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Abstract

Background

Varicose veins (VV) are one of the common human diseases, but the role of genetics in its

development is not fully understood.

Methods

We conducted an exome-wide association study of VV using whole-exome sequencing

data from the UK Biobank, and focused on common and rare variants using single-variant

association analysis and gene-level collapsing analysis.

Findings

A total of 13,823,269 autosomal genetic variants were obtained after quality control. We iden-

tified 36 VV-related independent common variants mapping to 34 genes by single-variant

analysis and three rare variant genes (PIEZO1, ECE1, FBLN7) by collapsing analysis, and

most associations between genes and VV were replicated in FinnGen. PIEZO1 was the clos-

est gene associated with VV (P = 5.05 × 10−31), and it was found to reach exome-wide signifi-

cance in both single-variant and collapsing analyses. Two novel rare variant genes (ECE1

and METTL21A) associated with VV were identified, of which METTL21A was associated

only with females. The pleiotropic effects of VV-related genes suggested that body size,

inflammation, and pulmonary function are strongly associated with the development of VV.

Conclusions

Our findings highlight the importance of causal genes for VV and provide new directions for

treatment.
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Author summary

In this study, whole-exome sequencing data from the UK Biobank were used to explore

the effect of genetic variants on varicose veins (VV) and search for new VV-related genes.

In contrast to traditional association studies, large-scale whole-exome sequencing analysis

is more capable of identifying rare genetic variants (MAF < 1%) in diseases. The current

study identified 34 VV-associated common variant genes by single-variant analysis and

three rare variant genes (PIEZO1, ECE1, FBLN7) by collapsing analysis, and most associa-

tions were validated in FinnGen. In addition to replicating several genes reported in previ-

ous genome-wide association studies, we identified 17 novel genes that may be associated

with VV. Through subsequent phenome-wide association analyses of identified genes, we

found that these genes are also strongly associated with body size, inflammation, and pul-

monary function. These findings contribute to understanding the underlying mechanisms

of pathogenesis and developing novel therapeutic strategies for VV.

Introduction

Varicose veins (VV) are the most common chronic condition of the venous system, often affect-

ing the lower extremities and manifesting as dilated, stretched, or tortuous superficial veins [1].

The majority of VV patients suffer from complications such as pain, swelling, hyperpigmenta-

tion, and ulcers. About 23% of adults aged 40–80 in the United States develop VV, including 22

million women and 11 million men [2]. Today, endovenous laser ablation is considered clini-

cally the first-line treatment option for VV but has a post-operative recurrence rate of up to

20% [3,4]. Therefore, it is particularly important to define the etiology of VV. Previous epidemi-

ological studies have shown that VV are associated with several risk factors, including advanced

age, being female, pregnancy, obesity, height, and history of deep vein thrombosis [5–8]. A posi-

tive family history is one of the important risk factors for VV, which suggests that VV are likely

to be modulated by genetic factors [9–12]. Most of the previous genetic studies on VV were

genome-wide association studies (GWAS) [13–15]. Within the last decade, dozens of genomic

loci associated with VV have been identified. However, GWAS are more limited in scope and

mostly focused on common variants (minor allele frequency (MAF> 1%)), which usually have

a small effect size and cannot directly identify the causal gene.

In contrast to traditional studies, large-scale whole-exome sequencing (WES) analysis is

more capable of identifying rare genetic variants (MAF < 1%) in diseases [16]. Rare variants

are genetic markers of high disease risk and help to identify novel genetic targets for drug

interventions [17]. Apart from revealing the full spectrum of protein-coding variants, WES

can facilitate the identification of novel loss-of-function (LOF) variants and enhance the ability

to detect the associations between LOF variants and diseases. LOF variants can identify drivers

of genetic risk, novel disease genes, and therapeutic targets [16]. Also, large-scale sequencing

can evaluate the disease prevalence and carrier frequencies of rare genetic variants [18]. A

recent study focused on the effect of PIEZO1 on altered VV risk and identified the association

of VV with rare protein-truncating variants in PIEZO1 [19]. A multi-phenotype exome-wide

association study (ExWAS) from the UK Biobank (UKB) involving 49,960 participants [16]

identified novel LOF variants with significant disease impact, including PIEZO1 on VV

(P = 3.2 × 10−8). In addition, a phenome-wide level ExWAS [20] exploring the contribution of

rare variants to human disease also found the association between PIEZO1 and VV

(P = 3.24 × 10−24). In contrast to their studies, we conducted a more comprehensive ExWAS of
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for varicose veins in FinnGen are available on the

website (http://r8.finngen.fi) and are indicated with

the phenotype code I9_VARICVE. The scRNA-seq

data used in the present study were acquired from

GEO database (https://www.ncbi.nlm.nih.gov/geo/)

with the accession number: GSE201333. The

following software and packages were used for

data analysis: FUMA v.1.3.8 (https://fuma.ctglab.nl/

), SnpEff (https://pcingola.github.io/SnpEff/), GCTA

v.1.93 (https://yanglab.westlake.edu.cn/software/

gcta/#COJO), SAIGE-GENE+ (https://github.com/

saigegit/SAIGE), BHR (https://github.com/

ajaynadig/bhr), PLINK (https://www.cog-genomics.

org/plink/) and R v.4.2.0 (https://www.r-project.

org/), DAVID, (https://david.ncifcrf.gov/), Gene-

SCOUT (https://astrazeneca-cgr-publications.

github.io/gene-scout/). Scripts used to perform the

analyses are available at https://github.com/

ddzhang877/vv_wes.
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VV using the updated exome sequencing data of more than 350,000 UKB individuals, with

additional validation and exploration of the findings and biological functions. We identified

19 known and 17 novel causal genes significantly associated with VV, with most of these asso-

ciations validated in FinnGen [21]. In addition, our study explored the phenotypic associations

between VV genes and multiple traits, showing that cardiovascular disease, height, biochemis-

try, and inflammatory indicators might contribute to the development of VV.

Results

Participant characteristics

In this study, we performed an ExWAS by utilizing phenotypic and genetic data from UKB,

including exome sequencing data and VV diagnosis data (S1 Table). Following stringent qual-

ity control (QC) of genotypes and samples, we identified 350,770 unrelated Caucasian partici-

pants (21,643 VV cases and 329,127 controls) with a mean age of 56.94 years at enrollment, of

which 53.76% were female (S2 Table). The case and control groups had similar age distribu-

tion (S1 Fig). The clustering of the VV case and control groups in the principal component

analysis is shown in S2 Fig. A total of 13,823,269 autosomal genetic variants were obtained

after QC, including 100,098 common variants (MAF > 1%) and 13,723,171 rare variants

(MAF < 1%).

