Within these two rows, although individual
ancestry would be controlled perfectly (there would be no
variation), the opportunity for confounding is present. Only
members of the VV_3VV_matings can have either X1¼ 1 or X2

¼ 1.
Some models (e.g., [7,12]) control for the linear effect of

individual ancestry or individual admixture in regression-
type models in an attempt to insure that RAM and SAT tests
are not confounded by variation in ancestry. This will only be
valid if one tests only for linear allelic (additive) effects at loci
without testing for dominance (genotypic) effects or epistasis.
This is because when testing for the allelic effects, the
expected number of alleles from population V at any one
locus among individuals with ancestry A from population V is

EðvijÞ ¼ Pðvij ¼ 1Þ þ 2Pðvij ¼ 2Þ
EðvijÞ ¼ P1i þ P2i � 2ðP1iP2iÞ

þ 2ðP1iP2iÞ
¼ P1i þ P2i ¼ 2Ai

8>><
>>:

9>>=
>>;
; for all i: ð5Þ

However, the locus-specific effects on complex and
quantitative traits cannot a priori be assumed to be additive
and can even be overdominant [30–34]. For this reason, many
investigators wisely choose to test for genotypic effects in two
degrees of freedom models (e.g., [12]) rather than restricting
themselves to allelic (additive) effects (compare with [35]). In
such situations, controlling only for the linear term of
individual ancestry will be insufficient if one uses tests that
allow for nonadditive genotypic effects.
Controlling for individual ancestry and the product of

parental ancestries is sufficient. The premise of conditioning
on parental ancestry was first introduced by McKeigue [26].
Here we expand on the idea and show that it is necessary to
condition on both individual ancestry and the product of
parental ancestries. It is important to note in the following
that, although we are controlling for parental ancestries, this
does not imply it is necessary to include parents in RAM and

Table 1. Expected Population Resulting from Two Generations of Random Mating between Two Inbred Populations

Parental

Mating

Type

Frequency with Equal

Mixture from Parental

Populations under

Random Mating

Frequency with Unknown

Mixture Proportions from

Parental Populations

under Random Mating

Frequency with Unknown

Mixture Proportions from

Parental Populations under

Unspecified Pattern of Mating

Offspring’s

Individual V

Ancestry

P(m ¼ 2)

VV, VV 1/16 p1
4 ND 1 1

VV_, VV 1/4 4p1
3p2 ND 3/4 1/2

VV, V_V_ 1/8 2p1
2p

2
2 ND 1/2 0

VV_, VV_ 1/4 4p1
2p2

2 ND 1/2 1/4

VV_, V_V_ 1/4 4p1p2
3 ND 1/4 0

V_V_, V_V_ 1/16 p2
4 ND 0 0

ND, not determinable, which indicates that the frequency cannot be determined without knowledge of the mating patterns; m number of alleles from the VV population; pm, fraction of
founders from parental population m,m ¼ 1,2.
DOI: 10.1371/journal.pgen.0020137.t001
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SAT studies (see Text S1 for discussion of estimating parental
ancestry solely from offspring data).

Let P1i and P2i denote the individual ancestries from
population V for the two parents, respectively. Note that for
any locus, the expected number of V alleles depends only on
the individual’s ancestry; hence, we drop the locus-specific
subscript j in subsequent equations. Then, at every locus:

Pðmi ¼ 0jP1i;P2iÞ ¼ ð1� P1iÞð1� P2iÞ
¼ 1� P1i � P2i þ P1iP2i

¼ 1� 2Aþ P1iP2i
Pðmi ¼ 1jP1i;P2iÞ ¼ ð1� P1iÞP2i

þ ð1� P2iÞP1i

¼ P1i þ P2i � 2P1iP2i

¼ 2ðAi � P1iP2iÞ
Pðmi ¼ 2jP1i;P2iÞ ¼ P1iP2i

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

; for all i:

