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Abstract

The outer membrane of gram-negative bacteria is a barrier to chemical and physical stress.

Phospholipid transport between the inner and outer membranes has been an area of

intense investigation and, in E. coli K-12, it has recently been shown to be mediated by

YhdP, TamB, and YdbH, which are suggested to provide hydrophobic channels for phos-

pholipid diffusion, with YhdP and TamB playing the major roles. However, YhdP and TamB

have different phenotypes suggesting distinct functions. It remains unclear whether these

functions are related to phospholipid metabolism. We investigated a synthetic cold sensitiv-

ity caused by deletion of fadR, a transcriptional regulator controlling fatty acid degradation

and unsaturated fatty acid production, and yhdP, but not by ΔtamB ΔfadR or ΔydbH ΔfadR.

Deletion of tamB recuses the ΔyhdP ΔfadR cold sensitivity further demonstrating the pheno-

type is related to functional diversification between these genes. The ΔyhdP ΔfadR strain

shows a greater increase in cardiolipin upon transfer to the non-permissive temperature and

genetically lowering cardiolipin levels can suppress cold sensitivity. These data also reveal

a qualitative difference between cardiolipin synthases in E. coli, as deletion of clsA and clsC

suppresses cold sensitivity but deletion of clsB does not. Moreover, increased fatty acid sat-

uration is necessary for cold sensitivity and lowering this level genetically or through supple-

mentation of oleic acid suppresses the cold sensitivity of the ΔyhdP ΔfadR strain. Together,

our data clearly demonstrate that the diversification of function between YhdP and TamB is

related to phospholipid metabolism. Although indirect regulatory effects are possible, we

favor the parsimonious hypothesis that YhdP and TamB have differential phospholipid-sub-

strate transport preferences. Thus, our data provide a potential mechanism for independent

control of the phospholipid composition of the inner and outer membranes in response to

changing conditions based on regulation of abundance or activity of YhdP and TamB.
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Author summary

Gram-negative bacteria possess a highly impermeable outer membrane, which protects

against environmental stress and antibiotics. Outer membrane phospholipid transport

remained mysterious until YhdP, TamB, and YdbH were recently implicated in phospho-

lipid transport between the inner and outer membranes of E. coli. Similar roles for YhdP

and/or TamB have been suggested in both closely and distantly related gram-negative bac-

teria. Here, given the transporters’ apparent partial redundancy, we investigated func-

tional differentiation between YhdP and TamB and its potential link to phospholipid

metabolism. Our data demonstrate YhdP and TamB have differential involvement with

fatty acid and phospholipid metabolism. Transport of increased levels of cardiolipin and

saturated phospholipids in the absence of YhdP and presence of TamB at a non-permis-

sive temperature is lethal. These data clearly demonstrate that the diversification of func-

tion between YhdP and TamB is related to phospholipid metabolism. One possible

mechanism for this differentiation would be differential phospholipid transport prefer-

ence between YhdP and TamB. Diversification of function between YhdP and TamB roles

in phospholipid metabolism provides a potential mechanism for regulation of phospho-

lipid composition, and possibly the mechanical strength and permeability of the outer

membrane, and so the cell’s intrinsic antibiotic resistance, in changing environmental

conditions.

Introduction

The gram-negative bacterial cell envelope has an outer membrane (OM) that sits outside the

aqueous periplasm and peptidoglycan cell wall. The OM provides a barrier against various

environmental stresses including toxic molecules such as antibiotics and osmotic pressure [1–

6]. Unlike the inner membrane (IM), a phospholipid bilayer, the OM is largely composed of

phospholipids (mainly phosphatidylethanolamine (PE) [7]) in its inner leaflet and LPS (lipo-

polysaccharide) in its outer leaflet [2,8]. However, both membranes are asymmetric as the IM

has different phospholipid compositions in its inner versus outer leaflets [9]. Outer membrane

proteins (OMPs) form a network across the cell surface interspersed with phase separated LPS

patches [10]. Lipoproteins are generally anchored in the inner (i.e., periplasmic) leaflet of the

OM [11].

OM components are synthesized in the cytoplasm or IM and transported to the OM. OMP

[12], lipoprotein [11], and LPS [13] transport pathways are well defined. However, until

recently, intermembrane phospholipid transport (between the IM and OM), especially antero-

grade transport from the IM to the OM, has remained very poorly understood. Phospholipids

are synthesized at the IM’s inner leaflet [14] and rapid, bidirectional intermembrane phospho-

lipid transport occurs [15], even without ATP [16]. Phospholipid transport has a relaxed speci-

ficity, allowing transport of non-native lipids [17,18]; however, intermembrane phospholipid

composition differences are maintained [7,19–22]. For instance, the OM is enriched for PE

and its saturated species compared to the IM outer leaflet [7,9,20–22]; however, phosphatidyl-

glycerol (PG) and cardiolipin (CL) can be evenly distributed between the IM and OM when

the cellular level of PE is greatly reduced [17], suggesting a maintenance of membrane charge

balance. This headgroup redistribution is accompanied by a concomitant fatty acid redistribu-

tion evidenced by an accumulation of palmitic acid (C16:0) and cyclopropane derivatives of

palmitoleic acid (C16:1) and cis-vaccenic acid (C18:1). In contrast, the 1,2-diglyceride that

accumulates in mutants lacking DgkA (diglyceride kinase) predominantly associates with the
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IM [23], suggesting existence of a mechanism of discrimination of lipid transfer to the OM

that does not recognize diglyceride molecules and contributes to the diversification of distribu-

tion of polar and acyl groups between the IM and OM. This establishment and maintenance of

defined lipid topography between the IM and the OM must involve the coordinated biosynthe-

sis and balanced bidirectional trafficking of specific phospholipids across the IM and from the

IM to the OM [24].

It has been demonstrated that anterograde phospholipid transport is mediated by a high-

flux, diffusive (i.e., concentration gradient, not energy dependent) system in Escherichia coli
[25]. A retrograde trafficking pathway, the Mla system, removes mislocalized phospholipids

from the OM outer leaflet and returns them to the IM [26]. A gain-of-function allele, mlaA*
[27,28], opens a channel allowing phospholipids to mislocalize to the cell surface by flowing

from the OM’s inner to outer leaflet [27,29], resulting in a PldA (OM phospholipase A)-medi-

ated attempt to reestablish OM asymmetry by increasing LPS production, OM vesiculation,

and increased flow of phospholipids to the OM [27,28]. When nutrients are depleted, inhibit-

ing phospholipid production, cells lyse due to loss of IM integrity [16,18]. Single cell imaging

of mlaA* cells confirmed an aberrant lipid flow from the IM to the OM at a fast rate. Loss of

YhdP, an inner membrane protein, could significantly slow phospholipid flow to the OM

resulting in loss of OM integrity before IM rupture [25], suggesting YhdP might play a role in

intermembrane phospholipid transport.

Recently, YhdP and two homologs, TamB and YdbH, were demonstrated to be intermem-

brane phospholipid transporters [30,31]. Ruiz, et al. [30] investigated AsmA family proteins

and found ΔyhdP ΔtamB mutants showed synthetic OM permeability and stationary phase

lysis. Moreover, when combined, ΔyhdP, ΔtamB, and ΔydbH are synthetically lethal. Genetic

interactions of these mutants with mlaA and pldA show their involvement in OM phospho-

lipid homeostasis. Predicted structures of YhdP, TamB, and YdbH [32,33], as well as a partial

crystal structure of TamB [34], have a β-taco fold domain with a hydrophobic pocket, resem-

bling eukaryotic lipid transporters [35–38]. These structural findings are another clue that sug-

gests YhdP, TamB, and YdbH are involved in phospholipid transport. Douglass, et al. [31]

confirmed the synthetic lethality of ΔyhdP, ΔtamB, and ΔydbH and demonstrated a ΔtamB
ΔydbH mutant with reduced yhdP expression had decreased amounts of OM phospholipids,

directly demonstrating their involvement in intermembrane phospholipid transport or its reg-

ulation. Structural studies have shown that YhdP is long enough to span the periplasmic space

and molecular dynamics indicate that the C-terminus of YhdP can insert into the OM to allow

phospholipid transfer between the membranes [39]. This study also directly demonstrates that

a phosphate containing substrate, putatively assigned to be phospholipids, can be crosslinked

to the hydrophobic groove of YhdP [39]. The role of YhdP, TamB, and YdbH in phospholipid

transport may be widely conserved as recent evidence implicates TamB in anterograde phos-

pholipid transport in Veillonella parvula, a diderm Firmicute [40] and YhdP, TamB, YdbH,

and PA4735 in intermembrane phospholipid transport in Pseudomonas aeruginosa [41].