Exome-wide single-variant association analysis for VV

The mixed-effects logistic models adjusted for age, sex, and the top 10 principal components

(PCs) were used to assess the association between VV and common coding variants. Firstly,

169 variants and 114 variants were found to reach the exome-wide significance

(P< 1.19 × 10−6) and the genome-wide significance (P< 5 × 10−8) in the single-variant analy-

sis (Fig 1A and S3 Table). After clumping 169 variants in strong linkage disequilibrium, 36

independent common variants associated with VV were identified (Fig 1A), of which 34 were

successfully validated in FinnGen [21] (Table 1 and S4 Table). Among these independent

common variants, 19 were significantly protective against VV, while the other 17 were signifi-

cantly associated with an elevated risk of VV (Table 1). In addition, 36 independent common

variants were mapped to 34 genes, of which 18 have been reported previously and the other 16

genes were novel (including TRIM10, UBE2H, TUBAL3, DUSP8, DNAH10, CAPRIN2, MSL1,

ZBTB4, CIB3, SERPIND1, SHANK3, REST, CTXN3, H2AC6, PGBD1, ABHD16A). PNO1 and

PIEZO1 had the most significant associations with VV, and the P-values were 9.81 × 10−44 and

1.75 × 10−39, respectively. TRIM10 showed the strongest association with VV among 16 novel

common variant genes (P = 5.29 × 10−14). The quantile-quantile (Q-Q) plot of single common

variants is shown in Fig 1B. It was noteworthy that these independent common variants were

characterized by larger effect sizes at lower frequencies (Fig 1C). Furthermore, we conducted a

conditional analysis of the identified common variants linked to VV using conditional and

joint analysis (COJO). The results revealed that 27 independent common variants were

retained, 25 of which were consistent with variants identified after clumping (S5 Table).

Three VV genes identified by rare variant collapsing analysis

We performed the gene-level collapsing analysis to determine rare variant associations with

VV. To elucidate the differences in genetic structures between genes, our analysis included

19,897 genes under 8 different models (Methods). Collapsing analysis showed 13 significant

associations involving 3 genes (PIEZO1, ECE1, FBLN7) after Bonferroni correction

(P< 2.51 × 10−6) (Fig 2A and S6 Table). The corresponding Q-Q plots are shown in S3 Fig.
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The significance level of the genetic variant associations between these significant genes and

VV was enhanced by the inclusion of missense variants. In the LOF + missense model with

MAF < 1%, these 3 genes were significantly associated with an elevated risk of VV (PIEZO1,

odds ratio (OR) = 1.010, 95% confidence interval (CI) = 1.008–1.013, P = 1.15 × 10−18; ECE1,

OR = 1.028, 95% CI = 1.016–1.039, P = 4.89 × 10−7; FBLN7, OR = 1.012, 95% CI = 1.007–

1.017, P = 1.93 × 10−6) (S7 Table). The gene which had the strongest correlation with VV was

PIEZO1 in the LOF model with MAF < 10−3 (PIEZO1, OR = 1.037, 95% CI = 1.029–1.046,

P = 5.01 × 10−17). The associations of PIEZO1 and FBLN7 with VV have been reported in pre-

vious genetic studies [14,19]. The significant difference between the LOF + missense model

Fig 1. Summary of single-variant associations with VV among the unrelated Caucasians. (A) Manhattan plot of single-variant associations for

common variants and VV. The red solid line indicates the significance threshold (P = 1.19 × 10−6), and the red dashed line indicates the genome-

wide significance threshold (P = 5.0 × 10−8). The gene name corresponds to the gene closest to the variant. Black fonts indicate previously identified

genes, while red fonts indicate newly identified genes. (B) The quantile-quantile (Q-Q) plot for single-variant analysis. (C) The plot of effect size

(odds ratio) versus effect allele frequency of identified independent common variants. Abbreviation: OR, odds ratio.

https://doi.org/10.1371/journal.pgen.1011339.g001
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(P = 4.89 × 10−7) and the LOF-only model (P = 0.02) for ECE1, a novel identified VV-related

gene, suggested its association with VV was primarily driven by the missense mutation

(Table 2). The associations of the three genes we identified in collapsing analysis with VV

were further successfully validated in the VV genomic data from FinnGen (P ranged from

2.39 × 10−59 to 4.93 × 10−5, Table 2).

Considering the high prevalence and incidence of VV in the general population, we calcu-

lated the carrier frequencies and disease prevalence rates of the putative pathogenic variants.

Table 1. Independent common variants significantly associated with VV in the single-variant association analysis.

rsID CHR POS A0 A1 OR 95% CI P Gene Exonic function FinnGen VV P
rs2044693 2 68157965 G A 0.86 0.84–0.88 9.81×10−44 PNO1 Synonymous 6.00×10−24

rs2227901 4 56932023 G A 1.08 1.05–1.11 4.23×10−9 REST Synonymous 1.94×10−6

4 26584259 C T 1.07 1.05–1.09 4.97×10−11 TBC1D19 Synonymous /

rs248709 5 127657571 T A 1.06 1.03–1.08 1.59×10−7 CTXN3 Synonymous 6.28×10−3

rs34525648 6 25914625 G A 0.91 0.88–0.93 4.87×10−10 SLC17A2 Nonsynonymous 7.02×10−7