ð6Þ

Furthermore, conditional on P1i and P2i, the number of
alleles inherited from one population at a given locus is
independent of the number of alleles inherited at another
locus for all loci that are unlinked as defined by Mendel’s law
of independent assortment. Therefore, controlling for P(vi ¼
0 jP1i, P2i), P(vi¼ 1 jP1i, P2i), and P(vi¼ 2 jP1i, P2i) is sufficient
to eliminate confounding by unlinked loci. Given that P(vi ¼
0 jP1i, P2i)þ P(vi¼ 1 jP1i, P2i)þ P(vi¼ 2 jP1i, P2i)¼ 1, it is only
necessary to control for any two in a model. We choose to
control for P(vi ¼ 0 jP1i, P2i) and P(vi ¼ 2 jP1i, P2i). If we let Y
denote a phenotype and f(Yi) denote some function of Y, then
a testing model that would eliminate confounding induced by
variations in parental ancestry would take the form:

f ðYiÞ¼ a0 þ a1Piðvi ¼ 0jP1i;P2iÞþ a2Piðvi ¼ 2jP1i;P2iÞþ � � � þ ei
¼ a0 þ a1ð1� P1i � P2i þ P1iP2iÞ þ a2P1iP2i þ � � � þ ei
¼ a0 þ a1 � a1ðP1i þ P2iÞ þ a1P1iP2i þ a2P1iP2i þ � � � þ ei;

ð7Þ

in which the missing terms denoted by the ellipsis are those
that one is primarily interested in testing. Letting b0 [ a0 þ

a1, b1 [�2a1, and b2 [ a1þ a2 and substituting terms yields:

f ðYiÞ ¼ b0 þ b1
P1i þ P2i

2

� �
þ b2P1iP2i þ � � � þ ei: ð8Þ

Noting that, by definition, (P1i þ P2i)/2 is individual ancestry
(Ai), yields:

f ðYiÞ ¼ b0 þ b1A1 þ b2P1iP2i þ � � � þ ei: ð9Þ

As can be seen, the probability distribution of the descent
status (and therefore the genotypes if allele frequencies
differed in the parental populations) depends on both first-
and second-order functions of ancestry but not on any
higher-order terms. Thus, to eliminate confounding due to
variations in parental ancestry, it is sufficient to control for
individual ancestry and the product of parental ancestries.
Figure 2B–2D illustrates these points. Specifically, Figure 2B
indicates that if the confounding locus acts in a additive
fashion, controlling for ancestry without the product of
parental ancestries does provide adequate type I control.
However, Figure 2C reveals type I errors occur 6.16, 16.4, and
36 times as often as expected at the .05, .01, and .001 a levels,
respectively, when the confounding locus acts in an over-
dominant fashion and the linear term of ancestry alone is
used to control for variation in ancestry. Finally, Figure 2D
indicates adequate control is achieved when the confounding
locus acts in an overdominant fashion and both the linear
term of ancestry and the product of parental ancestries are
used to control for variation in ancestry.
The insufficiency of ‘‘conditional conditioning.’’ One may

choose to condition on parental ancestry only if parental
ancestry is found to be statistically significant when included
in the model or if significant structure is detected in the
sample as was described by Pritchard et al. [22] as the first
step in their three-step SAT procedure and by Hoggart et al.
(p. 1502 in [7]). We refer to this approach as conditional
conditioning. If one’s goal is to ensure that under H0, the type
1 error rate remains � a, which generally defines a valid test
in the frequentist context, then conditional conditioning is

Figure 3. Effect of ‘‘Conditional Conditioning’’ on Type 1 Error Rates

We simulated datasets containing a phenotype Y that is associated with a marker G1 and true ancestry. We also simulated another marker G2 that is not
associated with Y, but like Y, is correlated with true ancestry. Therefore, any significant association between Y and G2 is considered a false positive. We
consider the full model Y¼ b0þ b1Aiþb2P1iP2iþ b3G2þ ei. We begin by testing the null hypothesis H0: b1¼ 0 and b2¼ 0. If this test is significant, the p-
value represented by the blue dots is obtained from the full model, otherwise we obtained the p value (green dots in the graph) from the restricted
model Y¼ b0þ b3G2þ ei. As can be seen, p values tend to be quite small when we do not include the nonsignificant terms in the final model. The bar
graphs on the right hand side show the type I error inflation (yellow bars) when one tests for association between Y and g2 in a sequential fashion; that
is by first testing H0: b1 ¼ 0 and b2 ¼ 0, and relying on the outcome of this test to decide whether to control for ancestry. The correct a levels are
obtained by always including ancestry terms in the model regardless of their levels of significance.
DOI: 10.1371/journal.pgen.0020137.g003
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not a valid testing strategy. That is, even though covariates
may not meet criteria for statistical significance in a finite
sample, this does not mean they are not confounders, and
failing to include them in the model can lead to inflated type
1 error rates [36]. Therefore, if one is interested in valid RAM
and SAT tests of linkage in the presence of association, it is
necessary to control for parental ancestry terms as in
Equations 10 and 11 regardless of their degree of statistical
significance in the model. By analogy, the practice of only
controlling for parental ancestry only if a significance test of
Hardy-Weinberg equilibrium is rejected has the same prob-
lem [37]. So too would the practice of attempting to control
for parental ancestry only if other tests yielded significant
evidence that the sample came from a structured population.
This is illustrated in Figure 3, which reveals type I errors
occur 7.93, 28.87, and 66.1 times as often as expected at the
.05, .01, and .001 a levels, respectively, when conditional
conditioning is used.