Nevertheless, why there are three separate intermembrane phospholipid transport proteins

and the functional interactions between these proteins remains unanswered, although it is

clear the proteins are not fully redundant or functionally equivalent. The conditional expres-

sion of yhdP alone, without the presence of ydbH and tamB, fully complements neither growth

phenotypes nor a normal level of OM phospholipids, suggesting transport function is still

impaired in this strain [31]. In addition, YdbH seems to play a more minor role than YhdP

and TamB [30,31] and the screen identifying ΔyhdP as slowing mlaA*-dependent lysis did not

identify ΔtamB or ΔydbH [25]. Moreover, we previously identified a role for YhdP in station-

ary phase SDS (sodium dodecyl sulfate) resistance and modulating cyclic enterobacterial com-

mon antigen activity [42,43] not shared by TamB and YdbH (S1A and S1B Fig) [30,31,42,43].
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Similarly, TamB, in conjunction with TamA, has been suggested to play a role in OM insertion

of some “complicated” β-barrel OMPs such as autotransporters and usher proteins [34,44–46].

Thus, it is unclear whether the function differences between these proteins relate to phospho-

lipid transport or to unrelated processes.

Here, we investigated the differentiation of YhdP and TamB function and identified syn-

thetic cold sensitivity in a strain with ΔyhdP and ΔfadR, a transcriptional regulator of fatty acid

biosynthesis and degradation, acting as a transcriptional switch between these pathways in

response to acyl-CoA [47]. FadR is necessary for normal levels of unsaturated fatty acids to be

synthesized [48]. The cold sensitivity was unique to the ΔyhdP ΔfadR strain and was sup-

pressed by loss of TamB. We found that the ΔyhdP ΔfadR mutant had a greater increase in lev-

els of a specific phospholipid, cardiolipin (CL) during growth at the non-permissive

temperature, and decreasing CL prevented cold sensitivity. Furthermore, increasing unsatu-

rated fatty acid levels suppressed cold sensitivity. These data demonstrate that there is diversifi-

cation of phospholipid related function between the phospholipid transporters, as the data

clearly tie an yhdP specific phenotype to phospholipid metabolism. Although the specific form

of the diversification cannot yet be determined and indirect regulatory effects cannot be ruled

out, our data are consistent with a hypothesized model where TamB and YhdP transport func-

tions are differentiated based on phospholipid fatty acid saturation state, with TamB transport-

ing more unsaturated phospholipids and YhdP transporting more saturated phospholipids.

Phospholipid species or head group can also contribute to transport specificity, since higher

levels of dianionic CL are necessary for the cold sensitivity phenotype, potentially due to func-

tional inhibition of TamB by clogging of its hydrophobic groove.

Results

Loss of FadR and YhdP results in cold sensitivity suppressed by loss of

TamB

To investigate YhdP-TamB function differentiation, we created a ΔyhdP ΔfadR strain, as FadR

is a major regulator of lipid homeostasis [47]. A deletion strain of fadR alone is expected to

have decreased fatty acid synthesis, increased fatty acid degradation, and increased fatty acid

saturation [47,48]. Surprisingly, ΔyhdP ΔfadR cultures grown at 30˚C lagged for more than 8

hours, followed by highly variable growth, suggesting suppressor outgrowth (Fig 1A). The

growth defect was decreased at 37˚C and completely absent at 42˚C. To confirm this cold sen-

sitivity, we estimated efficiency of plating (EOP) and confirmed the severe cold intolerance of

the ΔyhdP ΔfadR strain (5 logs at 30˚C and 3 logs at 37˚C) (Fig 1B). Although, enterobacterial

common antigen is necessary for ΔyhdP’s OM permeability phenotypes [43], the ΔyhdP ΔfadR
strain’s cold sensitivity was unchanged when enterobacterial common antigen was not present

(ΔwecA) [49] (Fig 1C).

We hypothesized the ΔyhdP ΔfadR strain’s cold sensitivity was due to impairment of phos-

pholipid transport and expected ΔtamB and/or ΔydbH to show similar synthetic phenotypes

with ΔfadR. However, ΔfadR ΔtamB and ΔfadR ΔydbH strains had no growth defects (Fig 1D).

Although ΔydbH in the ΔyhdP ΔfadR strain did not alter cold sensitivity (Fig 1E), ΔtamB in

the ΔyhdP ΔfadR background completely suppressed the cold sensitivity (Fig 1F). Consistent

with previous observations for ΔyhdP ΔtamB [30], the ΔyhdP ΔfadR ΔtamB strain was mucoid

due to Rcs (regulator of capsule synthesis) stress response activation and colanic acid capsule

production. Deleting rcsB, an Rcs response regulator, prevented mucoidy but did not affect

suppression (Fig 1F). We observed only minimal growth phenotypes at 30˚C in the ΔyhdP
ΔfadR ΔtamB strain (Fig 1G), similar to those of ΔyhdP ΔtamB (S1C Fig). Thus, although

ΔfadR does not suppress ΔyhdP ΔtamB phenotypes, these data make slow growth an unlikely
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suppression mechanism. Together, these data suggest the ΔyhdP ΔfadR strain has impaired

phospholipid transport leading synthetic cold sensitivity, which can be relieved by deletion of

ΔtamB, shifting phospholipid transport to YdbH or causing some regulatory change.

We next looked for envelope homeostasis alterations in the ΔyhdP ΔfadR strain. To identify

cell lysis and/or severe OM permeability defects at 30˚C, we assayed CPRG (chlorophenol red-

Fig 1. Deletion of yhdP and fadR causes synthetic cold sensitivity for which TamB is necessary. (A) The ΔyhdP ΔfadR strain had impaired growth at lower

temperatures. (B) EOPs were performed to confirm the growth defect of the ΔyhdP ΔfadR strain. (C-F) EOPs were performed at 30˚C to assess cold sensitivity.