6 26124406 C T 1.09 1.06–1.11 3.81×10−12 H2AC6 Synonymous /

rs33932084 6 28301047 A G 0.90 0.88–0.93 6.28×10−10 PGBD1 Nonsynonymous 1.08×10−7

rs2239529 6 30110553 C T 0.91 0.88–0.93 3.07×10−13 TRIM31 Synonymous 5.61×10−4

rs3094134 6 30154377 C T 1.13 1.09–1.16 5.29×10−14 TRIM10 Synonymous 4.20×10−4

rs1576 6 31142614 G C 0.92 0.90–0.94 1.65×10−15 CCHCR1 Nonsynonymous 4.23×10−6

rs1475865 6 31689636 C T 1.07 1.05–1.10 2.73×10−10 ABHD16A Synonymous 1.08×10−4

rs3130349 6 32179919 G A 0.92 0.89–0.94 7.02×10−12 RNF5 Synonymous 1.47×10−4

rs12539800 7 129839298 T C 0.88 0.85–0.92 9.67×10−12 UBE2H Synonymous 2.92×10−8

rs798488 7 2762888 T C 0.94 0.92–0.96 2.75×10−9 GNA12 Start loss 6.84×10−3

rs2304789 8 86554965 C T 0.93 0.91–0.95 2.42×10−12 CPNE3 Nonsynonymous 2.99×10−9

rs7097775 10 5393955 A G 1.05 1.03–1.08 8.09×10−7 TUBAL3 Synonymous 3.46×10−4

rs7129499 11 1556860 G A 0.95 0.93–0.97 9.14×10−8 DUSP8 Synonymous 9.48×10−7

rs4930721 12 123933342 C T 1.06 1.03–1.08 3.14×10−7 DNAH10 Synonymous 7.74×10−5

rs12146709 12 30735067 T C 1.06 1.04–1.09 8.44×10−8 CAPRIN2 Nonsynonymous 4.72×10−3

rs12422983 12 47748853 C T 0.93 0.90–0.95 2.32×10−7 RAPGEF3 Nonsynonymous 4.99×10−4

rs7306788 12 47784123 C T 1.09 1.06–1.12 4.46×10−12 HDAC7 Synonymous 8.05×10−15

rs1129406 12 50809588 C T 1.08 1.06–1.10 1.37×10−13 ATF1 Synonymous 3.91×10−18

rs8043924 16 88721296 C G 1.21 1.18–1.25 1.75×10−39 PIEZO1 Synonymous 4.56×10−37

rs34908386 16 88734505 C T 0.84 0.82–0.87 5.74×10−29 PIEZO1 Synonymous 4.28×10−28

rs6500493 16 88737574 G C 1.07 1.05–1.09 7.48×10−10 PIEZO1 Synonymous 2.52×10−6

rs510862 16 88806103 C T 1.09 1.07–1.12 5.79×10−14 CDT1 Synonymous 4.93×10−14

rs61734177 16 88898149 C G 0.90 0.87–0.94 3.77×10−8 CBFA2T3 Nonsynonymous 6.78×10−4

rs143879261 17 40129440 C A 0.84 0.78–0.90 1.71×10−7 MSL1 Synonymous 0.03

rs173135 17 70176185 C T 0.90 0.87–0.93 2.58×10−10 KCNJ2 Synonymous 1.18×10−5

rs34914463 17 7463300 T C 0.93 0.90–0.95 3.10×10−7 ZBTB4 Nonsynonymous 2.19×10−3

rs6512087 19 16164844 T C 0.94 0.91–0.96 5.86×10−7 CIB3 Synonymous 0.01

rs3745318 19 16325451 C T 1.06 1.03–1.08 1.18×10−6 KLF2 Synonymous 4.16×10−10

rs3746420 20 51524088 G C 0.89 0.86–0.94 4.15×10−7 NFATC2 Synonymous 1.13×10−8

rs817329 20 63966341 G T 1.05 1.03–1.07 3.92×10−7 ZNF512B Synonymous 1.02×10−9

rs4675 22 20787012 T C 0.95 0.93–0.97 3.94×10−7 SERPIND1 Synonymous 7.97×10−3

rs9616915 22 50679152 C T 1.07 1.05–1.09 2.07×10−11 SHANK3 Synonymous 8.60×10−6

Genes highlighted in bold are not previously reported. rsID was obtained from FinnGen. The “/” represents the variants not tested in FinnGen.

Abbreviations: VV, varicose veins; CHR, chromosome; POS, position; OR, odds ratio; CI, confidence interval.

https://doi.org/10.1371/journal.pgen.1011339.t001

PLOS GENETICS Novel genetic variants associated with varicose veins

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011339 July 9, 2024 5 / 25

https://doi.org/10.1371/journal.pgen.1011339.t001
https://doi.org/10.1371/journal.pgen.1011339


PIEZO1 had the highest carrier frequency of missense variants (3.77%, the probability of being

loss-of-function intolerant (pLI) = 0.54), followed by FBLN7 (1.47%, pLI = 0) and ECE1
(0.20%, pLI = 1) (Fig 2B and S8 and S9 Tables). The high pLI of ECE1 underscores its pro-

nounced intolerance to LOF variants, consistent with our findings of lower carrier frequency

(S4 Fig). These variant carriers showed generally modest disease prevalence rates (< 15%),

and the disease prevalence rates of missense variants were lower than those of LOF variants in

carriers (Fig 2C).

Fig 2. Summary of rare genetic associations with VV among the unrelated Caucasians. (A) Manhattan plot of the gene-based collapsing analysis.

The red dashed line indicates the significance threshold (P = 2.51 × 10−6). We only showed the results of the collapsing test with four models

including two MAF cutoffs (0.01 and 0.001) and two variant annotation groups (LOF and LOF + missense), and the other results are shown in S6

Table. All models were adjusted for age, sex, and the top 10 PCs. (B) Bar chart showing carrier frequencies for rare LOF and missense variants for

three identified rare variant genes. (C) Disease prevalence of LOF and missense variants in VV-related rare variant genes. (D) Heritability of the

burden of genetic variants in VV. Abbreviation: LOF, loss-of-function.

https://doi.org/10.1371/journal.pgen.1011339.g002
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Burden heritability of VV

Then we calculated the gene-wise burden heritability of VV using the method developed by

Weiner et al. [22]. In this analysis, ultra-rare variants were defined as MAF < 1 × 10−5 and rare

variants were defined as having a MAF between 1 × 10−5 and 1 × 10−2. The burden heritability

of rare variants focuses on variants that predict the most serious functional consequences.

Among these, ultra-rare coding LOF variants explained 0.287% (se = 0.056%) of phenotypic

variance, more than rare LOF variants explained. But rare missense variants accounted for

more burden heritability than ultra-rare (rare, 0.053%; ultra-rare, -7.63 × 10−7) (Fig 2D and

S10 Table).