A General Linear Model
Here we introduce general models for RAM and SAT that

are highly extensible. We define the following notation: Y, a
phenotype that can be continuous, ordinal, or dichotomous;
Ai, ancestry for the ith individual, the proportion of the ith

individual’s ancestors that came from parental population V;
Aijk, a dummy-coded (0,1) indicator variable indicating
whether the ith individual has inherited k and only k alleles
at the jth locus from an ancestor that was from parental
population V; and Gijk, a dummy-coded (0,1) indicator
variable indicating whether the ith individual has k and only
k alleles at the jth locus of a specified type. We use f(Yi) to
denote the link function, a monotone function linking the
dependent variables to the estimated model [38], a device also
employed by Hoggart et al. [7]. We offer the following simple
models for generalized RAM and SAT. We assume for now
that all variables are known without error. However we
return to the important issue of measurement error issues
later.

RAM model:

f ðYiÞ ¼ b0 þ b1Ai þ b2P1iP2i þ b3Aij1 þ b4Ai;j;2 þ ei ð10Þ

SAT model:

f ðYiÞ ¼ b0 þ b1Ai þ b2P1iP2i þ b3Gij1 þ b4Gi;j;2 þ ei: ð11Þ

These general linear models are very flexible. First,
dichotomous (e.g., case vs. control), ordinal, time-to-event,
or continuous phenotypes can be accommodated by letting
the regression model be logistic, Poisson, Cox, or ordinary
least squares, respectively. This flexibility is important.
Investigators frequently want to not only assess genetic
association for dichotomous and static phenotypes such as
lupus (yes vs. no) in a case-control study, but also wish to
assess genetic association with longitudinal outcomes (e.g.,
clinical course in medical research or growth rate in
agricultural research), adjusting for covariates including
demographic and ancestry. Such longitudinal phenotypes
can also be accommodated by this general model via the use
of mixed models and related techniques for longitudinal data
[39,40]. Therefore, the models can be fit in standard software
(e.g., SAS), which has the advantage of being widely accessible,
well documented, and well tested. This radically increases the

likelihood of wide and proper use. Moreover, by being framed
in a regression approach, all of the machinery of regression,
including diagnostics [41], well-recognized effect size metrics,
robust variations [42], the ability to include covariates, and
the ability to test interactions are at one’s disposal. This
immediately makes the models extensible to multilocus and
epistatic models. Finally, the RAM approach can be expanded
to test a region of a chromosome by, instead of including
marker-specific ancestry, including an estimate of the
admixture of the region.
A conceptual bridge to identity in state and identity by

descent. Another advantage of the models in Equations 10
and 11 is that they make clear the relationships between RAM
and SAT and identity by descent and identity in state in
family-based tests of linkage and linkage in the presence of
association. RAM is analogous to linkage testing, whereas SAT
is analogous to association testing. The Aijk values correspond
to ‘‘descent states,’’ whereas the Gijk values correspond to
specific allele states. Indeed, Zhu et al. [16], citing [26], refer to
such Aijk quantities as ‘‘X by descent’’ to denote an allele
having ancestry from X. This conceptual bridge is more than
an intellectual nicety. It immediately makes clear how we can
borrow the concept of testing for linkage conditional upon
association that is now popular in linkage analysis [43–45], as
we shall discuss below.