(C) The growth of the ΔyhdP ΔfadR strain was not affected by the loss of ECA (ΔwecA). (D) Neither a ΔtamB ΔfadR strain nor a ΔydbH ΔfadR strain exhibited

cold sensitivity. (E) Deletion of ydbH did not suppress cold sensitivity in the ΔyhdP ΔfadR strain. (F) Deletion of tamB completely suppressed cold sensitivity in

the ΔyhdP ΔfadR strain and the Rcs stress response was not necessary for this suppression. (G) Growth curves were performed at 30˚C. The ΔyhdP ΔfadR
ΔtamB strain grew well, indicating suppression was unlikely to result from slow growth. Quantitative data are shown as the mean of three biological

replicates ± the SEM. Images are representative of three independent experiments.

https://doi.org/10.1371/journal.pgen.1011335.g001

PLOS GENETICS Phospholipid transporter functional differentiation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011335 June 24, 2024 5 / 26

https://doi.org/10.1371/journal.pgen.1011335.g001
https://doi.org/10.1371/journal.pgen.1011335


β-D-galactopyranoside) processing. CPRG must contact LacZ in the cytoplasm or supernatant

to release chlorophenol red [50]. Compared to wild type or single mutants, the ΔyhdP ΔfadR
strain had increased CPRG processing (S2A Fig), demonstrating lysis or increased envelope

permeability. When we assayed resistance to molecules excluded by the OM [1,42,43,51,52] at

37˚C, a semi-permissive temperature, the ΔyhdP ΔfadR strain showed sensitivity to vancomy-

cin, a large scaffold antibiotic, and SDS EDTA compared to single mutants (S2B Fig). How-

ever, with bacitracin treatment or EDTA treatment alone, the ΔyhdP ΔfadR strain

phenocopied the ΔfadR single deletion (S2C and S2D Fig). As bacitracin targets undecaprenol

pyrophosphate recycling and EDTA is thought to cause peptidoglycan degradation once it

crosses the OM [53], these data may indicate that the ΔyhdP ΔfadR strain’s peptidoglycan

metabolism more closely resembles that of the ΔfadR strain. LPS levels were not altered in the

ΔyhdP, ΔfadR, ΔyhdP ΔfadR or ΔyhdP ΔfadR ΔtamB strains (S2E Fig). OM asymmetry muta-

tions (i.e., ΔpldA, ΔmlaA) [26–28,54] did not have suppressive or synthetic effects on cold sen-

sitivity in the ΔyhdP ΔfadR strain (S3A and S3B Fig), cold sensitivity is not due to OM

asymmetry or the loss thereof. Overall, the changes in OM permeability did not seem sufficient

to cause lethality at lower temperature, suggesting the phospholipid transport disruption

affects both IM and OM integrity.

Lowering cardiolipin suppresses cold sensitivity

We investigated phospholipid composition of the wild-type, ΔyhdP, ΔfadR, and ΔyhdP ΔfadR
strains grown at the permissive temperature (42˚C) to log phase then downshifted to 30˚C. E.

coli phospholipid composition is generally 75% phosphatidylethanolamine (PE), 20% phos-

phatidylglycerol (PG), and 5% cardiolipin (CL) with CL increasing in stationary phase [14,55].

Of the three CL synthases, ClsA and ClsB synthesize CL from two PG molecules, while ClsC

synthesizes CL from one PG and one PE molecule, so CL and PG levels are generally recipro-

cally regulated [56–59]. For all strains, the levels of PE were similar (Figs 2A and S4A). How-

ever, the ΔyhdP ΔfadR strain had increased CL and concomitant decreased PG compared to

the wild-type strain and compared to individual ΔyhdP and ΔfadR mutants (Fig 2B). PgsA

synthesizes phosphatidylglycerol-phosphate and is the first enzyme differentiating PG and PE

biosynthesis. PgsA depletion would decrease both PG and CL levels, reversing increased CL

levels and exacerbating decreased PG levels in the ΔyhdP ΔfadR strain. We tested the effect of

PgsA depletion in a strain background (ΔrcsF Δlpp) where pgsA is non-essential [60–63].

When pgsA expression was repressed (glucose panel), the ΔyhdP ΔfadR cold sensitivity was

partially suppressed (Fig 2C), demonstrating that decreased PG does not cause cold sensitivity

and suggesting increased CL may be necessary for cold sensitivity. The partial suppression

may be due to incomplete depletion of PG and CL or the adaptive response of a cell containing

only PE in its membrane. Induction of pgsA (arabinose panel) reversed the suppression. The

cold sensitivity of the ΔyhdP ΔfadR strain was lost when CL was fully depleted due to deletion

of the genes for all cardiolipin syntheses (ΔclsABC) or of the gene for the primary cardiolipin

synthase (ΔclsA) responsible for CL synthesis in exponential phase (Figs 2A, 2D and 2E and

S4B). A decrease in LPS levels is not responsible for the suppression as LPS levels did not

change in the ΔyhdP ΔfadR ΔclsA strain (S2E Fig). ΔclsB caused a smaller decrease in CL levels,

while ΔclsC did not cause a decrease (Figs 2A, 2B and S4B). Surprisingly, however, ΔclsC
completely suppressed the cold sensitivity, while ΔclsB did not (Fig 2F and 2G). Thus, CL is

necessary for cold sensitivity but CL levels alone cannot explain the phenotype: another factor,

such as a specific molecular form (e.g., acyl chain length, saturation state, symmetry of acyl

chain arrangement) or localization (e.g., poles vs. midcell or inner vs. outer leaflet) of CL, is

required.
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Fig 2. Lowering cardiolipin levels can suppress cold sensitivity of the ΔyhdP ΔfadR strain. (A-B) Thin layer

chromatography (TLC) of lipid extracts was performed for the indicated cultures grown to log phase at 42˚C then

transferred to 30˚C for 2 hours before analysis. (A) Relative phospholipid levels were calculated. The ΔyhdP ΔfadR
strain shows increased levels of CL and a concomitant decrease in PG levels, increasing the ratio of CL to PG (B). Data

are averages of two to three biological replicates ± the SEM. For ratios individual data points are indicated with open

circles. * p<0.05 vs. MG1655 by Student’s T-test; ‡ p<0.05 vs. the ΔyhdP ΔfadR strain by Student’s T-test. (C-G)

Growth effects of altered phospholipid levels were investigated by EOP. Images are representative of three independent

experiments. (C) PgsA depletion strains in a background where pgsA is non-essential were used to assay the effect of

lowering PG and CL levels on cold sensitivity. Arabinose induces expression of pgsA while glucose represses. Cultures
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Increased fabA expression suppresses cold sensitivity

To identify other factors involved in the cold sensitivity, we applied a forward genetic

approach by isolating spontaneous suppressor mutants capable of growing at 30˚C and identi-

fied a suppressor mutant (Suppressor 1) that restored growth at 30˚C (Fig 3A), decreased

CPRG processing (S2A Fig), and had very similar CL levels (Figs 2A and 2B and S4A) and

LPS levels (S2 Fig) to the ΔyhdP ΔfadR strain. We identified a point mutation in the fabA pro-

moter region in Suppressor 1 (Fig 3B) and confirmed this mutation was sufficient for suppres-

sion (Fig 3C). FabA is a dehydratase/isomerase that introduces cis unsaturation into fatty acids

[14,64] and fabA is expressed from two promoters controlled by FadR and FabR [65,66]. FadR

were induced or repressed for 4–5 generations before as well as during the EOP. Lowering PG and CL levels partially

suppressed cold sensitivity. (D) Deletion of the three CL synthases, clsA, clsB, and clsC, suppressed cold sensitivity of

the ΔyhdP ΔfadR strain. (E) Deletion of clsA also suppressed cold sensitivity. (F) Deletion of clsB does not suppress

cold sensitivity, while deletion of clsC (F) does.

https://doi.org/10.1371/journal.pgen.1011335.g002
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suppression. (D) fabA RNA levels are shown. Bars are the mean of three biological replicates ± the SEM. Individual data points

are shown as open circles. ** p<0.005, *** p<0.0005 by quasi-linear F-test. Data are from the RNA-seq experiment in Fig 5 and

fabA data are also shown in Fig 5F. (E) Luciferase reporters of wild-type and mutant fabA promoter activity were constructed.

The mutation caused similar fold increases in PfabA activity in all strain backgrounds, indicating the activity of the second fabA
promoter and not FabR binding were likely affected by the suppressor mutation. Data are luminescence relative to OD600 and are

shown as the average of two biological replicates ± the SEM.

https://doi.org/10.1371/journal.pgen.1011335.g003
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activates fabA expression, while FabR represses. Thus, fadR deletion would be expected to

lower fabA expression. The suppressor mutation was located in the fabA promoter FabR bind-

ing site (Fig 3B) and we hypothesized this mutation would increase fabA expression. fabA
mRNA levels were more than 4-fold lower in the ΔyhdP ΔfadR strain than the wild-type strain

(Fig 3D). While lower than wild type, the suppressor mutant increased fabA mRNA 1.6-fold

over the ΔyhdP ΔfadR strain.