Robustness of the association of rare variant genes with VV

We performed leave-one-variant-out (LOVO) analyses to assess the robustness of associations

identified in gene-based collapsing analysis and to find the variants that affect each VV-related

rare variant gene (S11 Table). After the removal of the variant chr1:21227980:A:G, the associa-

tion between ECE1 and VV became non-significant (P = 3.81 × 10−6). Similarly, the highest

LOVO P value attained for the association was P = 9.90 × 10−3 for FBLN7 and VV after remov-

ing chr2:112165024:C:G. Importantly, the association of VV and PIEZO1 remained robust in

the LOVO analysis (S5 Fig). This suggested that the significant associations of VV with ECE1

Table 2. Significant associations with VV in the gene-level collapsing analysis.

Gene Group MAF Number of rare variants OR 95% CI P FinnGen VV P
PIEZO1 LOF 0.01 204 1.037 1.029–1.046 5.01 × 10−17 2.39 × 10−59

LOF + Missense 0.01 735 1.010 1.008–1.013 1.15 × 10−18

LOF 0.001 204 1.037 1.029–1.046 5.01 × 10−17

LOF + Missense 0.001 730 1.021 1.017–1.024 5.05 × 10−31

LOF 1 × 10−4 203 1.056 1.045–1.067 3.24 × 10−24

LOF + Missense 1 × 10−4 716 1.028 1.023–1.033 6.70 × 10−28

LOF 1 × 10−5 183 1.049 1.033–1.066 2.20 × 10−9

LOF + Missense 1 × 10−5 578 1.037 1.028–1.046 2.67 × 10−16

ECE1 LOF 0.01 30 1.051 1.007–1.096 0.02 4.93 × 10−5

LOF + Missense 0.01 189 1.028 1.016–1.039 4.89 × 10−7

LOF 0.001 30 1.051 1.007–1.096 0.02

LOF + Missense 0.001 189 1.028 1.016–1.039 4.89 × 10−7

LOF 1 × 10−4 30 1.051 1.007–1.096 0.02

LOF + Missense 1 × 10−4 186 1.034 1.020–1.049 1.12 × 10−6

LOF 1 × 10−5 30 1.051 1.007–1.096 0.02

LOF + Missense 1 × 10−5 174 1.041 1.024–1.059 1.37 × 10−6

FBLN7 LOF 0.01 29 1.007 0.978–1.036 0.60 7.25 × 10−10

LOF + Missense 0.01 136 1.012 1.007–1.017 1.93 × 10−6

LOF 0.001 29 1.007 0.978–1.036 0.60

LOF + Missense 0.001 135 1.011 1.003–1.019 0.01

LOF 1 × 10−4 29 1.007 0.978–1.036 0.60

LOF + Missense 1 × 10−4 128 1.010 0.998–1.022 0.20

LOF 1 × 10−5 25 0.986 0.941–1.034 0.56

LOF + Missense 1 × 10−5 102 1.004 0.982–1.027 0.70

Genes highlighted in bold are not previously reported. Number of rare variants: number of markers with MAF < 0.01.

Abbreviations: VV, varicose veins; MAF, minor allele frequency; OR, odds ratio; CI, confidence interval; LOF, loss of function.

https://doi.org/10.1371/journal.pgen.1011339.t002
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and FBLN7 were strongly influenced by single rare variants, whereas the association with

PIEZO1 were more influenced by a combined effect of multiple rare variants. We further

assessed whether the significant rare variants were independent of nearby common variants by

a conditional analysis. The results showed that the nearby common variants did not affect the

effect size and significance of these three rare variant genes (S12 Table).

Sensitivity analysis of the effects of sex on VV

To explore whether the effects of genes on VV differ by sex, we re-performed single-variant

analysis and collapsing analysis after stratifying participants by sex. These analyses included

162,210 males and 188,560 females. After clumping, we identified 5 and 21 independent com-

mon variants significantly related to VV in males and females, respectively, with four variants

mapping to novel genes only in females (ARHGEF26, BTN1A1, H1-5, TRIM27, S13 Table).

The PIEZO1 gene was strongly associated with VV, with different significance levels across

sexes (male, P = 4.66 × 10−14; female, P = 6.81 × 10−21). The significant association between

FBLN7 and VV was found only in females (P = 1.12 × 10−6). Notably, we additionally identi-

fied a significant association between a novel gene (METTL21A, P = 1.38 × 10−6) and VV in

females in the model of LOF variants with MAF < 1 × 10−4 (S14 Table).

Enrichment analysis of VV genes and their expression

We conducted a pathway enrichment analysis using the Gene Ontology (GO) Consortium

[23,24] for all 36 genes identified in the study as being significantly associated with VV. There

were 12 GO terms significantly enriched for these genes (false discovery rate (FDR) correction,

corrected α = 0.05). It was found that several VV genes (including UBE2H, TRIM31, and

RNF5) were significantly enriched in protein K48-linked ubiquitination (P = 7.20 × 10−3) and

30 genes were enriched in protein binding (P = 2.79 × 10−2) (Fig 3A and S15 Table). In

females, GO enrichment analysis showed that the identified VV-related genes were signifi-

cantly enriched in protein ubiquitination (P = 1.47 × 10−3) and most genes were enriched in

protein binding (P = 1.48 × 10−2) (Fig 3B and S16 Table). However, the VV genes identified

in males were not successfully enriched for the same biological processes.

In addition, we explored the expression of VV-related independent common and rare vari-

ant genes in 30 general tissues in FUMA GTEx. We discovered that several genes were highly

expressed in adipose tissue, including PIEZO1 and the novel identified ECE1 (Fig 3C and S17

Table). Next, single-cell expression data from human adipose tissue showed that PIEZO1 and

ECE1 were most strongly expressed in the endothelial cell subpopulation, and higher expres-

sion of ECE1 was also detected in fibroblasts and neutrophils (Fig 3D, 3E and 3F).

