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CpG island methylation plays an important role in epigenetic gene control during mammalian development and is
frequently altered in disease situations such as cancer. The majority of CpG islands is normally unmethylated, but a
sizeable fraction is prone to become methylated in various cell types and pathological situations. The goal of this study
is to show that a computational epigenetics approach can discriminate between CpG islands that are prone to
methylation from those that remain unmethylated. We develop a bioinformatics scoring and prediction method on the
basis of a set of 1,184 DNA attributes, which refer to sequence, repeats, predicted structure, CpG islands, genes,
predicted binding sites, conservation, and single nucleotide polymorphisms. These attributes are scored on 132 CpG
islands across the entire human Chromosome 21, whose methylation status was previously established for normal
human lymphocytes. Our results show that three groups of DNA attributes, namely certain sequence patterns, specific
DNA repeats, and a particular DNA structure, are each highly correlated with CpG island methylation (correlation
coefficients of 0.64, 0.66, and 0.49, respectively). We predicted, and subsequently experimentally examined 12 CpG
islands from human Chromosome 21 with unknown methylation patterns and found more than 90% of our predictions
to be correct. In addition, we applied our prediction method to analyzing Human Epigenome Project methylation data
on human Chromosome 6 and again observed high prediction accuracy. In summary, our results suggest that DNA
composition of CpG islands (sequence, repeats, and structure) plays a significant role in predisposing CpG islands for
DNA methylation. This finding may have a strong impact on our understanding of changes in CpG island methylation
in development and disease.

Citation: Bock C, Paulsen M, Tierling S, Mikeska T, Lengauer T, et al. (2006) CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats,
and predicted DNA structure. PLoS Genet 2(3): e26.

Introduction

DNAmethylation is a frequent biochemical modification of
eukaryotic DNA [1–6]. In humans, it affects the C5 position of
cytosines that belong to CpG dinucleotides (i.e., a cytosine
directly followed by a guanine).

CpG dinucleotides are distributed unevenly across the
human genome. In non-coding DNA, CpG dinucleotides are
4-fold underrepresented compared to the frequency of the
other dinucleotides [7,8], with the remarkable exception of
so-called CpG islands. There, CpGs are approximately as
frequent as one would expect from single base pair
frequencies. For practical reasons, CpG islands are usually
defined as sequence stretches that fulfill three conditions [9]:
(i) GC content above 50%, (ii) ratio of observed versus
expected number of CpG dinucleotides above 0.6, and (iii)
more than n base pairs in length (we use n ¼ 400 in
accordance with the source of our dataset [10]). CpG islands
rarely exceed 5,000 base pairs and are often associated with
functional elements. In particular, CpG islands overlap with
the promoter regions of 50% to 60% of human genes,
including most housekeeping genes [11,12].

As DNA methylation in the human genome is largely
confined to CpG dinucleotides, it is not surprising that the
distribution of DNA methylation along the genome is closely
intertwined with CpG frequencies. The classical view is that
almost all dispersed CpG dinucleotides in the human genome
are methylated by default, whereas CpG dinucleotides inside

CpG island promoters are typically unmethylated in normal
(i.e., non-neoplasic, non-senescent) tissue [1]. However,
exceptions have been known for a long time, such as de novo
methylation during cell differentiation [13], imprinting [3],
and X-chromosome inactivation [14]. Strong biallelic DNA
methylation of CpG island promoters is associated with stable
silencing of neighboring or associated genes and constitutes a
frequent event in cancer progression [15].
Initial chromosome-wide and genome-wide studies of CpG

island methylation indicate that a sizeable fraction of CpG
islands is methylated in normal tissue [10,16]. However, little
is known about the mechanisms that lead to methylation of
certain CpG islands while leaving others unmethylated, and it
is unclear whether these two groups can be identified by
characteristic attributes. Inspired by recent exploratory
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results pointing towards a significant role of local DNA
sequences in predetermining DNA methylation at the
nucleotide level (i.e., CpG dinucleotides instead of CpG
islands) [17,18], as well as for aberrant methylation [19], we
performed a comprehensive analysis of the association of
DNA-related features and normal CpG island methylation on
human Chromosome 21. Our results show that DNA sequence
patterns, repeat frequencies, and predicted DNA structure
are highly correlated with CpG island methylation. We
successfully used this association to predict the methylation
status for new CpG islands.

Results

In this study, we explore the relationship between DNA
methylation and various DNA-related features at the bio-
logically functional CpG island level, using computational
epigenetics methodology. Based on a dataset published by
Yamada et al., comprising all CpG islands on the non-
repetitive parts of human Chromosome 21 [10] and a
compiled list of 1,184 DNA-related attributes, we quantify
the correlation between CpG island methylation and eight
attribute classes: (1) DNA sequence properties and patterns,
(2) repeat frequency and distribution, (3) CpG island
frequency and distribution, (4) predicted DNA structure, (5)
gene and exon distribution, (6) predicted transcription factor
binding sites, (7) evolutionary conservation, and (8) single
nucleotide polymorphisms (SNPs). We identify the attributes
that are most predictive in distinguishing between methy-
lated and unmethylated CpG islands and we show that it is
possible to predict CpG island methylation from DNA-related
features with high accuracy. Finally, we validate our results
both experimentally on Chromosome 21 and bioinformati-
cally on data from the Human Epigenome Project (HEP) [20].

Identification of DNA-Related Attributes That Distinguish
Methylated CpG Islands from Their Unmethylated
Counterparts

As a first step towards understanding the relationship
between DNA-related attributes and CpG island methylation,

we statistically compared the distributions between methy-
lated and unmethylated CpG islands for all attributes in our
list (see Dataset S1 for the full list of p-values and Materials
and Methods for an overview of attribute definitions). Using a
conservative significance threshold, 41 attributes showed
significant differences (Table 1).
Of the significant attributes, the majority are frequencies of