We constructed luciferase reporter plasmids with the wild-type fabA promoter region or the

fabA promoter region containing the suppressor mutation. The reporter with the mutated pro-

moter had higher activity in a wild-type, ΔfadR, and ΔfabR background (Fig 3E). fabA tran-

scription occurs from a promoter downstream of the FabR binding site [66–68]. However,

when fadR is deleted, transcription shifts to the FabR-regulated promoter within the FabR bind-

ing region [66–68]. Thus, our data indicate the Suppressor 1 mutation regulates the constitutive

activity of the promoter located in the FabR binding site rather than the affinity of FabR bind-

ing. To confirm the effect of changing the second promoter’s activity, we tested the effect of

ΔfabR on cold sensitivity in the ΔyhdP ΔfadR strain and observed partial suppression (S5 Fig).

The smaller effect of ΔfabR compared to Suppressor 1 may result from other gene expression

changes or to the smaller relative effect of ΔfabR on fabA expression (Fig 3E). Overall, these

data demonstrate increasing fabA expression, which is necessary for unsaturated fatty acid bio-

synthesis, rescues cold sensitivity in the ΔyhdP ΔfadR strain without changing CL levels.

Increasing unsaturated fatty acids relieves cold sensitivity

Given the effect of fabA expression on the ΔyhdP ΔfadR cold sensitivity, we used liquid chro-

matography-electrospray ionization mass spectrometry (LC/MS) to characterize the strains’

phospholipid saturation state (S1 Dataset, Figs 4A–4C and S6). Representative spectra dem-

onstrating relative phospholipid composition are shown in S7 Fig. As expected, ΔfadR caused

increased fully saturated and monounsaturated PE and PG with a concomitant decrease of

diunsaturated PE (Figs 4A and 4B and S6A and S6B). Similarly, the ΔfadR strain demon-

strated increased monounsaturated CL with a concomitant decrease in triunsaturated CL

(Figs 4C and S6C). Compared to the ΔfadR strain, the ΔyhdP ΔfadR strain had slightly

decreased saturation for all three phospholipids, while still displaying more phospholipid satu-

ration than wild type or ΔyhdP strains (Figs 4A–4C and S6C). Suppressor 1 trended towards

decreased saturation of all three phospholipids compared to the ΔyhdP ΔfadR strain (Figs 4A–

4C and S6C). We wondered whether the suppression difference between ΔclsC and ΔclsB
resulted from the CL saturation state. However, the ΔyhdP ΔfadR ΔclsB and ΔyhdP ΔfadR
ΔclsC strains had very similar CL profiles (Figs 4C and S6C), suggesting another qualitative

difference affecting suppression, perhaps CL lateral or inter-leaflet distribution in the cell.

These strains also showed similar PE and PG saturation profiles to their ΔyhdP ΔfadR parent

(Figs 4A and 4B and S6A and S6B).

We hypothesized increasing unsaturated fatty acids suppresses ΔyhdP ΔfadR cold sensitivity

and performed EOPs for cold sensitivity on media containing an unsaturated fatty acid (oleic

acid, C18:1 cis-9). Exogenous phospholipids can be taken up by E. coli, attached to acyl-CoA,

and incorporated into phospholipids [69]. Oleic acid addition suppressed the ΔyhdP ΔfadR
strain’s cold sensitivity (Fig 4D). Supplementing oleic acid increases unsaturated phospholip-

ids and provides an exogenous fatty acid source. To differentiate between saturation state and

fatty acid availability, we compared treatment with oleic acid and saturated stearic acid

(C18:0). Only oleic acid, and not stearic acid, suppressed the ΔyhdP ΔfadR strain’s cold sensi-

tivity (Fig 4E), confirming increasing unsaturated fatty acids, not fatty acid availability

suppresses.
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Suppression causes fatty acid metabolism and stress response alterations

In wild-type cells, fabA overexpression does not change phospholipid saturation levels, dem-

onstrating the FabB enzyme is rate limiting for unsaturated fatty acid biosynthesis [70]. We

were intrigued that Suppressor 1 altered saturation without directly affecting fabB expression.

Fig 4. Decreasing fatty acid saturation suppresses ΔyhdP ΔfadR cold sensitivity. (A-C) Lipids were extracted from cells grown to OD600 0.2 at

42˚C then shifted to 30˚C for 2 hours before harvest. LC/MS was performed on lipid extracts using absolute quantification and the percentage of

each specific species of PE (A), PG (B), and CL (C) was calculated using the sum of all molecular species detected. Suppressor 1 trends towards

decreased saturation compared to its parent strain (ΔyhdP ΔfadR). Data for phospholipids without unsaturations are shown in grey, with one

unsaturation in blue, with two unsaturations in green, with three unsaturations in orange. Data are the average of three biological replicates ± the

SEM. * p<0.05 vs. MG1655 by the Mann-Whitney test; ‡ p<0.05 vs. the ΔyhdP ΔfadR strain by the Mann-Whitney test. All molecular species are

shown in S6 Fig. (D) EOPS were performed on media supplemented with oleic acid or a vehicle control. Oleic acid suppresses the cold sensitivity of

the ΔyhdP ΔfadR strain. (E) Growth curves of the indicated strains were performed in the presence of oleic acid, stearic acid, or a vehicle control.

Oleic acid suppressed the cold sensitivity of the ΔyhdP ΔfadR strain while stearic acid did not. Data are the average of three biological replicates ± the

SEM.

https://doi.org/10.1371/journal.pgen.1011335.g004
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We also wondered whether CL levels in the ΔyhdP ΔfadR strain are transcriptionally regulated.

Thus, we investigated the transcriptional landscape of the wild type, the ΔyhdP ΔfadR, and

Suppressor 1 strains after a 30-minute downshift of growth to 30˚C to determine: (i) whether

the ΔyhdP ΔfadR strain had altered cls gene expression; (ii) whether Suppressor 1 had other

transcriptional changes; and (iii) why increased fabA expression decreased saturation. All dif-

ferentially expressed genes (>2-fold change, p<0.05) are listed in S2 Dataset. Principal com-

ponent analysis of these genes showed the closest relation between ΔyhdP ΔfadR strain and

Suppressor 1, while the wild-type strain was more distantly related (Figs 5A and S8A). Never-

theless, Suppressor 1 was more closely related to wild type than was the ΔyhdP ΔfadR strain.

Most differentially regulated genes between ΔyhdP ΔfadR and wild type and Suppressor 1 and

wild type were upregulated (Figs 5B and 5C and S8B and S8C). Many of the most highly regu-

lated genes are FadR-regulon members. The majority of differentially regulated genes in Sup-

pressor 1 compared to ΔyhdP ΔfadR are downregulated (Figs 5D and S8D). These genes are

involved in many cellular pathways and likely reflect the decreased cellular stress (S2 Table).

Indeed, many external stress response genes are more enriched in ΔyhdP ΔfadR than in Sup-

pressor 1 (S9A Fig); however, the pathways that demonstrated the most enrichment between

the ΔyhdP ΔfadR strain and Suppressor 1 were catabolic pathways again signifying a decrease

in cellular stress in the Suppressor 1 strain.

No significant expression changes occurred in the CL biosynthesis pathway (Fig 5E) or

other phospholipid biosynthesis genes (S9B Fig). The increased cardiolipin in ΔyhdP ΔfadR
and Suppressor 1 may be post-transcriptional or due to a change in a regulatory pathway not

yet altered after 30 minutes at 30˚C (S9C Fig). Levels of mitochondrial CL can be altered due

to differences in substrate binding affinity of the CL synthase based on saturation, with

increased saturation decreasing CL synthesis [71], and it may be that a similar pathway oper-

ates here, albeit in a different direction. We examined the expression of genes in fatty acid syn-

thesis and degradation, many of which are members of the FadR regulon. In ΔyhdP ΔfadR
compared to wild type, many fatty acid biosynthesis genes significantly decreased while many

fatty acid degradation genes significantly increased (Fig 5F), consistent with ΔfadR effects.