Phenotypic associations between identified VV genes and multiple traits

To further explore the association between VV-related genes and other phenotypes, we per-

formed phenome-wide association analysis (Phe-WAS) for multiple quantitative traits and

binary phenotypes, including biochemical indicators, cardiovascular disease, body size mea-

sures, inflammatory indicators, and pulmonary function (S18 Table). As expected, the major-

ity of 53 traits showed significant associations with the identified VV-related genes

(P< 2.77 × 10−5), especially common variant genes such as RNF5 (27/53), PGBD1 (24/53),

TRIM31 (24/53), and GNA12 (14/53) (Fig 4). Furthermore, among these significant genotype-

phenotype associations of independent common variant genes, 168 associations were negative

and 113 were positive (S19 Table). Among three rare variant genes, PIEZO1 was significantly

associated with a variety of curated phenotypes, such as HbA1c (P = 1.02 × 10−75), standing

height (P = 5.41 × 10−23), sitting height (P = 7.23 × 10−16), and forced expiratory volume in 1
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Fig 3. Enrichment and expression analysis of significant effect associations in VV. (A) Results of the functional enrichment in biological

pathway databases (P< 0.05). (B) Results of the functional enrichment in biological pathway databases in females. Only the top 12 significant

pathways (P< 0.05) are shown, and the complete results are shown in S16 Table. (C) The heat map shows the tissue enrichment results of each

VV-related gene. The H2AC6 gene was not recognized in FUMA Ensembl ID. (D) Single-cell RNA sequencing analysis results of adipose tissue.

(E, F) Cell-specific expression of PIEZO1 and ECE1 in adipose tissue. Abbreviation: BP, biological process; CC, cellular component; MF,

molecular function; TPM, transcripts per million; Umap, Uniform manifold approximation and projection.

https://doi.org/10.1371/journal.pgen.1011339.g003

Fig 4. Phenotypic associations of the independent common variant genes associated with VV. The P-values shown are two-sided. Multiple-trait

Manhattan plot representing the association results between common variant genes and 53 phenotypes. The X-axis shows various phenotypes listed

in the S19 Table. The dashed line represents the Bonferroni-corrected significance threshold for 53 traits and 34 genes (P = 2.77 × 10−5).

https://doi.org/10.1371/journal.pgen.1011339.g004
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second (FEV1 pred, P = 1.07 × 10−12), and FBLN7 was mainly linked to height-related traits

and pulmonary function indices (Fig 5 and S20 Table).

In addition, we tried to find genes with similar continuous trait fingerprints to these rare

variant genes on the Gene-SCOUT website [25]. SCUBE3 and IGF2BP2 were found to be the

most similar to the PIEZO1, respectively (Fig 6A). The module of gene signatures showed that

Fig 5. Phenotypic associations of the rare variant genes associated with VV. The P-values shown are two-sided. Multiple-trait Manhattan plot representing

the association results between 3 rare variant genes and 53 phenotypes. X-axis shows various phenotypes listed in the S20 Table. The dashed line represents

Bonferroni-corrected significance for 53 traits and 3 genes (P = 3.14 × 10−4). Abbreviations: HbA1c, glycated hemoglobin; FEV1 pred, forced expiratory

volume in 1-second, predicted; FVC, forced vital capacity; TBil, total bilirubin; Lym c, lymphocyte count; FVC Best, forced vital capacity, best measure.

https://doi.org/10.1371/journal.pgen.1011339.g005
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both these similar genes and PIEZO1 were negatively associated with height related traits (Fig

6B). Recent evidence using machine learning methods [15] has identified that height is a risk

factor for VV. Our findings further validated the effect of height on the risk of developing VV.

Discussion

Previous GWAS [14,15,26] have identified multiple risk loci and pathways involved in the

pathophysiology of VV, improving the understanding of the polygenic architecture of the dis-

ease. The WES data from the UKB could provide a new direction for exploring the genetic

mechanisms of VV [27]. VV-related genes and genetic variants identified in population-based

WES studies were more abundant and reliable. It is perhaps that whole-exome data are usually

obtained directly from sequencing rather than by imputation. WES typically focuses on coding

regions of the genome and is more cost-effective and widely available than whole-genome

sequencing [28]. Compared to non-coding variants, WES can directly assess variants that alter

protein sequence, making it easier to explain their functional consequences. It also provides a

clearer pathway to deeper mechanistic insights, and can potentially be useful for therapeutic

target discovery [29–32] and precision medicine [33,34].

Recently, several studies of human gene-phenotype association for rare coding variants

have identified the association between PIEZO1 and VV by using exome sequencing data from

UKB participants [16,20]. Compared to the studies by Van Hout et al.[16] and Wang et al.[20],

our study has a larger sample size and more validation of the findings (replication in the Finn-

Gen cohort) and exploration of biological function (e.g. functional enrichment analysis, tissue

expression analysis, and single-cell RNA sequencing analysis). In addition to the replication of

19 known VV-related genes from previous studies, our study further identified 17 novel genes.

Most of these genes were successfully validated in FinnGen. Tissue analysis and single-cell

gene expression analysis emphasized the importance of adipose tissue in the association

Fig 6. Quantitative traits and disease characteristics of PIEZO1. (A) Genes with the most similar quantitative trait characteristics to PIEZO1 in

UK Biobank from Gene-SCOUT. (B) Signatures of PIEZO1 and its similar genes (similarity to PIEZO1 sorted from top to bottom).

https://doi.org/10.1371/journal.pgen.1011339.g006
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between these identified genes and VV risk. Our Phe-WAS revealed the strong associations of

these genes with body size measures, biological indicators, and inflammatory markers.

We identified a total of 36 VV-associated genes in our large-scale exome sequencing study.

First, the exome-wide single-variant analysis identified 36 VV-related independent common

variants mapping to 34 genes, half of which have been previously established [14,15,26,35,36].

The significant effects found in the single-variant analysis were the effect of PNO1 on chromo-

some 2 and that of PIEZO1 on chromosome 16. PNO1 plays an important role in both protea-

some and ribosome biogenesis [37], and PIEZO1 is required for vascular development and

function [38]. PNO1 is predominantly expressed in the liver and spleen, and slightly in the thy-

mus, testis, and ovary, but not in the heart or brain [39]. In addition, it has been suggested that

PNO1 may be involved in the expression of calcineurin phosphatase, a key signaling compo-

nent in angiogenesis, and calcineurin phosphatase activity is essential for vascular develop-

ment [15,40]. As the most significant novel gene identified in the single-variant analysis,

TRIM10 was thought to be potentially involved in the body’s immune response [41]. Pheno-

typic association analysis revealed that TRIM10 had associations with several inflammatory

markers, such as platelets, monocytes, and neutrophils. As a protein-coding gene, UBE2H
encodes an E2 ubiquitin-conjugating enzyme family protein, which is involved not only in ubi-

quitination but also in cytoskeletal regulation and calcium signaling [42]. Our study also indi-

cated that UBE2H is involved in protein binding and protein K48-linked ubiquitination by

functional enrichment of the gene.