Model Extensions
As already discussed, the models in Equations 10 and 11 are

easily extended to allow for any phenotypic distribution.
Because no constraints are placed on the distribution of the
phenotypes, with two exceptions, the models can accommo-
date selective sampling (e.g., sampling phenotypically ex-
treme subjects or sampling subjects on the basis of ancestry)
without modification. In addition, covariates, multiple loci,
gene by environment (or gene by sex, gene by age, etc.), and
gene by gene (epistasis) effects are easily modeled by simply
adding appropriate terms to the right side of the equation.
The general linear model presented here can be extended to
deal with several situations, which are briefly introduced
below. If there are a total ofM phenotypes to include, one can
replace the variable Y on the left side of Equations 10 or 11
with a weighted linear composite of Y values representing the
multiple phenotypes as follows:
Multivariate RAM model:

XM
m¼1

nmYm;i ¼ b0 þ b1Ai þ b2P1iP2i þ b3Aij1 þ b4Aij2 þ ei ð12Þ

Multivariate SAT model:

XM
m¼1

nmYm;i ¼ b0 þ b1Ai þ b2P1iP2i þ b3Gij1 þ b4Gij2 þ ei: ð13Þ

The nms are constants to be estimated within the regression
framework and are constrained such that RM

m¼1 n2m ¼ 1. This
constraint is necessary to make the model identifiable.
To our knowledge, no current RAM or SAT test allows

related individuals to be included as subjects. (We distinguish
the inclusion of related individuals as subjects from the
requirement that parents or other relatives be included in
some testing procedures as a means of controlling for
ancestry [e.g., [46,47].) Equations 10 and 11 can accommodate
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related individuals by utilizing software that models the
covariance structure among the residuals. Finally, proper
estimation of parental ancestry values will require special
accommodations for related individuals (e.g., full siblings
should obviously be constrained to have the same parental
ancestry values, etc.).

The general linear model offered can be extended to allow
one to test for linkage conditional upon association with a
polymorphism in a region and, thereby, test whether that
polymorphism appears to account for an observed linkage
signal that was detected with RAM. The right side of Equation
10 can be expanded to include the Gijk values. In this
situation, one desires a test of whether the amount of
variance explained by the Aijk variables conditional on all
other variables in the model is significantly less when the Gijk

values are included in the model compared to when the Gijk

values are excluded from the model. In many cases, these tests
entail the use of bootstrapping.

Nonparametric Measurement Error Assessment and

Accommodation
Until now, we have assumed that all variables are known

without error. In reality, this will not be the case and is an

important point to recognize. Any of the variables involved
can be measured with error and we now address the
consequences of error in each and propose responses to
ensure validity of the tests in terms of type 1 error rate
control. Throughout, we assume that the measurement errors
are independent of each other and of all of the variables
under study. We also do not dwell on how one should
calculate estimates of individual and parental admixture or
estimates of the reliability thereof when used as estimates of
individual and parental ancestry. For now, we simply assume
that it is possible to do so and briefly address ways in which
this might best be accomplished in the Text S1.
Error in the genotypes. It is well known that genotyping

errors occur and, when they occur, result in reduced power
[48]. However, if the measurement error is in the determi-
nation of Gijk, this will only lower power, not inflate the type 1
error rate. Therefore, no response is needed to ensure
validity of the test.
Error in the phenotypes. Phenotypes are also often

measured with error but, again, this will only serve to lower
power of the tests we offer and not inflate type 1 error rates
[49]. Therefore, no response is needed to ensure validity of
the tests.

Figure 4. Reliability of Individual Admixture Estimates Used as Estimates of Individual Ancestry