GC-rich andCpG-rich DNA sequence patterns, which are over-
represented in unmethylated CpG islands. Non-strand-specific
patterns and patterns that are strand-specific relative to the
chromosomal plus-strand occur with similar frequency and
composition. Several attributes that refer to repetitiveDNAare
more frequent in methylated CpG islands (such as segmental
duplications, self chain alignments, and tandem repeats).
Interestingly, two aspects of predicted DNA structure, most

prominently the average rise of the DNA helix, also show
different distributions for methylated and unmethylated CpG
islands (see Olson et al. [21] for an overview of DNA structure
nomenclature). The role of predicted DNA structure becomes
even more pronounced when considering not only the CpG
island itself, but also the�20-kilobase (kb) toþ20-kb sequence
windows surrounding it. In that case, the predicted average
rise and the predicted average twist are the second and third
most significant among all attributes (Dataset S1, second
worksheet). An inspection of the corresponding boxplots
(Figure 1) shows that the predicted DNA rise increases on
average within CpG islands compared to the genomic
neighborhood, whereas the twist decreases. However, this
effect is much stronger for methylated than for unmethylated
CpG islands. Hence, methylated CpG islands tend to co-locate
with areas of unusual predicted DNA structure.
Furthermore, it is apparent from Table 1 that a single

pattern is over-represented in methylated CpG islands,
namely the non-strand-specific CACC/GGTG pattern. Be-
cause this pattern contains a TpG, in contrast to the CpG-rich
patterns that are frequent in unmethylated CpG islands, it is
tempting to argue that this pattern may be the result of
sporadic deamination of original GGMCG patterns (such
mutations are less likely to be repaired for methylated CpGs
[6]). In order to test whether differential CpG ! TpG
mutation rates may be a source of differential pattern
frequencies between methylated and unmethylated CpG
islands, we compared the palindromic pattern CGCG with
the non-strand-specific pattern TGTG/CACA, which can
evolve from the former pattern by two subsequent deami-
nation mutations.
In agreement with our hypothesis, we find the CGCG

pattern more frequently in unmethylated CpG islands (mean
of 12.61 occurrences per kb) compared to methylated CpG
islands (7.15 occurrences per kb) and the TGTG/CACA pattern
more frequently in methylated CpG islands (10.92 occurrences
per kb) compared to unmethylated CpG islands (2.93
occurrences per kb). In both cases, p-values were below 0.001
according to aWilcoxon test. These results suggest that during
evolution, higher rates of germline CpG ! TpG mutation
occurred in those CpG islands that are methylated in human
lymphocytes compared to those that are unmethylated.
Finally, we analyzed the dataset for evidence of exper-

imental bias. Because restriction enzyme digestion was used
to discriminate between methylated and unmethylated CpG
islands [10], incomplete digestion is a potential error source.
In this case, we would expect the HpaII recognition site
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Synopsis

DNA methylation is the only epigenetic mechanism in eukaryotes
that is known to directly modify the DNA. It plays an important role
for gene control during development and cell differentiation, and it
is a promising therapeutic target in cancer research. While a
genome-wide picture of DNA methylation patterns is currently
emerging, we have only fragmentary knowledge about the linkage
between DNA methylation and other genomic attributes such as
DNA sequence and structure, repetitive elements, or sequence
conservation. The authors fill this gap by reporting on a
comprehensive bioinformatical analysis of DNA methylation on
human Chromosome 21—and in part, extending to other regions of
the human genome. They report new associations that will help
elucidate the functions of DNA methylation along the human
genome. Furthermore, the authors show that their findings can be
applied to predicting DNA methylation patterns from genome
sequence. Such predictions have the potential of speeding up
genome-wide epigenetic profiling: It may be possible to focus
experimental resources on a few selected areas while bioinformatics
procedures are applied to the bulk of the genome.



(CCGG) to behave significantly different from patterns that
are never cut. However, we observe no indication of this in
our attribute statistics (Dataset S1, first worksheet). Five out
of ten GC-rich and CpG-containing sequence patterns have
higher p-values than the CCGG pattern (CCGC, CGCC,
GCCG, CCCG, and CGCG), while the same number of
patterns has a lower p-value (GCGC, CGGC, GCGG, CGGG,
and GGCG). We conclude that the experimental method that
was applied by Yamada et al. is sufficiently unbiased for our
analysis.

Quantification of the Association between DNA-Related
Attributes and CpG Island Methylation

Strikingly, all attributes that were significantly different
between methylated and unmethylated CpG islands (Table 1)
fall into three (out of eight) attribute classes: (1) DNA

sequence properties and patterns, (2) repeat frequency and
distribution, and (4) predicted DNA structure. In order to
investigate this observation more systematically, we calcu-
lated the group-wise correlation between CpG island meth-
ylation and each of the eight attribute classes.
In contrast to single-attribute correlation coefficients,

group-wise correlations are able to capture combined effects
of interacting attributes (e.g., when neither A nor B has any
significant impact on methylation alone, but the combined
presence of both is highly associated with a certain
methylation status). Support vector machines (SVMs) have
been successfully employed to detect such combined effects.
Therefore, we trained a (linear) SVM to predict CpG island
methylation and tested its performance on unseen data (10-
fold cross-validation). Then, we calculated the correlation
coefficient between the SVM’s predictions on unseen data

Table 1. DNA-Related Attributes Differ Significantly between Methylated and Unmethylated CpG Islands

Rank Attribute

Name

Attribute Description Attribute

Class

Higher Value for Single Test

Significance

1 SAl_len Total length of self-alignments (alignments of the human genome against itself) (2) Methylated CpG Islands 2.62 3 10�11

2 SAl_no Total number of self-alignments (2) Methylated CpG Islands 3.23 3 10�10

3 Pat_CCGC Chromosome plus-strand pattern frequency of CCGC (1) Unmethylated CpG Islands 5.18 3 10�10

4 Pat_CCCC Chromosome plus-strand pattern frequency of CCCC (1) Unmethylated CpG Islands 1.39 3 10�9

5 SAl_std Standard deviation of self-alignment lengths (2) Methylated CpG Islands 1.96 3 10�9

6 Uni_AAAG Non-strand-specific pattern frequency of AAAG/CTTT (1) Unmethylated CpG Islands 8.87 3 10�9

7 fC_std Standard deviation of C content distribution (1) Unmethylated CpG Islands 9.13 3 10�9

8 Rise_avg Average DNA structure rise (as predicted from sequence) (4) Methylated CpG Islands 3.82 3 10�8

9 Pat_CGCC Chromosome plus-strand pattern frequency of CGCC (1) Unmethylated CpG Islands 5.05 3 10�8

10 Pat_AAAG Chromosome plus-strand pattern frequency of AAAG (1) Unmethylated CpG Islands 7.72 3 10�8

11 Roll_skew Skewness of DNA structure roll distribution (as predicted from sequence) (4) Unmethylated CpG Islands 1.15 3 10�7

12 Pat_CTCC Chromosome plus-strand pattern frequency of CTCC (1) Unmethylated CpG Islands 1.46 3 10�7

13 fCG_std Standard deviation of CpG content distribution (1) Unmethylated CpG Islands 2.15 3 10�7