The other findings in this study were the associations of VV with three rare variant genes

(PIEZO1, ECE1, and FBLN7) identified by the gene-based collapsing analysis. Both single-vari-

ant analysis and gene-based collapsing analysis revealed an association between VV and

PIEZO1, supporting the previously reported hypothesis that common and rare variants may

involve overlapping genes [43,44]. A study by Backman et al. [43] found that missense variants

in PIEZO1 might have a gain-of-function effect and reduce VV risk, which offers the possibil-

ity of treating VV by pharmacological interventions. PIEZO1 is a mechanically activated ion

channel that plays a decisive role in vascular architecture [38,45]. Its integral or endothelial-

specific disruption can severely damage the growing vascular system and even lead to embry-

onic death.

As a newly discovered VV-related gene, ECE1 is an estrogen-regulatory gene in mesenteric

arteries that could catalyze the conversion of pro-endothelin into endothelin-1, a potent vaso-

constrictor [46,47]. A mouse model showed that estrogen receptor stimulation suppressed

ECE1 expression [48]. In addition, previous studies have found an increase in ECE1 in patho-

logical conditions, for instance, hypertension, coronary atherosclerosis, and vascular injury

models [49–52]. Our expression analysis of ECE1 revealed its high expression in adipose tissue,

especially in endothelial cells, and a positive association between obesity and VV risk has been

demonstrated before [15,26]. It was well known that the development of VV was associated

with a variety of vascular factors, such as changes in hemodynamics, endothelial cell activation,

inflammation, and hypoxia [53–55]. As a cell adhesion molecule associated with diseases and

developmental abnormalities, FBLN7 plays an essential role in specialized tissues such as the

placenta, blood vessels, and cartilage [56–58]. FBLN7 protein fragments have been found to

regulate endothelial cells and leukocyte function [59,60]. With anti-angiogenic function [57],

they can be used to treat inflammatory diseases by modulating immune cell activity [61].

Moreover, although the carrier frequencies of LOF variants in the population were low,

LOF mutations confer greater disease prevalence and genetic susceptibility to VV. As for the

burden heritability, ultra-rare LOF variants had the highest heritability, followed by rare LOF

variants and rare missense variants, which was in line with the previous finding by Weiner

et al. [22] that LOF variants explained the majority of burden heritability.
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We evaluated the robustness of the three genes identified in the collapsing analysis. The

rare variant association results remained stable after adjusting for nearby common variants,

probably due to our strict variant filter. Our sensitivity analysis revealed a novel gene in

females (METTL21A), which prompted us to speculate whether the association between VV

and sex might be influenced by genetic factors. Moreover, the current study revealed an over-

lap between VV-related genes identified by single-variant analyses and those identified by bur-

den tests, suggesting the robustness of the association between overlapping genes and VV risk.

A previous genetic study showed that vascular diseases were tightly linked to anthropometric

indices [36]. The Phe-WAS of the identified genes showed VV genes were also associated with

VV-related phenotypes, such as cardiovascular disease, body size measures, and pulmonary

function indices. Phe-WAS can further explore genetic contributions to disease and identify

the mechanisms of sharing across diseases [62].

There were some limitations in our study. First, the UKB was generally recruited from pop-

ulations of European ancestry between the ages of 37 and 73, which makes our findings poten-

tially inapplicable across all ethnic and age groups. Second, disease diagnoses are typically

confirmed based on participant self-reports, ICD diagnosis codes, surgical records, and death

registries. This may lead to the misclassification of disease phenotypes. Nevertheless, previous

studies have been able to replicate genetic loci findings for common variants using the pheno-

type definitions in GWAS [14,15,26]. Third, we focused on the coding regions of the genome

captured by WES, which may lead to the neglect of variants in non-coding regulatory regions.

Due to the difficulty in obtaining exome sequencing data for VV from other databases, we vali-

dated our findings using summary statistics from FinnGen. The strength of our study is that it

has the largest sample size of any VV-related whole-exome association study to date. Exome-

wide analyses allow for more efficient targeting of variant genes that play an essential role in

complex diseases compared to GWAS [63]. We defined the VV phenotype mainly based on

the study of Ahmed et al.[14], which successfully replicated most of the VV-related risk loci

identified in previous studies using this definition [15,64]. We additionally validated the results

in FinnGen to determine the reproducibility of our findings.

In conclusion, large-scale exome-wide association studies are required for exploring the

genetic associations of diseases. In this study, we identified many known genes and several

novel effector genes significantly associated with VV. We found that LOF variants explained

more burden heritability than missense variants. Furthermore, investigating genotype–pheno-

type associations would be critical for our insight into the underlying biological mechanisms

of the disease, as well as for disease prevention and treatment. The study of genetic variants

and diseases helps to develop strategies to target risk genes for prevention and treatment

purposes.

Methods

Ethics statement

The UKB has received ethical approval from the National Health Service National Research

Ethics Service and obtained written informed consent from all participants. This study was

conducted under application number 19542.

Study population

The UKB is a large-scale prospective cohort of nearly 500,000 individuals aged 37–73 recruited

between 2006 and 2010 at 22 centers in England, Scotland, and Wales [65]. Each participant

provided biological samples, phenotypic endpoints, registry information on cancer and death,
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and health-related information, including biometric measures, lifestyle indicators, biomarkers

in blood and urine, and imaging data [66].

In the discovery cohort, the VV cases were identified from the UKB using the following

diagnostic, operative, and self-report codes (S1 Table): primary and/or secondary ICD-10

codes for varicose veins (I83), primary and/or secondary OPCS code for varicose vein surgery

(L84-L88), self-reported operation code for varicose vein surgery (1479), self-reported non-

cancer illness code for varicose veins (1494). Finally, 30,130 individuals who held at least one

of these codes were classified as cases of VV.