While fabA expression is decreased, fabB expression is not changed, explaining why increased

fabA expression causes decreased saturation in Suppressor 1. Overall, our data demonstrate

the ΔyhdP ΔfadR strain’s cold sensitivity is due to impaired phospholipid trafficking, and

increased phospholipid saturation and cardiolipin are necessary for this functional

impairment.

Discussion

The identification of YhdP, TamB, and YdbH as putative intermembrane phospholipid trans-

porters [30,31] posed the tantalizing question: why is having three transporters advantageous?

Differential phenotypes between the transporters suggest that they possess specialized func-

tions [25,30,31,34,43–46]. Here, we demonstrate each protein plays a distinguishable role in

phospholipid transport that can be differentiated based on genetic interactions with lipid

metabolism. Disruption of fadR and yhdP function causes synthetic cold sensitivity not shared

by tamB or ydbH. This yhdP specific sensitivity can be suppressed by removing TamB. In addi-

tion, the phenotype involves both increased levels of CL and saturated fatty acids, and decreas-

ing amounts of either suppresses. In addition, our data demonstrate that CL synthesized by

ClsB and ClsC is qualitatively different—resulting in differential suppression phenotypes—

likely due to differences in CL localization, CL-mediated, leaflet-specific changes in lipid pack-

ing order [9,24], localized membrane fluidity [72], or phospholipid transporter interaction.

Thus, our data indicate that both specific CL localization and/or levels and increased
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Fig 5. Transcriptional landscape of the ΔyhdP ΔfadR and suppressed strain. Three biological replicates of the indicated strains were grown at 42˚C to mid-

log then transferred to 30˚C for 30 minutes before harvesting RNA and performing RNA-seq. Differential expression was calculated based on a greater than

2-fold change in expression and a p value of less than 0.05 by quasi-linear F-test. (A) PCA was performed on the expression of all genes differentially expressed

between any groups of samples. Suppressor 1 and the ΔyhdP ΔfadR strain grouped closer together than to the wild-type strain, although Suppressor 1 was

closer to wild type than the ΔyhdP ΔfadR strain. (B-D) Volcano plots show the average fold change and significance of expression changes between the ΔyhdP
ΔfadR strain and wild-type MG1655 (B), Suppressor 1 and wild-type MG1655 (C), and Suppressor 1 and the ΔyhdP ΔfadR strain (D). Genes with changes

greater than 2-fold are shown in blue, while genes with changes less than 2-fold are shown in grey. Genes with a q-value (false discovery rate) of less than 0.05

are shown in yellow. Blue lines indicate a 2-fold change and dotted line indicates p>0.05. The number of up or down regulated genes is indicated in blue. The

names of the 10 genes with the largest changes are called out. More genes were up-regulated then down regulated in the ΔyhdP ΔfadR strain and Suppressor 1

vs. wild type. More genes were down regulated in Suppressor 1 compared to the ΔyhdP ΔfadR strain. (E) Relative expression of genes in the CL synthesis

pathway is shown as averages ± the SEM and individual data points. No significant changes were evident. (F) Relative expression of genes in the fatty acid

synthesis and degradation pathways is shown as averages ± the SEM and individual data points. A general normalizing of these pathways occurred in

Suppressor 1 compared to the ΔyhdP ΔfadR strain; however, the most significant change was in the expression of fabA. * p<0.05, ** p<0.005, *** p<0.0005 by

quasi-linear F-test.

https://doi.org/10.1371/journal.pgen.1011335.g005
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saturation is necessary for the cold sensitivity of the ΔyhdP ΔfadR strain. That the cold sensitiv-

ity, which our data clearly links to phospholipid metabolism, only occurs with mutation of

yhdP and not the other two phospholipid transporter demonstrates that the phospholipid

transporters have differential roles in phospholipid metabolism and/or transport.

Based on the currently available data, we cannot rule out the possibility that the suppressors

we have identified for the ΔyhdP ΔfadR cold sensitivity act indirectly (e.g., through regulatory

changes). However, we now suggest a simple model for the differentiation of function between

YhdP and TamB that explains our data without invoking additional, more complex interpreta-

tions (Fig 6A–6C). In this hypothesis, the functions of YhdP and TamB are diversified based

on the acyl carbon saturation level preference of the phospholipids they transport: YhdP trans-

ports mainly phospholipids with more saturated fatty acids, while TamB transports phospho-

lipids with more unsaturated fatty acids (Fig 6A). Our data and previous data [30,31] agree

YdbH plays a relatively minor role. In the ΔyhdP ΔfadR strain, YhdP’s absence forces more sat-

urated phospholipids to be transported by TamB. At 30˚C, TamB becomes “clogged” by phos-

pholipids having more saturated fatty acyl side chains, impeding transport (Fig 6B). Bulky and

intrinsically disordered CL molecules could contribute to the clogging sterically by obstructing

the lipid channel and precluding it from translocating other lipid substrates (i.e., PE). We find

it interesting that the phenotype of the ΔyhdP ΔfadR strain is most severe at low temperature,

leading to cold sensitivity. This cold-specific effect may occur due to (i) temperature-depen-

dent decreased membrane fluidity and higher lipid packing order involving lower expression

of FabF, which is responsible for increased diunsaturated phospholipids at lower temperature

(Fig 5F and S3 Dataset) [14]; (ii) higher relative levels of CL [73]; (iii) higher amounts of per

cell phospholipids at lower temperatures [73] contributing to increased diffusive flow rate; or,

(iv) to thermodynamic properties altering TamB transport specificity and/or substrate behav-

ior contributing to efficiency of substrate loading or transport.
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Fig 6. Hypothesized model for the role of YhdP and TamB in phospholipid transport. The following is one possible parsimonious model to explain our

data. (A) In normal conditions, YhdP is mainly responsible for the transport of phospholipids with more saturated fatty acid chains between the IM and

OM. TamB shows a strong preference for transporting phospholipids with more unsaturated fatty acids, with YdbH playing a minor role in phospholipid

transport. (B) In the ΔyhdP ΔfadR strain, YhdP is not available to transport more saturated phospholipids and the proportion of both saturated fatty acids

and cardiolipin is increased, especially at low temperature. The fluidity of the membrane is also lessened by the low temperature. In these conditions,

transport of phospholipids between the membranes is impeded, due to clogging of TamB by a combination of more saturated phospholipids and/or bulky

and highly disordered CL. This leads to a lethal lack of phospholipids in the OM and overabundance of phospholipids in the IM. (C) When tamB is deleted

in the ΔyhdP ΔfadR strain, the clogging of TamB is relieved, and the cell relies on YdbH for phospholipid transport overcoming the cold sensitivity. PL:

phospholipid.

https://doi.org/10.1371/journal.pgen.1011335.g006
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One interesting aspect of our data is that the presence of TamB, with perhaps inhibited

function, causes a worse phenotype than the absence of TamB. Furthermore, the phenotype of

a ΔyhdP ΔfadR ΔydbH strain is not measurably worse than that of the ΔyhdP ΔfadR strain.

Together, these data suggest that YdbH is able to successfully transport phospholipids in the

ΔyhdP ΔfadR strain only when TamB is absent. There are several possible mechanisms for this.

The first is that YhdP and TamB are the primary transporters and are the preferred interaction

partners for other, as of yet unidentified interaction partners (e.g., putative IM proteins facili-

tating phospholipid transfer to YhdP and TamB). Another possibility is that there is direct tox-

icity caused by TamB clogging, perhaps through leaking of micellar phospholipids into the

periplasm or through stress response overactivation. A third possibility is that YdbH levels are

insufficient in the presence of YhdP and TamB to facilitate phospholipid transport and ydbH
is upregulated in the absence of the other phospholipid transporters. This will be an interesting

area for future investigations.