14 Pat_TCCC Chromosome plus-strand pattern frequency of TCCC (1) Unmethylated CpG Islands 2.57 3 10�7

15 SDu_no Total number of sequential duplications (2) Methylated CpG Islands 3.49 3 10�7

16 SAl_sco Average self-alignment score (2) Methylated CpG Islands 4.19 3 10�7

17 Pat_CTTT Chromosome plus-strand pattern frequency of CTTT (1) Unmethylated CpG Islands 4.23 3 10�7

18 Uni_CGGA Non-strand-specific pattern frequency of CGGA/TCCG (1) Unmethylated CpG Islands 5.15 3 10�7

19 Uni_CCGC Non-strand-specific pattern frequency of CCGC/GCGG (1) Unmethylated CpG Islands 9.08 3 10�7

20 Pat_CGGA Chromosome plus-strand pattern frequency of CGGA (1) Unmethylated CpG Islands 1.16 3 10�6

21 Pat_GCCG Chromosome plus-strand pattern frequency of GCCG (1) Unmethylated CpG Islands 1.46 3 10�6

22 Uni_AAGG Non-strand-specific pattern frequency of AAGG/CCTT (1) Unmethylated CpG Islands 1.58 3 10�6

23 Pat_CCCG Chromosome plus-strand pattern frequency of CCCG (1) Unmethylated CpG Islands 1.86 3 10�6

24 SAl_avg Average length of self-alignments (2) Methylated CpG Islands 1.91 3 10�6

25 Pat_TCCG Chromosome plus-strand pattern frequency of TCCG (1) Unmethylated CpG Islands 2.60 3 10�6

26 Pat_CGCG Chromosome plus-strand pattern frequency of CGCG (1) Unmethylated CpG Islands 2.65 3 10�6

27 Uni_CGCG Non-strand-specific pattern frequency of CGCG/CGCG (1) Unmethylated CpG Islands 2.65 3 10�6

28 Pat_ACCC Chromosome plus-strand pattern frequency of ACCC (1) Unmethylated CpG Islands 2.87 3 10�6

29 Uni_CAAA Non-strand-specific pattern frequency of CAAA/TTTG (1) Unmethylated CpG Islands 2.90 3 10�6

30 Pat_CAAA Chromosome plus-strand pattern frequency of CAAA (1) Unmethylated CpG Islands 3.01 3 10�6

31 Uni_CGGC Non-strand-specific pattern frequency of CGGC/GCCG (1) Unmethylated CpG Islands 3.46 3 10�6

32 Pat_GCCC Chromosome plus-strand pattern frequency of GCCC (1) Unmethylated CpG Islands 3.95 3 10�6

33 Pat_GGAA Chromosome plus-strand pattern frequency of GGAA (1) Unmethylated CpG Islands 5.93 3 10�6

34 Pat_TATT Chromosome plus-strand pattern frequency of TATT (1) Unmethylated CpG Islands 6.43 3 10�6

35 Pat_CCGG Chromosome plus-strand pattern frequency of CCGG (1) Unmethylated CpG Islands 7.21 3 10�6

36 Uni_CCGG Non-strand-specific pattern frequency of CCGG/CCGG (1) Unmethylated CpG Islands 7.21 3 10�6

37 Tan_sco Goodness of fit score of tandem repeats (2) Methylated CpG Islands 9.34 3 10�6

38 Uni_CACC Non-strand-specific pattern frequency of CACC/GGTG (1) Methylated CpG Islands 9.55 3 10�6

39 Tan_avg Average lengths of tandem repeats (2) Methylated CpG Islands 9.60 3 10�6

40 RC1_Low_ Alignment score of low complexity class repeats (2) Unmethylated CpG Islands 1.37 3 10�5

41 RF1_Low_ Alignment score of low complexity family repeats (2) Unmethylated CpG Islands 1.37 3 10�5

This table lists all attributes with significantly different distribution among methylated and unmethylated CpG islands, respectively, according to a Wilcoxon test with Bonferroni correction
for multiple testing and an overall significance threshold of 1%. The rightmost column displays single-test p-values, the significance threshold after multiple testing correction is 0.01/706¼
1.42 3 10�5. Attributes with significantly higher values in fully methylated CpG are in green. Attributes in red are significantly higher in unmethylated CpGs. Detailed information on
attribute definitions is given in Table S1.
DOI: 10.1371/journal.pgen.0020026.t001
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and the correct values, averaging over 20 independent cross-
validation runs. This measure gives us a conservative estimate
for the group-wise correlation between the attribute group
and CpG island methylation—conservative because it may
well be that the SVM does not capture all information on
CpG island methylation that is present in the attribute group,
while it is highly unlikely to predict methylation correctly
over multiple runs if not enough information is contained in
the attributes.

Our results substantiate the observation that three classes
of DNA-related attributes are distinctly associated with CpG
island methylation status (Table 2, experiments 1 to 8): (1)
DNA sequence properties and patterns, as well as (2) repeat
frequency and distribution are correlated with CpG island
methylation at medium to high rates (correlation coefficient
of 0.635 and 0.657, respectively); whereas (4) predicted DNA
structure falls behind (0.486). Three of the remaining
attribute classes exhibit weak correlation with CpG island
methylation, namely (5) gene and exon distribution (0.300),
(8) SNPs (0.286), and (3) CpG island frequency and distribu-
tion (0.045). (6) Predicted transcription factor binding sites
and (7) evolutionary conservation are uncorrelated with CpG
island methylation (�0.021 and 0.000, respectively). Further-
more, the combination of all eight attribute classes results in
a higher correlation value than any single class (0.740),
indicating that at least some attribute classes capture
complementary information.

To quantify the degree of complementarity and to find out
which attribute classes are positively correlated with DNA
methylation only due to indirect or secondary effects, we
applied the following strategy. Given two attribute classes, we
calculate the correlation for both classes separately and for
the combination of both. If the latter is higher than any of the

former, we can conclude that the attributes complement each
other. Comparing DNA sequence with all other attribute
classes reveals that only (2) repeat frequency and distribution
and (4) predicted DNA structure give rise to an increased
correlation when combined with (1) DNA sequence proper-
ties and patterns, by 18.4% and 8.3%, respectively (Table 2,
experiments 10 to 16). However, among these three classes, all
combinations significantly increase the correlation (Table 2,
experiments 10, 12, and 17).
Therefore, we conclude that three attribute classes, namely

(1) DNA sequence properties and patterns, (2) repeat
frequency and distribution, and (4) predicted DNA structure
are correlated with CpG island methylation on their own right
(primary effect). The remaining attribute classes are either not
correlated with CpG island methylation at all (class 7 evolu-
tionary conservation and class 8 predicted transcription
factor binding sites), or their correlations are secondary,
explainable by their co-location with certain DNA sequence
patterns alone (class 3 CpG island frequency and distribution,
class 5 gene and exon distribution, and class 8 SNPs).