Sequencing and quality control

The Regeneron Genetics Center (RGC) performed whole-exome sequencing on all partici-

pants from the UKB. The complete sequencing protocols were described in detail in the previ-

ous study [16]. Samples were subjected to double exponential 75 × 75bp paired-end reads

using the IDT xGen Exome Research Panel v1.0 on the NovaSeq 6000 platform to capture

exomes with over 20X coverage at 95.2% of sites. We performed similar additional QC on the

OQFE WES pVCF files in the GRCh38 human reference genome construct [67] provided by

the UKB (https://biobank.ctsu.ox.ac.uk/showcase/label.cgi?id=170), which was similar to that

in a previous study [68]. Due to the limited quality control (QC) and filtering of the published

dataset, we used a high-quality dataset generated from an extensive genotype, variant, and

sample-level pipeline for further analysis (S1 Text). We utilized Hail to perform the genotype

quality control and split multi-allelic sites into bi-allelic sites. All calls with low genotype qual-

ity or critically low/high genotype depth were set to no calls. And then we excluded variants

based on the call rate< 90%, Hardy-Weinberg P-value < 1 × 10−15, and in Ensembl low-com-

plexity regions. We selected a set of high-quality independent autosomal variants for the rela-

tionship inference, which was selected as: MAF > 0.1%, missingness < 1%, Hardy–Weinberg

equilibrium (HWE) P-value > 1 × 10−6 and two rounds of pruning using—indep-pairwise 200

100 0.1 and—indep-pairwise 200 100 0.05. KING [69] software was applied to calculate pair-

wise heterozygote concordance rates for each pair of samples and the kinship coefficient using

high-quality variants. Sample-level QC involved removing samples with Ti/Tv, Het/Hom,

SNV/indel, number of singletons exceeding the mean ± 8SD, and discrepancies between self-

reported and genetically inferred sex, as well as duplicates and withdrawn consent. The kinship

coefficient threshold of 0.0884 (the 2nd relatedness) was used to define a related sample. For

pairs with kinship coefficients higher than 0.0884, we removed samples associated with multi-

ple other individuals iteratively until none remained to maximize the sample size. Then we

randomly removed one from the remaining pairs. Finally, we restricted the sample to Cauca-

sians (field 22006) and used high-quality independent autosomal variants to calculate the PCs

within the descent.

Variant annotation

The preliminary analysis was performed by using SnpEff [70] to determine the most severe

predicted consequences for specific variants in each gene transcript, with variants filtered to

rare. We classified the variants annotated as stop gained, start/stop lost, splice donor/acceptor,

or frameshift as LOF variants. A missense variant was considered damaging when it was pre-

dicted to be deleterious by SIFT (sorting intolerant from tolerant) [71], PolyPhen-2 HDIV,

PolyPhen-2 HVAR [72], LRT (Likelihood Ratio Test)[73], and MutationTaster [74,75] consis-

tently. The definitions of deleterious variants for each software are given in S1 Text.
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Single-variant association analysis

Single-variant association analysis of common exonic single nucleotide polymorphisms

(SNPs) in VV was performed using SAIGE [76] software. The analysis was adjusted for age,

sex, and the top 10 PCs, and the significance threshold was set at 1.19 × 10−6 (Bonferroni cor-

rection for 42,123 exonic SNPs). Then, we clumped the results to remove possible associations

due to strong linkage disequilibrium (LD) using the—clump function in PLINK v2. Significant

SNPs within each risk locus were selected to identify the lead SNPs, which were defined as

those with the lowest P value when a strong LD (r2 > 0.01) was observed for multiple SNPs

within a 1000 kilobases (kb) window. Risk loci were identified as regions of ±1 Mb around

lead SNPs.

Gene-based exome-wide association analysis

We conducted gene-based collapsing analysis to define rare variant genes associated with VV.

Rare variants were defined as MAF < 1% [77]. In our preliminary analysis, carriers of rare

LOF variants and missense variants were decomposed into individual variables for each gene.

We performed two functional category masks: LOF and LOF + missense variants, and subdi-

vided each functional mask into four frequency masks:< 0.01, < 0.001, < 0.0001,

and< 0.00001. It means that we constructed eight gene-burden models for each gene. Follow-

ing adjustment for age, sex, and the top 10 PCs, gene-based collapsing analysis was conducted

in SAIGE-GENE+ software [78] using a logistic mixed model approach with a saddle-point

approximation. This approach is effective for the analysis of large sample data, and provides

accurate P-values even when the case-control ratio is highly unbalanced [76]. In our collapsing

analysis, we mainly reported the P value of SKAT-O test [79], and the exome-wide significance

threshold (P = 2.51 × 10−6) was determined by employing the Bonferroni correction (0.05/

19,897). After identifying the VV-related genes, we further calculated the disease prevalence

and carrier frequencies of rare variants for these genes.

Burden heritability estimation

In this study, we estimated the heritability explained by the rare coding variants using burden

heritability regression (BHR) [22]. BHR estimates burden heritability from the regression

slope of the gene burden statistic on the burden score. We focused on estimating burden heri-

tability for two functional categories (LOF and missense variants) and two allele frequency

bins (MAF < 1 × 10−5, and MAF between 1 × 10−5 and 1 × 10−2). Ultra-rare coding variants

were defined as MAF < 1 × 10−5 in this study. A single-variant association test was performed

on the VV to obtain summary statistics of variant-level association. The “aggregate” mode was

used to calculate the total burden heritability of disease across multiple frequency-function

strata. Single-variant association summary statistics were used as input utilizing the baseline-

BHR file provided by Weiner et al.[22]. These analyses were performed based on the R package

bhr (v0.1.0).

Replication of genes in the FinnGen cohort

We replicated the VV-related genes that we have identified using summary statistics from the

FinnGen Consortium online results (version 8, 21). The FinnGen cohort recruited 342,499

individuals of Finnish descent with genotype and health register data, including 26,720 VV

cases and 295,014 controls. The cohort collected and confirmed participants’ diagnostic infor-

mation through national healthcare registries and used the International Classification of Dis-

eases (ICD) for documentation. Genetic association tests were performed using logistic mixed
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models in SAIGE, and GWAS summary statistics for “Varicose veins” are publicly available

online (see Data availability). To validate the findings of single-variant association analysis, we

directly searched for our lead SNPs in summary statistics. For VV-related genes identified in

gene-based collapsing analysis, we selected the variants with the strongest FinnGen VV corre-

lation mapped to these genes. The significance threshold used for validation in the summary

statistics was P< 0.05.