Several pieces of evidence suggest dysregulation of phospholipid transport not just changes

to OM phospholipid composition, and so permeability or physical strength, cause the cold sen-

sitivity phenotype of the ΔyhdP ΔfadR strain. First, the cold sensitivity is unaffected by remov-

ing enterobacterial common antigen, which suppresses the membrane permeability of a

ΔyhdP strain (Fig 1C, [43]), and the OM permeability phenotypes of the ΔyhdP ΔfadR are not

severe (S2 Fig). Second, the cold sensitivity is suppressed by deletion of ΔtamB (Fig 1F and

1G). ΔyhdP ΔtamB strains have much greater OM permeability [30] than the ΔyhdP or ΔyhdP
ΔfadR strains. Third, CL has been shown to have a normalizing, bidirectional, and leaflet-spe-

cific effect on lipid packing order [9,74–77] and membrane fluidity [78–81] opposite of or sim-

ilar to that of cholesterol, respectively, and so is unlikely to contribute to a phenotype

dependent solely on OM membrane fluidity. Thus, the cold sensitivity phenotype correlates

with the impairment of phospholipid trafficking and the likely imbalance of phospholipids

between the IM and OM and not with the permeability phenotypes of the OM. Nonetheless, it

will be useful in the future to conduction comparative analysis of the phospholipid composi-

tion of pure IM and OM extracts (i.e., without cross contamination of the other membrane) at

both permissive and non-permissive temperatures to directly link the cold sensitivity observed

here with changes in phospholipid transport.

Although both fatty acid saturation and CL levels affect the ΔyhdP ΔfadR strain’s cold sensi-

tivity, evidence points to saturation rather than headgroup as the main factor separating YhdP

and TamB function. Specifically, YhdP loss slows phospholipid transport from the IM to the

OM in a mlaA*mutant, which loses OM material due to vesiculation and lysis when phospho-

lipid biosynthesis is insufficient to replace lost phospholipids [25,27]. CL only accounts for 5%

of phospholipids in exponentially growing cells making it unlikely that the loss of CL transport

could slow net phospholipid transport to the extent required to slow lysis.

Our model suggests the IM and OM saturation state could be independently regulated

based on YhdP and TamB activity or levels. IM saturation is regulated by altering the composi-

tion of newly synthesized fatty acids, while OM saturation could be separately regulated by

allowing increased transport of more saturated or unsaturated phospholipids, as necessary. IM

and OM acyl saturation has been studied in several strains of E. coli and in Yersinia pseudotu-
berculosis [7,19–21] and higher saturated fatty acid levels were observed in the OM than in the

IM, supporting discrimination of phospholipid transport based on saturation. The IM needs

to maintain an appropriate level of fluidity to allow IM proteins to fold and diffuse, to allow

diffusion of hydrophobic molecules, to regulate cellular respiration, and to maintain mem-

brane integrity [82,83]. However, the OM is a permeability barrier, a load-bearing element

that resists turgor pressure [1–6], and has an outer leaflet consisting of LPS [2,8]. LPS has satu-

rated acyl chains and is largely immobile in E. coli [84] and a specific phospholipid saturation
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level may be necessary to match or counterbalance LPS rigidity. OM phospholipids may also

play a role in the physical strength of the membrane. Interestingly, previous work has demon-

strated that the tensile strength of the OM is lessened in a yhdP mutant [25].

Possessing two different phospholipid transporters with different saturation state preferences

would allow the cell to adapt OM saturation to changing conditions including temperature

shifts, chemical and physical insults, or changes in synthesis of other OM components (e.g., LPS

or OMPs). A recent study demonstrated in Y. pseudotuberculosis the difference in saturation

levels between the membranes is exaggerated at 37˚C compared to 8˚C [21]. Thus, conditions

where IM and OM saturation are independently regulated exist and this regulation is likely

important for optimum fitness of the cells. Transcriptional regulation of yhdP and tamB has not

been thoroughly explored. It seems likely yhdP transcription is quite complex with several pro-

moters and transcriptional termination sites [85–87]. tamB is predicted to be in an operon with

tamA (which codes for an OMP necessary for TamB function) and ytfP [85,88] and to have a

σE-dependent promoter [89]. The σE stress response is activated by unfolded OMP accumula-

tion, and downregulates the production of OMPs and upregulates chaperones and folding

machinery [75]. It is intriguing to speculate a change in OM phospholipid composition might

aid in OMP folding due to altered biophysical properties and/or lipoprotein diffusion. In fact,

this could explain the observations that some complicated OMPs fold more slowly in the

absence of TamB [34,44–46]. Proper phospholipid composition may be necessary for efficient

folding of these OMPs, as it is necessary for the correct folding and topology of some IM pro-

teins [74,90–93]. Recently, it has been demonstrated that the tamAB operon is regulated by

PhoPQ in Salmonella enterica Serovar Typhimurium and that this regulation helps maintain

OM integrity in the acidic phagosome environment, perhaps due to indirect effects on OMP

folding [94]. Thus, changing environments may necessitate changes in phospholipid composi-

tion that can be accomplished through differential TamB and, perhaps YhdP, regulation.

The mechanism of phospholipid transfer between the IM and OM has been one of the largest

remaining questions in gram-negative envelope biogenesis and has remained an area of intense

investigation for decades. Furthermore, given the lack of knowledge of this pathway, the role of

phospholipid composition in the permeability barrier of the OM, and so the intrinsic antibiotic

resistance of gram-negative bacteria, remains unknown. Recent work has begun to elucidate the

intermembrane phospholipid transport pathway by identifying YhdP, TamB, and YdbH as pro-

teins capable of transporting phospholipids between the membranes [25,30,31]. Our work here

suggests that YhdP and TamB may have separate roles in phospholipid transport that are differ-

entiated by their preference for phospholipid saturation states and possibly lipid headgroup.

Homologs of YhdP and TamB are found throughout Enterobacterales and more distantly

related members of the AsmA family are widespread in gram-negative bacteria [95]. In fact,

TamB has recently been shown to play a role in anterograde intermembrane phospholipid

transport in the diderm Firmicute Veillonella parvula [40] and four AsmA members play a role

in phospholipid transport in Pseudomonas aeruginosa [41]. Structural predictions of YhdP and

TamB are strikingly similar between species [32,33]. Given this, it is quite likely similar mecha-

nisms of discrimination in intermembrane phospholipid transfer exist in other species. The

data we present here provide a framework for investigation of phospholipid transport and

mechanisms differentiating phospholipid transporter function in these species.

Materials and methods

Bacterial strains and growth conditions

S3 Table lists the strains used in this study. Most knockout strains were constructed with Keio

collection alleles using P1vir transduction [96,97]. New alleles were constructed through λ-red
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recombineering [98], using the primers indicated in S4 Table. The FLP recombinase-FRT sys-

tem was used to remove antibiotic resistance cassettes as has been described [98]. E. coli cul-

tures were grown in LB Lennox media at 42˚C, unless otherwise mentioned. Where noted, LB

was supplemented with vancomycin (Gold Biotechnology), bacitracin (Gold Biotechnology),

SDS (Thermo Fisher Scientific), EDTA (Thermo Fisher Scientific), oleic acid (Sigma Aldrich),

stearic acid (Sigma Aldrich), arabinose (Gold Biotechnology), or glucose (Thermo Scientific).

For plasmid maintenance, media was supplemented with 25 μg/mL kanamycin (Gold Biotech-

nology), 10 or 20 μg/mL chloramphenicol (Gold Biotechnology), or 10 μg/mL tetracycline

(Gold Biotechnology) as appropriate.