Prediction of CpG Island Methylation Status from DNA-
Related Attributes
While the previous section was concerned with quantifying

the relative contribution of different attribute classes to
explaining CpG island methylation, the same methodology
can be used to predict the methylation status of new CpG
islands. Here we report the prediction performance of our
method and we address potential limitations.
Without prior knowledge it is sensible to include all 918

non-zero attributes simultaneously in order to achieve best
prediction results. In a 10-fold stratified cross-validation of a
linear SVM, which we repeated 20 times with different
random partitions, this setup resulted in an average

Figure 1. Predicted DNA Structure Differs in the Neighborhood of Methylated CpG Islands Compared with Their Unmethylated Counterparts

The diagram on the left shows boxplots of the predicted DNA rise distribution over the CpG island and the ten sequence windows from�20 kb to 20 kb
surrounding the CpG island (averaged over all 132 CpG islands in the Chromosome 21 dataset). Green bars (left) correspond to methylated CpG islands,
red bars (right) to unmethylated CpG islands. The diagram on the right shows similar information for the predicted DNA twist.
DOI: 10.1371/journal.pgen.0020026.g001
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correlation of 0.74, a test set accuracy of 91.5%, a specificity
of 98.4%, and a sensitivity of 67.1% (Table 2, experiment 9).

In order to test the appropriateness of the prediction
method that we used (SVM with linear kernel), we performed
several control experiments employing other state-of-the-art
machine learning algorithms [22], namely SVM with radial
basis function kernel, AdaBoost using tree stumps, C4.5 tree
generator, and a second widely used implementation of a
linear SVM. The results show that performances of all methods
lie within the same range (Table 2, experiments 18 to 21).

Next, we investigated how prediction accuracies vary
between CpG islands that are located at different positions
relative to their closest annotated gene. For this analysis, we
regard a single CpG island as reliably predicted if its
prediction is correct in at least 15 out of 20 randomized
cross-validations, and we manually assigned each of the 132
CpG islands of the Chromosome 21 dataset to one of the
following categories (Dataset S2):

Category 1: Promoter CpG islands, defined as overlapping
with the transcription start site of an annotated gene: 80 cases
fall into this category, of which 78 are unmethylated.

Category 2: Intragenic CpG islands, defined as overlapping
introns and/or exons of an annotated gene, but not the
transcription start site: 24 cases fall into this category, of
which 12 are unmethylated.

Category 3: Gene-terminal CpG islands, defined as over-
lapping mainly the last exon and/or the 39 UTR of an

annotated gene: six cases fall into this category, of which one
is unmethylated.
Category 4: Intergenic CpG islands, defined as not showing

any overlap with an annotated human gene: 22 cases fall into
this category, of which 12 are unmethylated.
Our results show that prediction accuracy is highest for

promoter CpG islands, where 77 unmethylated cases and one
methylated case are predicted correctly in more than 15 out
of 20 runs (98% accuracy); the second methylated case is
predicted correctly in seven out of 20 runs (Ensembl gene
ENSG00000197597) and the one remaining unmethylated
case is correctly predicted in only three runs (Ensembl gene
ENSG00000160207). In categories 2, 3, and 4, the number of
methylated and unmethylated CpG islands is almost balanced,
thus prediction is much more difficult. Nevertheless, pre-
diction accuracies stay high: For intragenic CpG islands, 20
cases are predicted correctly in more than 15 runs (83%
accuracy). Among the gene-terminal CpG islands, four cases
are predicted correctly in more than 15 runs (67% accuracy),
and of all intergenic CpG islands, 18 are correctly predicted
in more than 15 runs (82% accuracy).
In conclusion, our method achieves high prediction

accuracy for CpG islands from all four categories. Finally,
we note that the method significantly outperforms a heuristic
prediction which relies on transcriptional start site overlap
alone (Table 2, experiment 22), and that the very high
specificity of the method (98.4%) facilitates chromosome-

Table 2. The Predictive Power of Attribute Classes Differs Remarkably; Control Experiments Confirm the Appropriateness of the
Prediction Method

ID Attribute Set Number of

Attributes

Prediction Method Correlation Accuracy TN FN FP TP

1 DNA sequence properties and patterns 426 A (linear SVM) 0.635 0.884 1,994 241 66 339

2 Repeat frequency and distribution 311 A (linear SVM) 0.657 0.890 1,995 225 65 355

3 CpG island frequency and distribution 13 A (linear SVM) 0.045 0.755 1,994 532 116 48

4 Predicted DNA structure 28 A (linear SVM) 0.486 0.844 2,053 406 7 174

5 Gene and exon distribution 52 A (linear SVM) 0.300 0.806 2,044 495 16 85

6 Predicted transcription factor binding sites 68 A (linear SVM) �0.021 0.779 2,056 580 4 0

7 Evolutionary conservation 10 A (linear SVM) 0.000 0.780 2,060 580 0 0

8 Single nucleotide polymorphisms 10 A (linear SVM) 0.286 0.804 2,030 487 30 93

9 All attributes 918 A (linear SVM) 0.740 0.915 2,027 191 33 389

10 Class 1 (sequence) and class 2 (repeats) 737 A (linear SVM) 0.752 0.919 2,037 191 23 389

11 Class 1 and class 3 (CpG islands) 439 A (linear SVM) 0.626 0.880 1,977 233 83 347

12 Class 1 and class 4 (DNA structure) 454 A (linear SVM) 0.688 0.900 2,024 229 36 351

13 Class 1 and class 5 (genes) 478 A (linear SVM) 0.614 0.877 1,980 244 80 336

14 Class 1 and class 6 (TFBS) 494 A (linear SVM) 0.655 0.890 2,007 238 53 342

15 Class 1 and class 7 (conservation) 436 A (linear SVM) 0.626 0.881 1,989 243 71 337

16 Class 1 and class 8 (SNPs) 436 A (linear SVM) 0.618 0.879 1,988 248 72 332

17 Class 2 (repeats) and class 4 (DNA structure) 339 A (linear SVM) 0.713 0.907 2,020 205 40 375

18 DNA sequence properties and patterns 426 B (RBF-kernel SVM) 0.580 0.869 2,040 327 20 253

19 DNA sequence properties and patterns 426 C (AdaBoost) 0.664 0.892 2,009 233 51 347

20 DNA sequence properties and patterns 426 D (C4.5 trees) 0.566 0.852 1,869 200 191 380

21 DNA sequence properties and patterns 426 E (linear SVM using LIBSVM in R) 0.684 0.898 2,018 226 42 354

22 Transcription start site overlap 1 Heuristic (if TSS overlap: unmethylated,

otherwise: throw coin)