We simulated a randomly mating population or organisms based upon the ‘‘island model’’ or intermixture admixture process [16]. Because the data are
simulated, true individual ancestry and true individual admixture are known for each individual. True individual ancestry is displayed on each abscissa.
The top four panels each contain data from a simulation of 500 admixed individuals five generations after the admixture event. Two hundred ancestry
informative markers are genotyped with an average allele frequency difference between the original parental populations of 0.3. Founders (250 from
each parental population) were simulated for use in the procedures that estimated individual admixture. The bottom four panels also each contain data
from a simulation of 500 admixed individuals five generations after the admixture event. However, here only 50 ancestry informative markers are
genotyped with an average allele frequency difference between the original parental populations of only 0.2 and only 40 founders (20 from each
parental population) were simulated for use in the procedures that estimated individual admixture. Maximum likelihood estimates were calculated
using Tang et al.’s [10] method. Structure estimates were produced using software described here [8,64]. Several points are noteworthy. First, our results
in the top and bottom rightmost panels recapitulate results obtained by Tang et al. [10] and Zhu et al. [16]. However, our results also show that even
though two methods of estimating individual admixture may produce correlations very close to 1.0, the correlation of these estimates with true
ancestry may be far lower (only ;.80 in our upper row and only ;.50 in our lower row). Finally, the two leftmost figures highlight the fact that there are
important differences between true admixture and true ancestry.
DOI: 10.1371/journal.pgen.0020137.g004
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Error in the estimates of region-specific individual admix-
ture. Unless a perfectly informative marker (i.e., a marker
with allele frequencies of zero and one in one parental
population and complementary frequencies in the other,
respectively) is available at exactly the locus under study, the
degree of regional admixture for any individual will only be
known probabilistically. Let us denote the (Bayesian posteri-
or) probabilities of individual region-specific admixture as:

PðAij ¼ 0Þ ¼ pij0 PðAij ¼ 1Þ ¼ pij1 PðAij ¼ 2Þ ¼ pij2: ð14Þ

Then one can replace Aij1 and Aij2 with pij1 and pij2,
respectively, in the various regression models in an analogous
manner to what would be done in some multipoint mapping
approaches in experimental crosses (see p. 433 in [50]).
Measurement errors here will, again, lower power, but not
affect the type 1 error rate.

Error in the estimates of parental ancestry. Error in the
estimates of parental ancestry poses the greatest challenge. As
several authors [7,13] noted, unchecked errors in the
putatively confounding variables on which one must con-
dition will lead to incomplete control and potentially to
residual confounding [51]. Therefore, some method is
required to deal with measurement error in the estimates
of individual ancestry. Moreover, such measurement errors,
or unreliability, can be substantial, as it is illustrated in
Figure 4.

Montana and Pritchard [27] noted that Hoggart et al. [7]
had criticized their use of a two-stage approach in which one
first calculates ancestry estimates and then in a separate
analysis uses those estimates as covariates. A basis of the
criticism was that this approach does not account for
uncertainty (measurement error) in the ancestry estimates.
Montana and Pritchard (p. 786 in [27]) acknowledge that this
concern is ‘‘theoretically plausible, [but that] extensive
simulations of the admixture mapping tests presented here,
as well as simulations of the STRAT test . . . show that, in

practice, the statistical tests are indeed correctly calibrated
under the null hypothesis. . . [and that] there are some
practical advantages to the two-stage process. First, the two-
stage process makes the output much more transparent and
interpretable for the end user. Second, it makes it much
easier for users to take the ancestry estimates and develop
other tests of association that are appropriate for their own
data.’’ We agree with Hoggart et al. [7] that the measurement
errors are a concern and our simulations herein demonstrate
that under some circumstances measurement errors can
produce substantial type 1 error rate inflation. On the other
hand, we also agree with Montana and Pritchard [27] that the
advantages of the two-stage approach in terms of flexibility
and conceptual clarity are profound. Fortunately, measure-
ment error correction methods can allow ‘‘the best of both
worlds’’ by retaining the flexibility of the two-stage approach
while properly accounting for the measurement error.
While many methods are available (e.g., [52,53]), the most

common approach to dealing with errors in variables on the
right side of regression equations is regression calibration. In
some circumstances (e.g., linear regression), it is effectively
the correction for attenuation. This method is a type of
resubstitution; instead of the true but unobservable predic-
tor, one substitutes an estimate of it, conditional on the
observed covariates (but not the response). Then the idea is to
run a standard analysis, and ‘‘fix up’’ the standard errors at
the end via devices such as bootstrapping. In linear
regression, regression calibration is often considered the
default option because it often works surprisingly well. In
logistic regression with a relatively rare disease, regression
calibration is an almost exact method. One of the major
advantages of regression calibration is that it is easy to
implement; after the resubstitution, a standard analysis can
be run to obtain estimates [54].
Another alternative is the simulation extrapolation (SI-

MEX) approach [54–57]. SIMEX is more computationally

Figure 5. The Importance of Accommodating Measurement Error in Models

The dataset used to create this graph was generated under the same conditions as used to generate the data for Figure 2. The reliability of the
available individual admixture estimates used as estimates of individual ancestry is 90%. That is, f(r2

true ancestry=r
2
observed ancestry) ¼

[r2
true ancestry=ðr2

true ancestry þ r2
errorÞ] ¼ 0.9g.