Plasmid construction

The pJW15-PfabA, and pJW15-PfabA(-19G>A) reporter plasmids were constructed by amplify-

ing the region upstream of fabA from -432 bp to +27 bp relative to the annotated transcrip-

tional start site from wild-type MG1655 or Suppressor 1, respectively, using the Overlap-

pJW15-fabA FP and RP primers (S4 Table). pJW15 was amplified using primers Overlap-

pJW15-fabA FP1 and RP1. The pJW15 plasmid was a kind of gift from Dr. Tracy Raivio (Uni-

versity of Alberta) [99,100]. The resulting fragments were assembled using HiFi Assembly

master mix (New England Biolabs) as per the manufacturer’s instructions.

Growth and sensitivity assays

For EOPs assays, cultures were grown overnight, serially diluted, and plated on the indicated

media. For pgsA depletion, overnight cultures grown in arabinose were washed and diluted

1:100 into fresh LB with 0.2% glucose or arabinose as indicated and grown to OD600 = 1 before

diluting and plating on media with glucose or arabinose respective, as above. EOPs were incu-

bated at 30˚C unless otherwise indicated. Growth curves were performed at the indicated tem-

perature as has been described [43], except that starting cultures for growth curves were grown

to early stationary phase before inoculation of growth curves rather than overnight. For CPRG

assays [50], strains were streaked on LB plates supplemented with CPRG (40μg/ml) and IPTG

(100 μM) incubated overnight at 30˚C.

Suppressor isolation and sequencing

Serially diluted cultures were spread on LB plates and incubated overnight at 30˚C. Colonies

that grew at 30˚C were isolated and rechecked for cold resistance through EOP and growth

curves. The suppressors were subjected to whole-genome sequencing to identify potential sup-

pressor mutations. Genomic DNA was isolated from the parent and suppressors using a

DNeasy Blood and Tissue Kit (Qiagen) as per the manufacturer’s instructions. Library prepa-

ration and Illumina sequencing were performed by the Microbial Genome Sequencing Center

(MiGS, Pittsburgh, PA, USA). Briefly, Illumina libraries were prepared and the libraries were

sequenced with paired-end 151 bp reads on a NextSeq 2000 platform to a read depth of at least

200 Mbp. To identify variants from the reference genome (GenBank: U00096.3), reads were

trimmed to remove adaptors and the breseq software (version 0.35.4) was used to call variants

[101]. Identified mutations were confirmed with Sanger sequencing. The consensus motif of

the FabR binding site of fabA was determined using Multiple Em for Motif Elicitation

(MEME) tool in the MEME Suite based on the sequence of putative FabR binding sites

reported by Feng and Cronan (2011) [65,102,103]. The ability of the identified PfabA mutation

to suppress was confirmed by linking the mutant to zcb-3059::Tn10 [104] and transducing to a

clean background.
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Lux reporter assays

Overnight cultures of strains harboring the pJW15-PfabA and pJW15-PfabA(-19G>A) plasmids

were sub-cultured at (1:100) into 200 μl of fresh LB broth in a black 96-well plate. The plate

was incubated in a BioTek Synergy H1 plate reader and the OD600 and luminescence intensity

were recorded every 2.5 min for 6 hours as described in previously [100,105]. Each biological

replicate was performed in technical triplicate.

RNA-seq

Overnight cultures grown at 42˚C were subcultured 1:100 into fresh media and incubated at

42˚C until an OD600 of 0.4. Then, the cultures were shifted to a 30˚C water bath for 30 minutes.

500 μL of each culture was immediately fixed in the RNAprotect Bacteria Reagent (Qiagen) as

per the manufacturer’s instructions. RNA was purified using the RNeasy Kit (Qiagen) with

on-column DNase digestion following the manufacturer’s protocol for gram-negative bacteria.

Library preparation, Illumina sequencing, and analysis of differentially expressed genes were

performed by MiGS. Briefly, samples were treated with RNase free DNase (Invitrogen) and

library preparation was performed with the Stranded Total RNA Prep Ligation with Ribo-

Zero Plus Kit (Illumina). Libraries were sequenced with 2x50 bp reads on a NextSeq2000 (Illu-

mina). Demultiplexing, quality control, and adapter trimming were carried out using bcl-con-

vert (Illumina, v3.9.3) and bcl2fastq (Illumina). Read mapping and read quantification were

performed with HISAT2 [106] and the FeatureCounts tool in Subreader [107], respectively.

Descriptive statistics of the RNA-seq read data can be found in S1 Table. The raw RNA-seq

data is available in the Sequence Read Archive database (SRA) (https://www.ncbi.nlm.nih.gov/

sra, BioProject ID PRJNA965821).

Raw read counts were normalized using the Trimmed Mean of M values algorithm in

edgeR [108] and converted to counts per million. The Quasi-Linear F-Test function of edgeR

was used for differential expression analysis. Normalized read values and for all genes as well

as differential expression analysis statistics can be found in S3 Dataset. KEGG pathway analy-

sis was conducted using the “kegga” function of limma [109]. Expression of genes differentially

expressed (greater than 2-fold change and p<0.05) was subjected to principal component anal-

ysis, and pathway and enrichment analysis using the EcoCyc Omics Dashboard [109].

Lipid extraction and TLC

For thin layer chromatography (TLC) experiments, cultures were grown in LB with 1 μCi/mL
32P until OD600 of 0.6–0.8 at the indicated temperature. For temperature downshift experi-

ments, cells were grown at 42˚C until OD600 of 0.2 and then transferred to 30˚C for 2 hours.

For lipid extraction, cells were pelleted and resuspended in 0.2 mL of 0.5 M NaCl in 0.1 N

HCl. Lipids were extracted by first adding 0.6 mL of chloroform:methanol (1:2) to create a sin-

gle-phase solution. After vigorous vortexing for 30 minutes, 0.2 mL of 0.5 M NaCl in 0.1 N

HCl was added to convert the single-phase solution to a two-phase solution. After centrifuga-

tion at 20 000 x g for 5 minutes at room temperature, the lower phase was recovered and used

for TLC. Approximately 2,000 cpm of phospholipid extract was subjected to TLC analysis

using a HPTLC 60 plate (EMD, Gibbstown, NJ)) developed with either solvent 1: chloroform/

methanol/acetic acid [60/25/10] (vol/vol/vol) in S4A Fig or by solvent 2: chloroform/metha-

nol/ammonia/water [65/37.5/3/1] (vol/vol/vol/vol) in S4B Fig. Radiolabeled lipids were visual-

ized and quantified using a Phosphoimager Typhoon FLA 9500 (GE). Images were processed

and quantified using ImageQuant software for scanning and analysis. The phospholipid con-

tent is expressed as molecular percentage of the total phospholipids (correcting for the two

phosphates per molecule of CL).
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Phospholipid composition analysis

Whole cell lipid extracts were isolated as for TLC temperature downshift experiments without

radiolabeling. Absolute amounts of CL, PG, and PE were determined in these lipid extracts

using liquid chromatography coupled to electrospray ionization mass spectrometry (LC/MS)

in an API 4000 mass spectrometer (Sciex, Framingham, MA, USA) using normal phase sol-

vents as previously published [110]. The cardiolipin internal standard (14:0)4CL (Avanti Polar

Lipids, Alabaster, AL USA) was added to all samples to quantify CL, PG, and PE within a single

run. Standard curves containing reference standards of all three phospholipids, (18:1)4CL

(Avanti Polar Lipids), 16:0118:11PG and 16:0118:11PE (Cayman Chemicals, Ann Arbor, MI,

USA) were used to quantify the nmol/mg protein for each species (S1 Dataset) as previously

described [111]. Percentage values were calculated by dividing the absolute value of that spe-

cies by the sum of individual molecular species of CL, PG, or PE. The identities of CL species

were confirmed using tandem mass spectrometry.

Supporting information

S1 Fig. Effects of yhdP, tamB, and ydbH on outer membrane permeability and growth.