0.358 0.788 1,810 310 250 270

23 Empty set 0 Trivial (predict everything as unmethylated) 0.000 0.780 2,060 580 0 0

This table summarizes the prediction experiments that were performed in order to analyze the association between DNA-related attributes and CpG island methylation (1 to 17), plus
several control experiments (18 to 23). Each row corresponds to one prediction experiment. The column ‘‘Attribute Set’’ specifies the attributes that were used for prediction, ‘‘Number of
Attributes’’ gives the size of the attribute set, and ‘‘Prediction Method’’ summarizes the algorithm used (see Materials and Methods for details). The columns ‘‘TN,’’ ‘‘FN,’’ ‘‘FP,’’ and ‘‘TP’’
give the test set results for true-negatives, false-negatives, false-positives, and true-positives over a 10-fold stratified cross-validation that was repeated 20 times. Correlation and accuracy
(the remaining two columns) are calculated in the usual way [30] with the modification that, in the case of correlation, we add 0.0001 to TN, FN, FP, and TP in order to prevent the
correlation from being undefined when an algorithm always predicts the same class.
TSS, transcription start site; TFBS, transcription factor binding sites.
DOI: 10.1371/journal.pgen.0020026.t002
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wide screening for methylated CpG islands, giving rise to a
low number of false-positives.

Experimental Validation by Bisulphite Sequencing
In order to further substantiate the reliability of our

method, we experimentally validated its predictions for 12
CpG islands. To that end, we first predicted the methylation
state of all CpG islands from Chromosome 21 that were not
part of the original dataset [10]; either because they did not
match the strict CpG island criteria imposed by Yamada et al.
or because they (marginally) overlap with repetitive DNA.
Next, we selected eight CpG islands that were predicted as
unmethylated and four CpG islands that were predicted as
methylated, and we experimentally determined their meth-
ylation status in human peripheral blood by bisulphite
sequencing.

Hence, while keeping species (human) and chromosome
(21) identical, we varied experimental technique (bisulphite
sequencing instead of restriction enzyme digestion), cell type
(peripheral blood instead of lymphocytes), sample origin
(healthy European female instead of healthy unspecified),
and—of course—the CpG island. In the selection of valida-
tion CpG islands, we did not stratify for CpG island categories
(see previous section) because we wanted to assess the
method’s overall performance across all categories of CpG
islands.

The experimental results (Table 3) show that our predic-
tion was correct in ten out of 11 cases (p-value below 0.01).
The 12th case, predicted as methylated, showed an incom-
plete yet significant methylation of 54%. Hence, our method
can predict CpG island methylation with high accuracy on a
previously unknown test set.

Comparison with HEP Dataset
The DNA methylation data from the HEP pilot study [20]

gives us the opportunity to assess the generality of our
method and the transferability of the predictions that we
obtain from the Chromosome 21 dataset. A priori, one would
not expect a high degree of transferability because the HEP
data vary from the Chromosome 21 data that were used to

develop the method in several important aspects. First,
almost 90% of amplicons for which DNA methylation profiles
were established do not fulfill CpG island properties. Second,
the HEP did not analyze lymphocytes but a variety of other
tissues (adipose, brain, breast, liver, lung, muscle, and
prostate). Third, all analyzed sequences belong to the
relatively small and exceptional major histocompatibility
complex on Chromosome 6.
In order to make the HEP dataset accessible to our method,

which works on CpG islands (or DNA stretches of comparable
length), we calculated the average CpG dinucleotide methyl-
ation for every HEP amplicon, and we defined a threshold to
distinguish methylated from unmethylated amplicons (see
Materials and Methods for details). Next, we trained our
method on the Chromosome 21 dataset and predicted the
methylation status of all HEP amplicons, in a similar way as
was done for the experimental validation in the previous
section. The results show a prediction accuracy that is low but
still better than random (correlation ¼ 0.15, accuracy ¼
74.7%, true-negatives¼10, false-negatives¼16, false-positives
¼ 37, true-positives ¼ 147). Hence, there seems to be a core
association between DNA-related features and CpG island
methylation that is similar or identical across tissues and
genomic locations. This association can be specified further
by a comparison of prediction error rates. First, we observe a
remarkably low false-negative rate of 10%. In other words,
the characteristics that were learned to predict CpG islands as
methylated in lymphocytes are to some extent transferable
across tissues and genomic locations, giving rise to a low false-
negative rate on the HEP dataset. Second, the false-positive
rate was 8-fold higher than the corresponding false-negative
rate (79%), indicating that it is difficult to transfer the DNA-
related characteristics of unmethylated cases between the two
datasets.
Next, we analyzed to what degree the prediction perform-

ance improves when the method is provided with a more
adequate training dataset, i.e., when it is permitted to learn
the characteristics that are unique to the HEP dataset. To that
end, we trained and evaluated our prediction method in a
cross-validation on the HEP dataset using all eight attribute

Table 3. Twelve CpG Islands Were Analyzed Experimentally to Validate Our Predictions

CpG Island Position

(NCBI35)

Closest Gene Method Number

of CpGs

Number

of CpGs

Analyzed

Methylation Experimental

Result

Prediction

Chr 21, 13331442–13331790 C21orf 99 Direct sequencing 14 11 91% Methylated Methylated

Chr 21, 13904631–13904830 ANKRD21 Direct sequencing 11 6 100% Methylated Methylated

Chr 21, 14676951–14678040 STCH Direct sequencing 21 15 0% Unmethylated Unmethylated

Chr 21, 18538786–18539754 CHODL Cloning and sequencing (nine clones) 26 26 7% Unmethylated Unmethylated

Chr 21, 26866818–26867612 CYYR1 Direct sequencing 21 14 0% Unmethylated Unmethylated

Chr 21, 29318596–29319405 USP16 Direct sequencing 18 13 0% Unmethylated Unmethylated