(A) Type I error inflation caused by measurement error in the individual ancestry estimate. Ignoring possible measurement error in the ancestry estimate
may also lead to a high type I error rate.
(B) Observed false positive rate after correction for measurement error; in this example we used the SIMEX algorithm as described in Cook and Stefanski
[70].
DOI: 10.1371/journal.pgen.0020137.g005
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intensive than regression calibration, but it is one of the
major default options for nonlinear models that cannot be
handled by correction for attenuation techniques or regres-
sion calibration—that is, it is extremely flexible and can be
used with any incarnation of the general linear model. It is
also extremely useful for problems in which the measurement
error is not of the classic, additive homoscedastic type, as will
occur, for example, in the current case in which the predictor
variable (ancestry) is a proportion. As with regression
calibration, a great advantage of SIMEX is that it separates
the primary statistical modeling component from the error
correction component, thereby freeing data analysts to
implement the full range of their usual battery of procedures.

Several other methods exist [58], including multiple
imputation [59]. Figure 5A and 5B, respectively, illustrate
the residual confounding that can occur when conducting a
SAT procedure without correcting for measurement error
and the proper control of confounding that occurs when a
measurement error correction is used. Figure 5A reveals type
I errors occur 1.4, 2.6, and 4 times as often as expected at the
.05, .01, and .001 a levels, respectively, when the correct SAT
model is specified but imperfect measured of ancestry are
used. Once measurement error corrections are applied,
Figure 5B indicates that the correct type I error rates are
restored.

Future Directions
Our purpose here has not been to become bogged down in

the logistics of setting up RAM and SAT studies or to provide
detailed evaluations of the performance characteristics of
specific designs and analytic implementations. Rather, our
goal was to articulate a unified and generalizable approach to
RAM and SAT. We have shown through proofs, counter-
examples, and small simulations that it is necessary and
sufficient to condition on both individual ancestry and the
product of parental ancestries, and it is not sufficient to
‘‘conditionally condition’’ on parental ancestries, in order to
control for confounding in admixture studies. We provide a
general linear model that is extensible to a multitude of study
designs, conditions, and populations of interest that are
briefly presented, but left to future work for detailed
descriptions. Within Text S1, we have also provided a
semiparametric reliability assessment method as well as
suggestions for accommodating measurement errors. It is
worth noting that several open questions, or areas for future
research, remain in order for studies using RAM and SAT to
be optimally useful. These include expanding our RAM
approach to case-only analysis, methods for selecting markers
with which to estimate ancestry, development of panels of
such markers for different ethnic groups (or demonstration

that such a priori–defined panels are not needed [60]), and
evaluation of methods for estimating individual ancestry and
region-specific admixture (for further discussion on such
issues, see [2,61,62]). Additional issues include how RAM and
SAT can best be utilized in studies involving DNA pooling
and how individual ancestry estimation procedures, and the
estimation of the reliability thereof, can best utilize knowl-
edge about the pedigree structure among individuals when
related individuals are studied. How to best accommodate
pedigree data in the analyses remains a question for RAM and
SAT as it does for association testing in general [63]. Finally,
now that a general model exists, the time is opportune for a
thorough evaluation of the performance characteristics
under multiple different population genetic models, genetic
architectures, sampling strategies, and phenotypic distribu-
tions.

Materials and Methods

Simulation studies were performed using the software SAS (Cary,
North Carolina, United States) under the ‘‘general island’’ and
intermixture models presented by Zhu et al. [16]. The SAT model b
f(Yi)¼b0þb1Aiþb2P1iP2iþb3Gij1þb4Gij2þ ei was used to simulate the
association of admixture and ancestry with a putative QTL for
different situations. Admixture estimates were provided by Structure
[8,64] and Tang’s maximum likelihood estimate method [10]. Further
details are provided in the figure legends.

Supporting Information

Text S1. RAM SAT

Found at DOI: 10.1371/journal.pgen.0020137.sd001 (118 KB DOC).
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