(A-B) Efficiency of plating assays (EOPs) were performed at 37˚C in the indicated conditions.

Only ΔyhdP causes significant outer membrane (OM) permeability to vancomycin and SDS

(sodium dodecyl sulfate) EDTA. Loss of all enterobacterial common antigen due to ΔwecA
deletion (A) or loss of cyclic enterobacterial common antigen due to ΔwzzE (B) suppresses

ΔyhdP OM permeability but does not change ΔtamB or ΔydbH phenotypes. Data are represen-

tative of three independent experiments.

(TIF)

S2 Fig. Envelope permeability phenotypes of ΔyhdP ΔfadR mutants. (A) A CPRG assay was

used to assay lysis and envelope permeability. Red color indicates the production of chlorophe-

nol red after β-galactosidase cleavage of CPRG. The ΔyhdP ΔfadR strain shows increased lysis

or envelope permeability compared to the wild type strain and single mutants. The ΔelyC
strain serves as a positive control. (B-D) Sensitivity of strains to various compounds inhibited

by the OM was assayed by EOP at 37˚C. (B) The ΔyhdP ΔfadR strain shows additive sensitivity

to vancomycin and SDS EDTA when compared to its parent strains. (C) The ΔyhdP ΔfadR
strain demonstrates similar bacitracin sensitivity to the ΔfadR strain. (D) The ΔyhdP ΔfadR
strain does not exhibit the EDTA sensitivity of a ΔyhdP strain. (E) LPS levels in cultures grown

to OD = 0.2 at 37˚C then down shifted to 30˚C for two hours were assayed by immunoblot

analysis (α-LPS core, Hycult Biotechnology) as has been described [30,43,105]. GroEL (Milli-

pore Sigma) serves as a loading control. The mlaA* strain has increased LPS levels and serves

as a control. Relative LPS levels from three biological replicates were determined by densitom-

etry and are shown as the mean ± the SEM with individual data points. The mlaA* strain has

the only significant change in LPS levels. All images are representative of three independent

experiments.

(TIF)

S3 Fig. yhdP does not show genetic interaction with OM asymmetry mutants. EOPs were

carried out at 30˚C on LB media. (A) Combination of ΔyhdP with ΔpldA or ΔmlaA did not

result in cold sensitivity. (B) Combination of ΔyhdP ΔfadR with ΔpldA or ΔmlaA did not sup-

press cold sensitivity. Images are representative of three independent experiments.

(TIF)
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S4 Fig. Representative TLC images. Cultures of the indicated strains were grown to log phase

at 42˚C then transferred to 30˚C or 42˚C for 2 hours before performing thin layer chromatog-

raphy to analyze phospholipid content. Two representative images are shown. Solvent condi-

tions are different between image (A) (chloroform-methanol-acetic acid [60/25/10] (vol/vol/

vol)) and (B) (chloroform-methanol-ammonia-water [65/37.5/3/1] (vol/vol/vol/vol)) to allow

better separation of PG and PE. CL: cardiolipin; PE: phosphatidylethanolamine; PG: phospha-

tidylglycerol.

(TIF)

S5 Fig. Deletion of fabR partially suppresses the cold sensitivity of the ΔyhdP ΔfadR strain.

EOPs were performed at 30˚C on LB media with the indicated strains. Deletion of fabR par-

tially suppresses the cold sensitivity of the ΔyhdP ΔfadR strain. Image is representative of three

independent experiments.

(TIF)

S6 Fig. Full phospholipid composition for down shifted strains. Phospholipid composition

of the indicted strains was assayed using LC/MS after growth to OD600 = 0.2 at 42˚C then

down shifting the temperature to 30˚C for 2 hours. (A-C) Percentages of PE (A), PG (B), and

CL (C) were calculated from absolute quantification of all species detected. Data for phospho-

lipids without unsaturations are shown in grey, with one unsaturation in blue, with two unsa-

turations in green, with three unsaturations in orange. (D) Total fatty acid lengths for all

phospholipids are shown with CL specific lengths shown in yellow tones. * p<0.05 vs.

MG1655 by the Mann-Whitney test; ‡ p<0.05 vs. the ΔyhdP ΔfadR strain by the Mann-Whit-

ney test.

(TIF)

S7 Fig. Example MS spectra for phospholipid composition. Phospholipid composition of

the indicted strains was assayed using LC/MS. Representative spectra are shown the wild type,

ΔfadR, and ΔyhdP ΔfadR strains (A-C) and for the ΔyhdP ΔfadR, Suppressor 1, ΔyhdP ΔfadR
ΔclsB, and ΔyhdP ΔfadR ΔclsC strains (D-F). Spectra for PE (A, D), PG (B, E), and CL (C, F)

are shown as separate panels. Data are shown as relative values to the maximum peak height.

(TIF)

S8 Fig. RNA-seq read data. RNA-seq was performed for the wild-type, ΔyhdP ΔfadR, and

Suppressor 1 strains (see main text for details). (A) Principal component analysis was per-

formed for the expression of all genes differentially expressed between any two groups. The

samples are graphed in relation to the top three principal components. Blue: wild type; Green:

ΔyhdP ΔfadR; Orange: Suppressor 1. Suppressor 1 and the ΔyhdP ΔfadR strain cluster most

closely together. (B-D) The mean read count per gene ± the SEM is shown for (A) the ΔyhdP
ΔfadR strain vs. wild type, (C) Suppressor 1 vs. wild type, and (D) Suppressor 1 vs. the ΔyhdP
ΔfadR strain.

(TIF)

S9 Fig. RNA-seq enrichment and pathway analysis. (A) Pathway enrichment analysis was

performed on RNA-seq data from the ΔyhdP ΔfadR strain and Suppressor 1 against wild type

using the EcoCyc Omics Dashboard. Data for genes in responses to external stimuli are

shown. Graphed values at–log(p-values) calculated by a Fisher-exact test. (B) Relative expres-

sion of genes in phospholipid biosynthesis not specific for CL synthesis. Data are shown as

mean ± SEM and individual data points. * p<0.05 by quasi-linear F-test. (C) Pathway analysis

was performed using the EcoCyc Omics Dashboard on the expression of all genes. Data for

response to stimulus, sigma factor regulons, and signal transduction pathways are shown as
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fold values. Large dots indicate the mean for the pathway while small dots indicate individual

genes. Lines indicate the range of changes for the pathway.

(TIF)

S1 Table. RNA-Seq Descriptive Statistics.

(DOCX)

S2 Table. RNA-Seq KEGG Pathway Enrichment Analysis.

(DOCX)

S3 Table. Strains used in this study.

(DOCX)

S4 Table. Primers used in this study.

(DOCX)

S1 Dataset. Lipid extract LC-MS quantification. Whole cell lipid extracts were subjected to

LC/MS and absolute quantification for major phospholipids. Standard curves and measure-

ments are shown for CL, PG, and PE. Peak areas for the analyte and internal standard are

shown as well as the nmols of the indicated species per mg of protein.

(XLSX)

S2 Dataset. RNA-seq differentially regulated genes. RNA-seq was performed with the wild-

type, ΔyhdP ΔfadR, and Suppressor 1 strains. Differentially expressed genes were considered

to have at least a 2-fold change in expression and a p-value of<0.05 by quasi-linear F-test. Dif-

ferentially expressed genes are shown for each strain comparison with log2 fold values, p-val-

ues, q-values (false discovery value), and expression values for each sample as normalized

counts per million reads.

(XLSX)

S3 Dataset. All RNA-seq expression data. RNA-seq was performed with the wild-type,

ΔyhdP ΔfadR, and Suppressor 1 strains. Expression values as normalized counts per million

reads are shown for all genes as well as log2 fold values, p-values, q-values for each strain pair.

(XLSX)

S4 Dataset. Raw data for all growth curves and reporter assays. Datasets are labeled by the

figure number they correspond to.

(XLSX)
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