Chr 21, 30892864–30893090 KRTAP6–2 Direct sequencing 10 8 100% Methylated Methylated

Chr 21, 33836092–33837874 GART Direct sequencing 18 14 0% Unmethylated Unmethylated

Chr 21, 38209756–38211197 KCNJ6 Direct sequencing 25 12 0% Unmethylated Unmethylated

Chr 21, 43461259–43461636 CRYAA Cloning and sequencing (nine clones) 15 15 54% Incomplete Methylated

Chr 21, 45117025–45119447 PTTG1IP Cloning and sequencing (five clones) 19 19 2% Unmethylated Unmethylated

Chr 21, 45669125–45669487 C21orf 123 Direct sequencing 10 7 100% Methylated Unmethylated

This table summarizes the results of bisulphite sequencing of 12 selected CpG islands together with our prediction that was based on all attribute sets. In nine cases, bisulphite direct
sequencing produced unambiguous results. In the three remaining cases, PCR products were cloned and individual clones were sequenced in order to determine the methylation status.
DOI: 10.1371/journal.pgen.0020026.t003
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classes. Taking into account all HEP amplicons, this resulted
in a sharp increase in prediction performance, with a
correlation of 0.47 and an accuracy of 82.4% (true-negatives
¼ 25.7, false-negatives ¼ 15.6, false-positives ¼ 21.3, true-
positives ¼ 147.4, averaged over 20 independent cross-
validation runs). A further performance increase was ob-
served when we repeated the analysis on amplicons that do
not deviate too strongly from the CpG island characteristic,
for which the prediction method was developed. We sorted all
amplicons by the ratio of observed versus expected CpG
dinucleotide frequency, and ran a separate training and
prediction analysis for the top, middle, and bottom 70 cases.
Results show a correlation of 0.59 for the top group and 0.73
for the middle group (one third of the amplicons in the top
group and none in the middle group fulfill CpG island
properties). In contrast, predictions fail for the bottom group
(correlation ¼�0.02) where unmethylated cases are rare (six
out of 70), possibly because sample size is too small or because
these cases behave more randomly.

These results indicate that our prediction method is also
well-suited to predict the average methylation status for
sequences that are not necessarily CpG islands, at least when a
suitable training set is provided and CpG dinucleotide
frequency is not too low.

Finally, because the HEP dataset contains methylation
information for seven different tissues it should be possible,
in principle, to detect evidence of tissue-specific methylation
regulation, for example, binding site patterns of tissue-
specific transcription factors. Therefore, one would expect
that the prediction performance of our method was higher if
trained on data from only one tissue, compared to the
combination of all tissues, at least when focusing only on the
most tissue-specific amplicons. However, we find no evidence
for this in our dataset. Instead, prediction performances for
individual tissues closely resemble the average case (unpub-
lished data). There are several possible explanations for the
method’s failure to learn tissue-specific methylation informa-
tion from the HEP dataset. On the one hand, tissue-specific
methylation may be largely uncorrelated with the sequence-
related attributes that we analyzed. On the other hand, the
dataset may simply be too small. In fact, only between five and
19 out of 210 amplicons per tissue deviate from the ‘‘default’’
state calculated as the consensus methylation over all tissues.

Discussion

We have shown that CpG island methylation can be
predicted from DNA sequence and that we may be able to
enhance our understanding of the biology that controls
methylation in vivo by predictive bioinformatics analysis.
First, we identified DNA-related attributes that discriminate
strongly between methylated and unmethylated CpG islands
in human lymphocytes. Second, we quantified the correlation
of CpG island methylation with eight groups of DNA-related
attributes and found DNA sequence patterns, repeat fre-
quencies, and predicted DNA structure to be the key
contributors. Third, we developed a machine-learning meth-
od that can predict the methylation status of unknown CpG
islands and we validated the accuracy and reliability of this
method both statistically and experimentally.

Our results raise a number of questions concerning our
current view of CpG island methylation. While it is apparent

from the attribute statistics (Table 1) that CpG-rich patterns
are over-represented in unmethylated CpG islands, we found
no evidence of a simple yet accurate relationship between
CpG island methylation on the one hand and CpG dinucleo-
tide frequency, observed versus expected ratio, or the density
of restriction sites such as CCGG (HpaII) and CGCG (HhaI),
on the other hand. Instead, methylated and unmethylated
CpG islands each seem to be characterized by a relatively
complex combination of the presence or absence of certain
sequence motifs and attributes of DNA structure. However,
we did not find any evidence of a combinatorial ‘‘DNA
sequence code’’ for methylation; hence, we suggest that the
individual sequence and structure attributes contribute to
the preferred methylation state of a CpG island independ-
ently and possibly in an additive way.
For repetitive DNA, the situation is more straightforward:

CpG islands that significantly overlap with a tandem repeat
or a segmental duplication are methylated in almost all cases,
which is in line with the long-known fact that tandem repeats
form heterochromatin [23]. Unfortunately, we could not
address the influence of retrotransposons such as SINE and
LINE elements on CpG island methylation since our dataset
[10] only contains CpG islands that are not suppressed by
RepeatMasker [24].
Based on these observations, we propose that each CpG

island can be assigned a degree of methylation propensity
that is encoded in its DNA. This default state is what our
prediction method captures. For a relatively small number
of CpG islands the default state is overruled by biological
processes such as tissue differentiation, X-chromosome
inactivation, or imprinting, which enforce a certain meth-
ylation state. In normal tissue and on the autosomes, these
effects seem to affect only a minority of CpG islands—
otherwise the high prediction accuracies that we observe
could not be argued. This is consistent with the observation
that only around 5% of CpG islands are differentially
methylated in a tissue-specific fashion [25], and that the
effect of imprinting is even more limited. However, since
our prediction analysis was constrained to data from two
chromosomes and few tissues, such a far-reaching inter-
pretation of our results has to be taken with care. It will be
interesting to see whether CpG islands that consistently
deviate from their default methylation state due to
monoallelic methylation (imprinting, X-chromosome inacti-
vation) are characterized by a medium degree of methyl-
ation propensity or whether the underlying biological
processes are so strong that basically every CpG island
can become differentially methylated independently of its
DNA sequence.
Besides these general observations, five more specific

results are worth commenting on. First, in line with earlier
observations we find almost all promoter CpG islands
unmethylated, but also a significant number of intergenic
CpG islands, which are often distant from any annotated
gene. Little is known about the functional role of intergenic
CpG islands. However, it has been observed that unmethy-
lated CpG islands often co-localize with DNA replication
origins [26], and we believe that it would be worthwhile to
analyze the functional role of unmethylated intergenic CpG
islands experimentally on a large sample. Methylation
predictions may help to speed up and guide such an
approach.
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Second, we found evidence that the default methylation
status of many CpG islands may be relatively stable during
evolution. By comparing frequencies of the CGCG pattern to
its (mutated) counterpart TGTG/CACA (the former is over-
represented in unmethylated CpG islands of our dataset
whereas the latter is over-represented in methylated CpG
islands), we concluded that higher CpG!TpG mutation rates
have applied to the CpG islands that we find methylated in
human lymphocytes, than to those that we find unmethylated.
Given that methylated CpG dinucleotides are more prone to
CpG ! TpG mutations [6], a straightforward explanation
would be to postulate that the methylation status that we
observe in our dataset (i) is similar to that found in the
germline where mutations become fixed, and (ii) was stable
over evolutionary time, so that the observed mutations could
accumulate.