Gene set enrichment and expression analyses

To identify terms and metabolic pathways with functional enrichment in differentially

expressed genes, we performed the GO enrichment analysis using the Database for Annota-

tion, Visualization, and Integrated Discovery (DAVID) [80]. The enrichment significance

threshold was set at 0.05 (correction method = "FDR"). Normalized gene expression (tran-

scripts per million, TPM) was obtained from the Genotype-Tissue Expression (GTEx) v8 for

30 general tissue types using the GENE2FUNC core program in Functional Mapping and

Annotation of Genome-Wide Association Studies (FUMA GWAS) [81]. We used the average

log2 (TPM) to compare expression levels between genes and tissue types. Data from each gene

set was enriched for testing and multiple corrections (default for Benjamini-Hochberg). We

leveraged the adipose tissue single-cell RNA sequencing data provided by the Tabula Sapiens

Consortium to identify the expression levels of the genes in different cell types [82]. The

Tabula Sapiens is a single-cell transcriptomic atlas of 24 human tissues and organs from 15

unique donors. The adipose tissues from two donors were obtained from surgery and immedi-

ately prepared from a fluorescence-activated cell sorting-sorted smart-seq2 platform or 10x

Genomics 3’ V3.1 droplet-based sequencing platform. The quality control, data integration,

clustering, and cell type annotation procedures of single-cell RNA sequencing data were con-

ducted, as described in the previous study [82]. The R package Seurat was used for down-

stream data analysis (i.e., normalization and data scaling) and visualization [83].

Sensitivity and leave-one-variant-out analyses

As being female is one of the risk factors for VV, sensitivity analyses stratified by sex were per-

formed to explore the sex heterogeneity of the genetic associations identified. There were

162,210 participants in the male group and 188,560 in the female group after stratification by

sex. Enrichment analysis was then performed separately for the VV-related genes identified by

sex. In addition, we assessed the robustness of the genetic results in the variant masks using

LOVO analysis. After removing each variant from the significant models one at a time, we

reran the association analysis for the variants included in the original mask. The variant that

reached the maximum LOVO P value after removal was regarded as the most important vari-

ant in each gene [68].

Conditional analyses

We conducted multi-SNP-based conditional and joint association analyses (GCTA-COJO)

using GCTA software [84,85] to identify conditionally independent variants from common

variants associated with VV and to validate the results after clumping. The significance thresh-

old was set at P = 1.19 × 10−6, and other parameters were left at their default settings.

We performed the conditional analysis to demonstrate that the significant rare variant sig-

nals were independent of nearby common variants. First, we ran association analyses for com-

mon variants (MAF > 0.5%) within the ±500 kb genomic region of the identified genes. Then

we used the—clump function (—clump-p1 1 × 10−5,—clump-r2 0.01) in PLINK [86] to aggre-

gate and threshold the results, identifying independent index common variants. Finally, gene-
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based collapsing analysis was rerun after adding the clumped common variant to the model as

a covariate [68].

Phenome-wide association analyses

To better explain the mechanisms of associations between risk genes and VV, we performed

Phe-WAS. This analysis mainly focused on 53 phenotypes selected from UKB that may be

associated with VV, including cardiovascular disease, 29 biochemical traits, 4 body size traits,

9 inflammatory traits, and 10 spirometry traits. Associations of 53 phenotypes with rare variant

genes associated with VV were conducted using gene-level collapsing analysis (P< 0.05/159),

whereas linear or logistic models were applied to independent common variants (P< 0.05/

1,802). All models were adjusted for age, sex, and the top 10 PCs. To correct for multiple test-

ing, the Bonferroni test was utilized.

Gene-SCOUT

The Gene-SCOUT (Gene-Similarity from Continuous Traits, https://astrazeneca-cgr-

publications.github.io/gene-scout/) [25] aims to find genes similar to specific genes and to

construct a unique signature for each gene using associations derived from 450,000 exomes

and 120,000 samples of metabolomic data sequenced from the UKB. This tool was used to

identify the genes most similar to VV-related genes and to show significant associations of

these genes with all quantitative traits.

Supporting information

S1 Fig. Age distribution of VV case and control groups. Abbreviation: VV, varicose veins.

(TIF)

S2 Fig. Principal component plots of the VV group versus the non-VV group. The x-axis

and y-axis represent the values of the two components of PCA (PC1, PC2), and each point in

the figure represents an individual. Abbreviation: VV, varicose veins; PC, principle compo-

nents.

(TIF)

S3 Fig. The quantile-quantile (Q-Q) plots for gene-based collapsing analysis of VV. The y-

axis represents the observed–log10 P values across all tests, while the x-axis represents the

expected under the null-hypothesis. P values were obtained from the results of the gene-based

collapse tests for varicose veins, using SAIGE-GENE+ software. In the gene-based collapse

test, we applied two different maximum MAF cutoffs (0.01 and 0.001) and two different vari-

ant annotation groups (LOF and LOF + missense) to perform burden tests. All models were

adjusted for age, sex, and top ten principal components. Abbreviation: VV, varicose veins;

LOF, loss of function; λ, lambda.

(TIF)

S4 Fig. Inter-group differences in the probability of intolerance to loss of function between

rare variant genes. P-values for differences between groups were calculated by t-test. MAF,

minor allele frequency, NS., no significance, pLI, the probability of intolerance to loss of func-

tion.

(TIF)

S5 Fig. Leave-one-variant-out (LOVO) analysis for rare variant genes associated with VV.

The x-axis indicates variants removed from the gene-based collapsed test, and the y-axis indi-

cates the -log10 P-value for associations without that variant P-values were derived from the
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gene-based collapsed test using the SAIGE-GENE+ software, adjusted for age, sex, and the top

10 principal components.

(TIF)
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6. Sisto T, Reunanen A, Laurikka J, Impivaara O, Heliövaara M, Knekt P, et al. Prevalence and risk factors

of varicose veins in lower extremities: mini-Finland health survey. The European journal of surger-

y=Acta chirurgica. 1995; 161(6):405–14. PMID: 7548376

7. Kurz X, Kahn SR, Abenhaim L, Clement D, Norgren L, Baccaglini U, et al. Chronic venous disorders of

the leg: epidemiology, outcomes, diagnosis and management. Summary of an evidence-based report

of the VEINES task force. Venous Insufficiency Epidemiologic and Economic Studies. International

angiology: a journal of the International Union of Angiology. 1999; 18(2):83–102.

8. Lee AJ, Evans CJ, Allan PL, Ruckley CV, Fowkes FG. Lifestyle factors and the risk of varicose veins:

Edinburgh Vein Study. Journal of clinical epidemiology. 2003; 56(2):171–9. https://doi.org/10.1016/

s0895-4356(02)00518-8 PMID: 12654412
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