Third, our results show that certain aspects of DNA
sequence and (predicted) DNA structure such as a high
DNA rise and a low DNA twist seem to be associated with
methylated CpG islands in vivo. It would be interesting to
analyze how these sequence and structure attributes correlate
with the in vitro recognition and methylation potential of
CpG-rich sequences by mammalian DNA methyltransferases.
Some reports suggest that unusual DNA structures (such as
repeats and cruciform structures [27]) can lead to increased
methylation activity by DNA methyltransferases. Moreover,
local transitions between DNA in A-form, B-form, or Z-form
may influence the methylation potential of the DNA, and it is
tempting to speculate that some of our observed parameters
may reflect such local differences in DNA structure for-
mation.

Fourth, differences in error rates when training on the
Chromosome 21 dataset and testing on the HEP dataset
suggest that DNA-related characteristics identifying consis-
tently methylated CpG islands are robust across tissues and
genomic locations while those identifying unmethylated CpG
islands are not—and have to be learned specifically for each
tissue or genomic location. This interpretation is consistent
with the hypothesis that most CpG islands in the human
genome can become methylated, and do so if they are not
preserved in the unmethylated state by specific (and tissue-
dependent) influences, for example, the binding of tran-
scription factors.

Fifth, we believe that our methodology for chromosome-
wide correlation analysis and prediction is general enough to
yield interesting results for other types of genomic and
epigenomic data as well (such as histone modifications,
replication origins, and many types of ChIP-on-Chip data).
Therefore, we implemented our method as a web service
which we will make accessible to interested researchers on a
cooperation basis.

In conclusion, an understanding of the exact interplay
between DNA-related features and CpG island methylation is
likely to be of high practical and theoretical value. On the one
hand, a reliable tool for predicting default CpG island
methylation status from sequence would be of interest as a
reference in cancer epigenetics and beyond. On the other
hand, the fact that CpG island methylation is closely inter-
woven with certain features related to DNA sequence and
structure—while minor changes such as SNPs seem to make
little difference—may provide a key to uncovering the
mechanisms that result in inter-individually similar and

reproducible epigenetic reprogramming in the germline
and the early embryo.

Materials and Methods

DNA methylation data. This analysis is based on the results of a
comprehensive measurement of CpG island methylation on human
Chromosome 21 [10]. Briefly, Yamada et al. repeat-masked the
chromosome sequence and computationally identified all non-
repetitive CpG islands using standard tools and parameters (GC
content above 50%, ratio of observed versus expected number of
CpG dinucleotides above 0.6, more than 400 base pairs in length).
Next, they designed primers for each identified CpG island and
extracted corresponding DNA from samples of human peripheral
blood lymphocytes. Finally, they determined the methylation status of
each CpG island by methylation-specific restriction enzymes (via
HpaII-McrBC-PCR). Yamada et al. validated their method by
bisulphite sequencing of some CpG islands and concluded that it is
highly reliable.

Their dataset comprises the methylation status of 149 CpG islands,
each belonging to one of the following categories: fully methylated,
unmethylated, incompletely methylated, or compositely/differentially
methylated. Exploratory analysis using bisulphite sequencing indi-
cated that the latter two classifications were not always unambiguous
(unpublished data); therefore we focused on the two well-defined
categories, fully methylated (31 cases) and unmethylated (103 cases).
In order to minimize potential error sources, we re-mapped the
boundaries of the CpGs islands that were originally used by Yamada
et al. to the current human genome sequence (NCBI35) and we
excluded two cases (both belonging to the fully methylated class) from
the analysis because, in the light of this new mapping, the primers did
not pick the intended CpG islands. Therefore, our dataset comprised
132 independent CpG islands, which are distributed relatively evenly
across Chromosome 21 (see Dataset S2).

For validation, we also used data from the HEP pilot study [20]. In
this study, Rakyan et al. determined the methylation status of 3,273
unique CpG dinucleotides (belonging to 253 amplicons) across seven
tissues and one to eight samples per tissue by means of bisulphite
direct sequencing. Out of these 253 amplicons, 210 could be mapped
unambiguously to the NCBI35 genome version and had at least one
measurement for each tissue. For these amplicons, we calculated
average CpG dinucleotide methylation levels, both separately for
individual tissue types and for all tissues combined. Those amplicons
below a (arbitrarily chosen) threshold of 60% methylation were
marked as unmethylated and those above this threshold were marked
as methylated, resulting in a dataset of 163 ‘‘methylated’’ and 47
‘‘unmethylated’’ amplicons.

DNA-related attributes. In order to identify DNA sequence-related
attributes that are correlated with CpG island methylation, we
compiled a comprehensive list of attributes that can be linked
directly or indirectly to DNA sequence (the full list is given in Table
S1). Most attributes take the form of frequencies or numerical scores,
averaged over sequence windows and standardized to a default
window size of one kb. They fall into eight biological classes, namely:
(1) DNA sequence properties and patterns (428 attributes), (2) repeat
frequency and distribution (494 attributes), (3) CpG island frequency
and distribution (16 attributes), (4) predicted DNA structure (28
attributes), (5) gene and exon distribution (60 attributes), (6)
predicted transcription factor binding sites (135 attributes), (7)
evolutionary conservation (ten attributes), and (8) SNPs (13 attrib-
utes). The data for most of these attributes were collected from
annotation tracks in the UCSC Genome Browser [28]. However, the
attributes for class 1 were directly calculated from DNA sequence and
the attributes for class 4 were calculated from DNA sequence by
averaging over octamers [29] and trimers (J. Greenbaum, personal
communication), respectively. We calculated these attributes for each
CpG island in our dataset, both for the re-mapped CpG island itself
and for 11 sequence windows around the CpG island:�20 kb to�10
kb, �10 kb to �5 kb, �5 kb to �2 kb, �2 kb to �1 kb, �1 kb to left
boundary of CpG island, CpG island, right boundary of CpG island to
þ1 kb, þ1 kb to þ2 kb, þ2 kb to þ5 kb, þ5 kb to þ10 kb, þ10 kb to
þ20 kb. Next, we removed those attributes that were zero in all cases
(e.g., binding sites of rare transcription factors), giving us a list of 918
prediction attributes. To simplify the statistical analysis, we also
removed attributes that were zero in most, but not all cases. For the
CpG island level statistics (see next section), only the 706 attributes
with non-zero values in the CpG island window of at least five
methylated and five unmethylated cases were retained. For the
sequence neighborhood statistics, only the 833 attributes were
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retained that had non-zero values in at least five methylated and five
unmethylated cases, for at least four out of the 11 sequence windows.

Statistics. We performed statistical tests in order to determine
attributes that exhibit significantly different values for fully methy-
lated CpG islands compared to unmethylated CpG islands, at two
levels. First, we compared all attributes at the CpG island level using
the nonparametric Wilcoxon ranksum test (Dataset S1, first work-
sheet). Second, we compared all attributes across the complete
sequence neighborhood of �20 kb to þ20 kb around the CpG island
(Dataset S1, second worksheet). To that end, quadratic regression
functions were fitted over the attribute values in the 11 sequence
windows around the CpG island (see previous section) and we used
the ANOVA statistic to assess whether separate fitting for unmethy-
lated versus methylated cases resulted in a significantly decreased
error compared to combined fitting (quadratic regression functions
were chosen to capture symmetry around the CpG island).

Significance thresholds were adjusted for multiple testing using the
highly conservative Bonferroni method. Technically speaking, we
controlled the family-wise error rate to be less than 1%.

Prediction. Machine learning methodology was used for two tasks:
(i) to quantify the correlation between CpG island methylation and
several classes of DNA-related attributes, and (ii) to predict CpG
island methylation from the local genomic neighborhood.

The technical procedure is similar in both cases (cross-validation)
and is discussed below. However, intention and interpretation differ
for the two tasks. Task (ii) is the classical prediction scenario: given a
dataset of limited size, we want to train a classifier for predicting CpG
island methylation on unknown data and to quantify its expected
prediction performance. Therefore, we train the classifier on the full
set of 918 attributes, assuming that at least some of these attributes
contain information that may be useful for the classifier.

In task (i), the goal is not so much to predict new data but to
understand existing data. Here, we use a classifier as a tool to quantify
the relationship between an attribute class (e.g., DNA sequence
properties or repeats) and CpG island methylation. The rationale
behind this is simple: If a classifier can successfully and reliably predict
CpG island methylation using only information from one particular
attribute class, then the attributes in this class are functionally
associated with CpG island methylation and the prediction perfor-
mance is a measure of the degree of functional association.

The prediction experiments follow essentially the same procedure.
Given the list of CpG islands or amplicons and any selection of
attributes from our list, a linear SVM is repeatedly trained to predict
methylation status based on a 90% subset of cases, and its perform-
ance is evaluated on the remaining 10% of unseen cases. Technically
speaking, we repeat 10-fold stratified cross-validation 20 times with
different random partitions and sum the results on the test set (in
terms of true- negatives, false-negatives, false-positives, and true-
positives). The prediction performance is measured as the correlation
coefficient between the predictions and the correct values on the test
set. This criterion is commonly viewed as superior to comparing
prediction accuracies because it is not as strongly affected by
unbalanced class distributions [30].

For most prediction experiments (prediction setup A in Table 2),
we used the linear SVM implementation provided by the WEKA
package [31], which is based on the sequential minimal optimization
method [32]. Additionally, several control experiments were per-
formed that use different algorithms: an SVM with radial basis
function kernel (from WEKA package, prediction setup B), AdaBoost
M1 with decision tree stumps as the underlying classifier (fromWEKA
package, prediction setup C), the C4.5 tree generator (from WEKA
package, prediction setup D), and a different implementation of a
linear SVM (R implementation of LIBSVM [33], prediction setup E).
All algorithms were applied with their suggested standard parameters.

Experimental verification. Predictions were performed using a
linear SVM that was trained on the full Chromosome 21 dataset (132
cases) and all attribute classes. Subsequently, we determined the
methylation status of 12 selected CpG islands by bisulphite sequenc-
ing as follows: initially, we applied direct sequencing of the PCR

product to all 12 CpG islands (Table 3). In nine cases, this produced
unambiguous results (i.e., very high conversion of CpGs ¼ unmethy-
lated, or almost no conversion¼methylated). In the three remaining
cases with mixed CG/TG sequencing profiles, PCR products were
cloned and individual clones were sequenced in order to determine
the methylation status. Average methylation was scored from single
clone sequences using the BiQ Analyzer software [34]. Details of the
experimental setting and the primers that we used are reported in
Protocol S1. Human peripheral blood was obtained with the written
consent of the donor.

Supporting Information

Dataset S1. Attribute Statistics

This Excel table reports raw p-values and multiple-testing-adjusted
significance thresholds for all attribute statistics.

Found at DOI: 10.1371/journal.pgen.0020026.sd001 (388 KB XLS).

Dataset S2. DNA Methylation Data

This Excel table contains a re-mapped and quality-controlled version
of DNA methylation data that was originally reported by Yamada et
al. [10], as it is used in this study. Furthermore, prediction accuracy
and genome browser location are reported for all CpG islands.

Found at DOI: 10.1371/journal.pgen.0020026.sd002 (525 KB XLS).

Protocol S1. Experimental Validation

This PDF document gives details on the experimental protocol that
was used to determine the methylation status of the validation CpG
islands, including PCR primers.

Found at DOI: 10.1371/journal.pgen.0020026.sd003 (26 KB DOC).

Table S1. Overview of Prediction Attributes

This PDF document reports information on calculation, naming, and
reference of all attributes that are used in this study.

Found at DOI: 10.1371/journal.pgen.0020026.st001 (89 KB DOC)

Accession Numbers

The Ensembl database (http://www.ensembl.org/Homo_sapiens/
index.html) accession numbers for the genes discussed in this paper
are Ensembl gene (ENSG00000197597) and Ensembl gene
(ENSG00000160207).
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